
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Deep-Dup: An Adversarial Weight Duplication
Attack Framework to Crush Deep Neural Network

in Multi-Tenant FPGA
Adnan Siraj Rakin, Arizona State University; Yukui Luo and Xiaolin Xu,

Northeastern University; Deliang Fan, Arizona State University
https://www.usenix.org/conference/usenixsecurity21/presentation/rakin

Deep-Dup: An Adversarial Weight Duplication Attack Framework to Crush Deep

Neural Network in Multi-Tenant FPGA

Adnan Siraj Rakin *

Arizona State University

asrakin@asu.edu

Yukui Luo *

Northeastern University

luo.yuk@northeastern.edu

Xiaolin Xu

Northeastern University

x.xu@northeastern.edu

Deliang Fan

Arizona State University

dfan@asu.edu

*Both Authors Contributed Equally

Abstract

The wide deployment of Deep Neural Networks (DNN) in

high-performance cloud computing platforms brought to light

multi-tenant cloud field-programmable gate arrays (FPGA) as

a popular choice of accelerator to boost performance due to

its hardware reprogramming flexibility. Such a multi-tenant

FPGA setup for DNN acceleration potentially exposes DNN

interference tasks under severe threat from malicious users.

This work, to the best of our knowledge, is the first to ex-

plore DNN model vulnerabilities in multi-tenant FPGAs. We

propose a novel adversarial attack framework: Deep-Dup, in

which the adversarial tenant can inject adversarial faults to

the DNN model in the victim tenant of FPGA. Specifically,

she can aggressively overload the shared power distribution

system of FPGA with malicious power-plundering circuits,

achieving adversarial weight duplication (AWD) hardware at-

tack that duplicates certain DNN weight packages during data

transmission between off-chip memory and on-chip buffer,

to hijack the DNN function of the victim tenant. Further,

to identify the most vulnerable DNN weight packages for

a given malicious objective, we propose a generic vulnera-

ble weight package searching algorithm, called Progressive

Differential Evolution Search (P-DES), which is, for the first

time, adaptive to both deep learning white-box and black-box

attack models. The proposed Deep-Dup is experimentally val-

idated in a developed multi-tenant FPGA prototype, for two

popular deep learning applications, i.e., Object Detection and

Image Classification. Successful attacks are demonstrated in

six popular DNN architectures (e.g., YOLOv2, ResNet-50,

MobileNet, etc.) on three datasets (COCO, CIFAR-10, and

ImageNet).

1 Introduction
Machine Learning (ML), especially deep neural networks

(DNN), services in high-performance cloud computing are

gaining extreme popularity due to their remarkable perfor-

mance in intelligent image/video recognition [1–4], natural

language processing [5–7], medical diagnostics [8], malware

detection [9], and autonomous driving [10, 11]. Similar to

many other high-performance computing (HPC) platforms

(e.g., CPU, GPU, ASIC), reconfigurable computing devices

like field-programmable gate arrays (FPGA) have been widely

deployed in HPC system for DNN acceleration due to their

low-effort hardware-level re-programmability to adapt vari-

ous DNN structures, as well as fast algorithm evolution. For

example, IBM and Intel integrated FPGAs in their CPU prod-

ucts for acceleration purposes [12, 13]. Alongside the rapid

growth of the cloud computing market and critical develop-

ments in DNN hardware acceleration, FPGA has become a

significant hardware resource for public lease. Recently, the

leading cloud service providers have also started integrating

FPGAs into their cloud servers. For example, the Stratix-V

FPGA from Intel/Altera has been deployed by the Microsoft

Project Catapult for DNN acceleration [14]. Amazon also

released its EC2 F1 instances equipped with programmable

hardware (UltraScale+VU9P FPGAs) from Xilinx [15].

For high efficiency and performance, there have been

growing efforts to support multiple independent tenants co-

residing/sharing an FPGA chip over time or simultaneously

[16, 17]. The co-tenancy of multiple users on the same FPGA

chip has created a unique attack surface, where many new

vulnerabilities will appear and cause dangerous effects. With

many hardware resources being jointly used in the multi-

tenant FPGA environment, a malicious tenant can leverage

such indirect interaction with other tenants to implement var-

ious new attacks. However, as a relatively new computing

infrastructure, as well as one of the main hardware acceler-

ator platforms, the security of multi-tenant FPGAs for DNN

acceleration has not been investigated in-depth.

From DNN algorithm point of view, its security has been

under severe scrutiny through generating malicious input

noise popularly known as Adversarial Examples [18–20].

Even though tremendous progress has been made in protect-

ing DNN against adversarial examples [21–23], neglecting

fault injection-based model parameter perturbation does not

guarantee the overall security of DNN acceleration in FPGA

(DNN-FPGA) system. Several prior works have effectively

demonstrated depletion of DNN intelligence by tempering

USENIX Association 30th USENIX Security Symposium 1919

model parameters (i.e, weights,biases) using supply chain

access [24, 25] or through popular memory fault injection

techniques [26–29], which could be in general classified as

adversarial weight attack. Adversarial weight attack can dras-

tically disrupt the inference behavior towards the intent of a

malicious party [26–30]. The large DNN model’s parameters

(e.g., weights) are extensively tuned in the training process

to play a key role in inference accuracy. However, almost all

the existing adversarial weight attacks assume an extremely

relaxed threat model (i.e., white-box), where the adversary

can access all DNN model parameters, like architecture and

gradients. Even though it is pivotal to study white-box at-

tacks to understand the behavior of DNN models in the pres-

ence of input or weight noise, it is also important to explore

how to conduct adversarial weight attacks in a much more

strict black-box setup, where the attacker does not know DNN

model information.

In summary, three primary challenges are i) Consider-

ing multiple tenants co-reside on an FPGA, can a malicious

user leverage a novel attack surface to provide the luxury of

perturbing DNN model parameters of the victim tenant? ii)

Can the adversary conduct a black-box adversarial weight at-

tack with no knowledge of DNN model parameters, gradient,

etc., instead of white-box attack used in prior works [26, 28]?

iii) Given an FPGA hardware fault injection attack scheme

and a strict black-box threat model, can an adversary design

an efficient searching algorithm to identify critical parame-

ters for achieving a specific malicious objective? Inspired by

those challenges, we propose Deep-Dup attack framework in

multi-tenant DNN-FPGA, which consists of two main mod-

ules: I) a novel FPGA hardware fault injection scheme, called

adversarial weight duplication (AWD), leveraging two dif-

ferent power-plundering circuits to intentionally inject faults

into DNN weight packages during data transmission between

off-chip memory and on-chip buffer; II) a generic searching

algorithm, called Progressive Differential Evolution Search

(P-DES), to identify the most vulnerable DNN weight package

index and guide AWD to attack for given malicious objective.

As far as we know, Deep-Dup is the first work demonstrat-

ing that the adversarial FPGA tenant could conduct both un-

targeted accuracy degradation attack and targeted attack to

hijack DNN function in the victim tenant, under both deep

learning white-box and black-box setup. The key contribu-

tions of this work are summarized as follows:

1): The proposed Adversarial weight duplication (AWD)

attack is an FPGA hardware-based fault injection method,

leveraging the co-tenancy of different FPGA users, to aggres-

sively overload the shared power distribution system (PDS)

and duplicate certain DNN model weight parameters dur-

ing data transmission between off-chip memory and on-chip

buffer. Two different power plundering circuits, i.e., Ring

Oscillator (RO) and RO with latch (LRO) are explored and

validated in the FPGA attack prototype system.

2): To maximize attack efficiency, i.e. conducting AWD-

based fault injection into the most vulnerable DNN weight

data packages for any given malicious objective, we propose

a generic vulnerable weight package searching algorithm,

called Progressive Differential Evolution Search (P-DES). It

is, for the first time, adaptive to both deep learning white-box

and black-box setup. Unlike prior works only demonstrated

in a deep learning white-box setup [28], our success in both

white-box and black-box mainly comes from the fact that our

proposed P-DES does not require any gradient information

of DNN model.

3): We are the first to develop an end-to-end Deep-Dup at-

tack framework, one type of adversarial DNN model fault in-

jection attack, utilizing our DNN vulnerable parameter search-

ing software (i.e. P-DES) to guide and search when/where to

inject fault through multi-tenant FPGA hardware fault injec-

tion (i.e. AWD) for efficient and effective un-targeted/targeted

attacks (i.e., un-targeted attack to degrade overall accuracy

and targeted attack to degrade only targeted group accuracy).

4): A multi-tenant FPGA prototype is developed to vali-

date the proposed Deep-Dup for two different deep learning

applications (i.e., Object Detection and Image Classification).

Successful un-targeted and targeted attacks are validated and

demonstrated in six different popular DNN architectures (e.g.

YOLOv2, ResNet-50, MobileNetV2, etc.) on three data sets

(e.g., COCO, CIFAR-10, and ImageNet), under both white-

box and black-box setups(i.e. attacker has no knowledge of

model parameters (e.g. weights/gradients/ architecture)).

5): As proof-of-concept, our Deep-Dup black-box attack

successfully targets the ’Ostrich’ class images (i.e., 100 %

attack success rate) on ImageNet with only 20 (out of 23

Million) weight package fault injection through AWD attacks

on ResNet-50 running in FPGA. Besides, Deep-Dup requires

just one AWD attack to completely deplete the intelligence

of compact MobileNetV2.

2 Background

2.1 Related Attacks on Multi-tenant FPGA

The re-programmability of FPGA makes it a popular hard-

ware accelerator for customized computing [31]. To further

explore the advantages of FPGA, leading hardware vendors

like Intel and Xilinx have integrated FPGAs with CPUs [13] or

ARM cores to build flexible System-on-Chips (SoCs) [32,33].

These heterogeneous computing platforms have recently been

integrated into cloud data centers [34], where the hardware

resources are leased to different users. The co-tenancy of

multiple users on the same FPGA chip, although improves

the resource utilization efficiency and performance, but also

creates a unique attack surface, where many new vulnera-

bilities will appear and cause dangerous results. With many

critical hardware components (e.g., power supply system) be-

ing jointly used in the multi-tenant FPGA environment, a

malicious tenant can leverage such indirect interaction with

other tenants to implement various new attacks.

1920 30th USENIX Security Symposium USENIX Association

Generally, the attacks on multi-tenant FPGAs can be clas-

sified into two classes: 1) side-channel attack, in which the

adversarial FPGA user can construct hardware primitive as

sensors(e.g., ring oscillator (RO)), to track and analyze the

secret of victim users. For example, in [34], the RO-based

sensor used as power side-channel has successfully extracted

the key of RSA crypto module, similarly, key extraction from

advanced encryption standard (AES) is successfully demon-

strated in [35] based on RO-caused voltage drop. More re-

cently, it has been demonstrated that a malicious user can

leverage the crosstalk between FPGA long-wires as a remote

side-channel to steal secret information [36, 37]. 2) Fault in-

jection attack, in which the adversary targets to inject faults to

or crash the applications of victim users. For example, the en-

tropy of true random number generator is corrupted by power

attacks in multi-tenant FPGAs [38]. In [39], the aggressive

power consumption by malicious users causes a voltage drop

on the FPGA, which can be leveraged to introduce faults.

