On the Reproducibility of Bugs in
File-System Aware Storage Applications

Duo Zhang®*, Tabassum Mahmud®*, Om Rameshwar Gatla®, RunZhou Han®, Yong Chen®, Mai Zheng?®
@ Dept. of Electrical and Computer Engineering, lowa State University, USA
b Samsung Electronics America, USA
{duozhang, tmahmud, ogatla, hanrz, mai} @iastate.edu, {yongchen.1}@samsung.com

Abstract—Many storage applications such as file system check-
ers, defragmentation tools, etc. require a detailed understanding
of file systems. Such file-system aware applications play an
essential role today, but unfortunately they are error-prone. To
better understand the challenges as well as the opportunities
to address the issues, this paper presents an empirical study
of real world bugs in file-system aware storage applications.
By analyzing 59 bug cases from 4 representative applications
in depth, we derive multiple insights in terms of general bug
patterns, triggering conditions, and implications for building
effective tools to address the issues. We hope that our study
and the resulting dataset could contribute to the development
of reliability tools for building robust file-system aware storage
applications in general.

Index Terms—File system, storage system, configuration pa-
rameter, reproducibility, reliability

I. INTRODUCTION

Many storage applications require a detailed understanding
of file systems (FS). For example, FS checkers (e.g., e2fsck
for Ext4 [1], ChkDsk for NTFS [2]) scan the on-disk layout
of file systems, detect metadata inconsistencies, and serve
as the last line of defense to bring a corrupted file system
back to a healthy state [3], [4]. Similarly, FS resizers [1],
defragmentation tools [5], data recovery tools [6], etc. all need
to parse file system structures precisely. Such FS-aware storage
applications play an essential role in maintaining the storage
system reliability and performance today [7].

Unfortunately, developing FS-aware storage applications is
challenging due to the complexity of file systems, the lack
of documentation or library support, etc [7]. Consequently,
such software may contain bugs that cause system failures or
even data loss. For example, a recent NTFS ChkDsk issue
affected many Windows users [8]-[10]. Similarly, e2fsck
may generate incorrect or insecure repairs, corrupting Ext-
family file systems [7], [11]-[14].

Addressing the challenge above requires collective efforts
from multiple research directions including bug detection sup-
port [12], [13], [15], [16], programming language and library
support [7], data provenance and debugging support [17]-[19],
etc., all of which will benefit from a better understanding of
real-world bug characteristics.

“Both authors contributed equally

978-1-6654-5408-7/22/$31.00 ©2022 IEEE

Many studies have been conducted to understand and guide
the improvement of storage software [20]-[25]. For example,
Lu et al. studied 105 bugs from 4 multi-threaded applications
(including MySQL database) and found common concurrency
bug patterns (e.g., atomicity violation) [20]. Duo et al. studied
about 310 persistent memory (PM) related bugs in the Linux
kernel and identified PM-specific issues (e.g., misaligned
NVDIMM namespace) [25]. Such efforts have generated
valuable insights for optimizing the corresponding software,
but they are not necessarily applicable to FS-aware storage
applications due to the different design patterns and tradeoffs.

In this paper, we perform an empirical study on the char-
acteristics of 59 bugs in four FS-aware storage applications
including two file system checkers [26], one file system
resizer [27], and one degragmentation tool [28]. Different from
most existing studies, we take one step further to reproduce the
bugs in our dataset, which enable us to drive deeper insights
along multiple dimensions for developing remedy solutions.

First, in terms of general bug patterns, we find that semantic
bugs is the dominant type (98.3%) in our dataset based on the
classic taxonomy proposed in the literature [20], [21], [25],
which is typically caused by incorrect design logic of the
software. Moreover, we observe a few unique subtypes among
the semantic bugs. For example, 15.3% cases are caused by
the inconsistency between the application logic and the file
system features (i.e., the application cannot handle certain
(new) features of the underlying file systems, which may lead
to unexpected abort or even file system corruptions).

Second, in terms of triggering conditions, we find that
there are four important factors for reproducing the issues in
our dataset, including (1) file system parameters, (2) appli-
cation parameters, (3) workloads, and (4) metadata corrup-
tions. Specifically, we find that the majority of bugs (96.6%)
require certain file system parameters to trigger, 30.5% re-
quire application parameters, and 27.1% depend on both.
Similarly, 39.0% and 22.0% bug cases depend on workloads
and metadata corruptions, respectively. This result reflects the
strong dependency between the storage applications and the
underlying file systems as well as the complexity for detecting
or diagnosing such issues. But interestingly, we find that 19 of
the bugs in our dataset could be detected via 2 simple rules.

Finally, based on the findings, we derive multiple implica-
tions for building effective tools (e.g., bug detection, debug-
ging, provenance tracking) to mitigate the issues. We curate

TABLE I
FILE-SYSTEM AWARE STORAGE APPLICATIONS STUDIED IN THIS WORK.

