
Training a Tokenizer for Free with Private Federated Learning
Eugene Bagdasaryan∗

Cornell Tech
eugene@cs.cornell.edu

Congzheng Song and Rogier van Dalen and Matt Seigel and Áine Cahill
Apple

{csong4,rogier_vandalen,mseigel,aine_cahill}@apple.com

Abstract

Federated learning with differential privacy, i.e.
private federated learning (PFL), makes it pos-
sible to train models on private data distributed
across users’ devices without harming privacy.
PFL is efficient for models, such as neural net-
works, that have a fixed number of parameters,
and thus a fixed-dimensional gradient vector.
Such models include neural-net language mod-
els, but not tokenizers, the topic of this work.
Training a tokenizer requires frequencies of
words from an unlimited vocabulary, and exist-
ing methods for finding an unlimited vocabu-
lary need a separate privacy budget.

A workaround is to train the tokenizer on pub-
licly available data. However, in this paper
we first show that a tokenizer trained on mis-
matched data results in worse model perfor-
mance compared to a privacy-violating “oracle”
tokenizer that accesses user data, with perplex-
ity increasing by 20 %. We also show that sub-
word tokenizers are better suited to the feder-
ated context than word-level ones, since they
can encode new words, though with more to-
kens per word.

Second, we propose a novel method to obtain
a tokenizer without using any additional pri-
vacy budget. During private federated learning
of the language model, we sample from the
model, train a new tokenizer on the sampled
sequences, and update the model embeddings.
We then continue private federated learning,
and obtain performance within 1 % of the “ora-
cle” tokenizer. We show that, since this process
trains the tokenizer on the server using data
for which the privacy loss has already been ac-
counted for, our method spends no additional
privacy budget.

1 Introduction

Learning a language model (LM) requires text data
that in many situations is private, resides on peo-
ple’s devices, and should stay there. In federated
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learning (McMahan et al., 2017), a central server
learns a model by receiving statistics, like param-
eter updates, from many devices. Though devices
send only statistics and not the raw data, federated
learning by itself can leak information about the
data (Shokri et al., 2017; Song et al., 2017). Private
federated learning (PFL) (McMahan et al., 2018;
Geyer et al., 2017) uses differential privacy (Dwork
et al., 2006, 2014) to mitigate the privacy leaks by
limiting the user’s impact on the final model.

It is known how to train neural-net language
models using PFL (McMahan et al., 2018). How-
ever, an important part of language modeling is
tokenization: turning a text into a sequence of sym-
bols from a fixed-size symbol set. To obtain a
tokenizer, published research on private federated
learning of language models uses either of two ap-
proaches, neither of which are satisfactory. One
approach is to train the tokenizer on user data di-
rectly. The commonly-used LEAF dataset (Caldas
et al., 2018) and works relying on it (Li et al., 2021;
Hu et al., 2021; Yu et al., 2020) assume access to
the training data to create the tokenizer. This is not
relevant to real-world use cases and undermines
user privacy. The other approach is to use public
data to obtain the tokenizer (McMahan et al., 2018).
This is sensible from a privacy perspective, but as
we show the resulting distribution mismatch harms
performance, resulting in 10%-20% drop compared
to using an “oracle” tokenizer trained directly on
users’ private data.

There are two common types of tokenization,
which are affected by mismatched distributions
in different ways: word and sub-word tokeniza-
tion. Figure 1 illustrates these. A word-level tok-
enizer produces a symbol for each word, and as-
signs an out-of-vocabulary token (OOV) to any
unseen word. Text from mismatched distributions
will generally contain unseen words, which means
the correct word cannot be predicted, and the con-
text becomes less meaningful when predicting the
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Figure 1: Word-level and sub-word-level tokeniza-
tion. A word-level tokenizer can generate an “out-of-
vocabulary” (OOV) symbol, which it is hard for a lan-
guage model to use.

next word. Sub-word tokenization, on the other
hand, splits some words into multiple smaller to-
kens. This type of tokenization is generally chosen
to minimize the average number of tokens per word
on training data. Current centrally trained models
use sub-word tokenization such as Byte-Pair Encod-
ing (Sennrich et al., 2016), SentencePiece (Kudo
and Richardson, 2018), or WordPieces (Schuster
and Nakajima, 2012). Nevertheless, mismatched
tokenizations in sub-word methods cause an in-
crease in the number of tokens per word, and thus
decrease the amount of context the model can use
to predict the distribution of the next word.

