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Abstract—In planar grasp detection, the goal is to learn a
function from an image of a scene onto a set of feasible grasp
poses in SE(2). In this paper, we recognize that the optimal
grasp function is SE(2)-equivariant and can be modeled using
an equivariant convolutional neural network. As a result, we
are able to significantly improve the sample efficiency of grasp
learning, obtaining a good approximation of the grasp function
after only 600 grasp attempts. This is few enough that we
can learn to grasp completely on a physical robot in about
1.5 hours. Code is available at https://github.com/ZXP-S-works/
SE2-equivariant-grasp-learning.

I. INTRODUCTION

An important trend in robotic grasping is grasp detection

where machine learning is used to infer the positions and

orientations of good grasps in a scene directly from raw visual

input, i.e. raw RGB or depth images. This is in contrast to

classical model-based methods that attempt to reconstruct the

geometry and pose of objects in a scene and then reason

geometrically about how to grasp those objects.
Most current grasp detection models must be trained using

large offline datasets. For example, [24] trains on a dataset

consisting of over 7M simulated grasps, [2] trains on over

2M simulated grasps, [21] trains on grasp data drawn from

over 6.7M simulated point clouds, and [33] trains on over

700k simulated grasps. Some models are trained using datasets

obtained via physical robotic grasp interactions. For example,

[27] trains on a dataset created by performing 50k grasp

attempts over 700 hours, [14] trains on over 580k grasp

attempts collected over the course of 800 robot hours, and

[1] train on a dataset obtained by performing 27k grasps over

120 hours.
Such high data and time requirements motivate the desire

for a more sample efficient grasp detection model, i.e. a model

that can achieve good performance with a smaller dataset.

In this paper, we propose a novel grasp detection strategy

that improves sample efficiency significantly by incorporating

equivariant structure into the model. Our key observation is

that the target grasp function (from images onto grasp poses)

is SE(2)-equivariant. That is, rotations and translations of

the input image should correspond to the same rotations and

translations of the detected grasp poses at the output of the

function. In order to encode the prior knowledge that our target

function is SE(2)-equivariant, we constrain the layers of our

model to respect this symmetry. Compared with conventional

grasp detection models that must be trained using tens of

thousands of grasp experiences, the equivariant structure we

encode into the model enables us to achieve good grasp

performance after only a few hundred grasp attempts.

This paper makes several key contributions. First, we recog-

nize the grasp detection function from images to grasp poses

to be SO(2)-equivariant. Then, we propose a neural network

model using equivariant layers to encode this property. Finally,

we introduce several algorithmic optimizations that enable us

to learn to grasp online using a contextual bandit framework.

Ultimately, our model is able to learn to grasp well after

only approximately 600 grasp trials – 1.5 hours of robot

time. Although the model we propose here is only for 2D

grasping (i.e. we only detect top down grasps rather than

all six dimensions as in 6-DOF grasp detection), the sample

efficiency is still impressive and we believe the concepts can

be extended to higher-DOF grasp detection models.

These improvements in sample efficiency are important for

several reasons. First, since our model can learn to grasp in

only a few hundred grasp trials, it can be trained easily on

a physical robotic system. This greatly reduces the need to

train on large datasets created in simulation, and it therefore

reduces our exposure to the risks associated with bridging the

sim2real domain gap – we can simply do all our training on

physical robotic systems. Second, since we are training on

a small dataset, it is much easier to learn on-policy rather

than off-policy, i.e. we can train using data generated by the

policy being learned rather than with a fixed dataset. This

focuses learning on areas of state space explored by the policy

and makes the resulting policies more robust in those areas.

Finally, since we can learn efficiently from a small number

of experiences, our policy has the potential to adapt relatively

quickly at run time to physical changes in the robot sensors

and actuators.

