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Abstract—This paper takes the first step towards a re-
active, hierarchical multi-robot task allocation and planning
framework given a global Linear Temporal Logic specification.
The capabilities of both quadrupedal and wheeled robots are
leveraged via a heterogeneous team to accomplish a variety of
navigation and delivery tasks. However, when deployed in the
real world, all robots can be susceptible to different types of
disturbances, including but not limited to locomotion failures,
human interventions, and obstructions from the environment.
To address these disturbances, we propose task-level local and
global reallocation strategies to efficiently generate updated
action-state sequences online while guaranteeing the comple-
tion of the original task. These task reallocation approaches
eliminate reconstructing the entire plan or resynthesizing a
new task. To integrate the task planner with low-level inputs,
a Behavior Tree execution layer monitors different types of
disturbances and employs the reallocation methods to make
corresponding recovery strategies. To evaluate this planning
framework, dynamic simulations are conducted in a realistic
hospital environment with a heterogeneous robot team consist-
ing of quadrupeds and wheeled robots for delivery tasks.

I. INTRODUCTION

Mobile robots have been extensively investigated and
deployed in various service applications such as assembly
[1], surveillance, [2] and search and rescue [3]. In re-
cent years, quadrupedal robots have been popularized for
their superior traversability over unstructured terrains [4].
Nevertheless, even with exceptional locomotion capabilities,
legged systems are often unstable, fragile, and less suitable
for performing prolonged tasks compared to wheeled robots.
However, distinct types of robots can form a heterogeneous
team to compensate for their individual disadvantages.

Recent works on multi-robot systems have been focusing
on mission planning problems with the assistance of formal
languages such as Linear Temporal Logic (LTL) [5]. Orig-
inally proposed for model checking [6], LTL is a powerful
tool used in the robotics community with a preponderance of
research primarily conducted on wheeled robots [7], [8] and
legged robots [9]-[11] for task and motion planning. There
have also been works [7], [12]-[15] on multi-agent systems.
However, objectives are explicitly assigned to individual
robots rather than having one global specification. This can
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Fig. 1: A conceptual illustration of a three robots (Unitree Al, UBTECH
DR, UBTECH Wassi) performing tasks in a simulated hospital setting. An
illustration of team automaton is shown in the fop left. The role of this team
automaton is described in detail in Fig. 2.

be challenging for a large team of robots [16], [17], where
in most cases, a global task is simpler to define. Therefore,
a simultaneous task allocation and planning (STAP) problem
given a global LTL specification attracts more attention.

A line of research exists where STAP problems have
been solved with global LTL specifications. In [2], [18] a
product model is constructed with an exponential complexity,
while [19] proposed a team model automaton with a linear
complexity, assuming that each robot conducts its task in-
dependently. Other works also focused on advanced search
algorithms [16], [20], concrete time constraints [21], and
collaborative tasks [22]. However, failure recovery during
real-world deployment is rarely studied, especially con-
sidering unstructured environments such as rough terrain.
Single and multi-robot scenarios have been demonstrated
with disturbances caused by a change in the environment
[23]-[26] or a failure to perform an action [27], but all have
been limited to local LTL specifications. The work of [28] is
conceptually similar to our goal, where each robot reallocates
its tasks during execution failures, based on a Team Markov
Decision Process. However, this work manually designs a set
of LTL specifications in advance without identifying decom-
posable parts of a global task specification for optimal task
sequences. Therefore, task reallocation capabilities during
the online execution is desirable for STAP problems given
global LTL specifications, which is addressed in this study.

In this paper, multiple reallocation approaches to a rich
class of online disturbances are proposed to replan on the
updated team model given one global LTL specification. A
local reallocation efficiently outputs a new action sequence
only for the problematic robot, while a global reallocation
searches on the entire team model and generates optimal



action sequences for all robots. Meanwhile, the connection
between the high-level reallocation and the low-level distur-
bance detection is interfaced by a mid-level Behavior Tree
(BT). BT is a commonly used graphical and mathematical
controller for a robot that enables fault-tolerant task execu-
tions [29]-[34]. In our work, we structure the BT to accept
an action sequence assigned by the LTL planner similar
to [26], [35]. From an implementation perspective, our BT
explicitly delegates all strategies while maintaining a simple
structure that is extendable to other types of disturbances. In
addition, disturbance detection rates at different frequencies
are employed by leveraging the BT s modularity property.
Our contributions are summarized as follows:

« To handle potential disturbances from locomotion failures
and environmental changes, we propose local and global
task reallocation approaches given a global LTL specifica-
tion. This approach eliminates the need to reconstruct the
entire team model or resynthesize a new task.

o To select among reallocation strategies at run-time, we
present a BT-based execution layer interfacing with low-
level feedback. Our BT structure allows different types of
disturbances to be detected at different rates.

e« We evaluate our pipeline in a simulated hospital envi-
ronment with a heterogeneous robot team consisting of
both quadrupedal and mobile robots as shown in Fig. 1.
An open-source software package' is provided for the
proposed reactive multi-robot task allocation and planning
framework.

II. PRELIMINARIES
A. LTL basics

Linear temporal logic (LTL) has been widely used to
encode temporal task specifications and automatically syn-
thesize the system’s transition behaviors. A specification
¢ is constructed from atomic propositions © € II, which
is evaluated to be True or False and follows the syntax
@ = 7| =P|P1 Ado | OP|P1U P2 |p1 R d2. Boolean operators —
“not” and A “and” in addition to a set of temporal operators
O “next”, U “until”, and R “release”, are denoted. To be
concise, we omit the derivations of other boolean operators
such as V “or”, — “implies”, and <+ “if and only if”, as well
as temporal operators < ¢ “eventually ¢” and ¢ “always
P

A common usage of LTL is for constructing an automaton.
A non-deterministic automaton (NFA) is defined as a tuple
Q = (S9,50,0,%,d0, F) such that Sg is a set of states
(sg € S9), So,0 € Sg is a set of initial state, ¥ is the
input alphabet, dg is a set of transition relations such that
§g : Sg x ¥ — 252, and F is a set of accepting final states.
In addition, LTL formulas are evaluated over a sequence o :
N — 2 where o(t) C II represents all true propositions
at time ¢ [29].

For this framework, a transition system (TS) is cre-
ated by combining data from the topological map and the
robots’ operating states. A TS is defined as a tuple 7 =

Thttps://github.com/GTLIDAR/Itl_multi_agent.

(ST, 50,7, A, I, L) such that S is a set of system
states (s € S7), so,7 € St is the initial system state,
At is a set of available system actions, I is the set of
system propositions, and £ : S+ — 27 is a labeling
function that assigns atomic propositions to states [16]. We
use succ(st) = {s7 € St|(s7,55) € A1} to denote the
successors of st and Pred(sy) = {s% € S7|(sF,s7) €
At} as the predecessors of s7. By combining a TS with an
NFA, a product automaton (PA) P composed of system states
and mission specifications is generated. It is represented by
P=90®T = (Sp,Sop,Ap) such that Sp = Sg x St
is the set of states (sp € Sp), Sop = So,0 X {so,7} is
the set of initial states, and Ap = {((sq,s7), (so,57)) €
Sp x Sp:(s1,8%) € AT Nsg € do(sa, L(sT))}.

B. Offline task allocation

We introduce the baseline task allocation method and ter-
minologies used throughout this paper. Readers are referred
to [19] for more details. Given the LTL semantics above, a
global task ¢ along with its corresponding NFA Q can be
specified for a whole team of N agents, each of which has its
own TS 7() and a corresponding PA P(") = Q@ T () r =
{1,..., N}. Next, we will introduce a criterion that identifies
the decomposed parts of ¢ based on the assumption that each
agent executes its sub-task independently.

Definition 1 (Finite Decomposition [19]). Let 7, with r €
{1,...,N} be a set of finite LTL task specifications and
o; is any sequence s.t. 0. = [J.. These tasks are called
decomposition of the global finite LTL specification ¢, iff:

Uj1"‘0jr"'JjN|:¢ (l)

for all permutations of j. € {1,...,N} and all respective
sequences o.

Based on this criterion, a decomposition set D C Sg
can be derived from @, which includes all NFA states
that allocate tasks. Then the action-state sequence allocated
to each agent is computed by first constructing a team
automaton.

