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Abstract

Tensor decomposition is a dominant framework

for multiway data analysis and prediction. Al-

though practical data often contains timestamps

for the observed entries, existing tensor decom-

position approaches overlook or under-use this

valuable temporal information. They either drop

the timestamps or bin them into crude steps and

hence ignore the temporal dynamics within each

step or use simple parametric time coefficients. To

overcome these limitations, we propose Bayesian

Continuous-Time Tucker Decomposition (BCTT).

We model the tensor-core of the classical Tucker

decomposition as a time-varying function, and

place a Gaussian process prior to flexibly estimate

all kinds of temporal dynamics. In this way, our

model maintains the interpretability while is flexi-

ble enough to capture various complex temporal

relationships between the tensor nodes. For ef-

ficient and high-quality posterior inference, we

use the stochastic differential equation (SDE) rep-

resentation of temporal GPs to build an equiva-

lent state-space prior, which avoids huge kernel

matrix computation and sparse/low-rank approx-

imations. We then use Kalman filtering, RTS

smoothing, and conditional moment matching to

develop a scalable message-passing inference al-

gorithm. We show the advantage of our method

in simulation and several real-world applications.

1. Introduction

Multiway interaction data is omnipresent in real-world ap-

plications, such as in online advertising, e-commerce and

social networking. A popular and powerful framework for

multiway interaction analysis and prediction is tensor de-

composition, which aims to estimate a set of latent factors to
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represent the interaction nodes, and use the factors to recon-

struct the observed tensor elements. The factors can reflect

unknown patterns in data, such as communities across the

nodes, and provide effective features to build downstream

predictive tools, such as product rating for recommendation

and clicks for advertisement display.

While many successful tensor decomposition methods have

been developed (Tucker, 1966; Harshman, 1970; Chu and

Ghahramani, 2009; Kang et al., 2012; Choi and Vish-

wanathan, 2014), these methods ignore or under-exploit

the valuable time information, which often comes along

with the tensor data, e.g., at which time point a user pur-

chased an item at a specific Amazon store. Current methods

often throw out the timestamps or bin the timestamps into

crude steps, e.g., weeks or months, and augment the ten-

sor with a time step mode (Xiong et al., 2010; Xu et al.,

2012; Rogers et al., 2013; Zhe et al., 2015; 2016a; Du

et al., 2018). While between the steps we can use con-

ditional priors and/or nonlinear dynamics to model their

transition, the temporal dependencies within each step are

overlooked. The most recent work (Zhang et al., 2021)

although introduces continuous-time coefficients into the

CANDECOMP/PARAFAC (CP) decomposition (Harshman,

1970), its parametric modeling of the coefficients, i.e., poly-

nomial splines, might not be flexible enough to capture a

variety of different temporal dynamics in data (e.g., from

simple linear to highly nonlinear).

To overcome these limitations, we propose BCTT, a novel

continuous-time Bayesian dynamic decomposition model.

We extend the classical Tucker decomposition, which ac-

counts for every multiplicative interaction between the fac-

tors across different tensor modes and is highly interpretable

and quite expressive. We model the tensor-core — weights

of the factor interactions — as a time-varying function. We

place a Gaussian process (GP) prior, a nonparametric func-

tion prior that can flexibly estimate all kinds of functions,

not restricted to any specific parametric form. In this way,

our model not only maintains the interpretability, but also

can automatically capture different, complex temporal dy-

namics from data. For efficient and high-quality posterior

inference, we construct a linear time-invariant (LTI) stochas-

tic differential equation (SDE) (Hartikainen and Särkkä,

2010) as an equivalent representation of the temporal GP.

Based on the LTI-SDE, we build a state-space prior, which
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is essentially a Gaussian Markov chain but is equivalent to

the GP prior. In this way, we circumvent the expensive ker-

nel matrix computation in the original GP, and do not need

any low-rank or sparse approximations. Next, we develop

a message-passing posterior inference algorithm in the ex-

pectation propagation framework. We use Kalman filtering

and Rauch–Tung–Striebel (RTS) smoothing (Särkkä, 2013)

to efficiently compute the posterior of the SDE states, and

use conditional moment matching (Wang and Zhe, 2019)

and multi-variate delta method (Bickel and Doksum, 2015)

to overcome the intractability in moment matching. Both

the time and space complexity of our inference algorithm is

linear in the number of observed data points.

For evaluation, we examined our approach in both ablation

study and real-world applications. On synthetic datasets,

BCTT successful learned different temporal dynamics and

recovered the clustering structures of the tensor nodes from

their factor estimation. On three real-world temporal tensor

datasets, BCTT significantly outperforms the competing

dynamic decomposition methods, including discrete time

factors and continuous time coefficients, often by a large

margin. The structure of the learned tensor-core also shows

interesting temporal evolution.

2. Background

Tensor Decomposition. Consider a K-mode tensor Y ∈
R

d1×···×dK , where dk is the number of nodes in mode k. We

use a K-elements tuple i = (i1, . . . , iK) to index each entry

of the tensor, and denote the entry value by yi. To factorize

Y into a concise structure, we introduce a set of latent fac-

tors for the tensor nodes, U = {U1, . . . ,UK}, where each

Uk = [uk
1 , . . . ,u

k
dk
]> is a factor matrix, in which each row

consists of the factors for a node j in mode k, namely uk
j

(1 ≤ j ≤ dk). Given the factorization form, we estimate the

optimal factors U to reconstruct the tensor Y , by minimizing

a loss on the observed entries. The (arguably) most popular

tensor factorization model is CANDECOMP/PARAFAC

(CP) (Harshman, 1970), whose entry-wise form is given by

yi ≈ λ>(u1
i1 ◦ . . . ◦ uK

iK ) =
∑R

r=1
λr

∏K

k=1
uk
ik,r

, (1)

where ◦ is the Hadamard (element-wise) product, λ =
(λ1, . . . , λR)

> and each uk
ik

= (uk
ik,1

, . . . , uk
ik,R

)>. While

simple and convenient, CP only accounts for the inter-

action between every r-th factor in different modes, i.e.,∏K
k=1 u

k
ik,r

(weighted by λr accordingly), and overlook all

the other possible interactions.