With Machine Learning as a service (MLaaS) [40, 41] be-

coming popular, public lease FPGAs also become an emerg-

ing platform for acceleration purposes. However, the security

of using multi-tenant FPGA for DNN acceleration is still

under-explored in existing works, which is the main target of

this paper. Specially, the proposed Deep-Dup methodology

belongs to the fault injection category, which leverages mali-

cious power-plundering circuits to compromise the integrity

of the DNN model for un-targeted or targeted attacks.

2.2 Deep Learning Security

There has been a considerable amount of effort in developing

robust and secure DL algorithms [18, 19, 22, 25, 42–49]. Ex-

isting deep learning attack vectors under investigation mainly

fall into three categories: 1) Attacks that either mislead pre-

diction outcome using maliciously crafted queries (i.e., ad-

versarial inputs/examples [22, 50]) or through miss-training

the model with poisoned training set (i.e., data poisoning at-

tacks [51, 52]). 2) DL information leakage threats such as

membership inference attacks [49, 53] and model extraction

attacks [47, 54] where adversaries manage to either recover

data samples used in training or infer critical DL model pa-

rameters. 3) Finally, adversarial fault injection techniques

have been leveraged to intentionally trigger weight noise to

cause classification errors in a wide range of DL evaluation

platform [26–29, 55].

The first two attacks are generally considered as external

adversaries that exploit training and inference inputs to the

deep learning model. Despite the progress in protecting DNN

against this external adversaries [21–23], neglecting internal

adversarial fault injection still puts the overall security of

DNN acceleration in FPGA (DNN-FPGA) systems under

threat. The most recent adversarial weight attacks [27, 28, 30,

56] demonstrated, in both deep learning algorithm and real-

word general-purpose computer system, that it is possible to

modify an extremely small amount (i.e., tens out of millions)

Tenant V (Victim)

Accelerator

Accelerator

Tenant V (Victim)

I/O protocol IP

PS

On-chip data buffer

D4D2D2D1

CPU

E
xternal m

em
ory

I/O protocol IP DRAM
Controller

PE

Attack
DNN model

E
xternal I/O

FPGA core power
supply

FPGA clock resource
power supply

E
xternal m

em
ory

Clock resource V Clock resource O (Others)

External power
supply

Tenant A (Attacker)
Malicious circuits

Enable

Clock resource A

Tenant 1 Tenant N

Multi-tenant FPGA

Clean
DNN
model

D4D3D2D1

Figure 1: Threat model for the proposed Deep-Dup.

of DNN model parameters using row-hammer based bit-flip

attack in computer main memory to severely damage or hijack

DNN inference function. Even those injected faults might

be minor if leveraged by a malicious adversary, such internal

adversarial fault injection harnessing hardware vulnerabilities

may be extremely dangerous as they can severely jeopardize

the confidentiality and integrity of the DNN system.

3 Threat Model and Attack Vector

Multi-tenant FPGA Hardware Threat Model. In this

work, we consider the representative hardware abstraction

of multi-tenant FPGA used in the security works [36, 57, 58],

and operating system works [17, 59]. The threat model is

shown in Fig. 1, which has the following characteristics: (1)

Multiple tenants co-reside on a cloud-FPGA and their circuits

can be executed simultaneously. The system administrator

of cloud service is trusted. (2) Each tenant has the flexibil-

ity to program his design in the desired FPGA regions (if

not taken by others). (3) All tenants share certain hardware

resources on an FPGA chip, such as the PDS and the com-

munication channels with external memory or I/O. (4) We

assume that the adversary knows the type of transmitted data

(i.e., either DNN model or input data) on the communication

channel (e.g., I/O protocol IP) connecting the off-chip mem-

ory and on-chip data buffer. Adversarial FPGA tenants can

learn such information in different ways: i) Using the side-

channel leakage from the communication/data channels on

the FPGA, e.g., the cross-talk between FPGA long-wires [36].

Besides, recent works have reverse engineered DNN using

side-channel attacks to practically recover its information (i.e,

architecture, weights) [60, 61]. Additionally, it is practical to

recover the DNN model using instruction flow leakage [62].

ii) Practically, the victim FPGA tenant can be the provider of

Machine learning as a service (MLaaS) [40, 41], who offer

accelerated DNN computation on multi-tenant FPGA, and the

adversary can rent such service as a normal customer, then

he/she can learn some info of the model and query outputs.

More importantly, our black-box attack only requires to know

the transmitted data type (i.e. weight or input), instead of

USENIX Association 30th USENIX Security Symposium 1921

actual weight values, which is recoverable using similar meth-

ods as in [36, 60, 61]. It is worth mentioning that, although

the current cloud-computing business model has not yet sup-

ported simultaneous resource-sharing, with the significant

development of FPGA-based cloud computing, e.g., dynamic

workload support [59], FPGA virtulization [63], multi-tenant

FPGA is envisioned to be possible in the future [64].

Deep Learning (DL) Algorithm Threat Model. Regard-

ing the Deep Learning algorithm level threat model, in this

work, following many prior DL security works [18, 21, 26–

28, 56, 65, 66], two different DL algorithm threat models

are considered and defined here: 1) DL white-box: attacker

needs to know model architectures, weight values, gradients,

several batches of test data, queried outputs. 2) DL black-

box: attacker only knows the queried outputs and a sam-

ple test dataset. Unlike the traditional DL white-box threat

model [18, 21, 27, 67], our DL white-box is even weaker with

no requirement of computing gradient during the attacking

process. Since different DL security works may have different

definitions of white/black-box, throughout this work, we will

stick to the definition here, which is commonly used in prior

works [27, 67, 68]. In this work, similar to many adversarial

input or weight attacks, we only target to attack a pre-trained

DNN inference model in FPGA, i.e., hijacking the DNN in-

ference behavior through the proposed Deep-Dup, not the

training process, which typically requires extra access to the

training supply chain [24, 69].

In our threat model defined in Fig. 1, the adversary will

leverage our proposed AWD based fault injection attack on the

weight packages identified by our proposed P-DES searching

algorithm, when transmitting the DNN model from off-chip

memory to on-chip buffer/processing engine (PE), resulting

in a weight perturbed DNN model in the PEs. After the attack,

the DNN function is hijacked by an adversary with malicious

behaviors, such as accuracy degradation or wrong classifica-

tion of a targeted output class.

4 Attack Objective Formulation

The proposed Deep-Dup attack is designed to perform both

un-targeted and targeted attacks, defined as below.

Un-targeted Attack. The objective of this attack is to

degrade the overall network inference accuracy (i.e., miss-

classifying whole test dataset), thus maximizing the inference

loss of DNN. As a consequence, the objective can be formu-

lated as an optimization problem:

max Lu = max
{Ŵ}

EXL(f (xxx,{W}); ttt) (1)

where xxx and ttt are the vectorized input and target output of a

given test batch and L(·, ·) calculates the loss between DNN

output and target. The objective is to degrade the network’s

overall accuracy as low as possible by perturbing weights of

the clean DNN model from W to Ŵ .

Targeted Attack. Different from the un-targeted attack,

the objective of targeted attack in this work is to misclassify

On-chip data buffer

Transmitter

VCCINT

Clock

Receiver

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4 D6D5 D7

D1 D2 D3 D4 D5 D6 D7

Propagation delay

(a) DNN model transmission w/o at-

tack.

On-chip data buffer

D1 D2 D3 D4 D5 D6 D7

D1 D2 D4 D6D5 D7

D1 D2 D4 D5 D6 D7

Propagation delay

D3

(b) DNN model transmission

under AWD attack.

Figure 2: Illustrated timing diagrams of DNN model trans-

mission w/o or under AWD attack. (a) Each DNN weight

package (Di) is transmitted and received in a separate clock

cycle. (b) Voltage glitch incurs more propagation delay to

the transmission of D2, which also shortens the next package

D3. As a result, the data package D2 is sampled twice by the

receiver clock, injecting faults to the received data package.

a specific (target) class of inputs (ts). This attack objective is

formulated in Eq. 2, which can be achieved by maximizing

the loss of those target class:

max Lt = max
{Ŵ}

EXL(f (xxxs,{W}); ttt) (2)

where xxxs is a sample input batch belongs to the target class ts.

5 Proposed Deep-Dup Framework
Deep-Dup mainly consists of two proposed modules: 1) ad-

versarial weight duplication (AWD) attack, a novel FPGA

hardware fault injection scheme leveraging power-plundering

circuit to intentionally duplicate certain DNN weight pack-

ages during data transmission between off-chip memory and

on-chip buffer; 2) progressive differential evolution search

(P-DES), a generic searching algorithm to identify most vul-

nerable DNN weight package index and guide AWD fault

injection for given malicious objective. In the end of this

section, we will present Deep-Dup as an end-to-end software-

hardware integrated attack framework.

5.1 AWD attack in multi-tenant FPGA

5.1.1 Preliminaries of DNN model implementations

The schematic of an FPGA-based DNN acceleration is il-

lustrated in Fig. 1, consisting of a processing system (PS),

processing engine (PE), and external (off-chip) memory. Prac-

tically, DNN computation is usually accomplished in a layer-

by-layer style, i.e., input data like image and DNN model

parameters of different layers are usually loaded and pro-

cessed separately [70–72]. Fig. 1 shows the flow of FPGA I/O

protocol IP for typical DNN model transmission, in which

the on-chip data buffer sends a data transaction request to PS

for loading data from external memory. Then, the processing

engine (PE) will implement computation based on the DNN

model in the on-chip data buffer (e.g., BRAM).

1922 30th USENIX Security Symposium USENIX Association

A data transmission flow is shown in Fig. 2a, in each clock

cycle, a data package (Di) is transmitted from transmitter (e.g.

external memory) to receiver. Taking the advanced eXtensible

interface4 (AXI4) as an example [73], the receiver first sends

a data request with an external memory address, and then it

will be notified to read the data when it is ready. The size

of each transmitted data package depends on the channel

bandwidth. In DNN model transmission, the normal (w/o

attacks) transmission flow with each Di as a DNN weight

package is illustrated in Fig. 2a, with FPGA core voltage

(VCCINT) being stable at the recommended supply voltage

(Vr), N data packages (e.g., weights) are transmitted in N

clock cycles (D1-D7 in Fig. 2a).