II. RELATED WORK

A. Equivariant convolutional layers

Equivariant convolutional layers incorporate symmetries

into the structure of convolutional layers, allowing them

to generalize across a symmetry group automatically. This

idea was first introduced as G-Convolution [4] and Steerable

CNN [6]. E2CNN is a generic framework for implementing

E(2) Steerable CNN layers [41]. In applications such as

dynamics [36, 40] and reinforcement learning [35, 22, 38, 39]
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equivariant models demonstrate improvements over traditional

approaches.

B. Sample efficient reinforcement learning

Recent work has shown that data augmentation using ran-

dom crops and/or shifts can improve the sample efficiency

of standard reinforcement learning algorithms [18, 16]. It

is possible to improve sample efficiency even further by

incorporating contrastive learning [25], e.g. CURL [19]. The

contrastive loss enables the model to learn an internal latent

representation that is invariant to the type of data augmentation

used. The FERM framework [43] applies this idea to robotic

manipulation and is able to learn to perform simple manipula-

tion tasks dirctly on physical robotic hardware. The equivariant

models used in this paper are similar to data augmentation in

that the goal is to leverage problem symmetries to accelerate

learning. However, whereas data augmentation and contrastive

approaches require the model to learn an invariant or equivari-

ant encoding, the equivariant model layers used in this paper

enforce equivariance as a prior encoded in the model. This

simplifies the learning task and enables our model to learn

faster (see Section V).

C. Grasp detection

In grasp detection, the robot finds grasp configurations

directly from visual or depth data. This is in contrast to

classical methods which attempt to reconstruct object or scene

geometry and then do grasp planning.

2D Grasping: Several methods are designed to detect grasps

in 2D, i.e. to detect the planar position and orientation of

grasps in a scene based on top-down images. A key early

example of this was DexNet 2.0, which infers the quality of a

grasp centered and aligned with an oriented image patch [21].

Subsequent work proposed fully convolutional architectures,

thereby enabling the model to quickly infer the pose of all

grasps in a (planar) scene [23, 29, 9, 17, 44] (some of these

models infer the z coordinate of the grasp as well).

3D Grasping: There is much work in 3D grasp detection, i.e.

detecting the full 6-DOF position and orientation of grasps

based on TSDF or point cloud input. A key early example of

this was GPD [34] which inferred grasp pose based on point

cloud input. Subsequent work has focused on improving grasp

candidate generation in order to improve efficiency, accuracy,

and coverage [24, 32, 13, 10, 2, 1].

On-robot Grasp Learning: Another important trend has been

learning to grasp directly from physical robotic grasp expe-

riences. Early examples of this include [27] who learn to

grasp from 50k grasp experiences collected over 700 hours of

robot time and [20] who learn a grasp policy from 800k grasp

experiences collected over two months. QT-Opt [14] learns a

grasp policy from 580k grasp experiences collected over 800

hours and [12] extend this work by learning from an additional

28k grasp experiences. [31] learns a grasp detection model

from 8k grasp demonstrations collected via demonstration

and [42] learns a online pushing/grasping policy from just

2.5k grasps.

III. BACKGROUND

A. Equivariant Neural Network Models

1) The cyclic group Cn ≤ SO(2): In this paper, we are

primarily interested in equivariance with respect to the group

of planar rotations, SO(2). However, in practice, in order to

make our models computationally tractable, we will use the

cyclic subgroup Cn of SO(2), Cn = {2πk/n : 0 ≤ k < n}.

Cn is the group of discrete rotations by multiples of 2π/n
radians.

2) Representation of a group: Elements of the cyclic group

g ∈ Cn represent rotations. To specify how these rotations

apply to data, we define a representation of the group. How-

ever, the type of representation needed depends upon the type

of data to be rotated. There are two main representations

relevant to this paper. The regular representation acts on an

n-dimensional vector (x1, x2, . . . , xn) ∈ R
n by permuting its

elements: ρreg(g)x = (xn−m+1, . . . , xn, x1, x2, . . . , xn−m)
where g is the mth element in Cn. The trivial representation

acts on a scalar x ∈ R and makes no change at all: ρ0(g)x = x.

The standard representation ρ1 is a rotation matrix that rotates

a vector x in the standard way.