In this work we present a general framework to
approach training language models in private fed-
erated learning by including tokenization as part of
the training pipeline. Our contributions are: (1) we
uncover the performance gaps when the models use
the tokenizer obtained from a different distribution
vs the tokenizer obtained from the underlying dis-
tribution. For word-level tokenization we show that
a tokenizer trained on public data reduces the next-
word prediction accuracy of 10–20 % compared to
a tokenizer estimated on user data. (2) We demon-
strate significant benefits of switching tokenizers
from word to sub-word level, thus eliminating the
out-of-vocabulary problem. (3) We propose a new
method that samples data from an existing model,
e.g. from the prior PFL run, and uses that data to
initialize a new tokenizer. Our approach can update
the tokenizer between iterations of the same PFL
run by modifying model embeddings with new tok-
enizations and significantly boosting performance.
Crucially, since the additional processing is done
entirely on the server, training the tokenizer with
our approach does not use any additional privacy
budget.

2 Private federated learning

Machine-learned models work best if they are
trained on the correct distribution of the data, in
this paper text data. In many scenarios text data
is private and contained on people’s devices, and
should stay there. To train a global model without
harming privacy, we use federated learning (McMa-
han et al., 2017) with differential privacy (Dwork
et al., 2006, 2014).

Federated learning involves devices sending not
the data, but statistics, e.g. model gradients, com-
puted on that data. To train neural networks, the
standard algorithm is federated averaging (McMa-
han et al., 2017). At each iteration t, the server
randomly selects a subset of m participants Sm

and distributes the current global model M t. Each
participant takes a number of gradient steps to train
on their private data and submits the sum Gt

i of
the gradients to the server. The server takes a step
(with step size η) in the direction of the average
gradient to create the new global model:

M t+1 = M t +
η

m

m∑
i=1

Gt
i (1)

2.1 Federated Learning with Differential
Privacy

The global model M t+1 might still reveal private
information including user participation in training
(Shokri et al., 2017; Song et al., 2017; Melis et al.,
2019). To mitigate this threat, we can combine
federated learning with differential privacy (DP)
(Dwork et al., 2006, 2014), to give private feder-
ate learning (McMahan et al., 2018). Differential
privacy gives a strong guarantee: it limits the advan-
tage that a computationally unconstrained adver-
sary has in inferring whether an individual’s data is
contained in the data set that the statistics are com-
puted from. (ϵ, δ)-differential privacy parametrizes
this advantage by ϵ (the maximum privacy loss)
and δ (a slack term). The common mechanism to
provide differential privacy in a federated learning
setting is the Gaussian mechanism that uses the mo-
ments accountant (Abadi et al., 2016). Each partic-
ipant clips its gradients to a norm S, i.e., multiplied
by min(1, S/∥Gt∥2), to bound the sum’s sensitivity
to any individual’s data. Second, Gaussian noise
N (0, σ2) is added to the sum.1 How much pri-
vacy budget is spent in one iteration depends on the

1In practice, a technique like secure aggregation (Bonawitz
et al., 2017) can allow central DP on a sum without having to
trust the server (Goryczka and Xiong, 2015).



variance σ2 relative to the magnitude of individual
updates, the total population, and the number of
contributions (for more details, see McMahan et al.,
2018; Balle et al., 2018). The moments accountant
keeps track of this in terms of the Rényi differential
privacy (Mironov, 2017). What is learned in one
iteration is allowed to affect the query in the next
iteration, and this increases the budget (in terms of
Rényi DP) merely linearly. This is called adaptive
composition, and it is crucial both to standard pri-
vate federate learning (where the model changes
every iteration as in (1)) and to the method we
propose.

