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ABSTRACT Physical models for exploring multiplication are fixtures in elementary classrooms.

The most widely used physical models of multiplication are collections of discrete things, such as

Cuisenaire rods, Unifix Cubes, or Base-10 Blocks. But discrete physical models are limited in the
products they can represent. By contrast, pictorial models, such as number lines or area models,
are continuous and thus represent a broader range of products. However, pictorial models are
limited in how they can be manipulated. The discrete/continuous divide across physical/pictorial
representations of multiplication frames the overarching design problem that motivated our work:

How could a physical, manipulable tool realize a continuous model of multiplication? This is a

significant problem because, to our knowledge, there are no examples of physical models of
multiplication that offer the plasticity of pictorial models. We describe one such model here—an
analog technology that we refer to as a Sunrule. We explain the design of the device and report an
initial instructional activity where pre-service teachers explored the device in groups.

KEYWORDS multiplication, sunlight, physical models, sun shadows

Introduction

The gradual accumulation of knowledge about multipli-
cation in school follows a known trajectory. Basic facts,
such as times tables, are memorized. From there, stu-
dents learn a collection of algorithms for calculating the
products of different types of numbers, including mul-
tidigit integers, decimals, and fractions. One takeaway
for students is that multiplication is a collection of rules
that apply in different circumstances. Indeed, elemen-
tary students and teachers alike tend to have procedural
dispositions toward multiplication (Fuson, 2003; Hiebert,
2013; Lampert, 1986).

To help children develop a deeper familiarity with
multiplication, some teachers rely on physical or picto-
rial models (Kosko, 2019). By physical models of multipli-
cation, we mean tangible, graspable manipulatives such
as Unifix cubes, Cuisenaire rods, and Base-10 Blocks.

Such models are fixtures in elementary classrooms be-
cause it is believed that “children need opportunities to
work with objects in the physical world before they will
be ready to work with pictures and other representa-
tions” (Reys et al., 2014, p. 25). Physical models are gen-
erally discrete because they are collections of fixed
quantities (e.g., a set number of cubes or blocks, a set of
rods of specific heights; Kosko, 2019). By contrast, picto-
rial models, such as area or number line representations,
are generally continuous because they are not limited to
a fixed set of pre-determined things. Elementary teach-
ers generally use discrete models to represent multipli-
cation (Kosko, 2019).

While physical models offer tangible representations
of multiplication, discrete objects are limited in the types
of products they can represent. Meanwhile, continuous
pictorial models can represent a set of unlimited prod-
ucts; however, such models cannot be investigated tan-
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gibly to the same extent as their physical counterparts.
The discrete/continuous divide across physical/pictorial
representations of multiplication frames the overarching
design problem that motivated our work: How could a
physical, manipulable tool realize a continuous model
of multiplication? This is a significant problem because,
to our knowledge, there are no examples of physical
models of multiplication that offer the plasticity of pic-
torial models. We sought to explore how a model of mul-
tiplication that combined the tangibility of a physical
thing with the flexibility of a picture might create new
opportunities for exploring multiplication.

Design of the Sunrule

To model continuous multiplication using a physical ob-
ject requires some method for increasing and decreasing
lengths. We refer to this as the variable length design
problem. The historical solution to this problem was the
slide rule, an arithmetic aid that reigned from the 17th
century until it was abandoned for electronic calculators
in the 1970s (Tympas, 2017). Slide rules are ingenious,
powerful devices that deserve a place in mathematics
classrooms. However, as their logic of use is circum-
scribed by the theory of logarithms!, they are not suit-
able for helping elementary-age students explore
multiplication?. How else could adjustable lengths be
used to model multiplication with a physical tool? Our
answer to this question was based on McLoughlin and
Droujkova’s (2013) diagrammatic definition that frames
multiplication as continuous directed scaling—i.e., the length
of one segment is a positive or negative multiplier that
scales the length of another segment in the positive or
negative direction. Their diagrammatic definition of
multiplication was inspired by Hilbert’s treatment of
segment multiplication (Hilbert, 1999). Dimmel and Pan-
discio (2020) illustrate how the product of two segments
can be constructed with a compass and straightedge.
To design the Sunrule, we used sunlight as a straight-
edge. According to Decamp and Hosson (2012), sunlight
offers a readily available, renewable, and abundant sup-
ply of naturally occurring parallel rays. We recognize that
the sun’s rays are not entirely parallel. Still, over small
distances, sunlight is several orders of magnitude more
parallel than other real-world examples of parallel lines,

such as railroad tracks. The sun’s parallel rays mean that
the height of any shadow-casting object is proportional
to the length of its shadow, and, for a given altitude of
the sun, this proportion is the same for all object-shadow
pairs (Douek, 1999). Thus, multiplying numbers, in gen-
eral, requires control over the position of the sun. We
refer to this as the variable altitude design problem.