Tucker decomposition (Tucker, 1966) is more interpretable

and expressive than CP in that it considers all the possible

interactions between the factors across the tensor modes.

Specifically, Tucker decomposition assumes Y ≈ W ×1

U1 ×2 . . .×K UK whereW ∈ R
R1×...×RK is parametric

tensor-core and ×k is mode k tensor-matrix product (Kolda,

2006). The entry-wise form is therefore given by

yi ≈ vec(W)>
(
u1
i1 ⊗ . . .⊗ uK

iK

)

=

R1∑

r1=1

. . .

RK∑

rK=1

[
w(r1,...,rK) ·

K∏

k=1

uk
ik,rk

]
(2)

where vec(·) is the vectorization and ⊗ is the Kronecker

product. As we can see from (2), every interaction be-

tween the factors across the K modes is accounted for,

{∏K
k=1 u

k
ik,rk
|1 ≤ r1 ≤ R1, . . . , 1 ≤ rK ≤ RK}. Each in-

teraction is weighted by an element of the tensor-core. It is

easy to see that CP is a special case of Tucker decomposition

when we set all Rk = R andW to be diagonal.

Gaussian Processes (GPs) are powerful Bayesian function

estimators. Due to the nonparametric nature, GPs can au-

tomatically grasp the complexity of the target function un-

derlying the data (e.g., from linear to highly linear), not

restricted to any parametric form. Specifically, suppose

given N training examples, X = [x1, . . . ,xN ]
>

and y =

(y1, . . . , yN )
>

, we want to learn a function f : Rd → R.

We place a GP prior over the target function, and then any fi-

nite set of the function values follow a multivariate Gaussian

distribution. Consider f = (f(x1), . . . , f(xN ))
>

and we

have p(f) = N (f |m,K), where m is the mean function

value at the inputs and usually set to 0, and K is an N ×N
kernel matrix — each element [K]n,n′ = κ(xn,xn′) and

κ(·, ·) is a kernel function. A commonly used, powerful

kernel is Matérn kernel,

k (xn,xn′) = σ2

(√
2ν
l α(xn,xn′)

)ν

Γ(ν)2ν−1
Kν

(√
2ν

l
α(xn,xn′)

)

where α(·, ·) is the distance function (usually the Euclidean

distance), Γ(·) is the gamma function, Kν(·) is the modified

Bessel function of the second kind, ν is the degree of free-

dom, l is length-scale and σ2 magnitude. Given f , we use a

noise model p(y|f) to fit the observed function outputs, e.g.,

p(y|f) = N (y|f , τ−1I). We can then conduct Bayesian in-

ference. The predictive distribution of the function value at

a new input x∗ is straightforward to obtain: since [f ; f(x∗)]
follows a joint Gaussian distribution as well and p(f(x∗)|f)
is a conditional Gaussian distribution.

SDE Representation of Temporal GPs. In the literature

of stochastic differential equations (SDEs) (Särkkä et al.,

2006; Oksendal, 2013), it is known that the solution of lin-

ear SDEs are Gaussian processes on time, namely, temporal

GPs. From the other side, for temporal GPs with certain

stationary kernels, we can construct an equivalent Linear

Time-Invariant (LTI) SDE through spectral analysis (Har-

tikainen and Särkkä, 2010). Take the Matérn kernel with

ν = m + 1
2 (where m ∈ N) as an example. We can ob-

tain its power spectral density as S(ω) = P (iω)qcP (−iω),
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where P (iω) = 1
(β+iω)m+1 , i indicates the imaginary part,

β =
√
2ν/l, and qc =

2σ2π1/2β2m+1Γ(m+1)
Γ(m+1/2) . This is equiva-

lent to feeding a white noise process with diffusion qc into a

system, who transfers the signal with P (iω) to generate the

output. Via inverse Fourier transform, we know the output

process is the solution of the SDE

dm+1f(t)

dtm+1
+ am

dmf(t)

dtm
+ . . .+ a0f(t) = ξ(t), (3)

where ξ(t) is the white noise process with diffusion qc, and

a0, . . . , am are the coefficients of the zeroth, first, till m-th

term in the polynomial of P (iω)’s denominator. This can

be further written as an LTI-SDE, in which we define the

state as y(t) =
(
f(t), df(t)

dt , . . . , dfm(t)
dt

)>
, and

dy(t)

dt
= Fx(t) + Lξ(t), (4)

where

F =




0 1
. . .

. . .

0 1
−a0 . . . −am−1 −am


 , L =




0
...

0
1


 .

In general, although we cannot guarantee the power spec-

trum S(ω) of the kernel has a polynomial form in the de-

nominator, we can apply Taylor approximation on 1/S(ω)
to construct an approximately equivalent LTI-SDE.