3) Feature maps of equivariant convolutional layers: An

equivariant convolutional layer maps between feature maps

which transform by specified representations ρ of the group.

We add an extra channel to the input and output feature maps

which encodes the group transformation on feature space. So,

whereas the feature map used by a standard convolutional

layer is a tensor F ∈ R
m×h×w, an equivariant convolutional

layer adds an extra dimension: F ∈ R
k×m×h×w, where

k denotes the dimension of the group representation. This

tensor associates each pixel (x, y) ∈ R
h×w with a matrix

F(x, y) ∈ R
k×m.

4) Action of the group operator on the feature map: Given

a feature map F ∈ R
k×m×h×w associated with group G and

representation ρ, a group element g ∈ G acts on F via:

(gF)(x) = ρ(g)F(ρ1(g)
−1x), (1)

where x ∈ R
2 denotes pixel position. In the above, ρ1(g)

−1x
is the coordinates of pixel rotated by g−1 and F(ρ1(g)

−1x) ∈
R

k×m is the matrix associated with pixel ρ1(g)
−1x. The

element g operates on F(ρ1(g)
−1x) via the representation

ρ associated with the feature map. For example, if ρ = ρ0
(the trivial representation), then k = 1 and g acts on F by

rotating the image but leaving the m-vector associated with

each pixel unchanged. In contrast, if ρ = ρreg (the regular

representation), then k = |G| (the number of elements in G)

and g acts on F by performing a circular shift on the group

dimension of F(ρ1(g)
−1x). This last action (by the regular

representation) is the one primarily associated with the hidden

equivariant convolutional layers used in this paper.

5) The equivariant convolutional layer: An equivariant

convolutional layer is a function h from Fin to Fout that

is constrained to represent only equivariant functions with

respect to a chosen group G. The feature maps Fin and

Fout are associated with representations ρin and ρout acting







symmetry is present, we can model it using the quotient group

Cn/C2
∼= {2πk/n : 0 ≤ k < n/2, k ∈ Z, 0 ≡ π} which pairs

orientations separated by π radians into the same equivalence

class.

E. Other Optimizations

While our use of equivariant models to encode the Q func-

tion is responsible for most of our gains in sample efficiency

(Section V-C), there are several additional algorithmic details

that, taken together, have a meaningful impact on performance.

1) Loss Function: In the standard ASR loss function, both

q1 and q2 have a Monte Carlo target, i.e. the target is set equal

to the transition reward [37]:

L = L1 + L2 (9)

L1 = 1

2
(Q1(s, x)− r)2 (10)

L2 = 1

2
(Q2(crop(s, x), θ)− r)2. (11)

However, in order to reduce variance resulting from sparse

binary rewards in our bandit formulation, we modify L1:

L′

1 =
1

2
(Q1(s, x)− (r + (1− r)max

θ∈Θ̄

[Q2(crop(s, x), θ)]))
2,

(12)

where Θ̄ = {θ̄ 6= θ|∀θ̄ ∈ Cn/C2}. For a positive sample (r =
1), the Q1 target will simply be 1, as it was in Equation 10.

However, for a negative sample (r = 0), we use a TD target

calculated by maximizing Q2 over θ, but where we exclude

the failed θ action component from Θ̄.

In addition to the above, we add an off-policy loss term L′′

1

that is evaluated with respect to an additional k grasp positions

X̄ ⊂ X sampled using a Boltzmann distribution from q1(s):

L′′

1 =
1

k

∑

xi∈X̄

1

2

(

Q1(s, xi)−max
θ∈Θ

[Q2(crop(s, xi), θ)]

)2

,

(13)

where q2 provide targets to train q1. This off-policy loss

minimizes the gap between q1 and q2. Our combined loss

function is therefore L = L′

1 + L′′

1 + L2.