While the sun cannot be moved, there is a solution to
the variable altitude problem: We can change the apparent
altitude of the sun by varying the angle of inclination of
a surface onto which shadows are cast. By increasing the
angle of inclination of a surface, we decrease the lengths
of any shadows falling upon it; by decreasing the angle
of inclination, we would increase the lengths of those
shadows. Thus, by varying angles of inclination, it is
possible to control the apparent altitude of the sun from
90 degrees (i.e., directly overhead, no shadow) to 0 de-
grees (i.e., sun on the horizon, undefined shadow).
Below, we explain how the Sunrule can be used for mul-
tiplication and illustrate how it solves the wvariable length
and variable altitude design problems.

Multiplication by Sunlight

The Sunrule models multiplication by casting shadows.
It is not a combination of a sundial and slide rule; how-
ever, the name is apt because it combines essential ele-
ments of each tool (e.g., gnomons®, adjustable scales) in
novel ways. A Sunrule consists of two ruled gnomons af-
fixed at right angles to a ruled surface—i.e., the shadow
plane. The device is independent of any particular choice
of unit (e.g., inches, cm, mm), in the sense that the unit
could be of any height, and that unit determines the
other rulings. It is sufficient for the unit gnomon and the
adjustable gnomon to be ruled in equal increments; the
surface could have other (equally spaced) increments as
rulings. We have found it convenient to use the same
unit increment for the gnomons and the shadow plane,
though we recognize that this is a design parameter that
could be varied and explored.

For the Sunrule shown in Figure 1, there is a longer
gnomon on the bottom and a shorter gnomon on the top.
The shorter gnomon functions as a unit length. The unit
length and the factor by which its shadow was scaled
define a multiplier; in this case, that multiplier is 3. The

I A slide rule’s sliding scales are ruled in logarithmic increments, which allow products (multiplication) and quotients (division)

to be expressed as sums (addition) and differences (subtraction).

2
theory of logarithms.

This is the name for the part of a sundial that casts a shadow.

JUSTIN K. DIMMEL, ERIC A. PANDISCIO, CAMDEN G. BOCK

This is a comment on the elementary mathematics curriculum, not a statement about the capacity for children to learn the



Figure 1
A Sunrule constructed by elementary teacher candidates

device is positioned so that the length of the unit shadow
extends to 3 units. The height of the longer gnomon can
be adjusted by sliding it up or down; the height of this
gnomon specifies the multiplicand, which is 4, in this ex-
ample. The product, 12, is given by the length of the
shadow of the adjustable gnomon. A video demonstra-
tion of how to construct a Sunrule is available at: https://
tinyurl.com/wnjky5e4

The wvariable length and wvariable altitude problems
solved by the Sunrule’s design prescribe two movements
that can be used to transform multiplication problems.
One movement is that the angle of inclination to the sun
can be varied by tilting the device up or down. Note that
the gnomons in Figure 2 are in the same positions as
those shown in Figure 1. That is, we left the multiplicand
gnomon at four units. But we tilted the device so that the
length of the shadow of the unit gnomon was two units.
With that, the angle of inclination of the device toward
the sun increases. This increase in inclination decreased
the length of the unit gnomon’s shadow from 3 units to
2 units; therefore, the multiplier changes from 3 to 2. As
a result, Figure 2 shows 2 x 4 =8.

The Sunrule provides a material context that models
multiplication as a scaling operation. Because the tilt of
the device can be varied with continuous movements,
the device multiplies fractions as readily as integers. This
is a potentially significant affordance because fractions
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Figure 2
A Sunrule that shows 2 x 4 =8
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Figure 3
A Sunrule that shows 1.5 x 3=4.5

Note. In this image, a Sunrule has been inclined so that the length of the unit shadow is 1.5 units, the height of
the multiplicand gnomon is three units, and the adjustable gnomon’s shadow is 4.5 units; hence, 1.5 x 3 = 4.5.

are an endless source of difficulty for students (Sidney
et al.,, 2019). Figure 3 shows 1.5 x 3 = 4.5. This is just one
example of a fractional product defined between 3 and
4; other products could be modeled by slightly changing
the angle of inclination. The multiplier would be slightly
less than or slightly more than 1.5, and the length of the
multiplicand shadow would vary proportionally. It is
not any particular fractional product but rather the abil-
ity to move between fractional products—in an arith-
metic analogy of the continuous transformations that can
be used to explore dynamic geometry diagrams—that is
potentially significant.