App. ID Name Description # of Bugs | Reproduced Bugs
1FSCK e2fsck the checking and repair program for Ext-family file systems 37 20 (54.0%)
2FSCK xfs_repair the repair program for XFS file system 2 0 (0%)
3SIZE resize2fs the resize program for Ext-family file systems 17 12 (70.6%)
4FRAG e2freefrag | the free space managing program for Ext-family file systems 3 2 (66.7%)
TOTAL - - 59 34 (57.6%)

our study results in a software artifact called FSAppBugs
which includes the detailed characterization of bug patterns as
well as the critical conditions and scripts to reproduce them.
We have released the artifact publicly to facilitate follow-
up research on improving the design and implementation of
storage applications and relevant tools'.

The rest of the paper is organized as follows: §II describes
the study methodology; §III presents the study results; §IV
discusses the related work; and §V concludes the paper with
future work.

II. METHODOLOGY

In this section, we describe how we collect the dataset for
study (§1I-A), how we analyze the bug characteristics (§II-B),
and the limitations of the approach (§1I-C).

A. Dataset Collection

As shown in Table I, we look into four FS-aware
storage applications including two file system checkers
(i.e., e2fsck and xfs-repair), one file system re-
sizer (i.e., resize2fs), and one defragmentation tool (i.e.,
e2freefrag). These applications are developed for main-
taining the popular Ext-family (e.g., Ext2/3/4) and XFS file
systems on Linux.

All the applications maintain their source code including
the commit history in Git repositories, which enables studying
the real bugs of the applications that have been confirmed and
fixed. Note that not all the committed patches are bug patches.
We find that the majority of the patches are for maintenance
(e.g., code re-factoring or documentation updates) or adding
new functionalities instead of fixing bugs, which is consistent
with previous studies on Linux kernel patches [21], [25].

In order to effectively identify potentially reproducible bug
cases, we first use a wide set of keywords (e.g., ‘bug’, ‘error’,
‘corrupt’, ‘reproduce’, ‘configuration’, ‘parameter’, ‘trigger’,
‘condition’, etc.) to filter the patches, and then manually
examine the remaining patches to understand their purposes.
At the time of this writing, we are able to identify 59 bug
patches which contain relatively complete information (e.g.,
steps for reproducing the issues) for study.

B. Dataset Analysis
Based on the 59 bug cases, we conduct a comprehensive
study to answer three set of questions:

Unttps://git.ece.iastate.edu/data-storage-lab/prototypes/bugbench/-
/tree/main/FSAppBugs

o General Patterns: What are the general bug patterns? Is
there anything unique compared to previous studies?

o Triggering Conditions: What are the specific conditions
required to trigger and reproduce the bugs? Are there any
general rules that can be leveraged to remedy?

o Implications: What are the implications for researchers
and practitioners for developing relevant tools (e.g., bug
detection, debugging, provenance tracking)?

To answer these questions, we manually analyzed each
patch in depth. The patches typically follow a standard format
containing a description and code changes, which enables us to
infer its logic and characterize them accordingly. For patches
that contain limited information, we further investigated rele-
vant source code and design documents. Moreover, we attempt
to reproduce the identified bug cases in our experimental
environment, which enables us to gain deep insights on the
necessary conditions for manifesting the bugs.

C. Limitations

Note that the combination of keyword search and manual
examination (§II-A) is similar to the previous studies [20],
[21], [25], though most existing studies did not perform the
reproducibility experiments. Similar to previous studies [20],
[21], [25], our study results should be interpreted with the
method in mind. The dataset was refined via keywords and
manual examination, and we only studied bugs that have been
triggered and fixed by the developers, both of which may lead
to incompleteness. Nevertheless, we believe such study is one
important step toward better understanding the characteristics
of bugs in storage applications and deriving effective solutions.
By releasing the study results publicly, we hope the work can
inspire follow up research and benefit the community.

III. STUDY RESULTS
A. Overview

As shown in the last column of Table I, we were able to re-
produce 34 bug cases (57.6%) successfully in our experimental
environment at the time of this writing, including 20 from
1FSCK, 12 from 3SIZE, and 2 from 4FRAG. Reproducing
these cases require satisfying various conditions, as will be
elaborated in §1II-C. For the remaining cases that we cannot re-
produce, we derive the necessary (but not sufficient) conditions
based on our understanding of the source code and relevant
documents. We summarize the findings based on all the
cases in this section, including the general patterns (§III-B),
triggering conditions (§III-C), and implications (§III-D).

TABLE II
CLASSIFICATION OF BUG PATTERNS. THE LAST COLUMN SHOWS THE
NUMBER OF BUGS (AND PERCENTAGE) BELONGING TO EACH SUBTYPE.