3. Model

While useful, existing tensor decomposition methods use

discrete time steps, and hence can miss the temporal vari-

ations within each step. Although the latest work (Zhang

et al., 2021) employs continuous-time coefficients in the

CP decomposition (see λ in (1)), it uses polynomial splines

to model these coefficients and might not be sufficient to

capture more complex dynamics. The CP form can fur-

ther restrict its capability of capturing temporal interac-

tions between the factors across different tensor modes. To

overcome these limitations, we propose BCTT, a Bayesian

continuous-time Tucker decomposition approach.

Specifically, we model each element of the tensor-coreW
in the Tucker decomposition (2) as a time-varying (or trend)

function so as to capture the temporal interactions across

all the factor combinations. In order to flexibly estimate

a variety of complex temporal variations, we place a GP

prior over each element, wr(t) ∼ GP (0, κ(t, t′)) where

r = (r1, . . . , rK). Given the observed tensor entry val-

ues and time points, D = {(i1, t1, y1), . . . , (iN , tN , yN )},
we have a multi-variate Gaussian prior over the val-

ues of wr(·) at the observed timestamps, p(wr) =

N (wr|0,Kr), where wr = [wr(t1), . . . , wr(tN )]>, Kr

is the N × N kernel matrix on the time points and each

[Kr]n,n′ = κ(tn, tn′). Given W(tn) = {wr(tn)}r, we

sample the observed entry value from p(yn|W(tn),U) =
N
(
yn|vec (W(tn))

>
(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
, where

τ is the inverse variance, for which we place a Gamma prior,

p(τ) = Gam(τ |b0, c0). Here we only consider continuous

observations. However, it is straightforward to extend our

model and inference to other types of entry values. We fur-

ther place a standard Gaussian prior over the latent factors

p(U) =∏K
k=1

∏dk

j=1N (uk
j |0, I). The joint probability is

p(U , {wr}r, τ,y) = p(U)p(τ) ·
(R1,...,RK)∏

r=(1,...,1)

N (wr|0,Kr)

·
N∏

n=1

p(yn|W(tn),U). (5)

However, a straightforward formulation as in (5) brings

in severe computational challenges. The joint probabil-

ity includes many multivariate Gaussian distributions, i.e.,

N (wr|0,Kr). When the number of time points N is large,

the calculation of each kernel matrix Kr and its inverse

(in the distribution) is extremely expensive or even infea-

sible (O(N3) time complexity). To overcome this hur-

dle, we have to seek for various sparse GP approxima-

tions (Quiñonero-Candela and Rasmussen, 2005), which

essentially use aggressive low-rank structures to approxi-

mate the kernel matrices.

To prevent sparse/low-rank approximations (which can be

of low quality), we use SDEs to formulate our model so as

to perform full GP inference with a linear cost in N . Specif-

ically, we observe that each wr(t) is actually a temporal GP.

Therefore, we can construct an equivalent LTI-SDE. For con-

venience, we use the Matérn kernel with ν = 3/2 = 1+1/2
for illustration. According to (4), for each wr(t), we define

a state γr(t) = (wr,
dwr

dt )>, and the SDE is

dγr(t)

dt
= Fγr + Lξ(t), (6)

where F = [0, 1;−β2,−2β], L = [0; 1], and the diffusion

of the white noise ξ(t) is qc = 4β3σ2. The benefit of

the LTI-SDE representation is that its discrete form (on

t1, . . . , tN ) is a Gaussian Markov chain,

p(γr(t1)) = N (γr(t1)|0,P∞), (7)

p(γr(tn+1)|γr(tn)) = N (γr(tn+1)|Anγr(tn),Qn)

where P∞ = [σ2, 0; 0, β2σ2] is the stationary covariance

calculated by solving the matrix Riccati equation (Lancaster

and Rodman, 1995), ∆n = tn+1− tn is the time difference,

An = exp(F∆n), and Qn = P∞ −AnP∞A>
n .
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To represent all the temporal GPs in our model, we define

a joint state γ(t) as the concatenation of all {γr(t)}r. Ac-

cordingly, the discrete form of the SDE for γ(t) follows

p(γ1) = N (γ1|0,Σ),

p(γn+1|γn) = N (γn+1|Bnγn,Cn), (8)

where γn
∆
= γ(tn), Σ = diag(P∞, . . . ,P∞), Bn =

diag(An, . . . ,An), and Cn = diag(Qn, . . . ,Qn). As we

can see, this is essentially a state-space prior over the col-

lection of states {γn}. To extract the tensor-coreW(t), we

can use a sparse R× 2R matrix,

H =




1 0
1 0

. . .

1 0


 ,

to obtain vec(W(t)) = H · γ(t), where R is the size of the

tensor-core, R =
∏K

k=1 Rk.

Now, we replace the multivariate Gaussians in (5) by the

state space prior in (8), and write the joint probability as

p(U , {γn}, τ,y) = p(U)p(τ) · p(γ1)
∏N−1

n=1
p(γn+1|γn)

N∏

n=1

N
(
yn| (Hγn)

>
(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
. (9)

Since each state γn is only dependent on its previous state

γn−1 (Markov property), we no longer need to compute a

giant N ×N covariance matrix nor need low-rank approx-

imations. The state space prior enables us to develop an

efficient, linear GP inference algorithm, as presented in the

next section.

4. Algorithm

The exact posterior of our model is infeasible to calcu-

late, because the likelihood of each data point n (aris-

ing from the entry-wise Tucker decomposition (2)) cou-

ples the relevant latent factors {u1
in1

, . . .uK
inK
} and state

γ(tn). To address this issue, we introduce Gaussian-Gamma

likelihood approximations, and based on Kalman filter-

ing (KF) (Kalman, 1960) and Rauch-Tung-Striebel (RTS)

smoothing (Rauch et al., 1965) we develop an efficient

message-passing algorithm in the expectation propagation

(EP) framework (Minka, 2001a). See Fig.1.