We do not propose that the Sunrule should replace
other models for teaching multiplication; however, be-
cause it is a physical model that allows for products to be
explored through continuous variation—by (a) varying the
height of the adjustable gnomon and (b) varying the angle
of inclination of the shadow plane—it warrants investiga-
tion. In an initial effort to gauge its pedagogical value, we
facilitated an activity with elementary teacher candidates.

Initial Teaching Activity with Elementary
Mathematics Teacher Candidates

During Fall 2020, the second author taught two sections
of an elementary mathematics methods course, each
with five students enrolled, that met on different days.

JUSTIN K. DIMMEL, ERIC A. PANDISCIO, CAMDEN G. BOCK

The Sunrule investigation was planned as a two-lesson
activity. For the first part of the activity, students worked
with the second author to build Sunrules. Students were
told that the device was for a mathematics exploration
and that it needed to be used outside on a sunny day.
Students were not told that the Sunrule was designed to
model multiplication because we were interested in how
students would explore and make sense of the device.
Both sections of the course completed the first part of the
activity; however, one group did not complete the sec-
ond part because of inclement weather.

For the second part of the activity, students explored
their Sunrules outside in two small groups. For safety,
they wore masks and followed social distancing proto-
cols. We used fixed video cameras to record the activity
of each group. The second author moved back and forth
between the groups to facilitate their explorations of the
device. Using a semi-structured protocol, he provided
directed guidance to the groups of students. An example
of a directed question was: What are the ways that the
lengths of the shadows of the gnomons could be varied?
The purpose of this question was to help students iden-
tify the two movements through which the shadows
could be varied to model products. The second author
posed questions from the protocol to each group, as
needed, to keep the students from getting stuck and
guided them toward investigations of its mathematical

PHOTO BY MEG PANDISCIO (2020)



affordances (i.e., a physical model that displays multi-
plication as a scaling operation). In the following
episodes, we discuss how students explored and inter-
acted with the Sunrule.

Episode 1: Sara’s initial encounter with the Sunrule
One group consisted of two students, Zak and Sara*. The
second author launched the exploration activity for them
by asking, “Any idea what this box does?” Although
Sara declared that she did not know what the device did,
she oriented the device in the intended way. Figure 4
shows how she positioned the Sunrule so that it was
aligned with the azimuth of the sun (i.e., the compass
heading of the sun, or the place where the sun would ap-
pear if it were brought down to the horizon).

This caused the shadows of the gnomons to fall par-
allel to the strip of rulings on its surface. In that instance,
Sara may not have understood the mathematical affor-
dances of the device, but she instinctively positioned it
correctly. Then, she changed the device’s angle of incli-
nation by tilting the device toward and then away from
the sun. This caused the shadows of the gnomons to
shorten and then lengthen, respectively, as shown in Fig-
ure 5.

As Sara varied the angle of inclination, she and Zak
speculated that the device indicated a relationship be-
tween the sun and the shadows. Sara noted the signifi-
cance of the angle of inclination to the length of the
shadows. She said, “It really depends on how you hold
it, like, if you tilt it towards [sic] the sun, then the shad-

Figure 5

ows become very short. If you tilt it away from the sun,
the shadows get a lot longer.” These initial interactions
that varied the lengths of the shadows by changing the
angle of inclination are the core of the mathematical de-
sign of the Sunrule. This feature was salient for Sara al-
most immediately. Her recognition of the significance of
tilting the device suggested that the grounding predicate
for the geometric definition of multiplication is a natural
and potentially powerful embodiment for a continuous
scaling conception of multiplication.