5.1.2 AWD based fault injection into DNN model

The power supply of modern FPGA chips is regulated based

on their voltages, different components will be activated fol-

lowing the order of their nominal voltage, e.g., from low to

high [74–76]. Most FPGAs utilize a hierarchical power dis-

tribution system (PDS) 1, which consists of some power reg-

ulators providing different supply voltages [75, 76, 78]. A

critical component of PDS is the capacitor used as the “power

bank” for the operational reliability of FPGA. For example,

when an FPGA chip’s power supply is suddenly overloaded

(i.e., by a transient higher power demand), these capacitors

are discharged to compensate for the extra power that regu-

lators cannot immediately provide. The capacitors of FPGA

PDS are usually sized accordingly to fit the practical need.

Formally, the default output capacitance (Cout) of an FPGA

is usually sized to compensate for the current difference for

at least two clock cycles with a tolerable voltage drop [78].

As calculated in Eq. 3, where ΔIout and ΔVout represent the

changes of output current and voltage, respectively, and fsw

denotes the regulator switching frequency.

Cout =
2×ΔIout

fsw ×ΔVout

(3)

As one of FPGA’s most critical parameters, the clock sig-

nals provide standard and global timing references for all

on-chip operations. In practice, to generate different timing

signals, i.e., with different frequencies or phases, FPGAs are

equipped with several clock management components, such

as the phase-lock-loop. The on-chip clock signals are usu-

ally generated by various clock management components,

and their reliability is heavily dependent on the robustness

of these components. To enhance clock integrity, these clock

components are powered by separate supply voltage resources

(Fig. 1) from the computing elements like PE. For example,

the clock components of Xilinx FPGAs are powered by the

auxiliary voltage VCCAUX rather than the FPGA core supply

voltage VCCINT [79]. Such a separate power supply mecha-

nism ensures sufficient energy for the operation of these clock

components, thus enhancing reliability.

1PDS is the official terminology of Xilinx FPGAs, while Intel FPGAs use

power distribution networks [77]. For uniformity, we use PDS in this paper.

LUT5

LUT5
I4 I3 I2 I1 I0

LUT6
O6

I5
1 0

Enable

(a) A power-plundering

cell based on ring-

oscillator (RO).

LUT5

LUT5
I4 I3 I2 I1 I0

LUT6
O6

I5
1 0

Enable

LDCE
D

QGE

CLR
G

(b) A cloud-sanctioned power-

plundering cell based on RO with

a Latch (LRO).

Figure 3: Two power-plundering circuit examples on FPGA

.

The DNN execution in FPGA is significantly relying on

the integrity of its loaded model. Our proposed AWD attack

is motivated by two facts: 1) As aforementioned, the relia-

bility and correctness of FPGA applications are ensured by

the power delivery mechanism; 2) Based on the power regula-

tion mechanism, there exists a maximum power capacity that

FPGA PDS can provide to PEs. Thus, if the FPGA PDS is

overloaded, FPGA applications might encounter faults caused

by the timing violation between the clock signal and computa-

tion/data. Recent works have demonstrated that the activation

of many power-plundering circuits (e.g., ROs), can cause tran-

sient voltage drop on the FPGA [35, 38, 80], thus incurring

fault injection.

Considering the importance of frequent and real-time DNN

model transmission from/to FPGA, the basic idea for AWD

attack is that a malicious FPGA tenant can introduce a tim-

ing violation to the DNN model transmission from off-chip

memory to the on-chip data buffer. As illustrated in Fig. 2a,

a stable FPGA core voltage (VCCINT) (i.e., with trivial or no

fluctuations) will not cause timing violations to data transmis-

sion. However, an unstable VCCINT will incur serious timing

violations. For example, a sudden voltage drop will make the

digital circuit execution slower than usual, causing a longer

propagation delay to the data transmission. As shown in Fig.

2b, the adversary’s aggressive power plundering creates a

voltage drop/glitch that incurs slowing down the data trans-

mission channel. As a result, the corresponding data package

(e.g., D2) may be sampled twice by the receiver clock, causing

a fault injection into the following data package. We envision

that maliciously designed fault-injected weight data packages

will greatly impact the DNN computation, inducing either

significant performance loss, or other malicious behaviors.

5.1.3 Power-plundering circuits

A power-plundering circuit can be achieved with any circuit

scheme with high dynamic power consumption, e.g., ring-

oscillator (RO) circuits. However, it should be noted that

although RO circuit provides high power-plundering poten-

tial, it can be possibly detected by the FPGA development

tools [81]. To make power-plundering more stealthy, i.e.,

cloud-sanctioned, some recent works employ common FPGA

applications, e.g., the shift registers of an AES circuit [16]

USENIX Association 30th USENIX Security Symposium 1923

and XOR tree circuit [82]. Since this work focuses on the

security of the DNN model in multi-tenant FPGA, we adopt

two power-plundering schemes, RO and Latch RO (LRO), for

proof-of-concept. Fig. 3a shows the RO circuit instantiated

with an FPGA look-up table (LUT). Different from RO, the

LRO circuit shown in Fig. 3b has a latch in the loop, which

is a cloud-sanctioned design scheme that can bypass the de-

sign rule checking for combinational loop in FPGA design

tools. In detail, these two power-plundering schemes are both

instantiated as a NAND gate controlled by an Enable sig-

nal. An adversarial FPGA tenant can employ a large number

of such cells controlled by the same Enable signal, which

can be activated to overload the FPGA PDS and introduce

transient voltage drop shown in Fig. 2b, thus implementing

fault injection attack. Note that the proposed attack in this

paper can be achieved with any other cloud-sanctioned power

plundering design, such as the AES-based scheme in [16].

5.1.4 AWD attack triggering system

As mentioned in the hardware threat model (Sec.3), our pro-

posed attack only requires the adversary to know the type of

data (i.e., weight or not) being transmitted on the FPGA and

the starting/ending points, which can be achieved with side-

channel (e.g., power) analysis. To demonstrate this, we build

the AWD triggering system with two major components: 1

Time-to-Digital Converter (TDC) based sensor and 2 Trig-

gering BRAM, as shown in Fig. 4. We prototype a TDC circuit

in FPGA to capture the on-chip voltage fluctuation and mea-

sure the digital output of the TDC sensor during the execution

of DNN (YOLOv2 in this example). We observe a strong

correlation between the sensor outputs and DNN execution,

i.e., weight transmission or functional layers’ execution. For

example, as shown in Fig. 4, the TDC sensor outputs corre-

sponding to weight transmission periods are relatively stable

(i.e., much less voltage fluctuation), since it consumes much

less power than the functional layers, like Max pool or Convo-

lution. Due to the page limit, we omit the TDC sensor design

details and refer interested readers to the related work [83]

for details.

Based on the TDC sensor output, we profile a triggering

strategy file to control the AWD attack activation, which con-

sists of three parameters: triggering delay, triggering period,

and target index. The strategy file is stored in the triggering

BRAM (2), composed of ‘1s’ and ‘0s, which are used to

activate or disable the power-plundering circuit, respectively.

With the triggering BRAM being read at a certain clock fre-

quency, this system can control the triggering of fault injection.

For example, a series of consecutive ‘0s’ disable the power

plundering circuit for a certain time period, while a series of

consecutive ‘1s’ defines the length of the attack period. By

selecting the locations of ‘1s’, we can choose to inject faults

on specific DNN weights of specific attack indexes obtained

from our P-DES searching algorithm (Sec.5.2).

TDC sensor Enable

Power-plundering
circuit

Triggering
BRAM

Attacker zone

Triggering
strategy

file

Victim zone

FPGA

triggering
delay

triggering
period

target
index

Starting
point

profiling

weight transmission
period

YOLOv2 timing diagram

Figure 4: AWD triggering system. A TDC sensor is used to

capture voltage fluctuation during the YOLOv2 execution, in

which the weight transmission period can be clearly observed.

5.2 P-DES Searching Algorithm

This section delineates the proposed vulnerable weight

searching algorithm, called Progressive Differential Evolu-

tion Search (P-DES), to generate a set of weight data package

index for AWD to attack, given attack objective. To formally

define the problem, let us first consider a L layer network with

weight parameters-W L
l=1. Then, the after-attack (i.e. perturbed)

weight of the target DNN model executed in FPGA will be-

come Ŵ L
l=1. We model different attack objectives aiming to

minimize the difference between W L
l=1 and Ŵ L

l=1 for deriving

the minimal number of required AWD attacks performing

both defined un-targeted and targeted attack objectives.

To clearly describe the searching algorithm, we start from

modeling of white-box attack, assuming attacker knows the

exact model parameters (i.e. weight values and architecture).

The black-box attack will leverage a similar searching algo-

rithm and its corresponding adaption will be described in the

end-to-end attack framework section. We assign each weight

package in the target DNN with two indexes (p,q); where p

denotes the layer index and q denotes the index of weight at

layer p after flattening the weight matrix W (W∈Rm×n×a×kw)

into a 1D array. Note that, here the weight package refers to

one data package that is transmitted in one clock cycle. In the

following, we may just call it weight for simplification. The

proposed search algorithm is general and applicable for both

attack objectives described in Sec. 4.

P-DES is a progressive search algorithm integrating with

the concept of differential evolution [84–86]. The goal is to

progressively search for one weight index at each iteration

to guide AWD attack until the attacker-defined malicious ob-

jective is satisfied. The flow chart of the proposed P-DES is

shown in Fig. 5. For nthiteration, it starts by initializing a set

of random weight candidates (i.e. population set - S) for at-

tacker to perform AWD attack and evaluate each attack effect

(i.e. fitness function) at current iteration. Then it runs through

a succession of evolutionary steps: mutation, crossover and

selection for z times (known as the number of evolution, ’500’

in this work) to gradually replace original candidates with bet-

1924 30th USENIX Security Symposium USENIX Association

Figure 5: Overview of proposed adversarial weight index

searching (P-DES) algorithm.

ter ones for achieving the attacker defined malicious objective.

When z times evolution is finished in one search iteration, the

attacker picks one best candidate (weight index with highest

fitness function value- F) among the final survived population

set S and conduct an AWD attack on this winner weight loca-

tion to duplication data package as described in the previous

sub-section. The detailed description of each step is as follow:

Initialization Step. As described above, the objective of

differential evolution is to improve population set S over time

to gradually reach the attacker-defined malicious objective.

To initialize, S will start with a set of random values, con-

taining z weights whose indexes located at (pl ,ql) ; where

l = 1,2,3, ..,z. Here, z is the size of S, defined as the num-

ber of evolution. Ideally, a larger population set (i.e., higher

z) would result in a better attack performance at the cost of

increased searching time.