Definition 2 (Team automaton [19]). The team automaton
G is a union of N local PA P") with r € {1,...,N} and
defined by G := (Sg, So,g, Fg, Ag), where:

e 5g ={(r,s0,s7) : 7 €{1,...,N},(s0,s7) € ST}
is the set of states;

e Sog = {(r,sg,s7) : 7 =1,(s0,87) € 5817)3} is the
set of initial states;

o Fg ={(r,sg,s7) € Sg : sg € F'} is the set of final
accepting states;

o« Ag =UJ, A;,T) U( is the set of actions including switch
transitions (.

We use dg : Sg — Sg to denote the transitions corre-
sponding to Ag. The set ¢ C Sg x Sg denotes the switch
.transitions, each of .V\{hiCh ¢ = ((i,SQ,ST),.(j,s'Q.7 s7))
is defined as a transition between two states in G iff: 1)
j = i+ 1: connects to the next agent; 2) sg = sy the
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Fig. 2: An overview of the hierarchical planning framework. The global LTL planner portrays the high-level LTL task planner. Once the product automaton
is created, it is sent to the team automaton, where a sequence of actions are assigned to individual robots. During execution, the local task planner, the
behavior tree, and the hardware on the robot will react to disturbances and handle accordingly.

NFA state remains unchanged; 3) s = s(()j%- points to an
initial agent state; 4) sg € D: the NFA state is inside the
decomposition set.

The team automaton is a combination of every agent’s PA
P() 2 with additional switch transitions which can reassign
an agent’s remaining task to another agent. As illustrated
in Fig. 3(a), if a global action sequence 5 on the team
automaton is found, we can state that task allocation and
planning have been accomplished simultaneously (namely
STAP [19]). By projecting 3 onto the PA of each agent,
tasks can be executed in parallel. This process of finding
an initial set of action-state sequence is called the offline
allocation, whereas the state space complexity scales linearly
with the number of agents. The rest of this paper will
focus on addressing external disturbances during real-world
deployment.

III. PROBLEM FORMULATION
A. Disturbance characterization

In this section, we categorize disturbances into four classes
in order to pair a reactive strategy that can efficiently resolve
the problem. Unless specified, the following disturbances
apply to both legged and wheeled robots.

« Loss of balance refers to a scenario where a legged robot
falls due to an unstable gait or erratic controller output.

o Critical failure refers to an irrecoverable hardware or
software malfunction such as a damaged motor or a
software glitch.

« Unexpected robot state change refers to a situation where
a robot detects a sudden shift in the robot’s state.

« Environmental change refers to an environmental event
preventing the robot from continuing its current task.

B. STAP reallocation

Given the baseline STAP approach (Sec. II-B), we seek
to find an efficient reallocation strategy that is specific to
each category of disturbance. For this problem, two aspects
need to be investigated: 1) a formal guarantee to complete
the global task; 2) a set of completed tasks by the whole

2For simplicity, we abuse P() to denote a sub-graph in G which contains
the same states S,(,; ) and transitions except, the robot index r is appended.

team. To this end, we define a STAP reallocation problem
as the following:

Problem Statement. Given an initial task assignment and
the current TS of every agent, one finds a set of new action-
state sequences for the agents to accomplish the global task
without restarting the whole mission or re-synthesizing a new
mission.

However, the task reallocation strategies are only compat-
ible with high-level information such as changes in the NFA
state or the TS state. Therefore, we propose a BT-based mid-
level to organize different disturbance types into comprehen-
sible inputs for the high-level planning framework.

Fig. 2 shows the planning architecture consisting of 1) a
high-level task planner that performs offline allocation and
online reallocation; 2) a mid-level BT interface to execute the
assigned action plan for each agent; 3) low-level controllers
that power the actuators on legged and wheeled robots.

IV. REALLOCATION APPROACH

To solve the STAP reallocation problem, we propose two
approaches: a local and global approach, both of which are
designed at the high level. Fig. 3(b) and 3(c) show the
workflow and conceptual examples of both local and global
reallocation.