Figure 4

Sara orienting the Sunrule so that the shadows of
the gnomons are aligned with the rulings on the
shadow plane

Sara increases the angle of inclination (left frame) and then decreases the angle of inclination (right frame), causing
the lengths of the shadows to decrease (left frame) and increase (right frame)

* All names are pseudonyms.
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Episode 2: Varying the angle of inclination

The second group of students consisted of Sheila,
Martha, and Donna. Like Sara, Sheila explored the de-
vice by varying its angle of inclination to the sun. After
Sheila, Martha, and Donna explored the device for a few
minutes, Sheila shared her observation with the group.
She said, “When the big one is at 4, and the little one is
at 1, so then when you make the big one 8 and the little
one 2...they change by the same amount respective to
each other.” As she said this, Sheila adjusted the angle
of the inclination of the device away from the sun. This
caused the shadows of the gnomons to lengthen in a
movement that was similar to how Sara changed the tilt
of the device.

The second author asked the group for the name of
the operation demonstrated by varying the lengths of the
shadows. Martha replied, “I don’t think we know what
it is called.” Sheila, like Sara, focused on the variability
of the angle of inclination as a key affordance of the de-
vice. Sheila linked this general observation to specific
pairs of numbers (1, 4) and (2, 8) but could not identify
the mathematical relationship she had noticed.

After 10 minutes of exploration, both groups had ob-
served that the angle of inclination of the device deter-
mines the ratio between the height of a gnomon and the
length of its shadow. For example, Sara observed that if
the longer gnomon were set to be two or three times the
height of the shorter gnomon, that difference in height
would be carried through the variations in the lengths
of the shadows as the angle of the inclination was
changed. The second author assembled the groups in a
socially-distanced semicircle because neither group had
connected their observations about ratio to multiplica-
tion. He summarized the ratio ideas each group had
discussed and told them that the device models multi-
plication. His decision was framed by the reality that this
investigation occurred within the context of an elemen-
tary methods class. He wanted to ensure that the teacher
candidates would recognize the Sunrule as a physical,
tangible model of multiplication. In future studies with
elementary teacher candidates, we would allow more
time for open-ended exploration of the device.

Episode 3: Modeling division with the Sunrule

In their discussion of multiplication, Zak and Sara real-
ized that the device could also be used to represent di-
vision. Zak demonstrated this idea by showing how the
multiplication problem 2 x 5 =10 could be interpreted as
the division problem 10 + 5 = 2. To use the Sunrule to
divide two numbers, let the height of the multiplicand
gnomon be the divisor and then vary the angle of incli-
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nation, so the length of its shadow is equal to the divi-
dend. The quotient will then be given by the length of
the unit gnomon’s shadow. Zak demonstrated this while
narrating his Sunrule manipulations. Sara and Zak’s
explorations of the connection between multiplication
and division underscore the rich pedagogical opportu-
nities of the Sunrule.

Discussion

Conceptual explorations of multiplication

A feature of the Sunrule is that its use of movement cre-
ates opportunities to differentiate multiplicands from mul-
tipliers. The angle of inclination of the shadow plane
determines the multiplier, and the height of the ad-
justable gnomon determines the multiplicand. Thus, the
Sunrule creates the possibility of problematizing commu-
tativity because multiplying 2 x 3, for example, involves
different movements than multiplying 3 x 2. In the for-
mer case, the shadow plane is inclined so that the length
of the unit shadow is two and the height of the multipli-
cand gnomon is 3; whereas in the latter case, these move-
ments are reversed. That the product in each instance is
six may not be surprising for students, especially if they
have had experience with multiplication. But the physi-
cal differences between multiplier and multiplicand
could suggest questions for discussion: Why can changes
in the angle of inclination of the shadow plane be offset by
adjusting the height of the gnomon? Does this work for all
products? Why or why not?

A second activity could help students explore fami-
lies of products. Questions such as What are the ways to
make 15 by multiplying two numbers? are fixtures in ele-
mentary mathematics classrooms. With the Sunrule, such
questions could be explored in new ways. In particular,
because the Sunrule is a continuous model of multiplica-
tion, it could lead students to consider not only pairs of
whole number factors whose product is a given number
but also pairs of rational numbers. For example, from
3 x 5 =15, one could slightly decrease the angle of incli-
nation of the shadow plane to increase the multiplier and
then slightly decrease the height of the multiplicand
gnomon in such a way that its shadow is still 15 units
long. This could lead to pairs of rational factors of 15,
like 35 and 43, or 37 and 4. A challenge would be read-
ing the fractions from the incremental rulings. Still, even
if their exact values were difficult to read from the rul-
ings, the existence of such rational factors would be ev-
ident from the interplay of the shadows. This could lead
to discussions of how many pairs of rational numbers
there are whose product is a given number. Such activity



could help blur the boundaries between rational and
whole numbers (Dimmel & Pandiscio, 2020) and provide
an opportunity for students to explore how families of
products can be related by continuous variation.