Fitness Function Evaluation. Fitness function - Fl is an

important step of an evolutionary algorithm to evaluate the

attack effect of each proposed candidate in the population set

S. In our Deep-Dup attack, as defined in Eq. 1 and Eq. 2, we

assign the DNN loss function as fitness function. Thus we

could evaluate the attack effect (i.e. Fl) of each candidate in

set S in terms of DNN loss. Note that, for a white-box attack,

such evaluation (i.e. fitness function) could be computed in an

off-line replicated model. For black-box attack, the loss will

be directly evaluated in FPGA by conducting AWD attack

in the proposed candidate index pointed data package clock.

In the next sub-section, a detailed Deep-Dup framework for

both white-box and black-box attacks will be discussed. In

P-DES, the attacker’s goal is to maximize the fitness function

- Fl to achieve un-targeted (Eq. 1) or targeted attack (2):

Fl ∈ {Lu,Lt} (4)

where Lu is un-taregeted attack loss and Lt is targeted at-

tack loss. Note that, the after each evaluation of Fl , attacker

needs to restore the original weight values W by reloading

the weights, to guarantee each fitness function is evaluated

only based on one corresponding attack weigh index.

Mutation Step. For each weight index candidate in pop-

ulation set S, the mutation step generates new candi-

dates using specific mutation strategy to improve cur-

rent population set. In this work, we integrate four pop-

ular mutation strategies [87, 88], where each one gener-

ates one mutant vector. Thus, a mutant vector ({pmut ,qmut}

={(pmut1,qmut1);(pmut2,qmut2);(pmut3,qmut3);(pmut4,qmut4}))

is generated for each weight index candidate:

Strategy 1:

pmut1 = pa +α1(pb − pc); (5)

qmut1 = qa +α1(qb −qc) (6)

Strategy 2:

pmut2 = pa +α1 × (pb − pc)+α2 × (pd − pe); (7)

qmut2 = qa +α1 × (qb −qc)+α2 × (qd −qe) (8)

Strategy 3:

pmut3 = pa +α1(pbest − pa)+α2(pb − pc)+α3(pd − pe);
(9)

qmut3 = qa +α1(qbest −qa)+α2(qb −qc)+α3(qd −qe)
(10)

Strategy 4:

pmut4 = pa +α1(pbest − pworst); (11)

qmut4 = qa +α1(qbest −qworst) (12)

where α1,α2,α3 are the mutation factors sampled randomly

in the range of [0,1] [87]. a,b,c,d,e are random numbers (a �=
b �= c �= d �= e) generated in the range of [0,z]. (pbest ,qbest)

and (pworst ,qworst) are the indexes with the best and worst

fitness function values. Note that, both p and q for each layer

are normalized to the range of [0,1], which is important since

the amount of weights at each layer is different.

Crossover Step. In the crossover step, attacker mixes each

mutant vector (pmut ,qmut) with current vector (pi,qi) to gen-

erate a trial vector(ptrail ,qtrial):

i f pmut ∈ [0,1] : ptrial = pmut ; else : ptrial = pi (13)

i f qmut ∈ [0,1] : qtrial = qmut ; else : qtrial = qi (14)

The above procedure guarantees attacker only chooses

the mutant feature with a valid range of [0,1]. Then,

the fitness function is evaluated for each trial vector (i.e.,

Ftrial1,Ftrial2,Ftrial3,Ftrial4). This crossover step ensures the at-

tacker can generate a diverse set of candidates to cover most

of the DNN weight search space.

USENIX Association 30th USENIX Security Symposium 1925

Selection Step. The selection step selects only the best can-

didate (i.e. winner with the highest fitness function value)

between the trial vector set ({ptrial ,qtrial} with four trial vec-

tors) and current candidate (pi,qi). Then, the rest four will

be eliminated. The above discussed mutation, crossover and

selection will repeat z times to cover all candidates in the pop-

ulation set S. As a result, the initial randomly proposed S will

evolve over time to gradually approach the attacker-defined

malicious objective. When z times evolution is finished, the

attacker could perform AWD attack at the winner (with the

highest fitness function value in S) weight package during

transmission. P-DES will check if the attack objective has

been achieved. If yes, it stops. If not, it goes to the next itera-

tion for a new round of attack iteration.

5.3 End-to-End Deep-Dup Attack

This sub-section discusses the proposed end-to-end Deep-Dup

attack framework integrating training software (i.e. search-

ing) utilizing P-DES algorithm and hardware fault injection

through AWD, i.e. fault triggering. We also experimentally

demonstrate the success of our end-to-end attack framework

from the attacker’s input end to the victim’s output end for

white-box and black-box attack. Note that, the fault injection

reliability (i.e. fault injection success rate) and detection anal-

ysis will be discussed in detail in the experimental section

7.1 and 7.5. The main mechanism of our Deep-Dup attack

framework could succeed even with real-world un-reliable

hardware fault injection (i.e., with probability to succeed) is

based on the fact that the vulnerable weight sets that our P-

DES searching algorithm identifies are not static or unique,

meaning the targeted attack index set could be progressively

expanded based on real measured attack effect, for the same

malicious objective. This is possible due to that deep learn-

ing model parameter training is a high dimension optimiza-

tion process and many different fault injection combinations

could lead to the same effect, which is also observed in prior

works [27, 28, 89]. Thus, our proposed progressive evolution-

ary searching algorithm could take care of such fault injection

uncertainty and randomness through redundant attack itera-

tions to greatly improve the overall attack success rate, which

is also experimentally validated in Sec.7.3 and 7.5.

5.3.1 White-Box Attack Framework

Training through P-DES. As we discussed in the threat

model, white-box attack assumes adversary knows all the

details of target DNN model in victim FPGA, including archi-

tecture, weight values, gradients, weight package transmission

over FPGA I/O protocol IP. . As shown in Fig. 6, knowing

these execution details of the target DNN model, the adver-

sarial can build an off-line simulator (i.e. model replicate) to

emulate the execution of target DNN in FPGA. Meanwhile,

prior profiling should be conducted to estimate the fault injec-

tion success rate fp (84.84% and 58.91% for our measured

RO and LRO based power plundering circuits), which will

add randomness to the off-line simulated fault-injected DNN

model and thus the fitness function evaluation (Eq.4). Note

that, this fp does not need to be very accurate. In general,

smaller fp will force the progressive P-DES algorithm to gen-

erate a more redundant attack index to compensate for higher

uncertainty of fault injection. More experiment results demon-

strating the co-relation between fp and attack iterations are

provided in Sec. 7.5 (Tab. 5). With the help of this off-line

simulator, the P-DES searching algorithm will generate the at-

tack index 1 , i.e. model weight package index to be attacked

during data communication.

Triggering AWD. In the next step 2 , the P-DES gener-

ated attack index will be sent to our AWD triggering system to

implement actual fault injection on those locations to achieve

the defined malicious objective. More details of triggering

system implementation are described in Sec.5.1.4. To summa-

rize, the attacker profiles the targeted DNN weight package

indexes through the TDC sensor and embeds the received

attack index from the last step into the attacking strategy

file (Fig. 4), which automatically triggers and controls the

power-plundering circuits to implement the fault injection in

the designed locations. After that, if the attack objective is

not achieved (i.e., due to un-successful fault injection), the

attacker will repeat the steps 1 and 2 to re-generate a more

redundant attack index until successful.

5.3.2 Black-Box Attack Framework

Fig. 7 shows the overview of Deep-Dup black-box attack

framework. Instead of constructing an off-line replicate to

search vulnerable weights in white-box attack, in black-box

attack, Deep-Dup directly utilizes run-time victim DNN in

target FPGA to evaluate the attack effectiveness (i.e. fitness

function) of our searching algorithm P-DES proposed weight

candidate in mutation step for every attack iteration. Thus,

the un-reliable fault injection phenomenon is automatically

considered and evaluated in the framework since the fitness

function is directly evaluated in the victim FPGA using the

real fault injection attack.

In this black-box setting, for every attack iteration, the at-

tacker first utilizes the mutation function defined in our P-DES

algorithm to propose a potential attack index candidate 1 .

Next, it will be sent to the AWD triggering component (Fig.4)

to implement fault injection 2 in current evolution. There-

fore, the current DNN model in FPGA is executed based on

the fault-injected model, where its DNN output 3 will be

read out by the attacker to be recorded as attack effectiveness

(i.e. fitness function evaluation). Note that, during this pro-

cess, the fault injection may succeed, or not. As for an attacker,

since it is a black-box, he/she does not know about it. Only the

victim DNN output response w.r.t. currently proposed attack

index will be recorded and sent back to our P-DES software.

Then, this step 1 - 2 - 3 will repeat z evolution times to select

one winner attack index to finish the current attack iteration.

After that, a new attack iteration will be started to find the

next winner attack index until the defined attack objective is

achieved.

1926 30th USENIX Security Symposium USENIX Association

Figure 6: Overview of End-to-End Deep-Dup attack framework integrating P-DES and AWD for White-Box attack

Figure 7: Overview of End-to-End Deep-Dup attack framework integrating P-DES and AWD for Black-Box Attack.

Modification of P-DES to adapt to Black-Box. For a

black-box attack, the attacker can only access the input and

output scores of the target DNN in victim tenant FPGA, with

no knowledge of DNN architecture (i.e., in P-DES, p refers

to # of layers & q refers to # of weights at each layer) (details

in section 5.2). To adapt the P-DES algorithm to a black-

box attack, instead of using architecture info of p and q (i.e.,

2D vector), we will treat the whole network parameter to

be unwrapped into a 1D vector w, where an attacker tries to

identify each weight with one feature p̂. Here, p̂ denotes the

weight index to be attacked after flattening and combining

all L layers weights sequentially. As we defined in the threat

model section and AWD triggering section (sec.5.1.4), this

is feasible since the attacker knows which clock cycles are

used to transmit DNN model weights, enabling an attacker to

develop such a 1D weight index vector for the P-DES. This is

the only modification needed for P-DES algorithm discussed

in section 5.2 to adapt to black-box attack.

Triggering AWD in Black-Box. Most of the AWD trig-

gering scheme (details in Sec.5.1.4) of black-box attack is

similar to that in white-box (i.e., controlled by the attacking

strategy file), except that it will be triggered much more fre-

quently. The attacking strategy file (Fig. 4) will be updated

within every search evolution when it receives mutation pro-

posed attack candidate, to trigger a new fault injection in the

designated location for next fitness function evaluation in

FPGA. z evolution is needed for one attack iteration.

Fitness Function Evaluation. As discussed above, in a

black-box setting, the attacker directly feeds a sample input

into the FPGA to evaluate the fitness function in step 3 . As

the attacker can only access the output prediction from FPGA,

he/she can compute the loss function using Eqn.1 and Eqn.2

for un-targeted and targeted attack, respectively. The above

process 1 - 2 - 3 continues for z evolution times to select one

winner candidate to finish one attack iteration. Then, it goes

to the next iteration until the attack objective is achieved.