A. Local reallocation addressing unexpected state changes

The offline task allocation process generates an action-
state sequence for each agent, which assumes every action
is performed successfully. During execution unexpected in-
terventions could occur, which would undermine the orig-
inal plan. For instance, if a human removes a load car-
ried by the robot before the robot reaches its destination,
an unforeseen robot state change occurs. To resolve this
intervention, we introduce the local task reallocation ap-
proach. Suppose Path(™ is a planned state sequence for
robot r, generated from the original team automaton. Let
Path(r)(acc) denote the agent’s local accepting state and
s? be the current state after the intervention. By comparing
the state sequence execution history and Path("), the last
matched state is identified as Path("(m), whose NFA
and TS are written as Pathg)(m) and Pathgf) (m). Thus,



Pathgf)(m +1) = s?. Now, the problem is reformu-
lated to find a path on the local PA, starting from an
up-to-date initial set defined as SS}); = {(r,sg,s7) €
SS|sr = s57,¥sg € do(Pathy) (m), L(Pathy (m)))}.
The find-path method throughout this work is performed
by Dijkstra’s algorithm. Note that the original path can be
reused if the current state happens to be on the agent’s origi-
nal path. This local task reallocation approach is summarized
in Algorithm 1. Path(") (i :) denotes a sub-path starting from
the i*? element.

Proposition 1. In the presence of one robot experiencing
unexpected state changes and all other agents not interfered
(i.e., can successfully accomplish their tasks), the global
specification ¢ will be fulfilled if a path is found by the local
reallocation method in Algorithm 1 on the local PA P,

Algorithm 1 Local reallocation: unexpected state change

Input: P, path(™
Output: A new path Path(+
Patht « empty path
Path-set) « empty set
for s in sﬁ?, do
if s in Path(™ then
i < getIndex(Path(s))
Path-set ™ .append(Path'™ (i :))
continue
else
Path-set " .append(find-path(s,Path(” (acc)))
end if
end for
Path* « find-best(Path-set()

Proof. According to Algorithm | and the definition of S(EZ),,
the new state sequence Path(* (i) connects to agent 7’s
executed state sequence through a valid NFA transition since
sg € 5Q(Pathg) (m),E(Pathgr) (m)); and (ii) ends with
the original local accepting state Pat h(r)(acc). In other
words, the originally assigned sub-task for agent r is fulfilled
again. Given the assumption that the rest of the agents are not
interfered by any disturbances, agent 7’s newly concatenated
sequence, along with the other agents’ planned sequences,
consist a global action sequence 3 on the team automaton
G again. Then according to the correctness property in [29],
the projected global path onto the NFA satisfies the mission
specification ¢. O

B. Local reallocation addressing environmental changes

In the previous section, the disturbance shifts the robot’s
state but does not modify the environment, which will be
addressed in this section. Such a disturbance will directly
impact the TS. For instance, if the floor is occupied by
an impassable object, the mobile robot would encounter a
navigation failure and would not be able to transition to its
next expected state. In this case, the robot will receive the
changes to be made on TS called Info(t)("). Each update
contains three types of information: 1) (s7,s%) € Add(t) if

s7 is allowed to transit to s-; 2) (s7,s) € Delete(t) if
s7 is not allowed to transit to s%-; 3) (b,s7) € Relabel(t)
if the labeling function of state s7 is updated to b C 24°.
The TS change can be reflected by directly modifying the
team automaton using the PA revision strategy in [23]. When
a single agent r receives an update, the latest team automaton
is revised by only updating corresponding P () (t)?. All
deleted transitions, i.e., edges, are added into a set R(t).

Definition 3 (Updating rules). G(t) (more specifically, only
PU)(t)) is updated given the Info(t) from agent r following
the rules:

o If (s7,5%) € Add(t), (r,s%,s5) is in 6g((r,55,57))
for s}y, 8§ satisfying s% € do(sG, L(sT));

o If (s7,8%) € Delete(t), (r,sQ,s7) is deleted from
oG ((r, 85, 57)) for ¥sh,s5 € Sg),'

o If (b,s7) € Relabel(t), then Vsi € Pred(st):
(r,8%,8%) is added to 6g((r,sg,sT)) for Vs €
0g(s8,b); (r,84, %) is deleted from og((r,55,57))
for Vs ¢ 6o(s5,0)

If a disturbance was detected on an agent’s TS, a new
type of task reallocation algorithm is necessary. Note that
no unexpected robot state is assumed in this case and the
last matched state is equivalent to the current state, i.e.
path'”(m) = s%. Given the revised local PA P()(t),
we propose a different replanning approach in Algorithm 2,
compared to the one in Sec. [V-A.