2.2 Privately finding vocabulary items

Central differential privacy with the Gaussian
mechanism and the moments accountant is effi-
cient in terms of utility vs privacy loss, but it does
come with restrictions. The sum of individual con-
tributions, which the noise is added to, must be of
finite and fixed size. This is not a problem for train-
ing neural networks. However, training a tokenizer
requires frequencies for an exponential-size set of
sequences, as does training a traditional N -gram
model. Differentially private algorithms to com-
pute histograms over sets of elements (e.g. words)
distributed over devices are called “heavy hitters”
algorithms (Bassily et al., 2017; Zhu et al., 2020;
Apple, 2017). These algorithms require a sepa-
rate and large privacy budget. In section 5 we will
compare with a heavy hitters algorithm.

Another way of finding vocabulary items pri-
vately is to train a neural-net generative model. Bea-
ufays et al. (2019) trains a separate, character-level
LSTM model to generate the new words. How-
ever, the proposed method is only shown to work
for discover OOVs in a word-level model and also
requires separate training and a privacy budget.

3 Tokenization in Language Modeling

A language model is a model that assigns proba-
bilities to sequences of tokens. In this paper, it
is always an autoregressive model with parame-
ters θ: Pθ(s) = Pθ(t2|t1 = BOS) · Pθ(t3|t1 =
BOS, t2) · · ·Pθ(tn = EOS|t1 = BOS, . . . , tn−1),
where each term in this equation is normalized
over all possible values of the current token. Local
normalization is useful when decoding input, like
in speech recognition or a keyboard (Hard et al.,
2018). For this paper, we assume that a corpus is
segmented into sentences. A tokenizer τ then con-

verts each sentence s in the dataset into a sequence
of n tokens τ(s) = [BOS, t2, .., tn−1,EOS], which
is fed into the language model. There are two types
of tokenization, highlighted in Figure 1: word-level
and sub-word-level. Using a sub-word tokenizer
will be key to the algorithm this paper proposes.

The next section will discuss the two types
of tokenizers and their consequences for out-of-
vocabulary tokens and the performance of language
models based in them. Section 3.2 will discuss
the complex topic of how to compare performance
across different tokenizations.

3.1 Word-level vs sub-word-level tokenization
The type of tokenization that papers about lan-
guage models in federated learning commonly use
is word-level tokenization (McMahan et al., 2017).
For a vocabulary of size N the tokenizer assigns
a unique token for top-N most popular words in
the dataset while other words receive an out-of-
vocabulary token OOV, as highlighted in Figure 1.
Some papers (e.g. McMahan et al., 2018) build
the tokenizer from a publicly available dataset, oth-
ers including the LEAF benchmark (Caldas et al.,
2018) build the tokenizer from users’ training data.
OOV tokens in the word history make it harder for
a language model to predict the next word.

The other type of tokenization is sub-word tok-
enization, for which there are two popular schemes:
byte-pair encoding (BPE) (Sennrich et al., 2016)
and WordPieces (Schuster and Nakajima, 2012).
We focus on BPE which unlike WordPieces guar-
antees the absence of OOVs as there exists a token
for every byte. However, the number of tokens
required to encode each word can change signifi-
cantly depending on the dataset that the tokenizer
was trained on. As highlighted in Figure 1, a tok-
enizer trained on data from before the COVID-19
pandemic would generate multiple tokens for the
word “covid”.

Generating longer token sequences makes it
harder for the language model to keep track of the
context, degrading its performance. Even LSTMs
and transformers, which in theory can use arbitrar-
ily long history, have imperfect memory.

3.2 Evaluating language models across
tokenizations

Comparing language models across tokenizations
is a complex problem. For example, when compar-
ing word-level language models using perplexity,
often OOVs are ignored which gives an edge to



the language model with more OOVs, which is the
opposite of what is desired. The following sections
detail the problems when comparing sub-word lan-
guage models.

3.2.1 Comparing word-level with sub-word
Since a word-level language model has a closed
vocabulary, it outputs probabilities only on in-
vocabulary words, artificially lowering the perplex-
ity of closed-vocabulary LMs, particularly on data
with a large number of OOVs. Removing those
same words in evaluating a sub-word language
model, would disadvantage it.