6 Experimental Setup

6.1 Dataset and DNN Models
In our experiment, we evaluate three classes of datasets. First,

we use CIFAR-10 [90] and ImageNet [3] for image classifica-

tion tasks. The other application is object detection where we

evaluate the attack on the popular COCO [91] dataset.

For CIFAR-10 dataset, we evaluate the attack against pop-

ular ResNet-20 [4] and VGG-11 [92] networks. We use the

same pre-trained model with exact configuration as [56, 89].

For ImageNet results, we evaluate our attack performance on

MobileNetV2 [93], ResNet-18 and ResNet-50 [4] architec-

tures. For MobileNetV2 and ResNet-18, we directly down-

loaded a pre-trained model from PyTorch Torchvision models
2 and perform an 8-bit post quantization same as previous

attacks [27, 56]. For the ResNet-50, we use Xilinx 8-bit quan-

tized weight trained on ImageNet from [94]. The model we

use to validate the YOLOv2 is the official weight [95], trained

by COCO [91] dataset, and we quantize [96] each weight

value into 16-bits. Our code is also available publicly3.

6.2 FPGA Prototype Configurations

To validate the real-world performance of Deep-Dup, we de-

velop a multi-tenant FPGA prototype, using a ZCU104 FPGA

evaluation kit with an ultra-scale plus family MPSoC chip,

which has the same FPGA structure as these used in a commer-

cial cloud server (e.g., AWS F1 instance), running the above

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/ASU-ESIC-FAN-Lab/DEEPDUPA

USENIX Association 30th USENIX Security Symposium 1927

Weight buffer
Clean Post-attack

Post-attack DNN model
person not recognized

Clean DNN model
person recognized

Attacker zone

Victim
zone

Figure 8: Experimental setup and results of Deep-Dup black-

box attack on YOLOv2, with ‘person’ as target group. After

attack, the fault-injected YoLov2 model fails to recognize the

‘person’.

discussed deep learning applications: image classification and

object detection. The 8-bit quantized DNN models are de-

ployed to our FPGA prototype through a high-level synthesis

(HLS) tool, PYNQ frameworks, and CHaiDNN library from

Xilinx [94]. The experimental setup is shown in Fig. 8. For ob-

ject detection (i.e. YOLOv2) FPGA implementation, multiple

types of hardware accelerators (HAs) are used to compute dif-

ferent network layers, such as convolution layer, max-pooling

layer, and reorganization layer. Specially, the region layer and

data cascade are assigned to the ZYNQ’s ARM core. For

image recognition (e.g. ResNet-50) FPGA implementation,

we follow the same design as the Xilinx mapping tool, which

only implements the convolution accelerator in a light version

(DietChai) [94]. Without loss of generality, the FPGA config-

urations follow the official parameters [97] and [94]. Object

detection network (i.e. YOLOv2) in FPGA execution fre-

quency is 180MHz on Image recognition DNN network (e.g.

ResNet-50) in FPGA execute frequency is 150MHz/300MHz,

where the DSP uses a 300MHz clock source to increase the

throughput and for the other logic we use a 150MHz clock.

To emulate a multi-tenant FPGA environment, we di-

vide the FPGA resources into victim and attacker zones, re-

spectively. The victim zone runs target DNN models, like

YOLOv2 or ResNet-50, while the attacker zone mainly con-

sists of malicious power-plundering circuits. Moreover, to

limit the available resources of attacker, only 13.38% of the

overall FPGA resources are assigned for the power-plundering

circuits.

6.3 Evaluation Metric and Hyper-parameters

For classification application, we use Test Accuracy (TA) as

the evaluation metric. Test Accuracy is the percentage of sam-

ples correctly classified by the network. We denote the test

accuracy after the attack as Post-Attack TA. For a targeted

attack, we use Attack Success Rate (ASR) to evaluate the per-

formance of the attack; ASR is the percentage of the target

class samples miss-classified to an incorrect class after an

attack. For the object detection application, we use Mean Av-

erage Precision (mAP) as the evaluation metric that is the

primary metric in the official COCO dataset challenge web-

site4. In P-DES, the attack evolution (z) is set to (500/1000)

(white-box) and 100 (black-box). In our un-targeted attack,

we use a test batch containing 256/25 images for the CIFAR-

10/ImageNet dataset. Our code is available publicly5 with

detailed hyper-parameters .

7 Experimental Validation and Results

7.1 Measured Fault Injection Success Rate

As described in Fig. 2, the AWD attack targets the weight

transmission procedure, and the fault injection may not always

succeed. However, it is infeasible to validate such fault injec-

tion success rate in our black-box attack model, in which the

adversary has no access to the manipulated weight packages.

To measure that, we design another experiment using an AXI4-

based weight transmission with the same YOLOv2 setup, i.e.,

the same memory copy operation. We define the burst length

of AXI4 as 256. The entire YOLOv2 int16 quantized weight

(99496KB) needs 99496 bursts to finish the transmission for

one input image inference. To avoid an FPGA system crash,

we only trigger one attack at the middle transmission moment

of a burst. To mimic the practical multi-tenant environment

with the victim DNN model being executed simultaneously,

we run a YOLOv2 in parallel. The available power-plundering

circuits are also the same as that in Sec. 6.2. Using this experi-

mental setup, we measured the success rates of fault injection

by RO and LRO power-plundering circuits are 84.84% and

58.91%, respectively.

FPGA system crash avoidance. It has been discussed in

prior work [80] that a too-aggressive power attack (i.e., lever-

aging a large power-plundering circuit, or triggering it with

unsuitable frequency and duty-cycle) will possibly cause an

FPGA system crashes. In our case study, we limit the hard-

ware resources available to the adversary. Additionally, to

avoid such system crash, we apply two constraints on the trig-

gering of AWD attacks: 1) A short activation period of each

fault injection and 2) A large enough interval between any

two consecutive fault injections. Specially, our experiment

sets each fault injection period to 50 ns, from which we did

not observe a crash of the FPGA setup. The attacking inter-

val between each two consecutive fault injection is set to be

longer than 600 ns, which is handled by our P-DES algorithm

development, i.e., searching for target attack indexes with a

certain distance in between.
4https://cocodataset.org/#detection-eval
5https://github.com/ASU-ESIC-FAN-Lab/DEEPDUPA

1928 30th USENIX Security Symposium USENIX Association

Table 1: Summary of the White-Box Attack on CIFAR-10 and ImageNet Dataset. Here, ts denotes the target class which we

randomly selected for each cases. The attack number is the best number out of three test rounds due to randomness.

White-Box Attack on Image Recognition Un-Targeted Attack Targeted Attack

Dataset Network # of Parameters TA (%)
Post-Attack

TA (%)

of

Attacks

Post-Attack

TA (%)
Target Class(ts)

ASR

(%)

of

Attacks

CIFAR-10
ResNet-20 0.27 M 90.77 10.92 28 21.63 Bird 99.2 14

VGG-11 132 M 90.38 10.94 77 23.68 Horse 98.6 63

ImageNet

MobileNetV2 2.1 M 70.79 0.19 1 8.93 Lesser Panda 100.0 1

ReNet-18 11 M 69.35 0.18 106 34.45 Ostrich 100.0 13

ReNet-50 23 M 72.97 0.19 175 30.57 Ostrich 100.0 20

Table 2: Black-Box targeted attack results for ImageNet.

Black-Box Targeted Attack on ResNet-50 using RO cell

(ts) TA(%) Post-Attack TA(%) ASR (%) # of Attacks

Ostrich 72.97 46.96 100 26

7.2 White-Box Attack Results

Image Classification Task. We evaluate the proposed

Deep-Dup white-box attack framework (in Fig. 6) on two

popular Image Classification datasets in Tab. 1. First, for

CIFAR-10, our attack achieves close to the target random

guess level accuracy (e.g., 10 % for CIFAR-10) with only

28 attack iterations (un-targeted) on ResNet-20. However, to

deteriorate the test accuracy of VGG-11 to 10.94 % from

90.38 %, Deep-Dup requires 77 attacks. Similarly, for tar-

geted attack on CIFAR-10, the attacker requires only 14 and

63 attacks to achieve close to 99.0 % ASR on ResNet-20

and VGG-11 respectively. Clearly, VGG-11 is more robust

to Deep-Dup attack. We provide the detailed analysis of this

phenomenon in sec.8.

For ImageNet dataset, our attack succeeds in degrading the

test accuracy of MobileNetV2 to 0.19 % from 70.79 % with

just one single attack. Even for the targeted attack, it only

requires one attack to achieve 100 % ASR in miss-classifying

all Lesser Panda images. Again, MobileNetV2 is also found to

be extremely vulnerable by previous adversarial weight attack

[28] as only a single bit memory error can cause catastrophic

output performance. Nevertheless, MobileNet is an efficient

and compact architecture ideal for mobile and edge computing

platforms like FPGA [98]. Thus the vulnerability of these

compact architectures against Deep-Dup raises a fair question

of how secure are these DNN models in cloud FPGA? The

answer from our Deep-Dup attack is a big NO. Our attack also

succeeds in all ResNet families. Also, larger DNN models

(e.g., ResNet-18 & ResNet-50) shows better resistance to

Deep-Dup attack.

7.3 Black-Box Attack Results

For proof of concept of our proposed Deep-Dup black-box

framework shown in Fig. 7, in this section, we demonstrate

and validate the black-box attack on Resnet-50 for image

classification task and YOLOv2 for the object detection task.

Table 3: Black-Box attack for object detection.

Black-Box Un-Targeted Attack on YOLOv2 using RO cell

Target Class (ts) mAP Post- Attack mAP # of Attacks

All 0.428 0.06 30

Black-Box Un-Targeted Attack on YOLOv2 using LRO cell

Target Class (ts) mAP Post- Attack mAP # of Attacks

All 0.428 0.14 63

Black-Box Targeted Attack on YOLOv2 using RO cell

Target Class (ts) AP Post-Attack AP # of Attacks

Person 0.6039 0.0507 20

Car 0.5108 0.0621 18

Bowl 0.3290 0.0348 15

Sandwich 0.4063 0.0125 6

Specially, in our case study, we randomly pick the "ostrich"

class in the Imagnet dataset as a target class for ResNet-50 and

4 target objects (i.e. Person, Car, Bowl and Sandwich) in the

COCO dataset for YOLOv2. Other settings and performance

metrics are the same as described in Sec. 7.2. Note that, all the

black-box results are the actual measurement from our FPGA

prototype. The Deep-Dup black-box attack on ResNet-50 are

successful and results are reported in Tab. 2. It can be seen

that only 26 attacks are needed to attack the “ostrich” with

100 % ASR. Similarly, Deep-Dup black-box un-targeted and

targeted attacks on YOLOv2, with both RO and LRO cells, are

also successful, as reported in Tab. 3. It can be seen that the

post-attack average precision (AP) is significantly degraded

after less than 20 attacks. For example, only 6 attacks are

needed to decrease the AP of sandwich class from 0.4063 to

0.0125.