4.1. Gaussian-Gamma Approximations for Efficient

Filtering and Smoothing

Specifically, we approximate each data likelihood with

N
(
yn| (Hγn)

>
(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
≈ `n

∆
= Zn ·

∏K

k=1
N
(
uk
ink
|mk,n

ink
,Vk,n

ink

)
· Gam (τ |bn, cn)

· N (Hγn | βn,Sn) , (10)

where Zn is a normalization term (it will be canceled during

inference). Hence we obtain the approximate posterior by

q(U , {γn}, τ) ∝
∏K

k=1

∏dk

j=1
N (uk

j |0, I)Gam(τ |b0, c0)
N∏

n=1

K∏

k=1

N
(
uk
ink
|mk,n

ink
,Vk,n

ink

)
Gam (τ |bn, cn) (11)

p(γ1)N (Hγ1 | β1,S1)

N−1∏

n=1

p(γn+1|γn)N (Hγn | βn,Sn) .

The parameters of the approximation terms, including

{mk,n
ink

,Vk,n
ink

, bn, cn,βn,Sn}, will be updated and esti-

mated during the message-passing inference. After that,

we can obtain the (approximate) posterior of latent factors

and noise inverse variance τ by merging relevant terms,

q(uk
j ) ∝ N (uk

j |0, I)
∏

ink
=j N (uk

ink
|mk,n

ink
,Vk,n

ink
), and

q(τ) ∝ Gam(τ |b0, c0)
∏N

n=1 Gam(τ |bn, cn), which have

closed forms, i.e., Gaussian or Gamma.

However, the posterior of the states γn is not easy to obtain,

because γn are chained in the state space prior. Thanks

to the Gaussian term N (Hγn | βn,Sn) introduced in (10)

— by symmetry, we can view it as N (βn|Hγn,Sn) — a

Gaussian likelihood (emission) of the virtual observation

βn following the state space prior of each γn (see the third

line of (11)). Therefore, we can apply the standard KF in

a forward pass and RTS smoothing in a backward pass to

efficiently compute all the marginal posteriors q(γn) and

q(γn,γn+1), with a linear cost in N (i.e., O(N) complex-

ity). Note that the standard KF and RTS can only be used

for Gaussian emissions but they give exact results. For non-

Gaussian likelihoods, we have to combine with extra approx-

imations, such as extended KF and unscented KF (Särkkä,

2013), which can be unstable and more costly.

4.2. Message Passing with Conditional Moment

Matching

To optimize the approximation terms in each `n (see (10)),

we develop a message- passing algorithm in the EP frame-

work. Specifically, at each step, given all `n, we first run

KF and RST smoothing to calculate the posterior of each

sate q(γn). The calculation is actually the standard message

passing in chain graphical models (Bishop, 2006). Each
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Gaussian termN (Hγn | βn,Sn) is the initial message sent

from data point n to the state γn, then we conduct KF to

compute the message from each γn to γn+1 (forward pass),

and then RTS smoothing the messages from γn+1 to γn

(backward pass). The posterior q(γn) is obtained by aggre-

gating all the messages sent to γn (i.e., those from γn−1,

γn+1 and data point n), which ends up with a Gaussian

distribution.

Next, we use the state posteriors {q(γn)} to update the

likelihood approximation terms in {`n} via EP. Specifically,

for each data point n, we obtain a calibrated distribution by

dividing the global posterior by the current approximation,

q\n(Θn) ∝
q(γn)q(τ)

∏K
k=1 q(u

k
ink

)

`n
= N (ηn|β\n,S\n)

·
∏K

k=1
N
(
uk
ink
|mk,\n

ink
,V

k,\n
ink

)
Gam

(
τ |b\n, c\n

)
,

where ηn = Hγn = vec (W(tn)), and Θn =
{ηn, {uk

ink
}k, τ} are all the random variables present in the

n-th likelihood. The calibrated distribution integrates the

information from all the other data points, i.e., the context.

To update the terms in `n, we construct a tilted distribution,

p̃(Θn) ∝ q\n(Θn)

· N
(
yn|η>

n

(
u1
in1
⊗ . . .⊗ uK

inK

)
, τ−1

)
. (12)

We aim to project the tilted distribution back to our approxi-

mation family (exponential family), to obtain

q∗(Θn) = N (ηn|β∗
n,S

∗
n) (13)

·
∏K

k=1
N
(
uk
ink
|mk,∗

ink
,Vk,∗

ink

)
Gam (τ |b∗n, c∗n) ,

from which we update `n terms via dividing the calibrated

distribution back,

`n ←
q∗(Θn)

q\n(Θn)
. (14)

The projection essentially is to minimize the Kullback-

Leibler divergence from p̃(Θn) to q∗(Θn), which can be

done by moment matching. For example, the Gaussian pos-

terior of ηn in (13) needs two moments — the expectation of

ηn and ηnη
>
n . So we need to compute them under the tilted

distribution so as to match the parameters of q∗(ηn), namely

β∗
n = Ep̃ [ηn] and S∗

n = Ep̃

[
ηnη

>
n

]
− Ep̃ [ηn]Ep̃ [η]

>
.

The standard EP assumes the moment matching is computa-

tionally tractable. However, this is not the case in our model.