A better alternative, which this paper will use,
is to compare model performance the word-level
accuracy. The most accurate way would be to find
the word with the highest probability by summing
over sequences of tokens. However, we choose a
simpler, though less accurate method (similar to
Likhomanenko et al., 2019): repeatedly generate
the best tokens within each word’s bounds and only
accept the word as accurate if all generated tokens
were correct.

3.2.2 Comparing sub-word with sub-word
It is possible to meaningfully compare perplexities
of two language models with different sub-word
tokenizations (Mielke, 2019). Though the language
model assigns probability mass to all token se-
quences, a single sentence can have multiple corre-
sponding token sequences, only one of which will
be chosen by the tokenizer. Some of the probability
mass will therefore be lost to never-occurring token
sequences. However, it is unfeasible to sum over
all token sequences (Likhomanenko et al., 2019).

The danger with comparing perplexities directly
is that since models with different tokenizers oper-
ate on different sets of tokens the number of tokens
needed to encode each sentence is different in gen-
eral (Mielke, 2019). Nevertheless, note that all
models assign a probability to a sentence (with the
approximation above). To compute the perplexity
in such a way that it can be compared across tok-
enizers, use the same denominator in computing
the perplexity: the number of words in the sentence
instead of number of tokens, which depends on the
tokenizer. Therefore we define the perplexity as:

pplθ,τ (s) = exp

(
− log(Pθ,τ (s))

∥s∥w

)
(2)

where ∥s∥w counts the number of words in the
sentence s. To generalize from a single sentence

to a dataset, replace s with the concatenation of all
sentences in the dataset.

4 Learning a Tokenizer with Private
Federated Learning

Problem definition. We aim to obtain a tokenizer
that works well on users’ federated data without
compromising user privacy. First, we aim to find
the appropriate tokenization scheme, and second,
given the tokenization scheme obtain the right ap-
proximation of user data to train the tokenizer.

Setting. We focus on a common application of
federated learning: training a language model, pa-
rameterized by θ, using federated learning with
differential privacy. In our setting, each user ui
has a dataset di of private texts from a private dis-
tribution of user data D. The trained model will
be evaluated against a held-out dataset Dtest, e.g.
a mix of all user data, which in practice must be
replaced by federated evaluation.

We assume that the central server does not have
access to the user data distribution D and can only
approximate it with the publicly available dataset
Dpub. We assume the public data is some com-
monly available dataset, such as Wikipedia (Merity
et al., 2017). The tokenizer trained on this public
data will be τpub. For comparison we assume the
existence of an oracle tokenizer τo initialized on
users’ training data D.

Papers that study language models in feder-
ated learning commonly use word-level tokeniza-
tion. While some papers (e.g. McMahan et al.,
2018), build the vocabulary using publicly avail-
able dataset, others (e.g. Yu et al., 2020; Caldas
et al., 2018) explicitly use the federated training
data, even though in real-world scenarios the anal-
ogous data would be unavailable and it violates
privacy guarantees when used in PFL (Li et al.,
2021).

4.1 Sampling from a PFL-trained language
model

To address the problem of learning a good tokenizer
we first propose to use a sub-word tokenizer with an
open vocabulary. This allows the language model
trained with such a tokenizer to represent any word,
if inefficiently. It is then possible to query the
language model to find new words as the model
can utilize this open vocabulary. This is the core of
the Algorithm 1 that this paper introduces.



Figure 2: New pipeline for updating the tokenizer through model sampling.

Figure 2 shows the proposed pipeline. A lan-
guage model is trained with private federated learn-
ing. This results (on the left) in a model matched
with an old, stale tokenizer. The next block queries
the language model to produce a better tokenizer,
with a method that section 4.2 will detail. The block
after that updates the language model for the new
tokenizer, using reasonable guesses for the new
parameters. This results in a new LM-tokenizer
combination that can be trained further with PFL.

Adaptive composition (see Mironov, 2017) of
differential privacy makes it possible to run a server-
side process between iterations without spending
additional privacy budget. The function UPDATE

in Algorithm 1 performs the on-server steps. The
following sections will give more detail.