Type Subtype Description # of Bugs
(%)
Feature out of sync for 9 (15.3%)
FS feature support '
Semantic | Wrong Check ;“‘SS / wrong check of | 355 g,
(98.3%) S co/rruptlon —
. miss / wrong repair o
Wrong Repair FS corruption 13 (22.0%)
Logic other improper design 23 (39.0%)
l\zlle I,;l;or)y Null Pointer dereference null pointer 1 (1.7%)

TABLE III

MODIFICATIONS INTRODUCED BY BUG PATCHES.
App. ID | Application Code External Code
1IFSCK 37 3 (8.1%)
2FSCK 2 —
3SIZE 17 2 (11.8%)
4FRAG 3 —
TOTAL 59 5 (8.5%)

B. General Patterns

To guide the design of bug detectors and other reliability
tools, it is important to understand the types of bug occurred.
As summarized in Table II, we find that the 59 bugs in our
dataset can be classified into two major types based on the
classic taxonomy proposed in the literature [21], [25]: (1)
Semantic, which means the issues are related to the high-level
design semantics of the software; (2) Memory, which relates
to illegal memory operations (e.g., out-of-bound access).

Similar to previous studies, the Semantic type accounts for
the majority of bugs in our dataset. This reflects the complexity
of developing correct storage applications. On the other hand,
we observe a few interesting and unique patterns among the
Semantic bugs, which we discuss further below:

o Feature (15.3%): This type of bugs occurs when the stor-
age applications cannot handle certain features (newly)
added to the underlying file systems. In other words,
the applications is out-of-sync with the file systems. The
consequence is often severe: the application may abort
abruptly or even corrupt the underlying file system. This
pattern reflects the complex dependencies between the
storage applications and file systems and suggests the
need for more effective co-designs.

o Wrong Check (22.0%) and Wrong Repair (22.0%): These
patterns are specific to the file system checker bugs in
our dataset. We find that FSCK may generate wrong
checking results (e.g., missing corruptions on specific
metadata structures) or even wrong fix, which is consis-
tent with previous work on the correctness of file system
checkers [11]-[13]. More elegant design patterns (e.g.,
SQL query for checkers [11] or programming lanague
support [7]) are likely needed for mitigating the issues.

(a)
1. Superblock:
resize_inode=True

1. Superblock:
inline_data=False

reserved gdt blks=256 inode 12:
inode7 (resize_inode) : iflag=0x0
double indirect blk=24 size=40B

II. Superblock: II. Superblock:
resize_inode=True inline_data=False
reserved gdt blks=0 inode 12
inode7 (resize_inode) : lflag:OXlCOOOOOO;
double indirect blk=0 size=40B

III. Superblock:

[I. Superblock: inline data=True

resize inode=True

reserved_gdt_blocks=XXX inode 12:

inode7 (resize_inode) : iflag=0x0

double_indirect blk=0 size=0
Description:

Description:

Step I: Create FS with
resize inode enabled.
Double-indirect block of ||with size = 40 B

resize inode (7) is 24. Step II: Corruption sets
Step I1: Corruption changes |in1 ine_ data flag for

Step I: Create FS with
inline data disabled.
‘Workload creates Inode 12

reserved_gdt_blksin [linode 12

superblock and double Step III: e2 fsck enables
indirect block of resize feature inline data in
inode to 0. i

superblock but unsets the
iflagininode 12, and
clears data pointed to by

Step III: e2fsck performs
incorrect repair and reports

'resize inode is not valid' the inode
Consequence: Consequence:
FS becomes inconsistent Data loss

Fig. 1. Examples of Triggering Conditions. This figure shows two specific bug
cases which (a) depends on file system parameters and metadata corruptions,
(b) depends on workloads and metadata corruptions.

To understand the impact of the bug patches further, we
measure the code modifications required by each patch. As
summarized in Table III, 5 out of the 59 cases (8.5%) require
modifications to external source code (e.g., library or file
system code) in addition to modifying their own application
code, which reflects the dependency between the applications
and their environment.

C. Triggering Conditions

Besides identifying general bug patterns, we further look
into specific conditions needed to trigger the bugs, which is
critical for developing effective tools to capture similar bugs
in practice. We find that four major factors are important
for our dataset, including: file system parameters, application
parameters, workloads, and metadata corruptions. We discuss
them in more details below:

(1) 96.6% bugs depend on file system parameters. The
configuration parameters of file systems control the specific
features or functionalities of file systems, which may affect the
behavior of the upper storage applications. As shown in the
first three columns of Table IV, 57 out of the 59 bugs (96.6%)

TABLE IV
DISTRIBUTION OF BUGS BASED ON FOUR MAJOR TRIGGERING CONDITIONS: FILE SYSTEM (FS) PARAMETERS, APPLICATION (APP) PARAMETERS,
WORKLOADS, AND METADATA CORRUPTIONS.