Since ηn and the latent factors are coupled in the product

and Kronecker product in the tilted distribution (12), we

do not have a closed form of the moments. To address this

problem, we use the idea of the conditional moment match-

ing (Wang and Zhe, 2019). Take ηn as an example. Denote

the required moments by φ(ηn) =
(
ηn,ηnη

>
n

)
. The key

observation is that we can decompose the expectation into a

nested structure,

Ep̃ [φ(ηn)] = Ep̃(Θ\ηn )

[
Ep̃(ηn|Θ\ηn )

[
φ(η)|Θ\ηn

]]

where Θ\ηn

∆
= Θn\{ηn}. Therefore, we can compute the

conditional moment first, i.e., the inner expectation, and

then take expectation over the conditional moments, i.e., the

outer-expectation. Given all the other variables Θ\ηn
fixed,

the conditioned tilted distribution p̃(ηn|Θ\ηn
) is simply a

Gaussian. Hence, the conditional moment is easy to obtain,

E
[
ηn|Θ\ηn

]
= Σn

((
S\n

)−1

β\n + τynvn

)
, (15)

E
[
ηnη

>
n |Θ\ηn

]
= Σn + E

[
ηn|Θ\ηn

]
E
[
ηn|Θ\ηn

]>

where vn = u1
in1
⊗ . . . ⊗ uK

inK
and Σn =

((
S\n)−1

+ τvnv
>
n

)−1

.

Next, we need to take the outer-level expectation to ob-

tain the moments, namely, computing the mean of the

conditional moment under the marginal tilted distribution

p̃(Θ\ηn
). However, since p̃(Θ\ηn

) is analytically in-

tractable, the outer expectation does not have a closed form.

To tackle this issue, we observe that the moment matching is

also performed between q(Θ\ηn
) and p̃(Θ\ηn

), and hence

we can assume they are close, especially in high density

regions. We then use the current posterior as the surrogate

to compute the expected conditional moment,

Ep̃[φ(ηn)] ≈ Eq(Θ\ηn ) [ρn] (16)

where ρn is the conditional moment.

Nonetheless, since ρn is a nonlinear function of the condi-

tioned variables Θ\ηn
(see (15)), we do not have a close

form to compute (16) either. But we have already known

the form of q(Θ\ηn
), so we can use the multivariate delta

method (Oehlert, 1992; Bickel and Doksum, 2015) to com-

pute the expectation easily. Specifically, we use a first-order

Taylor approximation to represent the conditional moments,

ρn(Θ\ηn
) ≈ ρn

(
Eq

[
Θ\ηn

])

+ J ·
(
vec
(
Θ\ηn

)
− vec

(
Eq

[
Θ\ηn

]))
(17)

where J is the Jacobian at Eq

[
Θ\ηn

]
. Then taking the

expectation over the Taylor approximation gives

Eq(Θ\ηn ) [ρn] ≈ ρn

(
Eq

[
Θ\ηn

])
. (18)

We refer to (Oehlert, 1992; Wolter, 2007) for the theoretical

justifications and guarantees of the delta method. With the

same approach, we can compute the moments for other

random variables in Θ, including {uk
ink
} and τ , and obtain
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Figure 1. Graphical illustration of the message-passing inference algorithm.

Algorithm 1 BCTT

Input: D = {(i1, t1, y1), . . . , (iN , tN , yN )}, kernel

hyper-parameters l, σ2

Initialize approximation terms in (10) for each likelihood.

repeat

Run KF and RTS smoothing to compute each q(γn)
for n = 1 to N in parallel do

Simultaneously update N (Hγn|βn,Sn),

Gam(τ |bn, cn) and
{
N
(
uk
ink
|mk,n

ink
,Vk,n

ink

)}

k
in (10) with conditional moment matching and

multi-variate delta method.

end for

until Convergence

Return: {q(W(tn))}Nn=1, {q(uk
j )}1≤k≤K,1≤j≤dk

, q(τ)

their posterior in (13). Finally, we apply (14) to update the

approximation terms in the likelihood.

While the derivation of the conditional moment matching is

a bit lengthy, the implementation is straightforward. From

(18) and (16), we just need to derive the form of the condi-

tional moments (in our case, it is either Gaussian or Gamma),

and then plug in the expectation of the conditioned variables

under the current poster. For efficiency, we update the ap-

proximation factors of all the likelihoods in parallel, and

then perform damping to be stable (Minka, 2001b). We

repeatedly do message passing and conditional moment

matching until convergence. The model inference is sum-

marized in Algorithm 1.

4.3. Algorithm Complexity

In each iteration, our algorithm runs KF and RTS smoothing

to go through data twice, so as to calculate the posterior

of each state γn, and then conduct conditional moment

matching in parallel to update the likelihood approximation

for each data point. The overall time complexity is O(NR),
where R is the size of the tensor-core. The space complexity

is O
(
N(R

2
+
∑K

k=1 R
2
k)
)

which is to store the posterior

of each state and the likelihood approximation terms at each

data point. Hence, our algorithm enjoys a linear scalability

with the growth of data. Note that our algorithm fulfills the

full GP inference, without the need for any sparse or low-

rank approximations. As a comparison, the naive GP model

demands O(RN3) time and O(RN2) space complexity,

and hence can be extremely expensive or infeasible for large

N . In practice, it is possible that multiple entries were

observed at the same time point. Adjusting our method for

such cases is trivial. Since the number of states is smaller

than N accordingly, the complexity is even lower.