4.2 New tokenizer from a trained LM

Training a tokenizer requires text data. Since the
raw data is not available, we propose to instead sam-
ple from the LM matched with the stale tokenizer,
as detailed in Algorithm 1. The SAMPLETOKENS

function samples from the language model, draw-
ing sequences of tokens according to the probabili-
ties that the model assigns to them. The SAMPLE

function then converts these sequences in the old to-
kenization into word sequences, by decoding with
τpub. Once a large enough corpus of word-level
sentences has been produced, training a tokenizer
proceeds as normally (the TRAINTOKENIZER func-
tion is not specified).

4.3 Adapting the language model to the new
tokenizer

After a new tokenizer τ has been trained, the lan-
guage model, trained with τpub, must be updated
to work with the new tokenizer. Neural-net lan-
guage models use an embedding layer to convert
the provided tokens into multi-dimensional vectors.

It is the embedding vectors that are most important
to modify when changing the tokenization. The
rest of the model only consumes the embedding
vector. It is not possible to find the optimal param-
eters without further training of both embeddings
and other layers, but we propose an algorithm to
find a reasonable starting point, in the function
REMAP(τ, τpub) in Algorithm 1.

REMAP iterates over the tokens from the new to-
kenizer τ and creates the mapping from the tokens’
embedding in the public tokenizer τpub to the new
token’s embedding. In some cases it is a one-to-
one mapping, but when the new token accumulates
multiple tokens in τpub we split the weight equally
between each token.

Once we have the mapping map we modify
the embedding layer of the model by perform-
ing matrix multiplication, i.e. θ.embedding =
map · θ.embedding. The resulting model can ac-
cept the tokens from the new tokenizer τ , and can
participate in future training in federated learning.

5 Experiments

We evaluate our approach by first looking at perfor-
mance of tokenizers trained on the distributions
matched and mismatched to real data, we then
test the proposed federated sampling on different
datasets for federated learning.

5.1 Experimental setup

We use two datasets common in the federated learn-
ing literature (Kairouz et al., 2019). While both
use English, there is nothing about our experiments
that is specific to this language, and multilingual
datasets can further benefit from using Sentence-
Piece tokenization (Kudo and Richardson, 2018).

• Reddit data – this dataset is taken from the
LEAF benchmark (Caldas et al., 2018) and



Algorithm 1 Model sampling algorithm

Inputs: model θ, current sentence s, new tok-
enizer τ , public tokenizer τpub, size of the sam-
pled dataset corpus_size.
function SAMPLETOKENS(θ, s)

tnext ∼θ tk|s
if tnext = EOS then

return s++ tnext
else

return SAMPLETOKENS(θ, s++ tnext)

function SAMPLE(θ, τ )
return τ.decode(

SAMPLETOKENS(θ, [BOS]))

function REMAP(τpub, τ )
map = zeros(τ.size, τpub.size)
for token, tid← τ.vocab do

tokens = τpub.decode(token)
for token← tokens do

tidpub = τpub.vocab[token]
map[tidpub, tid] = 1/len(tokens)

return map

function UPDATE(θ, τpub)
while len(corpus) < corpus_size do

corpus← SAMPLE(θ, ∅, lmax)

τ = TRAINTOKENIZER(corpus)
map = REMAP(τpub, τ)
θ.embedding = map · θ.embedding
return θ, τ

contains over a million users that have multi-
ple posts on the Reddit platform. As proposed
by LEAF, we limit each user to contain at
most 1600 tokens and use 10 % of users for
faster training.

• StackOverflow data – this data is taken from
Kaggle (Kaggle, 2021) and processed with the
TensorFlow Federated framework. The train
split of the dataset contains 342k users and we
select at most 1600 tokens per user.

Model parameters. We use an LSTM model with
3 layers, and total parameters of 14M. We also
use a Transformer language model (Vaswani et al.,
2017) with 6 layers and the same total number of
parameters as the LSTM (see Appendix A). Each
model is trained from scratch.