App. ID # of | Depend on Depend on Depend on Both Other Dependency
Bugs | FS Param. | App. Param. | FS & App Param. | Workload | Corruption
1IFSCK 37 35 (94.6%) 5 (13.5%) 3 (8.1%) 19 (51.4%) | 13 (35.1%)
2FSCK 2 2 (100%) — — — —
3SIZE 17 17 (100%) 13 (76.5%) 13 (76.5%) 4 (23.5%) —
4FRAG 3 3 (100%) — — — —
TOTAL 59 57 (96.6%) 18 (30.5%) 16 (27.1%) 23 (39.0%) | 13 (22.0%)
TABLE V TABLE VI
DISTRIBUTION OF BUGS BASED ON THEIR DEPENDENCY ON SINGLE OR TwO SIMPLE RULES AND THEIR EFFECTIVENESS.
MULTIPLE PARAMETERS
Rule Description Bugs
App. ID Depend on FS params | Depend on App. params ID Detected
pp- single multiple single multiple Ry check return code of target application 4
1FSCK 24 11 2 3 Ro compare multiple runs of FSCK 15
2FSCK — 2 — — TOTAL - 19
3SIZE 14 3 11 —
4FRAG 3 - - - that 23 bugs require specific workloads to trigger. Figure 1
TOTAL 4l 16 13 3 (b) shows an example from 1FSCK (e2fsck). The bug is

in our dataset require specific file system parameters to trigger,
including 35 from 1FSCK (i.e., 94.6% of all 1IFSCK bugs),
2 from 2FSCK (100%), 17 from 3SIZE (100%), and 3 from
4FRAG (100%). Most interestingly, we find that in two cases
an FS parameter must be enabled while another parameter
must be disabled, which reflects the complex relations in file
system configurations.

Figure 1 (a) shows a concrete example where a bug de-
pends on a file system parameter to trigger. In this case,
the Ext4 file system has the resize_inode parameter
enabled (Step I). In case of an unfortunate corruption, the
reserved_gdt_blocks field in the superblock is changed
to zero and the double_indirect_block in inode 7
(i.e., resize inode) also becomes zero (Step II). In this sce-
nario, e2fsck performs an incorrect repair by clearing the
resize_inode, and aborts with an error.

Note that a bug may depend on more than one file system
parameters. As shown in the second column of Table V, there
are 16 cases in total which depend on multiple file system
parameters for manifestation.

(2) 30.5% bugs depend on application parameters. As
shown in the fourth column of Table IV, 18 bugs in total
require specific application parameters to trigger, including 5
from 1FSCK and 13 from 3SIZE. Moreover, Table V further
shows that among the 16 cases, 13 of them depend on single
application parameter and 3 of them depend on multiple
application parameters.

(3) 27.1% bugs depend on both file system and application
parameters. Among all the bugs that depend on parameters,
16 are particularly tricky as they cannot be triggered without
specific file system parameters and application parameters.

(4) 39.0% bugs depend on workloads. Moreover, we find

dependent on the inline_data feature as well as a specific
workload. In this case, the inline_data feature is disabled
in the superblock (‘False’). The workload creates a file (inode
12) with 40B data (‘size=40B’), and the iflag (meaning
“inline_data flag”) in the inode is also unset by default
(Step I). In case of corruption, the iflag may be corrupted
(‘iflag=0x10000000’). In an attempt to fix the corruption (Step
IIl), e2fsck mistakenly enables the inline_data in the
superblock (‘True’), while disabling the i flag of the inode
(‘iflag=0x0’) and removing the data from the inode (‘size=0’),
which leads to data loss.

Such workload-dependent bugs are particularly difficult to
trigger because there are numerous ways of using file systems
in practice. Therefore, systematic approaches to generate ef-
fective workload operations are likely needed for addressing
the issue.

(5) 22.0% bugs depend on corruption. As shown in the
last column of Table IV, 13 bugs require specific corruption
for triggering the bug. In fact, both the examples in Figure 1
fall in this category. In both of the example cases, specific
corruptions are needed to trigger the bugs, i.e., corruption in
reserved_gdt_blk and corruption in iflag for Figure 1
(a) and (b), respectively. This is reasonable because file system
checkers are designed to scan and fix corrupted images, certain
functionalities (and the latent bugs) may only be triggered
when processing specific metadata corruption scenarios.

(6) 55.9% reproduced bugs can be detected via 2 general
rules. As mentioned in §III-A, we were able to reproduce
34 (57.6%) bug cases successfully in our experimental en-
vironment. Most interestingly, we find that among the 34
reproducible cases, 19 of them can be detected via two simple
rules once they are triggered.

As summarized in Table VI, the first rule (R;) means
checking the return code of application, which allows us to

detect 4 bugs in total. This is consistent with the previous
finding that error checking code is often not implemented
properly [29]. The second rule (R2) means comparing the
execution results of multiple runs of the FSCK application,
which is useful because FSCK may generate partial fixes [12].