7.4 Comparison to Other Methods

Previously, very few adversarial weight attack works have

been successful in attacking DNN model parameters to cause

complete malfunction at the output [26, 29]. Thus we only

compare with the most recent and successful adversarial bit-

flip (BFA) based weight attack [27,28], which uses a gradient-

based search algorithm to degrade DNN performance in a

white-box setting. We also compare our search algorithm

(P-DES) to a random AWD attack.

USENIX Association 30th USENIX Security Symposium 1929

Table 4: Comparison of Deep-Dup with random AWD attack

and row-hammer based (BFA [27, 28]) attack. All the results

are presented for 8-bit quantized VGG-11 model [27].

Method
Threat

Model

TA

(%)
Post-Attack TA (%) # of Attacks

Random Black Box 90.23 90.04 100

BFA [28] White Box 90.23 10.8 28

Deep-Dup Black & White Box 90.23 10.94 77

As shown in both Tab. 4 , only 77 AWD attack iterations

can degrade the accuracy of VGG-11 to 10.87 % while ran-

domly performing 100 AWD attacks, cannot even degrade

the model accuracy beyond 90 %. On the other hand, a BFA

attack [28] using row-hammer based memory fault injection

technique, requires only 28 attacks (i.e. memory bit-flips) to

achieve the same un-targeted attack success (i.e., ∼ 10 % TA).

However, BFA attack is only successful for white-box setting,

not black-box.

7.5 Discussion

Attack efficiency w.r.t. fault injection success rate. As

described in section 7.1, we used two different power plun-

dering circuits, i.e., RO and LRO for fault injection. In our

experiments, we measured 84.84% and 58.91% fault injection

success rates for RO and LRO, respectively. In practical attack,

this number may vary due to the attack budget (i.e., frequency,

resource, etc.). In order to validate our Deep-Dup attack frame-

work will succeed in different fault injection success rates,

we incorporate the fault success rate as a probabilistic param-

eter in our off-line simulator as discussed in section 5.3.1.

Note that, for black-box attack, our direct evaluation of fit-

ness function in the FPGA accelerator already considers and

compensates for the failed fault iteration. The experimental

results are shown in Tab.5. We observe that our Deep-Dup at-

tack framework could still succeed at very low fault injection

success rate (i.e., 40 %), but requiring more number of attack

iterations (i.e. higher redundancy as explained in sec.5.3).

Table 5: Attack efficiency v.s. fault injection success rate (fp).

Reporting # of attack iterations (i.e., mean ± std. for three

runs) required to achieve 99.0 % ASR (targeted attack) or

11.0 % test accuracy (un-targeted attack).

Model Type 40 % 60 % 80 %

ResNet-20
Un-Targeted 95.3 ± 37.3 88 ± 66.5 76.6 ± 13.8

Targeted 39 ± 7.8 23.3 ± 4.3 23.8 ± 6.8

VGG-11
Un-Targeted 195.3 ± 39.1 95.6 ± 14.1 98.9 ± 1.9

Targeted 114 ± 32 88.6 ± 34.4 62.6 ± 2.6

Attack Time Cost. The execution time of one searching

iteration of our proposed P-DES algorithm is constant for a

fixed z, regardless of DNN model size. The overall search-

ing time is proportional to the number of evolution (z). For

Deep-Dup white-box attack, the P-DES algorithm is executed

offline, and the AWD attack is only executed when the attack

index is generated. Note that, the hardware AWD attack in-

curs no time cost, as it runs in parallel with the victim DNN

Figure 9: Black-Box attack time cost analysis with z = 100.

FPGA acceleration (i.e., fitness function evaluation) time and

mutation generation time are reported.

model. For Deep-Dup black-box attack, two main time cost

includes mutation generation (proportional to z) and FPGA

fitness function evaluation (proportional to DNN acceleration

performance/latency in FPGA). In Fig. 9, we report the aver-

age time cost of the proposed 4 mutation strategies executed

in the PS of our FPGA prototype. Additionally, we also report

the DNN execution time in FPGA, which is determined by the

corresponding DNN model size, architecture, optimization

method, and available FPGA hardware resources. It is easy to

observe that our P-DES mutation generation only consumes

trivial time compared to DNN execution time in FPGA, which

is the bottleneck in black-box attack.

8 Potential Defense Analysis
Increasing Model Redundancy. Several prior works have

demonstrated that increasing model redundancy (i.e., DNN

size/channel width) [89,99] can be a potential defense against

model fault attack. Our evaluation of Deep-Dup attack in

the previous section also indicates the correlation between

network capacity (i.e., # of model parameters) and model

robustness (# of attacks required). As the ImageNet dataset

section depicts in Tab. 1, as the network size increases from

ResNet-18 to ResNet-50, the number of attacks required to

achieve 100 % ASR increases correspondingly. We observe

the same trend for CIFAR-10 models where VGG-11 (i.e.,

dense model) requires a higher number of attacks than ResNet-

20 (i.e., compact model).

Table 6: Attack efficiency after increasing the model size of

ResNet-20 and VGG-11 model by 4 (i.e., increasing each

input and output channel size by 2).

Method ASR(%) # of Attacks

ResNet-20 (Baseline) 99.6 14

ResNet-20 × 4 99.6 21

VGG-11 (Baseline) 98.6 63

VGG-11 × 4 98.2 84

In Tab. 6, we run an experiment to validate the relation

between Deep-Dup attack efficiency and network model size.

First, we multiply the input and output channel of the baseline

model by 2 to generate ResNet-20 (× 4) and VGG-11 (×
4) models with 4 × larger capacity. For both ResNet-20 and

VGG-11, the number of attacks required to achieve similar

ASR increases with increasing model capacity (Tab. 6). To

conclude, one possible direction to improve the DNN model’s

resistance to the Deep-Dup attack is to use a dense model

with a larger redundancy.

Protecting Critical Layers. Another possible defense di-

rection is to protect the critical layers that are more sensi-

1930 30th USENIX Security Symposium USENIX Association

tive. Prior works [100] have proposed selective hardening to

defend against weight faults by selectively protecting more

sensitive layers. It is interesting to note that our experimental

observation also shows that 80 % of the searched vulnerable

weights are within the first two layers and the last layer for

ResNet-20. Following this observation, in Tab. 7, we run our

attack by securing these three sensitive layers (ResNet-20

(Protected)). A straightforward way to secure layer weights

from Deep-Dup would be to store them on-chip (i.e., no need

for off-chip data transfer). Note that, a defender can not store

an entire DNN model on-chip due to limited on-chip mem-

ory and typically large DNN model size for cloud computing.

Nevertheless, as shown in Tab. 7, our Deep-Dup still manages

to succeed with ∼ 2 × additional rounds of attack on the

protected ResNet-20 model. Similarly for VGG-11, our Deep-

Dup attack still successfully achieves ∼ 99.0 % ASR even

after securing some critical DNN layers from fault attacks.

Table 7: Deep-Dup attack performance after protecting or

securing some critical DNN layers

Method ASR(%) # of Attacks

ResNet-20 (Baseline) 99.6 14

ResNet-20 (Protected) 99.2 29

VGG-11 (Baseline) 98.6 63

VGG-11(Protected) 98.2 141

Obfuscation through Weight Package Randomization.

In our Deep-Dup attack, the P-DES algorithm relies on the

sequence (e.g., index) of the weight packages being trans-

ferred between the on-chip buffer and off-chip memory. In

this section, we discuss the possibility of defending our attack

by introducing random weight package transmission as an

obfuscation scheme. In Tab. 8, we first perform an experiment

with shuffling of the weights in a pre-defined sequence before

transmitting them. The results show that pre-defined shuffling

order of the wights has almost no effect on the attack efficacy.

Table 8: Weight package randomization as obfuscation. Pre-

defined Shuffle : Shuffling the weight packages in a pre-

defined order before transmission. Random Shuffle : Shuf-

fling the weight packages every time using a random function

before transmission.

Method TA (%)
Post-Attack

TA (%)

of

Attacks

Random Attack 90.77 87.9 180

ResNet-20 Baseline 90.77 10.94 28

Pre-defined Shuffle 90.77 11.0 26

Random Shuffle 90.77 53.3 180

Next, we discuss the case with shuffling the weight pack-

age for every transmission round as a very strong obfuscation.

The effect of such a strong obfuscation scheme can have three

possible implications. First, a randomly shuffled weight trans-

mission will fail to defend our attack in a white-box setting

as the attacker has full knowledge of the DNN and data trans-

mission scheme. Second, in a black-box setting, as shown in

Tab. 8, this defense will greatly limit the efficacy of our at-

tack, requiring a larger amount of attack iterations (e.g., 180)

to degrade the accuracy to 53.3 %. But the attack remains

more successful than a random AWD attack with no search-

ing algorithm. It aligns with the recent work of adversarial

input attack [23], where the authors argue that obfuscation

based on an under-lying random function as defense may not

completely defend a progressive adversarial attack. Given a

large amount of model query, the progressive evolutionary

algorithm-based attack (i.e. our case) could estimate the ef-

fect and distribution of the randomness to improve the attack

efficacy in comparison to a random attack. Moreover, ran-

domly shuffling data transmission every time would require

additional header information to synchronize the sequence

of weights at the receiver end. A recent work in [101] has

demonstrated random shuffling may cost up to 9 × energy

in-efficiency and 3.7 × lesser amount of throughput. Thus, an

effective defense scheme will always come at the expense of

additional (i.e., memory, speed & power) overhead.

Power-based side-channel analysis to detect Deep-Dup.