Hyper-parameters. We set the privacy budget
to ϵ = 2 and δ = 10−6 – a common privacy

regime (Kairouz et al., 2019). For the “heavy hit-
ters” baseline we use local DP with an additional
privacy budget of ϵ = 8.2 The overall population
for the moments accountant is assumed to be 10m.
We use a cohort size of 20, 000 for each round
and train all models for 5, 000 iterations. We use
Adam (Kingma and Ba, 2015) for central optimiza-
tion with learning rate set to 0.5. For the clients
we use SGD and train for 1 local epoch with batch
size set to 16 and local learning rate set to 0.1, and
an L2 clipping bound for DP of 0.5.

Vocabulary size. We assume that the tokenizer has
a moderate vocabulary size such as 10,000 tokens
(we experiment with larger vocabularies in Ap-
pendix A). Smaller vocabularies reduce model size
and, therefore, might be better for deployment on
devices and communication with the global server.

Tokenizer details. To train an initial tokenizer (on
the server) we use a popular and public Wikipedia
dataset (Merity et al., 2017). It may seem like the
distribution of Wikipedia data is artificially far from
the distributions of Reddit and StackOverflow data.
However, the server might not have the right prior
possibly due to a natural distribution shift (Miller
et al., 2020) of typed texts (such as an emerging
topic of which there were plenty recently).

We use BPE and WordLevel tokenization algo-
rithms from the HuggingFace Tokenizer library
(Huggingface, 2021). Each user post is surrounded
by special tokens BOS and EOS. We also tried
WordPieces tokenization which has slightly bet-
ter performance than BPE but cannot encode all
words and is therefore less applicable in FL.

Note on splitting data. Whereas the original LEAF
dataset for Reddit proposes to split each user’s data
we argue that in real life not every user might have
a chance to participate in the training. Therefore,
we split users into two distinct training and test sets
and evaluate the model on data from the users who
have never participated in the training. This results
in notably increased test perplexity but provides
a clear separation between training and inference
modes.

5.2 Comparing tokenization schemes

Table 1 summarizes experiments that use different
tokenization schemes. We compute statistics on
tokenizers: the average share of OOV tokens for the

2Budgets for local and central privacy are not immediately
comparable, but see Feldman et al. (2021).



Table 1: Word accuracy suffers for word-level tokeniza-
tion that uses mismatched data.

τ statistics Word
Type Data OOV Tokens Accuracy

to train τ (%) per word (%)

Reddit

Word-Level Wiki 13.0 1.00 17.7
Word-Level Oracle 5.5 1.00 24.1

BPE Wiki 0.0 1.32 22.2
BPE Oracle 0.0 1.22 22.5

StackOverflow

Word-Level Wiki 9.8 1.00 30.0
Word-Level Oracle 2.0 1.00 33.0

BPE Wiki 0.0 1.41 31.8
BPE Oracle 0.0 1.24 32.4

word-level scheme and the average number of to-
kens required to encode one word for the sub-word
scheme. To compare the effect of each tokenizer
on the PFL-trained model, we report word-level
accuracy, for the reasons described in Section 3.2.
The “wiki” tokenizers are trained on the Wikipedia
data, and the “oracle” tokenizers directly on the
training data.

Word-level tokenization provides high word ac-
curacy when it is trained using “oracle” user train-
ing data. However, when the word-level has access
to only public “wiki” dataset that mismatches user
distribution the performance significantly drops: by
26 % for Reddit and 10 % for StackOverflow with
a significant increase in out-of-vocabulary share.
However, BPE tokenizers that use public data per-
form more consistently and outperform the word-
level models trained on public data, but still require
a large number of tokens per each word.

5.3 Learning a tokenizer with sampling

A key part of the proposed algorithm is the sam-
pling from a model that uses a public tokenizer
τpub, but is trained with private federated learning
and should represent the words in the actual data.
The sampling is implemented as in Algorithm 1.

First, Figure 3 shows samples from the language
models on the two data sets. Although clearly the
samples are less coherent than the underlying data,
it seems plausible that the word occurrences match
that data.

Second, Table 2 further investigates the proper-
ties of the sampled text. The “BPE sample” rows
refer to the method proposed in this paper. A lan-
guage model with the “wiki” tokenizer is trained

Table 2: Tokenizers initialized on sampled data perform
very close to using “oracle” data.