D. Implications

Based on the findings above, we discuss multiple important
implications for researchers and practitioners to improve FS-
aware storage applications below:

Bug Detection. Great efforts have been made to detect bugs
proactively in storage applications [12], [13], [15], [16], [30].
For example, Carreira et al.use a mix of symbolic and con-
crete execution to test three FS checkers (i.e., e2fsck [26],
reiserfsck [31], fsck.minix [32]) and find bugs in all
of them [12]; Om et al.apply fault injections to test the fault
resilience of multiple file system checkers [13]; Xu et al.apply
feedback-driven fuzzing to file systems and expose various
issues including 2 bugs in e2fsck [30].

Nevertheless, our study reveals that many issues in FS-aware
storage applications require specific conditions to manifest
(e.g., specific file system parameters or corruptions), which
are agnostic to many of the existing bug detectors to the
best of our knowledge. In other words, the coverage of
many existing bug detectors are fundamentally limited because
they do not consider the necessary bug triggering conditions.
By demonstrating the general characteristics as well as the
reproducibility of bug cases, our study could potentially help
improve the coverage and effectiveness of bug detectors for
storage applications, which we leave as future work.

Debugging Tools. Once a failure symptom is observed in
practice, it is necessary to diagnose the root cause (i.e.,
the fault/bug that caused the failure), which is notoriously
difficult and time-consuming. Many debugging tools have been
developed to facilitate the diagnosis procedure [33], [34]. For
example, GDB [33] is the de facto way to debugging many
software failures, which requires substantial manual interac-
tions. Besides GDB, there are many other prototypes pro-
posed to automate the debugging procedure further, including
record-and-replay based approaches (e.g., PANDA[34]) and
program slicing based approaches (e.g., FailureSketching[17],
REPT([35], Giri [36])

Nevertheless, most existing approaches assume that the fail-
ure can be reproduced reliably and consistently, which is not
necessarily the case in practice. As demonstrated in our study,
triggering bugs in FS-aware storage applications may require
many conditions, which is essential for debugging the failures
caused by such bugs. Our results suggest that constantly
monitoring system environments (e.g., file system parameters)
and/or tracking data provenance (e.g., lineage of application
parameters) might be needed in order to provide sufficient
information for reproducing failure scenarios involving FS-
aware storage applications.

Provenance Tools. In addition to traditional debuggers, many
provenance-based approaches have been proposed for under-

standing various system behaviors including bug-induced fail-
ures [18], [19], [37]-[43]. For example, PASS & PASS v2 [18],
[37] collects file system level provenance for understanding
the transformations of data in the system transparently. More
recently, Hu er al. use provenance to help scientists debug
their workflows efficiently [19]; Lineage Stash [40] uses prove-
nance in a record & replay manner to handle distributed system
failures; Han et al. apply provenance-based fault detection in
cloud environment [41].

Our study suggests that it is important for provenance tools
to capture parameter information of the system or application.
Moreover, since FS-aware storage applications often involve
multiple programs (e.g., file systems and their utility appli-
cations), it is desirable to capture the correlation between
different programs in the provenance. This implies that con-
solidating individual provenances from different programs is
likely needed, which we leave as future work.

IV. RELATED WORK

In this section, we discuss related work that has not been
covered sufficiently in previous sections, which can be roughly
classified into two categories as follows:

Studies of Software Bugs and Storage System Failures.
Many researchers have performed empirical studies on the
characteristics of bugs in open source software [20]-[25], [44],
[45]. For example, Lu et al. [20] studied 105 concurrency
bugs and found that atomicity-violation and order-violation are
the two most common patterns; Chen et al. [23] studied 141
Linux kernel bugs and identified their security implications;
Thanumalayan et al. [46] studied application level crash-
consistency protocols and find a total of 60 vulnerabilities,
many of which lead to severe consequences; Duo er al. [25]
studied 1,350 PM-related kernel patches including about 300
bug cases and derived multiple insights in terms of patch
characterization, bug patterns, fix strategies, etc. Our study
is complementary to the existing efforts as we focus on bugs
in important file-system aware storage applications.

One recent work [45] studied the configuration issues in file
system ecosystems involving three FS-aware storage applica-
tions. Similar to our work, they also recognize the importance
of user-level storage applications. Different from our work,
they focus on deriving the configuration dependencies for file
systems instead of the reproducibility of bug cases. Therefore,
these two works are complementary.

In addition to bug studies, researchers have also studied
the failures of storage systems [47]-[52]. For example, Xu et
al. [48] studied SSD-related failures in Alibaba cloud storage.
Gunawi et al. [47] studied real-world failures of cloud storage
services and found that many root causes were not specified
well. Han et al. [52] analyzed the inconsistent checking and
repairing of parallel file systems under failures. In general,
these system failure studies are orthogonal our study as they
do not investigate the source code level bug patterns or
reproducibility of the cases. On the other hand, our study on
the bug patterns of storage software and triggering conditions

may help understand the root causes of the failure symptoms
observed in the real world.

Reliability Tools for Improving Storage Systems. Many
tools have been built to improve the robustness of storage
software systems [7], [11]-[13], [51], [53]-[61]. For example,
Spiffy [7] creates an annotation language for specifying file
system formats and facilitates creating robust storage applica-
tions; SQCK [11] proposes an elegant design for file system
checkers based on a declarative query language; RFSCK [60]
provides a transactional library to strengthen the resilience
of file system checkers; PFault [59] injects multiple types
of faults to understand the failure handling of parallel file
systems.