5. Related Work

There are many tensor decomposition methods, e.g., (Chu

and Ghahramani, 2009; Kang et al., 2012; Choi and Vish-

wanathan, 2014; Zhe et al., 2016a; Liu et al., 2018; Pan

et al., 2020b; Tillinghast and Zhe, 2021; Fang et al., 2021b;

Tillinghast et al., 2022). To utilize time information, current

methods expand the tensor with a time mode (Xiong et al.,

2010; Rogers et al., 2013; Du et al., 2018; Zhe et al., 2016b;

2015; Ahn et al., 2021; Wu et al., 2019), which comprises

a set of discrete time steps, e.g., by hours or days. The

observed entry values are then arranged into different time

slices of the tensor. The factors of the time steps and tensor

nodes are jointly learned during the decomposition. To bet-

ter estimate the temporal relationships, a few more refined

approaches model the transition between the time steps, e.g.,

a conditional linear Gaussian prior in (Xiong et al., 2010),

RNN (Wu et al., 2019), and kernel smoothing and regular-

ization in (Ahn et al., 2021). To conduct continuous-time

decomposition, the latest work (Zhang et al., 2021) uses

polynomial splines to estimate the factor coefficients (λ in

(1)) in the CP model as a time function. Another set of

works (Schein et al., 2015; 2016; Zhe and Du, 2018; Pan

et al., 2020a; Wang et al., 2020) decompose the events be-

tween the tensor nodes. The entry values are event counts

or event sequences. These methods either use Poisson pro-
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cesses or more complex temporal point processes, such as

Hawkes processes (Hawkes, 1971). However, these meth-

ods do not consider the result of events, e.g., payment or

product ratings.

Message passing is a general inference framework in prob-

abilistic graphical models (Wainwright and Jordan, 2008).

When the model has a chain or tree structure and the fac-

tors in the graph (i.e., terms in probability) are tractable,

message passing can perform exact inference in a highly ef-

ficient way. Kalman filter and RTS smoothing are examples.

When the factors are complex (e.g., not in the exponential

family), the computation of the messages can be intractable.

Minka (2001a) proposed a more general framework, Expec-

tation propagation (EP), to handle the message computa-

tion via moment matching. However, it can still fail when

moment matching is intractable. To address this problem,

Wang and Zhe (2019) proposed conditional EP (CEP) that

uses conditional moment matching, Taylor approximations

and numerical quadrature to compute the intractable mo-

ments for fully factorized posteriors. CEP has been used

in Bayesian CP decomposition (Wang and Zhe, 2019) and

shown great performance. (Fang et al., 2021a) has used

CEP in the streaming inference of a sparse Tucker decom-

position model where a spike-and-slab prior is placed on

the tensor-core and approximated on the fly to obtain the

running posterior. Our work uses GPs to estimate a time-

varying tensor-core to handle continuous time information

in the Tucker decomposition framework. To avoid huge ker-

nel matrix computations and/or low-rank approximations,

we use LTI-SDEs to build an equivalent state-space prior,

which is essentially a Gaussian Markov chain. Under the

chain structure, we combine the message passing and mo-

ment matching for efficient inference. We use similar ideas

as in (Wang and Zhe, 2019; Fang et al., 2021a) to compute

the Gaussian messages to the SDE states. Given these mes-

sages, we then perform KF and RTS smoothing to calculate

the posterior of the SDE states in an exact way, which are

in turn used to update the approximation terms in each like-

lihood. In this way, we achieve the linear time complexity

for our Tucker-GP model.

6. Experiment

6.1. Ablation Study

We first evaluated BCTT on a synthetic task. We simu-

lated a two-mode tensor, where each mode includes 50
nodes. For each node, we generated two latent factors

that reflect a clustering structure in each mode. Specif-

ically, for the nodes in mode 1, we sampled the latent

factors u1
j from N ([−1; 1], 0.1I) for 1 ≤ j ≤ 25, and

from N ([1;−1], 0.1I) for 26 < j ≤ 50. Similarly, for the

nodes in mode 2, we sampled u2
j ∼ N ([1; 1], 0.1I) when

1 ≤ j ≤ 25, and N ([−1;−1], 0.1I) for 26 < j ≤ 50.

0.0 0.2 0.4 0.6 0.8 1.0

Learned
Ground-truth

(a) w(1,1)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(b) w(1,2)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(c) w(2,1)(t)

0.0 0.2 0.4 0.6 0.8 1.0

(d) w(2,2)(t)

Figure 2. Recovered temporal dynamics within factor interactions.

(a) U1 (b) U2

Figure 3. The estimated latent factors by BCTT

Given the latent factors, we generate the tensor entry values

at any time t from

yi(t) = u1
i1,1u

2
i2,1w(1,1)(t) + u1

i1,1u
2
i2,2w(1,2)(t)

+ u1
i1,2u

2
i2,1w(2,1)(t) + u1

i1,2u
2
i2,2w(2,2)(t), (19)

where w(1,1)(t) = sin(2πt), w(1,2)(t) = cos(2πt),
w(2,1)(t) = sin(2πt) sin(2πt), and w(2,2)(t) =

cos(2πt) sin2(2πt). These weight functions represent the

four temporal interaction patterns between factors across the

two modes, corresponding to the tensor-coreW(t) in our

model. We generated 2K observed entries from t ∈ [0, 1].
We implemented our method BCTT with PyTorch (Paszke

et al., 2019). We use the Matérn kernel with ν = 3/2, and

set l = σ2 = 0.1. We ran our message-passing inference

until convergence. The tolerance level was set to 10−3.

Then we compared the learned tensor-coreW(t) with the

ground-truth interaction functions between every pair of the

factors across the two modes1. As we can see from Fig.

1We normalized each learned interaction function by the maxi-
mum posterior mean of the corresponding state. This is to address
the identifiablility issue, since scaling W arbitrarily then re-scaling
U accordingly do not change the Tucker decomposition loss (or
likelihood).