Proposition 2. In the presence of environmental change and
all other agents that are not interfered (i.e., can successfully
accomplish their tasks), the global specification ¢ will be
fulfilled if a path is found by the local reallocation method
in Algorithm 2 on the revised local PA P (t).

Proof. According to Algorithm 2, the new state sequence
Path("* starts from the last state Path(™)(m) in agent s
execution history and reaches the same local accepting state
Path(" (acc). Since the PA updating rules preserve valid
NFA transitions, the originally assigned sub-task for agent r
is still fulfilled by the newly found path on P(")(¢). Same as
Proposition 1, a global action sequence 3 is formed assuming
the rest agents are not interrupted by any disturbances. Con-
sequently, the global specification ¢ is satisfied again. [

Algorithm 2 Local reallocation: environmental change

Input: P (t),Path(™, Info(t)
Output: A new path Path(”+
Path™* + empty path
PU(t), R(t) + UpdatePA(P ") (t), Info(t))
if R(t) Nedge(Path™) # & then
Path* « find-path(Path((m),Path( (acc))
else
Path™* « path((m :)
end if

3We use -(t) to denote an updated automaton at time ¢ given the transition
relation is changed.
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Fig. 3: Conceptual illustrations of local and global reallocations: (a) offline allocation given the team automaton. A global sequence (the red lines with arrows)
is found during the offline phase as an initial task allocation. Assuming A1 undergoes a disturbance such as unexpected state change and environmental
change as shown in subfigure (b). In correspondence to Algorithm 1, Case 1.1 refers to a scenario where the new initial state after the state jump is on the
original offline-generated global sequence, while Case 1.2 corresponds to a completely new initial state and requires a replanning. Similarly in Algorithm
2, Case 2.1 demonstrates a scenario where the transition change doesn’t affect the execution of the original global path, while a replanning is required in
Case 2.2 due to a deleted edge on the original global path (represented by the cross marker). Subfigure (c) reveals a block diagram on the essential steps
for a global reallocation. The synchronization step notifies the planner of each agent’s current state (denoted by the yellow circle) and execution history

to proceed with the remaining steps. More details are explained in Sec. IV-C.

C. Global reallocation

The two aforementioned local task reallocation approaches
do not consider replanning for the whole team, which results
in a sub-optimal strategy. Furthermore, if the local task real-
location fails to find a new plan for the agent, a succeeding
global task reallocation over the entire team is activated.
First, a synchronization step will be executed where the task
planner requests for each agent’s current TS state and sets it
to be the latest initial TS state s((;%-(t) Then the initial PA set
Ség), (t) is updated accordingly by keeping SST)Q the same.
Since each P(") () has been updated during local reallocation
if needed, the team automaton is only modified by updating
the initial set of states and switch transitions, in addition to
appending the synchronized transitions.

Definition 4 (Synchronized team automaton). The synchro-
nized team model R := G(t) is a union of N prod-
uct automata P") (t) given the updated product states af-
ter synchronization, where v € {l1,....N} and R :=
(Sr,Sor, Fr,AR) consists of:

e Sx = {(r,s0,87) : r € {1,...,N}, (sg,87) €
Sg) (t)} is the set of states;

e Sor = {(r,sg,s7) : 7 =1,(sg,s7) € Sél%(t)} is
the set of initial states;

o Fr = {(r,s0,57) € Sg : ¢ € F'} is the set of final
accepting states, which remains unchanged since the
NFA accepting states are fixed;

« Ax = U, Ag)(t) U C(t) U E(t) is the set of actions
that include the updated switch transitions ((t) and the
newly proposed synchronized transitions £(t).