In general, these tooling efforts are orthogonal to ours
which focus on understanding the characteristics of bugs in
the storage applications. On the other hand, as elaborated in
§III-D, a better understanding of bug characteristics enabled by
our work will likely help improve the effectiveness of existing
and future tools further.

V. CONCLUSION & FUTURE WORK

We have presented a comprehensive study on the real-world
bug cases of representative file-system aware storage appli-
cations including two file system checkers, one file system
resizer, and one degragmentation tool. We have identified a
number of unique bug patterns including the inconsistencies
between the application logic and the file system features.
Moreover, we have found that four conditions are critically
important for the manifestation of the bugs. Based on the
identified bug patterns and critical triggering conditions, we
derived multiple implications for building relevant tools in-
cluding bug detectors, debugging tools, and provenance tools.

In the future, we plan to incorporate the insights derived
from the study into the development of effective bug detection,
debugging, and provenance tools. We hope that this study as
well as the resulting artifact could contribute to the evolution
of robust storage applications in general.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful feedback. We also thank Wei Xu, Haolun
Ping, Carson Love, Ryan Bumann, Jahid Hasan, Kajal Kat-
tige for their help on reproducing a few bug cases and/or
validating relevant test suites. This work was supported in
part by National Science Foundation (NSF) under grants CNS-
1566554/1855565, CCF-1717630/1853714, CCF-1910747 and
CNS-1943204. Runzhou Han was supported in part by an
internship from Samsung. Any opinions, findings, and con-
clusions expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES

[11 E2fsprogs: Ext2/3/4 Filesystem Utilities, http://e2fsprogs.sourceforge.
net/.

[2] chkdsk, https://www.makeuseof.com/recent- update - windows- 10-
unexpected-bug/.

(3]

[4]

[3]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

(25]

(26]

[27]

(28]

A. Ma et al., “Ffsck: The fast file system checker,” in Presented as
part of the 11th USENIX Conference on File and Storage Technologies
(FAST’13), 2013.

D. Domingo et al., “pFSCK: Accelerating File System Checking and
Repair for Modern Storage,” in /9th USENIX Conference on File and
Storage Technologies (FAST’21), 2021.

Microsoft Drive Optimizer, https://en.wikipedia.org/wiki/Microsoft_
Drive_Optimizer.

Data Recovery Softwares, https://7datarecovery.com/best-recovery-
apps/.

K. Sun et al., “Spiffy: Enabling file-system aware storage applica-
tions,” in 16th USENIX Conference on File and Storage Technologies
(FAST’18), 2018.

Windows 10 20H2: ChkDsk damages file system on SSDs with Update
KB4592438 installed, https://borncity.com/win/2020/12/18/windows-
10 - 20h2 - chkdsk - damages - file - system - on - ssds - with - update -
kb4592438-installed/.

Windows 10 2004/20H2: Microsoft fixes chkdsk issue in update
KB4592438, https://borncity.com/win/2020/12/21/windows- 10-
2004-20h2- microsoft-fixes-chkdsk-issue-in-update-kb4592438/.
Microsoft Issues Hotfix For Windows 10 Chkdsk BSODs And SSD File
System Corruption, https://hothardware.com/news/microsoft-issues-
fix-for-windows- 10-chkdsk-bsods-and-disk-corruption.

H. S. Gunawi et al., “Sqck: A declarative file system checker,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08), 2008.

J. C. M. Carreira et al., “Scalable Testing of File System Checkers,”
in Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys’12), 2012.

O. R. Gatla et al., “Towards robust file system checkers,” in 16th
USENIX Conference on File and Storage Technologies (FAST’18),
2018.

Recent Update to Windows 10 Introduces Unexpected System Utility
Bug, https : // docs . microsoft . com / en - us / windows - server /
administration/windows-commands/chkdsk.

e2fuzz: Create a tool to fuzz ext* filesystems, https://patchwork.ozlabs.
org/project/linux- ext4/patch/20140718225544.31374.24010.stgit @
birch.djwong.org/.

W. Xu et al., “Fuzzing File Systems via Two-Dimensional Input Space
Exploration,” in Proceedings of the 40th IEEE Symposium on Security
and Privacy (S&P’19), 2019.

B. Kasikci et al., “Failure sketching: A technique for automated root
cause diagnosis of in-production failures,” in Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP’15), 2015.
K.-K. Muniswamy-Reddy e? al., “Provenance-aware storage systems,”
in Proceedings of the 6th Annual Conference on USENIX Annual
Technical Conference (ATC’06), 2006.

J. Hu et al., “Improving data scientist efficiency with provenance,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE’20), 2020.