2) Prioritizing failure experiences in minibatch sampling:

In the contextual bandit setting, we want to avoid the situation

where the agent selects the same incorrect action several times

in a row. This can happen because when a grasp fails, the depth

image of the scene does not change and therefore the Q map

changes very little. We address this problem by ensuring that

following a failed grasp experience, that the failed grasp is

included in the sampled minibatch on the next SGD step [42],

thereby changing the Q function prior to reevaluating it on the

next time step. This reduces the chance that the same (bad)

action will be selected.

3) Boltzmann exploration: We compared Boltzmann explo-

ration with ε-greedy exploration and found Boltzmann to be

better in our grasp setting. We use a temperature of τtraining

during training and a lower temperature of τtest during testing.

Using a non-zero temperature at test time helped reduce the

chances of repeatedly sampling a bad action.

4) Data augmentation: Even though we are using equiv-

ariant neural networks to encode the Q function, it can still be

helpful to perform data augmentation as well. This is because

the granularity of the rotation group encoded in q1 (D4) is

coarser than that of the action space (Cn/C2). We address this

problem by augmenting the data with translations and rotations

sampled from ŜE(2). For each experienced transition, we

add eight additional ŜE(2)-transformed images to the replay

buffer.

5) Softmax at the output of q1 and q2: Since we are using a

contextual bandit with binary rewards and the reward function

r(s, a) denotes the parameter of a Bernoulli distribution at s, a,

we know that Q1 and Q2 must each take values between zero

and one. We encode this prior using an entry-wise softmax

layer at the output of each of the q1 and q2 networks.

6) Selection of the z coordinate: In order to execute a

grasp, we must calculate a full x, y, z goal position for the

gripper. Since our model only infers a planar grasp pose, we

must calculate a depth along the axis orthogonal to this plane

(the z axis) using other means. In this paper, we calculate z
by taking the average depth over a 5×5 pixel region centered

on the grasp point in the input depth image. The commanded

gripper height is set to an offset value from this calculated

height. While executing the motion to this height, we monitor

force feedback from the arm and halt the motion prematurely

if a threshold is exceeded. (In our physical experiments on the

UR5, this force is measured using torque feedback from the

joints.)

V. EXPERIMENTS IN SIMULATION

A. Setup

1) Object Set: All simulation experiments are performed

using objects drawn from the GraspNet-1Billion dataset [10].

This includes 32 objects from the YCB dataset [3], 13 ad-

versarial objects used in DexNet 2.0 [21], and 43 additional

objects unique to GraspNet-1Billion [10] (a total of 88 ob-

jects). Out of these 88 objects, we exclude two bowels because

they can be stably placed in non-graspable orientations, i.e.

they can be placed upside down and cannot be grasped in

that orientation using standard grippers. Also, we scale these

objects so that they are graspable from any stable object

configuration. we refer to these 86 mesh models as our

simulation “object set”, shown in Figure 3a.

2) Simulation Details: Our experiments are performed in

Pybullet [7]. The environment includes a Kuka robot arm and

a 0.3m × 0.3m tray with inclined walls (Figure 3b). At the

beginning of each episode, the environment is initialized with

15 objects drawn uniformly at random from our object set and

dropped into the tray from a height of 40 cm so that they fall

into a random configuration. State is a depth image captured

from a top-down camera (Figure 3c). On each time step, the

agent perceives state and selects an action to execute which

specifies the planar pose to which to move the gripper. A grasp

is considered to have been successful if the robot is able to

lift the object more than 0.1m above the table. The episode

continues until all objects have been removed from the tray
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APPENDIX

A. Neural network architecture

Our network architecture is shown in Figure 10a. The q1
network is a fully convolutional UNet [28]. The q2 network

is a residual neural network [11]. These networks are imple-

mented using PyTorch [26], and the equivariant networks are

implemented using the E2CNN library [41]. Adam optimizer

[15] is used for the SGD step. The ablation no opt has the

same architecture as above. The ablation no asr (Figure 10b)

ablated the q2 network and is defined with respect to group

C16. The ablation no equ (Figure 10c) has a similar network

architecture as ours with approximately the same number of

free weights. However, the equivariant network is replaced

with an FCN. The ablation rot equ (Figure 10d) has a similar

network architecture as no asr method with approximately

the same number of free weights. However, the equivariant

network is replaced with an FCN.