Suppose ExePath(") is the executed state sequence ac-
quired from each agent r and ExeP athg) is the projected
NFA state sequence. The definition of a synchronized tran-
sition is as follows:

Definition 5 (Synchronized transition). The set £ C Sgr X
Swr denotes synchronized transitions. Each element ¢ =

((Za 59, ST)7 (.]7 8/Q7 SIT)) satisfies:

e 1 = j: connects the same agent;

e Sg = ExePath(QT) (init), sy = ExePathg) (final),
r € {1,...,N} starts from the initial NFA state and
points to the most recent NFA nodes upon request for
synchronization of each agent;

o s7 = s’ TS state is preserved.

This synchronized transition allows a new transition be-
tween two NFA states inside each agent’s P(")(t). Once
this is complete, each agent will be aware of the task
completion status of the whole team and avoid performing
redundant tasks. In the original team automaton [29], the
four properties including correctness, independence, com-
pleteness, and ordered sequence are proposed to justify the
rationale of finding a global path on the team automaton for
a task allocation. Here we claim that our synchronized team
automaton preserves these properties, so that a new global
action sequence (3 can be found by applying the same search
algorithm performed during the offline phase (as presented
in Sec. II). This process leads to a global task reallocation
that assigns new sub-tasks to all agents.

Proposition 3. The synchronized team automaton preserves
the properties of the original team automaton, i.e., correct-
ness, independence, completeness and ordered sequence.

Proof. The synchronized team automaton is distinguished
from the original team automaton in four folds: 1) the set
of initial states Sp is different since the initial PA set
Séb)) (t) is updated; 2) the set of actions Ag) (t) from each
agent r is updated according to the latest P(")(t); 3) the
switch transitions ((t) are removed and then reconstructed
after setting the current TS state as the latest initial state
séT%—(t) for each agent r; 4) the synchronized transitions
are added according to the execution history. The first three
changes won’t affect the properties of the team automaton
in that every state sg € Sg still has an NFA component
sg constructed from ¢, and the switch transitions ¢(¢) are
reconstructed under the same definition. As for the fourth
change, according to the second condition of Definition 5,
new transitions between NFA states are added by connecting
the initial and final NFA states from each agent r’s execution
history ExePathg). Although these transitions are not
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directly provided by ¢, since the states in ExePath(") have
already been traversed by agent r, there always exists a se-
quence of valid NFA transitions between ExeP ath(r) (init)

and ExeP ath(r) (final). Therefore, synchronized transitions
do not change the validness of the original NFA transitions,
but only skip the executed transitions. Consequently, all of
the original properties, including correctness, independence,
completeness, and ordered sequence, are preserved. O

V. BT EXECUTION LAYER

As described in Sec. IV, both local and global task
reallocation approaches enable robot recovery from various
disturbances and failures. We leverage the reactivity property
of BT at the middle level to rapidly select appropriate
reactive strategies.

A. Reactive strategies

The decision to execute one reactive strategy over another
is determined by the categoried disturbances in Sec. III. Four
corresponding types of reactive strategies are specified below.

« Recovery stand. This scenario responds to a loss of
balance which is specific to legged robots. In this case,
the low-level controller on the robot attempts to recover
from the fallen state without triggering the high-level LTL
planner.

o Task reallocation: critical failure. Under this scenario,
the robot is deemed incapable of working and therefore,
a local task reallocation will be impractical. To resolve
this issue, the robot will directly request a global task
reallocation assuming a disability to transit to any TS state,
to allow the remaining agents to take over its task.

« Task reallocation: unexpected robot state change. If this
type of disturbance is detected, the planner will locally
reallocate its task sequence without the assistance of other
robots. If no local plans are feasible, the planner will
perform a global task reallocation.

Delivery Mode Training Mode

'
:
H
H
v Terminate Approach
H user
Unload : tralnmg
:
H
User
Loaded |
! Located
:
oad : \ Camera
! Turn on On Search
! camera user
H

Fig. 5: Operating state diagram for legged robot capable of both delivery
and training task. Each node refers to robot operating states, whereas each
edge refer to an action performed by the robot. Unitree Al quadruped (fop
left) and UBTECH DR (bottom left) are shown as delivery robots, and Al
and UBTECH Wassi (top right) are shown as training robots.

o Task reallocation: environmental change. If a robot
encounters an environmental change, it will perform a local
task reallocation. However, if a solution is not found, a
global task reallocation will be performed.