S. Lu et al., “Learning from Mistakes: A Comprehensive Study
on Real World Concurrency Bug Characteristics,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’08), 2008.
L. Lu et al., “A Study of Linux File System Evolution,” in Proceed-
ings of the 11th USENIX Conference on File and Storage Technologies
(FAST’13), 2013.

A. Chou et al., “An Empirical Study of Operating Systems Errors,”
in Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), 2001.

H. Chen et al., “Linux Kernel Vulnerabilities: State-of-the-art De-
fenses and Open Problems,” in Proceedings of the 2nd Asia-Pacific
Workshop on Systems (APSys’11), 2011.

H. S. Gunawi et al., “What Bugs Live in the Cloud? A Study of 3000+
Issues in Cloud Systems,” in Proceedings of the ACM Symposium on
Cloud Computing (SoCC’14), 2014.

D. Zhang et al., “A study of persistent memory bugs in the linux
kernel,” in Proceedings of the 14th ACM International Systems and
Storage Conference (SYSTOR’21), 2021.

e2fsck: check ext2/3/4 file system, https://linux.die.net/man/8/e2fsck.
resize2fs: ext2/ext3/ext4 file system resizer, https://linux.die.net/man/
8/resize2fs.

e2freefrag: report free space fragmentation information, https://linux.
die.net/man/8/e2freefrag.

 http://e2fsprogs.sourceforge.net/
 http://e2fsprogs.sourceforge.net/
https://www.makeuseof.com/recent-update-windows-10-unexpected-bug/
https://www.makeuseof.com/recent-update-windows-10-unexpected-bug/
https://en.wikipedia.org/wiki/Microsoft_Drive_Optimizer
https://en.wikipedia.org/wiki/Microsoft_Drive_Optimizer
https://7datarecovery.com/best-recovery-apps/
https://7datarecovery.com/best-recovery-apps/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://hothardware.com/news/microsoft-issues-fix-for-windows-10-chkdsk-bsods-and-disk-corruption
https://hothardware.com/news/microsoft-issues-fix-for-windows-10-chkdsk-bsods-and-disk-corruption
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://patchwork.ozlabs.org/project/linux-ext4/patch/20140718225544.31374.24010.stgit@birch.djwong.org/
https://patchwork.ozlabs.org/project/linux-ext4/patch/20140718225544.31374.24010.stgit@birch.djwong.org/
https://patchwork.ozlabs.org/project/linux-ext4/patch/20140718225544.31374.24010.stgit@birch.djwong.org/
https://linux.die.net/man/8/e2fsck
https://linux.die.net/man/8/resize2fs
https://linux.die.net/man/8/resize2fs
https://linux.die.net/man/8/e2freefrag
https://linux.die.net/man/8/e2freefrag

[29]

[30]

[31]
[32]
(33]
[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

D. Yuan et al., “Simple testing can prevent most critical failures: an
analysis of production failures in distributed data-intensive systems,”
in Proceedings of the 11th USENIX conference on Operating Systems
Design and Implementation (OSDI’14), 2014.

S. Kim et al., “Finding Semantic Bugs in File Systems with an
Extensible Fuzzing Framework,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19), 2019.
Reiserfsck, http://manpages . ubuntu.com/manpages/xenial/man8/
reiserfsck.8.html/.

[fsck.minix: check consistency of Minix filesystem, https://man7.org/
linux/man-pages/man8/fsck.minix.8.html.

GDB: The GNU Project Debugger, https://www.gnu.org/software/
gdb/.

B. Dolan-Gavitt et al., “Repeatable reverse engineering with panda,”
in 5th Program Protection and Reverse Engineering Workshop, 2015.
W. Cui et al., “Rept: Reverse debugging of failures in deployed soft-
ware,” in Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18), 2018.

S. K. Sahoo et al., “Using Likely Invariants for Automated Software
Fault Localization,” in n Proceedings of the 18th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’13), 2013.

K.-K. Muniswamy-Reddy et al., “Layering in Provenance Systems,”
in Proceedings of the 2009 Conference on USENIX Annual Technical
Conference (ATC’09), 2009.

Y. Wu et al., “Diagnosing missing events in distributed systems with
negative provenance,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 383-394, 2014. por: 10.1145/2740070.2626335.
A. Tabiban er al., “ProvTalk: Towards Interpretable Multi-level
Provenance Analysis in Networking Functions Virtualization (NFV),”
in The Network and Distributed System Security Symposium 2022
(NDSS’22), 2022.

S. Wang et al., “Lineage stash: fault tolerance off the critical path,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles(SOSP’19), 2019.

X. Han et al., “FRAPpuccino: Fault-detection through Runtime Anal-
ysis of Provenance,” in 9th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud’17), 2017.

T. Pasquier et al., “Practical Whole-System Provenance Capture,” in
Proceedings of the 2017 Symposium on Cloud Computing (SoCC’17),
2017.

R. Han et al., “PROV-1IO: An I/O-Centric Provenance Framework
for Scientific Data on HPC Systems,” in The 31st International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC’22), 2022.