Bayesian Continuous-Time Tensor Decomposition

(a) W(1) (b) W(4)

(c) W(7) (d) DDT-TD

Figure 4. The structures of learned tensor-core at different time

points by BCTT (a-c) and the static tensor-score learned by dy-

namic discrete-time Tucker decomposition (DDT-TD).

2, our approach recovered each function pretty accurately,

showing that BCTT has successful captured all the temporal

dynamics within the factor interactions. Next, we show the

learned factors in each mode in Fig. 3. The colors indi-

cate the ground-truth cluster membership of the nodes. As

we can see, our learned factors clearly revealed the hidden

structures of the tensor nodes.

6.2. Real-World Applications

Next, we examined BCTT on three real-world benchmark

datasets. (1) MovieLen100K (https://grouplens.

org/datasets/movielens/), a two-mode (user,

movie) tensor, of size 610 × 9729. The entry

values are movie ratings at different time points.

We have 100, 208 observed entries and their times-

tamps. (2) AdsClick (https://www.kaggle.com/

c/avazu-ctr-prediction), a three-mode mobile

ads click tensor, (banner-position, site domain, app), of

size 7 × 2842 × 4127. We collected 50K observed en-

try values (number of clicks) at different time points (in

ten days). DBLP (https://dblp.uni-trier.de/

xml/), a three-mode tensor about bibliographic records in

computer science from 2011 to 2021, (author, conference,

keyword), of size 3731× 1935× 169. The entry values are

the numbers of publications. There are 50k entry values and

their timestamps.

Methods. We compared with following state-of-the-art

multilinear and nonparametric tensor decomposition algo-

rithms with time information integrated. (1) CT-CP (Zhang

et al., 2021), continuous-time CP decomposition, which

uses polynomial splines to estimates λ in (1) as a trend

function. (2) CT-GP, continuous-time GP decomposition,

which extends (Zhe et al., 2016a) to use GPs to learn tensor

element as a function of the latent factors and time yi(t) =
g(u1

i1
, . . . ,uK

iK
, t) ∼ GP(0, κ(·, ·)). (3) DT-GP, discrete-

time GP decomposition, which expands the tensor with a

discrete time mode and then applies GP decomposition. (4)

DDT-CP, dynamic discrete-time CP decomposition, which

on top of DT-CP, places an RNN-like dynamic prior over the

time factors, p(tj |tj−1) = N (tj |σ(Atj−1)+b, vI) where

σ(·) is a nonlinear activation, (5) DDT-TD and (6) DDT-

GP, dynamic discrete-time Tucker and GP decomposition,

which place the same dynamic prior as in DDT-CP.

Settings. All the methods were implemented by PyTorch.

For {CT, DT, DDT}-GP, we used the square exponen-

tial kernel and sparse variational GP inference as in (Zhe

et al., 2016b) for scalable model estimation. The num-

ber of pseudo inputs was 100. For CT-CP, we used 100
knots for the polynomial splines. Except BCTT, all the

methods were trained with stochastic mini-batch optimiza-

tion, with mini-batch size 100. We used ADAM optimiza-

tion (Kingma and Ba, 2014). The learning rate was chosen

from {10−4, 5×10−4, 10−3, 5×10−3, 10−2}. We re-scaled

all the timestamps to [0, 10] to ensure numerical stability.

We examined all the methods with the number of factors

R ∈ {3, 5, 7, 9}. Following (Xu et al., 2012; Kang et al.,

2012; Zhe et al., 2016b), we randomly sampled 80% ob-

served entry values and their time points for training, and

then tested on the remaining entries. For discrete-time de-

composition methods, we set the number of time steps to 50
(we tested with more steps but did not obtain improvement).

We repeated the experiments for five times, and examined

the average root mean-square-error (RMSE), average mean-

absolute-error (MAE), and their standard deviations.

Results. As shown in Table 1, our approach BCTT out-

performs the competing methods in all the cases except

that in Table 1d, on AdsClicks, BCTT was the second best,

and its MAE is slightly worse than CP-CT. In most cases,

the improvement obtained by BCTT is large and signifi-

cant (p < 0.05). It shows that our semi-parametric model

BCTT not only maintains the interpretable structure as in

Tucker decomposition, but also achieves a superior perfor-

mance, even to full nonparametric models, e.g., CT-GP and

DDT-GP. This might because BCTT uses the state-space

representation to enable full GP inference, without any low-

rank/sparse approximation as needed in those GP baselines.

Furthermore, we investigated if our learned tensor-core

W(t) can reflect temporal structural variations. To do so,

we set R = 7 and ran BCTT on DBLP dataset. We looked at

the tensor-core at three time points t = 1, 4, 7. The size of

the tensor-core is 7×7×7. We followed (Fang et al., 2021a)

to fold the tensor-core to a 49×7 interaction matrix for each

mode. Thus, each row expresses how strongly the combi-
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RMSE MovieLens AdsClicks DBLP

CT-CP 1.113± 0.004 1.337± 0.013 0.240± 0.007
CT-GP 0.949± 0.008 1.422± 0.008 0.227± 0.009
DT-GP 0.963± 0.008 1.436± 0.015 0.227± 0.007
DDT-GP 0.957± 0.008 1.437± 0.010 0.225± 0.006
DDT-CP 1.022± 0.003 1.420± 0.020 0.245± 0.004
DDT-TD 1.059± 0.006 1.401± 0.022 0.232± 0.09
BCTT 0.922± 0.002 1.322± 0.012 0.214± 0.009