B. Behavior tree structure

The BT structure is constructed in the form of precondition
— action — effect, which is similar to the works of [26],
[35]. This structure allows us to encode all of the reactive
strategies into separate nodes within a single BT. Two special
types of nodes, Repeat and Reactive Sequence, are utilized
in our BT. The former node allows a simpler BT construc-
tion instead of concatenating all actions into one big tree,
while the latter node enables condition nodes to check for
disturbances at varying frequencies (i.e., detection rates). For
example, as shown in Fig. 4, checking locomotion failure,
reactive state change, and environmental change would be
executed continuously under the Reactive Sequence node,
while checking LTL precondition would only occur prior to
receiving a new task. The BT for a wheeled robot is similar
but omitted due to space limits.

VI. EVALUATION AND DISCUSSION

A. Experiment set-up for simulation and hardware

To evaluate the feasibility and robustness of the proposed
multi-robot task allocation and planning framework, we first
establish a simulation of a hospital environment in Gazebo
[37] and create a topological map for defining the TS, as
shown in Fig. 6. The simulation architecture is composed of a
high-level LTL planning layer based on a ROS package from
[38], a mid-level execution interface using BehaviorTree.CPP
[39], and a low-level navigation and controller layer using
ROS navigation stack and appropriate controllers for each
robot model. A convex model predictive controller from
MIT Mini Cheetah [40], [41] is used to control a Unitree
Al quadruped over rough terrain, while a conventional
holonomic drive model is used on the UBTECH DR and
Wassi robot. For global path planning, the robot navigates
between regions using the A* algorithm [42] and performs
collision avoidance with the dynamic window approach [43].
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Fig. 6: Topological map of a hospital environment consisting of locations
that are explicitly defined in each robot’s transition system. The execution
history for each robot is depicted for achieving global task ¢ under a
scenario where an unexpected garbage heap is detected. The timeline for
task execution and reallocation is illustrated at the bottom.

B. Case study

We evaluate our framework on a heterogeneous team of
robots consisting of a delivery robot DR, a walk training
robot Wassi, and a quadrupedal robot A1 with both capabil-
ities. As shown in Fig. 5, a delivery robot consists of two
simple operating states (Loaded, Standby), where the Standby
state is equivalent to Unloaded State. Likewise, a training
robot consists of 4 operating states (Standby, Camera On,
User Located, Training), where the robot visually locates and
helps seniors who need walking training assistance. These
operating states are encoded into TS for each type of robot.

We conduct a series of case studies in a hospital environ-
ment simulation to evaluate the reactive strategies proposed
in Sec. V. The global mission is defined as:

Scenario 1. “Deliver medicines to locations p3 and p6; meet
a patient at cl; complete a walk training along the corridor
between cl and c6, and then send the patient back to p4.”
p1 = (p3 A Standby) A O ((-p3 A Op3) — Loaded)
A & (p6 A Standby) A ((—p6 A Op6) — Loaded)
A O(p4 A Standby) AO ((—pd A Opd) — Training)
A O(el A Training A < (¢ A Training A< (6 ATr
-aining A < (c7 A Training A < (el A Training)))))
Three robots, A1, DR and Wassi, are placed at various
locations in the hospital before the start of the simulation.

Next, the task planner decomposes the specification and
assigns sub-tasks to each robot offline, which takes 21

TABLE I: Triggered times and averaged computation time for four
different recovery strategies R1 — R4.

R1 R2 R3 R4

Triggered times 18 13 10 16
Local reallocation time (s) - - 0.023 0.018
Global reallocation time (s) - 3.31 2.93 3.42

seconds in total. 92% of the computation time is taken by
the generation of PA for each robot, which only needs to be
performed once.

During the simulation, each robot will encounter a dis-
turbance. Since the integration with exteroceptive systems
is out of this paper’s scope, all the disturbances except
the locomotion failure are triggered by manually setting the
checkers in BT to be false. A diagram of this simulation is
displayed in Fig. 6. More details can be found in the video*.