Here we discuss the feasibility of using power-based side-

channel analysis to detect Deep-Dup. The success of such

detection should rely on the ability to distinguish between

these two cases: 1) Normal case: two benign users execute

their applications simultaneously, and 2) Attack case: two

users share the FPGA resources, where one of them apply

Deep-Dup to attack the other one. Since it is impractical to

measure the real-time power trace in a cloud-FPGA with an

oscilloscope, an on-chip power sensor (e.g., TDC sensor) will

be the only option. As shown in Fig.4, similar as AWD attack,

our measured power trace of a benign user (e.g., YOLOv2)

also incurs large power glitches. More importantly, we did

not observe any AWD attack power glitch has a larger magni-

tude than that of benign user-YOLOV2. Instead, it is smaller

for most of the time. Therefore, the glitches caused by AWD

will be easily obfuscated. Further, it is difficult to distinguish

AWD power glitches in the following practical scenarios: i)

Most cloud-FPGA users prefer to run compute-intensive ap-

plications, which generates many power glitches; ii) When

triggered, each fault injection by AWD only lasts for a short

time period (e.g., 50ns) and is disabled for most of the time;

iii) Faults are only injected at attacker’s will, i.e., without

a fixed pattern to check. In other words, it is of different

challenges to use such power-based side-channel analysis for

defense and attack, i.e., the defender should acquire ultra-

high-resolution side-channel information to identify the ma-

licious power glitches from the noisy power background by

the compute-intensive application, e.g., the DNN execution;

while the attacker only needs to identify the temporal range

for the DNN weight transmission. More severely, an attacker

may even choose to inject faults in a more stealthy manner,

i.e., while the victim DNN model itself is generating lots of

power glitches, to exacerbate the overall voltage drop [102].

Therefore, we argue that it is extremely difficult, if not impos-

USENIX Association 30th USENIX Security Symposium 1931

sible, to detect the proposed Deep-Dup attacks with power

anomaly in a multi-tenant FPGA.

9 Conclusion
In this work, we study the security of DNN acceleration in

multi-tenant FPGA. For the first time, we exploit this novel

attack surface where the victim and the attacker share the

same FPGA hardware sources. Our proposed Deep-Dup at-

tack framework is validated with a multi-tenant FPGA proto-

type, as well as some popular DNN architectures and datasets.

The experimental results demonstrate that the proposed attack

framework can completely deplete DNN inference perfor-

mance to as low as random guess or attack a specific target

class of inputs. It is worth mentioning that our attack suc-

ceeds even assuming the attacker has no knowledge about the

DNN inference running in FPGA, i.e. black-box attack. A

malicious tenant with such limited knowledge can implement

both targeted and un-targeted malicious objectives to cause

havoc for a victim user. Finally, we envision that the proposed

attack and defense methodologies will bring more awareness

to the security of deep learning applications in the modern

cloud-FPGA platforms.

Acknowledgement: The authors thank the designated shep-

herd (Dr. Nele Mentens) for her guidance, and the anony-

mous reviewers for their valuable feedback. This work is

supported in part by the National Science Foundation under

Grant No.2019548 and No.2043183.

References

[1] Yann LeCun and Yoshua Bengio. Convolutional

networks for images, speech, and time series. The

handbook of brain theory and neural networks,

3361(10):1995, 1995.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255. IEEE,

2009.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. Imagenet classification with deep convolutional

neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[5] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,

Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-

nior, Vincent Vanhoucke, Patrick Nguyen, and Tara N

Sainath. Deep neural networks for acoustic model-

ing in speech recognition: The shared views of four

research groups. IEEE Signal Processing Magazine,

29(6):82–97, 2012.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.

Deep learning. nature, 521(7553):436, 2015.

[7] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank

Seide, Mike Seltzer, Andreas Stolcke, Dong Yu,

and Geoffrey Zweig. Achieving human parity in

conversational speech recognition. arXiv preprint

arXiv:1610.05256, 2016.

[8] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi.

Deep ehr: A survey of recent advances in deep learning

techniques for electronic health record (ehr) analysis.

IEEE Journal of Biomedical and Health Informatics,

22(5):1589–1604, Sep. 2018.

[9] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and

Yibo Xue. Droid-sec: Deep learning in android mal-

ware detection. In Proceedings of the 2014 ACM Con-

ference on SIGCOMM, SIGCOMM ’14, pages 371–

372. ACM, 2014.

[10] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-

iong Xiao. Deepdriving: Learning affordance for direct

perception in autonomous driving. In Computer Vision

(ICCV), 2015 IEEE International Conference on, pages

2722–2730. IEEE, 2015.

[11] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and

R. Urtasun. Multinet: Real-time joint semantic reason-

ing for autonomous driving. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pages 1013–1020, June 2018.

[12] Altera and ibm unveil fpga-accelerated power systems.

https://www.hpcwire.com/off-the-wire/al

tera-ibm-unveil-fpga-accelerated-power-s

ystems/.

[13] Here’s what an intel broadwell xeon with a built-in

fpga looks like, 2016. https://www.theregister.

co.uk/2016/03/14/intel_xeon_fpga/.

[14] Inside the microsoft fpga-based configurable cloud,

2017. https://azure.microsoft.com/en-us/

resources/videos/build-2017-inside-the-m

icrosoft-fpga-based-configurable-cloud/.

[15] Enable faster fpga accelerator development and deploy-

ment in the cloud, 2020. https://aws.amazon.c

om/ec2/instance-types/f1/.

[16] George Provelengios, Daniel Holcomb, and Russell

Tessier. Power wasting circuits for cloud fpga at-

tacks. In 30th International Conference on Field Pro-

grammable Logic and Applications (FPL), 2020.

1932 30th USENIX Security Symposium USENIX Association

[17] Yue Zha and Jing Li. Virtualizing fpgas in the cloud. In

Proceedings of the Twenty-Fifth International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, pages 845–858, 2020.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian

Szegedy. Explaining and harnessing adversarial ex-

amples. arXiv preprint arXiv:1412.6572, 2014.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig

Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards

deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083, 2017.

[20] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,

Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[21] Aleksander Madry, Aleksandar Makelov, Ludwig

Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards

deep learning models resistant to adversarial attacks. In

International Conference on Learning Representations,

2018.

[22] Nicholas Carlini and David Wagner. Towards evaluat-

ing the robustness of neural networks. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 39–57.

IEEE, 2017.

[23] Anish Athalye, Nicholas Carlini, and David Wagner.

Obfuscated gradients give a false sense of security:

Circumventing defenses to adversarial examples. arXiv

preprint arXiv:1802.00420, 2018.

[24] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan

Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.

Trojaning attack on neural networks. In 25nd Annual

Network and Distributed System Security Symposium,

NDSS 2018, San Diego, California, USA, February 18-

221, 2018. The Internet Society, 2018.

[25] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth

Garg. Badnets: Identifying vulnerabilities in the ma-

chine learning model supply chain. arXiv preprint

arXiv:1708.06733, 2017.

[26] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano

Giuffrida, and Tudor Dumitras, . Terminal brain damage:

Exposing the graceless degradation in deep neural net-

works under hardware fault attacks. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages

497–514, 2019.

[27] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-

flip attack: Crushing neural network with progressive

bit search. In The IEEE International Conference on

Computer Vision (ICCV), October 2019.

[28] Fan Yao, Adnan Rakin, and Deliang Fan. Deepham-

mer: Depleting the intelligence of deep neural network-

sthrough targeted chain of bit flips. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020.

[29] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu.

Fault injection attack on deep neural network. In 2017

IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 131–138. IEEE, 2017.

[30] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao,

Chaitali Chakrabarti, and Deliang Fan. T-bfa: Tar-

geted bit-flip adversarial weight attack. arXiv preprint

arXiv:2007.12336, 2020.

[31] Jason Cong, Zhenman Fang, Muhuan Huang, Peng

Wei, Di Wu, and Cody Hao Yu. Customizable comput-

ing—from single chip to datacenters. Proceedings of

the IEEE, 107(1):185–203, 2018.

[32] Xilinx: Socs, mpsocs and rfsocs, 2020.

https://www.xilinx.com/products/silico

n-devices/soc.html.

[33] Intel: Soc fpgas, 2020. https://www.intel.com/

content/www/us/en/products/programmable/so

c.html.

[34] Mark Zhao and G Edward Suh. Fpga-based remote

power side-channel attacks. In 2018 IEEE Symposium

on Security and Privacy (SP), pages 229–244. IEEE,

2018.

[35] Jonas Krautter, Dennis RE Gnad, and Mehdi B Tahoori.

Fpgahammer: remote voltage fault attacks on shared

fpgas, suitable for dfa on aes. IACR Transactions

on Cryptographic Hardware and Embedded Systems,

pages 44–68, 2018.

[36] Ilias Giechaskiel, Kasper B Rasmussen, and Ken Eguro.

Leaky wires: Information leakage and covert commu-

nication between fpga long wires. In Proceedings of

the 2018 on Asia Conference on Computer and Com-

munications Security, pages 15–27. ACM, 2018.

[37] Yukui Luo and Xiaolin Xu. Hill: A hardware isolation

framework against information leakage on multi-tenant

fpga long-wires. In 2019 International Conference on

Field-Programmable Technology (ICFPT), pages 331–

334. IEEE, 2019.

[38] Dina Mahmoud and Mirjana Stojilović. Timing vio-

lation induced faults in multi-tenant fpgas. In 2019

Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 1745–1750. IEEE, 2019.

USENIX Association 30th USENIX Security Symposium 1933

[39] George Provelengios, Chethan Ramesh, Shivukumar B

Patil, Ken Eguro, Russell Tessier, and Daniel Hol-

comb. Characterization of long wire data leakage

in deep submicron fpgas. In Proceedings of the

2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pages 292–297. ACM,

2019.

[40] Machine learning on aws, 2020. https://aws.am

azon.com/machine-learning/?nc1=h_ls.

[41] Cloud automl, 2020. https://cloud.google.com

/automl.

[42] Luis Muñoz-González, Battista Biggio, Ambra De-

montis, Andrea Paudice, Vasin Wongrassamee, Emil C.

Lupu, and Fabio Roli. Towards poisoning of deep

learning algorithms with back-gradient optimization.

CoRR, 2017.

[43] Andrew Ilyas, Logan Engstrom, Anish Athalye, and

Jessy Lin. Black-box adversarial attacks with limited

queries and information. In Proceedings of Interna-

tional Conference on Machine Learning, ICML 2018,

July 2018.

[44] Ekin D Cubuk, Barret Zoph, Samuel S Schoenholz,

and Quoc V Le. Intriguing properties of adversarial

examples. ICLR workshop, 2018.

[45] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spog-

nardi, Antonio Villani, Domenico Vitali, and Giovanni

Felici. Hacking smart machines with smarter ones:

How to extract meaningful data from machine learn-

ing classifiers. Int. J. Secur. Netw., 10(3):137–150,

September 2015.

[46] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-

iter, and Thomas Ristenpart. Stealing machine learning

models via prediction apis. In Proceedings of the 25th

USENIX Conference on Security Symposium, SEC’16,

pages 601–618. USENIX Association, 2016.

[47] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z. Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning.

In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, ASIA

CCS ’17, pages 506–519. ACM, 2017.

[48] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.

Model inversion attacks that exploit confidence infor-

mation and basic countermeasures. In Proceedings of

the 22Nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, pages 1322–1333.

ACM, 2015.