LM
Type Data Data Tokens Acc. Perp.

to train τ KLD p/word (%)

Reddit

BPE Wiki 0.78 1.32 22.2 276.5
BPE Oracle 0 1.22 22.5 256.9

BPE Heavy hitters∗ 0.09 1.30 22.1 274.2
BPE Sampled 0.02 1.22 22.5 257.7

StackOverflow

BPE Wiki 1.06 1.41 31.8 124.6
BPE Oracle 0 1.24 32.4 108.2

BPE Heavy hitters∗ 0.10 1.29 32.1 115.9
BPE Sampled 0.01 1.23 32.4 108.7

∗The “heavy hitters” algorithm uses local DP and requires

additional privacy budget.

with PFL on the first half of the training data. Then
samples are drawn from this language model. Then,
the language model is trained from scratch on the
second half of the training data.

The “BPE Heavy hitters” rows refer to training
with a differentially private “heavy hitters” algo-
rithm (Apple, 2017). Each of the population of
the users from the first half of the training set con-
tributes three words from the from the Wikipedia
dataset, with a local privacy budget of ϵ = 8. Just
like for the sampling approach, the language model
is then trained from scratch on the second half of
the training data.

First, we examine the difference between the
real training data and the data used to train the
tokenizers. The column “Data KLD” shows the KL
divergence from the user “oracle” training data to
the sampled data. The KL divergence is computed
from the unigram counts, which are relevant for
training a tokenizer, over the top 10,000 words

Reddit

i would love to know why we may already live in a

consolation subreddit and the aforementioned it will

almost always be done on the warrior sheet shows

from the west . i

StackOverflow

json results are : can anyone provide a complete

sample response ( lists of descendants list ) to my

page depending on future python functions . in web

apps that require patient for many

Figure 3: Example of sampling data from the model.



260
270
280
290
300
310
320
330
340

Pe
rp
le
xi
ty

1000 2000 3000 4000 5000
Central iteration

Baseline

1k 2k 3k 4k

(a) Reddit dataset

110

120

130

140

Pe
rp
le
xi
ty

1000 2000 3000 4000 5000
Central iteration

Baseline

1k 2k 3k 4k

(b) StackOverflow dataset

Figure 4: Perplexity for switching the tokenizer at different rounds of federated learning.

from the training data and with add-1 smoothing.
The KL divergence to the training data itself, which
the oracle tokenizer is trained on, is 0 by definition.
The KL divergence between the actual data and
the Wikipedia data, on the other hand, is around 1,
for both datasets. Both the heavy hitters algorithm
and the algorithm we propose in this paper find a
distribution close to the real distribution.

For sub-word tokenizers, the number of tokens
per word is relevant. Even though they can repre-
sent unseen words by multiple tokens, a language
model trained on top of that has a harder task given
the longer context on average. The oracle tokenizer
has the lowest number of tokens per words and the
“wiki” tokenizer the highest. The “BPE sample”
tokenizer comes very close to the oracle tokenizer.

However, the local-DP heavy hitters experiment
shows much smaller gain in performance, i.e. better
than “wiki” tokenizer but still worse than our pro-
posed sampling method. Furthermore, it requires a
separate privacy budget allocated for the run, while
sampling can operate on existing prior model.

5.4 Iterative updates

This part implements Algorithm 1 completely. We
again initialize the tokenizer on publicly available
data. We then train the language model with PFL.
At a point during training, we retrain the tokenizer
by sampling. Unlike in the previous section, we
update the language model by remapping its em-
bedding layer, and continue training. We sample
the same data before and after changing the tok-
enizer.

Figure 4 shows the results for changing tokeniz-
ers at different times. The “Baseline” curve rep-
resents the model trained using public tokenizer

τpub from Wikipedia data. Each of the other curves
takes the system from the “Baseline” curve at a dif-
ferent iteration. As expected, the initial remapping
of the embedding layer is not perfect and needs
finetuning. The graph also shows the tradeoff in
when to change tokenizers: too early, e.g. after only
1000 iterations, and the tokenizer is not representa-
tive enough yet; too late, e.g. after 4000 iterations,
and there is not enough time to converge again.