1) External force is applied to Al and induces a loss of
balance. A handcrafted whole-body recovery stand trajectory
is tracked by a PD controller to assist Al to resume its task.

2) A critical failure is induced for Wassi when performing
the walk training task from c7 to c6. A global reallocation
strategy assigns Al to complete its delivery task first, and
then proceeds to finish Wassi’s incomplete walk training task.

3) The Loaded state of DR suddenly becomes a Standby
state. This simulates a situation in which the robot unexpect-
edly loses its cargo. A local reallocation succeeds in instruct-
ing the robot to return to s1 and pick up another cargo. Then
DR is instructed to complete the original delivery task.

4) A garbage heap is placed in front of p3 to simulate an
environmental change. This obstruction can only be traversed
by the legged robot Al. The routes taken by each robot and
the timeline for obstacle detection and task allocation are
portrayed in Fig. 6. While performing its task, DR encounters
the obstruction and fails to find an alternate plan via local
reallocation. While A1l is returning home after completing
the delivery task to p6, it is assigned to take over DR’s
incomplete delivery task at c4. As a result, Al goes to sl
to retrieve the object for delivery, and completes the task by
traveling to p3.

In addition to applying individual disturbances, we also
evaluate the the same scenario ten times with multiple
manually triggered adversarial disturbances. Furthermore,
the initial configuration for each robot is modified to prompt
a different offline allocation result, for evaluating the gen-
eralization of our approach. At run-time, signals indicating
robot state and environmental changes are sent to each
robot’s BT and prompt their reactive behaviors. As shown
in Table I, we report the number of times that the reactivity
strategy is triggered and the average computation time it
takes for each trial. The LTL planner is not responsible
for locomotion failure (R1) and the critical failure (R2)
can only be handled at global level. Although a global
task reallocation in principle could result in an optimal
task sequence according to Proposition 3, it is observed to
be more computational expensive compared with the local

“https://youtu.be/AOTMs3GKzYQ
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reallocation. This is caused by a communication among all
agents and extra computation for constructing the synchro-
nized team automaton. Our framework demonstrates an 80%
success rate of completing the global mission ¢. The 20%
failed cases are caused by mission-level failures when more
than one robot undergoes a critical failure, which causes the
remaining task to be unachievable.

40{ —@— Offline allocation
—8— Local reallocation
=8~ Global reallocation

TN
N
=}

Planning time [s]
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Fig. 7: The recorded planning time for offline allocation, local and global
reallocation given different numbers of robots.

To evaluate the scalability of our proposed framework,
we deploy 3 (described above), 9, 15, and 30 robots in the
same aforementioned scenario. Due to the high computation
demand from the quadruped controller, we don’t run the
simulation but directly trigger the LTL planner to perform
reallocation strategies. In all scalability tests, the delivery
robot is assumed to encounter an abrupt state change that
triggers local reallocation and a critical failure that triggers
global reallocation. Without significant code optimization,
Fig. 7 reveals a linear complexity for both offline allocation
and global reallocation, while the time required for local
reallocation maintains at the same level. An alternative but
ad hoc way for reallocation is to reconstruct the entire team
model with an updated specification, which is similar to
repeating the expensive offline process and requires human
designer knowledge in the loop.

VII. CONCLUSION AND DISCUSSIONS

In this work, we present a heterogeneous, multi-robot task
allocation and planning framework equipped with a hierar-
chically reactive mechanism from extensive disturbances. A
local and global task reallocation is performed at the high
level where an LTL-based team automaton is generated to
follow a formal guarantee. At the middle level, a BT frame-
work is incorporated to promptly select different replanning
strategies which can be executed at different rates. Lastly, all
the work mentioned is showcased in a dynamic simulation of
a hospital scenario involving quadrupeds and wheeled robots.

In certain scenarios, a global task reallocation could result
in a more optimal task sequence than the one generated from
a local reallocation. For instance, if a robot encounters a
blocked path, a local strategy will first attempt to find a
detour. However, if the task could be transferred over to a
different robot closer to the destination, the global task reallo-
cation will outperform the local one. Our current framework
does not consider optimality over computational efficiency.
For our future work, we will incorporate a method to take
into account optimality to determine whether replanning for
the whole team over a single robot is favourable.
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