[49] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon

Lin, David Page, and Thomas Ristenpart. Privacy in

pharmacogenetics: An end-to-end case study of per-

sonalized warfarin dosing. In USENIX Security Sym-

posium, pages 17–32, 2014.

[50] Nina Narodytska and Shiva Prasad Kasiviswanathan.

Simple black-box adversarial perturbations for deep

networks. arXiv preprint arXiv:1612.06299, 2016.

[51] Battista Biggio, Luca Didaci, Giorgio Fumera, and

Fabio Roli. Poisoning attacks to compromise face

templates. In Biometrics (ICB), 2013 International

Conference on, pages 1–7. IEEE, 2013.

[52] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio

Fumera, Claudia Eckert, and Fabio Roli. Is feature

selection secure against training data poisoning? In

International Conference on Machine Learning, pages

1689–1698, 2015.

[53] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.

Membership inference attacks against machine learn-

ing models. In 2017 IEEE Symposium on Security and

Privacy, pages 3–18, May 2017.

[54] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and

Sameep Mehta. Model extraction warning in mlaas

paradigm. In Proceedings of the 34th Annual Com-

puter Security Applications Conference, pages 371–

380. ACM, 2018.

[55] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma,

Shivam Bhasin, and Yang Liu. Deeplaser: Practical

fault attack on deep neural networks. arXiv preprint

arXiv:1806.05859, 2018.

[56] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt:

Targeted neural network attack with bit trojan. In Pro-

ceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 13198–

13207, 2020.

[57] Chethan Ramesh, Shivukumar B Patil, Siva Nishok

Dhanuskodi, George Provelengios, Sébastien Pille-

ment, Daniel Holcomb, and Russell Tessier. Fpga

side channel attacks without physical access. In 2018

IEEE 26th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM),

pages 45–52. IEEE, 2018.

[58] Sadegh Yazdanshenas and Vaughn Betz. The costs of

confidentiality in virtualized fpgas. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 2019.

[59] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,

Michael Wei, Eric Schkufza, and Christopher J Ross-

bach. Sharing, protection, and compatibility for recon-

figurable fabric with amorphos. In 13th {USENIX}

1934 30th USENIX Security Symposium USENIX Association

Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 18), pages 107–127, 2018.

[60] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and

Stjepan Picek. {CSI}{NN}: Reverse engineering of

neural network architectures through electromagnetic

side channel. In 28th {USENIX} Security Symposium

({USENIX} Security 19), pages 515–532, 2019.

[61] Shayan Moini, Shanquan Tian, Jakub Szefer, Daniel

Holcomb, and Russell Tessier. Remote power side-

channel attacks on cnn accelerators in fpgas. arXiv

preprint arXiv:2011.07603, 2020.

[62] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng,

Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang

Liu, Timothy Sherwood, et al. Deepsniffer: A dnn

model extraction framework based on learning archi-

tectural hints. In Proceedings of the Twenty-Fifth Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages

385–399, 2020.

[63] Oliver Knodel, Patrick Lehmann, and Rainer G Spallek.

Rc3e: Reconfigurable accelerators in data centres and

their provision by adapted service models. In 2016

IEEE 9th International Conference on Cloud Comput-

ing (CLOUD), pages 19–26. IEEE, 2016.

[64] Sadegh Yazdanshenas. Datacenter-optimized FPGAs.

PhD thesis, 2019.

[65] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Para-

metric noise injection: Trainable randomness to im-

prove deep neural network robustness against adver-

sarial attack. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

588–597, 2019.

[66] Adnan Siraj Rakin, Zhezhi He, Li Yang, Yanzhi Wang,

Liqiang Wang, and Deliang Fan. Robust sparse regular-

ization: Defending adversarial attacks via regularized

sparse network. In Proceedings of the 2020 on Great

Lakes Symposium on VLSI, pages 125–130, 2020.

[67] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian

Goodfellow. Thermometer encoding: One hot way

to resist adversarial examples. In International Confer-

ence on Learning Representations, 2018.

[68] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,

and Cho-Jui Hsieh. Zoo: Zeroth order optimization

based black-box attacks to deep neural networks with-

out training substitute models. In Proceedings of the

10th ACM Workshop on Artificial Intelligence and Se-

curity, pages 15–26. ACM, 2017.

[69] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.

Badnets: Identifying vulnerabilities in the machine

learning model supply chain. CoRR, abs/1708.06733,

2017.

[70] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,

Bingjun Xiao, and Jason Cong. Optimizing fpga-based

accelerator design for deep convolutional neural net-

works. In Proceedings of the 2015 ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate

Arrays, pages 161–170. ACM, 2015.

[71] Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua

Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen.

Dnnexplorer: A framework for modeling and exploring

a novel paradigm of fpga-based dnn accelerator. arXiv

preprint arXiv:2008.12745, 2020.

[72] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao,

Yongan Zhang, Yue Wang, Chaojian Li, Zetong Guan,

Deming Chen, and Yingyan Lin. Autodnnchip: An au-

tomated dnn chip predictor and builder for both fpgas

and asics. In The 2020 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays, pages

40–50, 2020.

[73] ARM. AMBA AXI and ACE Protocol Specification,

2013.

[74] Xilinx,Inc. Artix-7 FPGAs Data Sheet: DC and AC

Switching Characteristics (DS181), 2018.

[75] Xilinx,Inc. Virtex-7 T and XT FPGAs Data Sheet: DC

and AC Switching Characteristics (DS183), 2019.

[76] Xilinx,Inc. Zynq UltraScale+ MPSoC Data Sheet: DC

and AC Switching Characteristics (DS925), 2019.

[77] Power distribution network, 2015. https:

//www.intel.com/content/www/us/en/prog

rammable/support/support-resources/suppo

rt-centers/signal-power-integrity/power-d

istribution-network.html.

[78] TI,Inc. TPS54620 4.5-V to 17-V Input, 6-A, Syn-

chronous, Step-Down SWIFT™ Converter, 2017.

[79] Xilinx,Inc. UltraScale Architecture PCB Design

(UG583), 2020.

[80] Dennis RE Gnad, Fabian Oboril, and Mehdi B Tahoori.

Voltage drop-based fault attacks on fpgas using valid

bitstreams. In 2017 27th International Conference on

Field Programmable Logic and Applications (FPL),

pages 1–7. IEEE, 2017.

[81] Tuan Minh La, Kaspar Matas, Nikola Grunchevski,

Khoa Dang Pham, and Dirk Koch. Fpgadefender: Ma-

licious self-oscillator scanning for xilinx ultrascale+

USENIX Association 30th USENIX Security Symposium 1935

fpgas. ACM Transactions on Reconfigurable Technol-

ogy and Systems (TRETS), 13(3):1–31, 2020.

[82] Kaspar Matas, Tuan Minh La, Khoa Dang Pham,

and Dirk Koch. Power-hammering through glitch

amplification–attacks and mitigation. In 2020

IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM),

pages 65–69. IEEE, 2020.

[83] Yukui Luo, Cheng Gongye, Yunsi Fei, and Xiaolin

Xu. Deepstrike: Remotely-guided fault injection at-

tacks on dnn accelerator in cloud-fpga. arXiv preprint

arXiv:2105.09453, 2021.

[84] David G Mayer, BP Kinghorn, and Ainsley A Archer.

Differential evolution–an easy and efficient evolution-

ary algorithm for model optimisation. Agricultural

Systems, 83(3):315–328, 2005.

[85] Kenneth V Price. Differential evolution. In Handbook

of Optimization, pages 187–214. Springer, 2013.

[86] Libiao Zhang, Xiangli Xu, Chunguang Zhou, Ming Ma,

and Zhezhou Yu. An improved differential evolution

algorithm for optimization problems. In Advances in

Computer Science, Intelligent System and Environment,

pages 233–238. Springer, 2011.

[87] Swagatam Das, Sankha Subhra Mullick, and Ponnuthu-

rai N Suganthan. Recent advances in differential

evolution–an updated survey. Swarm and Evolutionary

Computation, 27:1–30, 2016.

[88] Feoktistov Vitaliy. Differential evolution–in search of

solutions, 2006.

[89] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali

Chakrabarti, and Deliang Fan. Defending and harness-

ing the bit-flip based adversarial weight attack. In

Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

14095–14103, 2020.

[90] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

Cifar-10 (canadian institute for advanced research).

http://www. cs. toronto. edu/kriz/cifar. html, 2010.

[91] Tsung-Yi Lin, Michael Maire, Serge Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C Lawrence Zitnick. Microsoft coco: Common objects

in context. In European conference on computer vision,

pages 740–755. Springer, 2014.

[92] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014.

[93] Mark Sandler, Andrew Howard, Menglong Zhu, An-

drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:

Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4510–4520, 2018.

[94] Chaidnn, hls based deep neural network accelerator

library for xilinx ultrascale+ mpsocs. https://gith

ub.com/Xilinx/CHaiDNN, 2018.

[95] Yolo-v2 pre-trained weight. https://pjreddie.c

om/media/files/yolov2.weights, 2016.

[96] Lei Shan, Minxuan Zhang, Lin Deng, and Guohui

Gong. A dynamic multi-precision fixed-point data

quantization strategy for convolutional neural network.

In CCF National Conference on Computer Engineer-

ing and Technology, pages 102–111. Springer, 2016.

[97] Yolov2 accelerator in xilinx’s zynq-7000 soc.

https://github.com/dhm2013724/yolov2_xili

nx_fpga.

[98] Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li,

Lingzhi Sui, Dongliang Xie, and Yi Shan. A high-

performance cnn processor based on fpga for mo-

bilenets. In 2019 29th International Conference on

Field Programmable Logic and Applications (FPL),

pages 136–143. IEEE, 2019.

[99] Yu Li, Yannan Liu, Min Li, Ye Tian, Bo Luo, and Qiang

Xu. D2nn: a fine-grained dual modular redundancy

framework for deep neural networks. In Proceedings

of the 35th Annual Computer Security Applications

Conference, pages 138–147, 2019.

[100] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin,

C. Cazzaniga, C. Frost, and P. Rech. Selective harden-

ing for neural networks in fpgas. IEEE Transactions

on Nuclear Science, 66(1):216–222, 2019.

[101] Shijie Zhou, Charalampos Chelmis, and Viktor K

Prasanna. High-throughput and energy-efficient graph

processing on fpga. In 2016 IEEE 24th Annual Inter-

national Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 103–110. IEEE,

2016.

[102] Yukui Luo, Cheng Gongye, Shaolei Ren, Yunsi Fei,

and Xiaolin Xu. Stealthy-shutdown: Practical remote

power attacks in multi-tenant fpgas. In 2020 IEEE

38th International Conference on Computer Design

(ICCD), pages 545–552. IEEE, 2020.

1936 30th USENIX Security Symposium USENIX Association