6 Conclusion

This paper has proposed a method that allows a
tokenizer to be found together with a language
model using private federated learning. First, it
has shown that a mismatched tokenizer can cause
a significant performance degradation. The key
to improving this is to use a sub-word tokenizer
which allows new words to be represented as a se-
quence of tokens. Then, a language model trained
with PFL can represent the private data. This paper
has presented a method to produce a new tokenizer
from that model without spending additional pri-
vacy budget, and to convert the model to work with
the new tokenizer. When this is trained further with
private federated learning, it outperforms the lan-
guage model with the mismatched tokenizer, and
gets close to one with the oracle tokenizer.

Personalization and Fairness. The problem of
out-of-vocabulary words might be more acute for
some users that use unique vocabulary, such as
dialect, and impact individual performance. There-
fore good tokenizers can benefit personalization in
federated models (Li et al., 2021; Yu et al., 2020).
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Figure 5: Perplexity trained with different privacy pa-
rameter ϵ.
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Figure 6: Perplexity trained with different cohort sizes.

A Impact of hyperparameters

This section examines different hyperparameters.

A.1 Experimental design
First, consider the choice to train the public tok-
enizer on Wikipedia data. To examine the effect
of using a more conversational style corpus. To do
this, Table 3 takes a subset of the numbers from
Table 2 and adds a scenario where a tokenizer on
StackOverflow data is used with Reddit data and
vice versa. The cross-dataset numbers are high-
lighted bold in the table.

First, in terms of the KL divergence the Stack-
Overflow data seems a slightly better model for
the Reddit distribution than the Wikipedia data is.
However, when using PFL to train on Reddit data,
but with a StackOverflow-trained tokenizer, the
perplexity deteriorates compared to the Wikipedia-
trained tokenizer. Second, the reverse experiment
looks a bit better but not hugely better. Though
the KL divergence from the StackOverflow data
to the Reddit data is significantly better than the
KL divergence to the Wikipedia data, some of that
advantage disappears in the final trained model.

Table 3: The effect of using the Wikipedia corpus
against the results in Table 2.

τ Data Data LM
KLD perp.

Reddit
BPE Wikipedia 0.7826 276.5
BPE StackOverflow 0.6046 283.6
BPE Reddit 0 256.9

BPE sample 0.0212 257.7

StackOverflow
BPE Wikipedia 1.0629 124.6
BPE Reddit 0.5315 118.8
BPE StackOverflow 0 108.2

BPE sample 0.0089 108.7

Table 4: The effect of varying the vocabulary size.

Vocab size Reddit StackOverflow
Wiki Oracle Wiki Oracle

5,000 304.3 282.2 136.3 116.8
10,000 276.5 256.9 124.6 108.2
50,000 243.9 225.4 111.5 101.5
100,000 231.2 217.9 108.9 100.5

Then, consider the choice of vocabulary size,
here the number of distinct tokens. Table 4 shows
the perplexities for the baseline (“Wiki”) and ceil-
ing (“oracle”) experiments. Though the absolute
numbers change, the trends do not change.

Similarly for changing model architectures. This
paper has presented results on an LSTM model. Ta-
ble 5 shows results on a Transformer model. Again,
though the absolute numbers change, the trends do
not change.

A.2 Other hyperparameters

We consider two hyperparameter choices for exper-
iments: first, the privacy budget, and secondly, the
cohort size.

Figure 5 shows the effect of different privacy

Table 5: The effect of changing model architectures.

Model Reddit StackOverflow
architecture Wiki Oracle Wiki Oracle

Transformer 261.9 244.8 117.4 107.0
LSTM 276.5 256.9 124.6 108.2



parameters. The effects are not huge, but clearly
differential privacy does impede learning some-
what.

Figure 6 shows the effect of differing cohort
sizes. A larger cohort size implies a better signal-to-
noise ratio when training with differential privacy.
However, for practical reasons it is preferable for
cohorts to be smaller. 10,000 is a happy medium
between good performance and practicality. Also,
again, though the absolute numbers change, the
trends do not change.