Connections to geometry

The Sunrule is like a dynamic diagram in that it allows
for the exploration of families of products through con-
tinuous movements. Equally significant, the device is a
rare example of a mathematical tool optimized for use
outdoors. The Sunrule harnesses the unique geometry of
sunlight to create parallel shadows, the lengths of which
are controlled by varying the angle of inclination to the
sun to set the multiplier and by adjusting the height of
the longer gnomon to set the multiplicand. This report
focused on arithmetic descriptions of multiplication, but
the Sunrule also creates opportunities for exploring mul-
tiplication geometrically. Such explorations would be
appropriate for secondary students, for whom the Sun-
rule could create opportunities to examine how multipli-
cation, similar triangles, and proportionality are related.
For example, one activity for secondary geometry stu-
dents would be to explore the multiplicative identity.
Questions such as, At what apparent altitude(s) of the sun
will the multiplier be 17 and, What is the relationship between
the apparent altitude of the sun and the magnitude of the mul-
tiplier? could create opportunities for geometry students
to probe the trigonometric applications of the device.
The Sunrule also creates an opportunity for teachers of
geometry to celebrate sunlight as the quintessential real-
world example of parallel lines. Another series of activ-
ities could be grouped as design questions. Examples in
this category might be, Do the gnomons need to be perpen-
dicular to the shadow plane? If the gnomons do not need to be
perpendicular, what are the requirements for the position of
the gnomons? and, What happens if we change the unit
length?

Limitations

The principal limitations of the Sunrule concern its accu-
racy. We have identified four inherent physical defects
that introduce errors in its calculation. By inherent, we
mean these defects are a consequence of their physical-
ity —they can be managed but never eliminated. The first
source of error is the angle that the gnomons make with
the shadow plane. The closer the gnomons are to per-
pendicular, the greater the accuracy. The second source
of error is the flatness or uniformity of the shadow plane.
The closer this is to perfectly flat, the greater the accu-
racy. The third source of error is the resolution, or sharp-
ness, of the shadows. The fourth limitation concerns the

accuracy with which the gnomons and the shadow plane
are ruled and marked. This constellation of physical er-
rors leads to another limitation: The Sunrule can only ef-
fectively model a relatively small range of products. For
example, the Sunrules described in this report had a max-
imum length of 20 units, which meant that any product
greater than 20 would be off the board. A possible solution
to the limited range problem is to use place value, so
18 x 20 would be off the board, but 1.8 x 2 would not.
This is how slide rules were able to multiply a wide
range of numbers on relatively small scales. But the reli-
ability of these calculations depends on minimizing the
inherent errors.

Although the inherent material flaws affect the accu-
racy of the multiplication, the overall process of multi-
plying and the relationship between the multiplier,
multiplicand, and product can be explored with the de-
vice. The gnomons and shadow planes are easily manip-
ulated to display a range of numerical combinations. We
are exploring various designs and production quality
choices that would minimize the errors and maximize the
range of numbers that can be multiplied. We envision a
version where the markings are as precise as a standard
school ruler.

Conclusion

The Sunrule uses sunlight, an affordance of the world, to
model multiplication, a mathematical operation. Simul-
taneously, it shares a mathematically valid and robust
representation of multiplication that is often missing in
elementary school classrooms—multiplication as contin-
uous scaling (Dimmel & Pandiscio, 2020; Kosko, 2019).
By using a feature of the world to build a mathematical
model, the Sunrule represents an inversion of what is
typically encountered in real-world mathematics.

The COVID-19 pandemic has reconfigured social life.
For schools, this has meant adapting instruction to re-
mote, hybrid, or outdoor modalities, among other inno-
vations, some of which may endure even when
COVID-19 has been mitigated. The Sunrule provides a
concrete material context for doing a mathematical ac-
tivity outside —not simply for the sake of being outside,
but because being outside is essential to use the device
to do mathematical work. It is a variable, tangible device
for modeling families of multiplication problems and
probing their mathematical structure. Beyond arithmeti-
cal utility, activities with the Sunrule could pull students
away from screens and create opportunities for students
and teachers to reflect on how the geometry of sunlight
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is integrated with its design. These would be desirable
outcomes at any time, and they are especially urgent in
the face of the disruptions to teaching and learning
brought on by the pandemic.
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