B. Parameter choices

The parameters we choose in simulation (Section V-A) and

in hardware (Section VI) are listed in tables II, III, and IV.

TABLE II
PARAMETER CHOICES FOR ALL METHODS.

environment parameter value

in simulation,
in hardware

bs batch size 8 (2 for VPG)
number of rotations 8
augment buffer 8 times
augment buffer type random SE(2), flip
ddilation 4 pixels

in simulation

sthreshold 0.5cm
workspace size 0.3× 0.3m
state s size 1282 pixel
action range 962 pixel

in hardware

sthreshold 1.5cm
workspace size 0.25× 0.25m
state s size 1122 pixel
action range 802 pixel

TABLE III
PARAMETER CHOICES FOR OURS.

environment parameter value

in simulation,
in hardware

train SGD step after the 20th grasp
policy Boltzmann
crop(s, x) size 32
learning rate 1e-4
weight decay 1e-5

k in L
′′

1
10

τ in L
′′

1
1

τtest 0.01
τtrain 0.002
SGD step per grasps 1

C. Augmentation baseline choices

The data augmentation strategies are: n× RAD: The

method from [18] where we perform n SGD steps after each

TABLE IV
PARAMETER CHOICES FOR BASELINES.

environment parameter value

in simulation,
in hardware

train SGD step after the 1st grasp
policy ε-greedy
εinitial 0.5
εfinal 0.1
ε linear schedule 200 grasps in simulation

500 grasps in hardware

grasp sample, where each SGD step is taken over a mini-batch

bs of samples that have been randomly translated and rotated

by g ∈ ŜE(2). n× soft equ: a data augmentation method

[38] that performs n soft equivariant SGD steps per grasp,

where each SGD step is taken over n times randomly ŜE(2)
augmented mini-batch. Specifically, we sample bs/n samples

(bs is the batch size), augment it n times and train on this

mini-batch. We perform this SGD steps n times so that bs
transitions are sampled. This augmentation aims at achieving

equivariance in the mini-batch.

We apply n× RAD and n× soft equ data augmentation

to both VPG and FC-GQ-CNN baselines, with n = 2, 4, 8.

Figure 11 shows the results. Observe that all data augmentation

choices improve the baselines, but an increase in n leads to a

saturation effect in learning while causing more computation

overhead. The best data augmentation parameters n are chosen

for each baseline in the comparison in Figure 4

For rot equ ablation baseline, we choose the best learning

curve in Figure 12b, i.e, 4× RAD rot FCN. This baseline

aims to achieve equivariance through the combination of data

augmentation and rotation encoding of an FCN.

D. Success and failure modes

We list typical success and failure modes to evaluate our

algorithm’s performance.

For success modes, the learned policy of our method

showcases its intelligence. At the densely cluttered scene, our

method prefers to grasp the relatively isolated part of the

objects, see Figure 14a, b. At the scene where the objects

are close to each other, our method can find the grasp pose

that doesn’t cause a collision/interference with other objects,

see Figure 14c, d.

For failure modes, we identify several typical scenarios:

Wrong action selection (Figure 15a, b, and e) indicates that

there is a clear gap between our method and optimal policy,

this might be caused by the biased dataset collected by the

algorithm. Reasonable grasps failure (Figure 15d, f) means

that the agent selects a reasonable grasp, but it fails due to the

stochasticity of the real world, i.e., sensor noise, contact dy-

namics, hardware flaws, etc. Challenging scenes (Figure 15c,

g) is the nature of densely cluttered objects, it can be alleviated

by learning an optimal policy or executing higher DoFs grasps.

The sensor distortion (Figure 15h) is caused by an imperfect

sensor. Among all failure modes, wrong action selection takes

the most part (65% failure in the test set easy and 33% failure
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