MAE

CT-CP 0.788± 0.004 0.787± 0.006 0.105± 0.001
CT-GP 0.714± 0.004 0.891± 0.011 0.092± 0.004
DT-GP 0.722± 0.008 0.893± 0.008 0.084± 0.003
DDT-GP 0.720± 0.003 0.894± 0.009 0.083± 0.001
DDT-CP 0.755± 0.002 0.901± 0.011 0.114± 0.002
DDT-TD 0.742± 0.006 0.866± 0.012 0.101± 0.001
BCTT 0.698± 0.002 0.777± 0.016 0.084± 0.001

(a) R = 3

RMSE MovieLens AdsClicks DBLP

CT-CP 1.165± 0.008 1.324± 0.013 0.263± 0.006
CT-GP 0.965± 0.019 1.410± 0.015 0.227± 0.007
DT-GP 0.949± 0.007 1.425± 0.015 0.225± 0.008
DDT-GP 0.948± 0.005 1.421± 0.012 0.220± 0.006
DDT-CP 1.141± 0.007 1.623± 0.013 0.282± 0.011
DDT-TD 0.944± 0.003 1.453± 0.035 0.312± 0.072
BCTT 0.895± 0.007 1.304± 0.018 0.202± 0.009

MAE

CT-CP 0.835± 0.006 0.792± 0.007 0.128± 0.001
CT-GP 0.717± 0.012 0.883± 0.016 0.092± 0.002
DT-GP 0.714± 0.005 0.886± 0.012 0.084± 0.001
DDT-GP 0.707± 0.004 0.882± 0.015 0.082± 0.003
DDT-CP 0.843± 0.003 1.082± 0.013 0.141± 0.004
DDT-TD 0.712± 0.002 0.903± 0.024 0.221± 0.047
BCTT 0.679± 0.001 0.785± 0.010 0.080± 0.001

(b) R = 7

RMSE MovieLens AdsClicks DBLP

CT-CP 1.026± 0.002 1.335± 0.012 0.244± 0.005
CT-GP 0.970± 0.011 1.425± 0.011 0.229± 0.009
DT-GP 0.952± 0.012 1.428± 0.015 0.226± 0.007
DDT-GP 0.949± 0.007 1.417± 0.013 0.226± 0.007
DDT-CP 1.087± 0.012 1.515± 0.023 0.257± 0.006
DDT-TD 1.050± 0.005 1.403± 0.053 0.277± 0.026
BCTT 0.901± 0.002 1.317± 0.046 0.204± 0.009

MAE

CT-CP 0.813± 0.003 0.796± 0.006 0.112± 0.001
CT-GP 0.731± 0.007 0.890± 0.012 0.093± 0.002
DT-GP 0.720± 0.016 0.888± 0.011 0.085± 0.001
DDT-GP 0.715± 0.003 0.879± 0.016 0.085± 0.001
DDT-CP 0.807± 0.003 0.958± 0.012 0.120± 0.002
DDT-TD 0.784± 0.015 0.831± 0.038 0.171± 0.043
BCTT 0.684± 0.001 0.776± 0.013 0.082± 0.001

(c) R = 5

RMSE MovieLens AdsClicks DBLP

CT-CP 1.188± 0.002 1.335± 0.015 0.265± 0.004
CT-GP 0.935± 0.009 1.406± 0.008 0.227± 0.008
DT-GP 0.945± 0.005 1.410± 0.003 0.222± 0.008
DDT-GP 0.939± 0.003 1.411± 0.004 0.217± 0.003
DDT-CP 1.117± 0.011 1.580± 0.022 0.292± 0.007
DDT-TD 0.956± 0.005 1.473± 0.045 0.345± 0.096
BCTT 0.891± 0.003 1.308± 0.026 0.198± 0.006

MAE

CT-CP 0.856± 0.003 0.786± 0.007 0.131± 0.001
CT-GP 0.703± 0.006 0.889± 0.009 0.094± 0.004
DT-GP 0.713± 0.003 0.880± 0.003 0.082± 0.002
DDT-GP 0.706± 0.005 0.874± 0.004 0.080± 0.001
DDT-CP 0.872± 0.006 1.024± 0.013 0.155± 0.005
DDT-TD 0.718± 0.004 0.923± 0.034 0.201± 0.053
BCTT 0.678± 0.002 0.787± 0.008 0.079± 0.002

(d) R = 9

Table 1. Prediction error and standard deviation. The results were averaged over five runs.

nation of factors in other modes interact with the factors in

the current mode. To reflect the structure, we ran Principled

Component Analysis (PCA), and show the first and second

principled components in a plane. We also tested DDT-TD

which learns a static tensor-core but using time factors and

nonlinear dynamics. We looked at the results at mode 1. As

shown in Fig. 4 a-c, we can see a clear structural variation.

At t = 1, the tensor-core elements are quite concentrated,

showing somewhat homogeneous interactions. The case

is similar at t = 4 but the interaction strengths are more

scattered. However, at t = 7, the strengths clearly formed

four groups, exhibiting heterogeneous interaction patterns —

a major shift. Together these imply the interaction between

factors evolve with time. As a comparison, the tensor-core

learned by DDT-TD do not reflect apparent structures or

temporal patterns. It is inconvenient to examine how the

interactions between the factors of the tensor nodes evolve.

7. Conclusion

We proposed BCTT, a continuous-time dynamic Tucker de-

composition method. Our model maintains the interpretable

structure while is flexible enough to capture various tempo-

ral dynamics within the factor interactions. Our LTI-SDE

based message-passing inference avoids sparse GP approxi-

mations and enjoys a linear scalability with the data growth.
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