D. Lazar et al., “Why does Cryptographic Software Fail? A Case
Study and Open Problems,” in Proceedings of 5th Asia-Pacific Work-
shop on Systems (APSys’14), 2014.

T. Mahmud et al., “Understanding Configuration Dependencies of File
Systems,” in Proceedings of the 13th ACM Workshop on Hot Topics
in Storage and File Systems (HotStorage’22), 2022.

T. S. Pillai et al., “All File Systems Are Not Created Equal: On the
Complexity of Crafting Crash-Consistent Applications,” in Proceed-
ings of the 11th USENIX conference on Operating Systems Design
and Implementation (OSDI), 2014.

H. S. Gunawi et al., “Why Does the Cloud Stop Computing? Lessons
from Hundreds of Service Outages,” in Proceedings of the 7th ACM
Symposium on Cloud Computing (SoCC), 2016.

E. Xu et al., “Lessons and Actions: What we Learned from 10K SSD-
related Storage System Failures,” in Proceedings of the 2019 USENIX
Annual Technical Conference (ATC), 2019.

H. S. Gunawi et al., “Fail-slow at Scale: Evidence of Hardware Per-
formance Faults in Large Production Systems,” in ACM Transactions
on Storage (TOS), 2018.

E. Xu et al., “Understanding SSD Reliability in Large-scale Cloud
Systems,” in Proceedings of the 3rd IEEE/ACM International Work-
shop on Parallel Data Storage & Data Intensive Scalable Computing
Systems (PDSW), 2018.

M. Zheng et al., “Reliability Analysis of SSDs under Power Fault,”
in ACM Transactions on Computer Systems (TOCS), 2017. [Online].
Available: http://dx.doi.org/10.1145/2992782.

R. Han et al., “Fingerprinting the checker policies of parallel file sys-
tems,” in 2020 IEEE/ACM Fifth International Parallel Data Systems

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

Workshop (PDSW), 2020, pp. 46-51. Do1: 10.1109/PDSWS51947.
2020.00013.

J. Cao et al., “PFault: A General Framework for Analyzing the Relia-
bility of High-Performance Parallel File Systems,” in Proceedings of
the 2018 International Conference on Supercomputing (ICS), 2018,
pp. 1-11. poI: 10.1145/3205289.3205302.

D. Zhang et al., “Benchmarking for Observability: The Case of Diag-
nosing Storage Failures,” BenchCouncil Transactions on Benchmarks,
Standards and Evaluations (TBench), vol. 1, no. 1, 2021.

D. Zhang et al., “SentiLog: Anomaly detecting on parallel file systems
via log-based sentiment analysis,” in Proceedings of the 13th ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage’21),
2021, pp. 86-93.

M. Zheng et al., “Understanding the robustness of SSDs under power
fault,” in Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST’13), 2013.

M. Zheng et al., “Torturing Databases for Fun and Profit,” in //th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 14), 2014, pp. 449-464, 1SBN: 978-1-931971-16-4.

O. R. Gatla et al., “Understanding the fault resilience of file system
checkers,” in Proceedings of the 9th USENIX Conference on Hot
Topics in Storage and File Systems (HotStorage’17), 2017. DOI: 10.
5555/3154601.3154608.

R. Han et al., “A Study of Failure Recovery and Logging of High-
Performance Parallel File Systems,” ACM Transactions on Storage
(TOS), vol. 18, no. 2, 2022, 1SSN: 1553-3077. DOT: 10.1145/3483447.
[Online]. Available: https://doi.org/10.1145/3483447.

O. R. Gatla er al., “Towards robust file system checkers,” ACM
Transactions on Storage (TOS), vol. 14, no. 4, 2018. por: 10.1145/
3281031.

J. Cao et al., “A generic framework for testing parallel file systems,” in
2016 1st Joint International Workshop on Parallel Data Storage and
data Intensive Scalable Computing Systems (PDSW-DISCS), 2016.
DOI: 10.1109/PDSW-DISCS.2016.013.

http://manpages.ubuntu.com/manpages/xenial/man8/reiserfsck.8.html/
http://manpages.ubuntu.com/manpages/xenial/man8/reiserfsck.8.html/
https://man7.org/linux/man-pages/man8/fsck.minix.8.html
https://man7.org/linux/man-pages/man8/fsck.minix.8.html
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://doi.org/10.1145/2740070.2626335
http://dx.doi.org/10.1145/2992782
https://doi.org/10.1109/PDSW51947.2020.00013
https://doi.org/10.1109/PDSW51947.2020.00013
https://doi.org/10.1145/3205289.3205302
https://doi.org/10.5555/3154601.3154608
https://doi.org/10.5555/3154601.3154608
https://doi.org/10.1145/3483447
https://doi.org/10.1145/3483447
https://doi.org/10.1145/3281031
https://doi.org/10.1145/3281031
https://doi.org/10.1109/PDSW-DISCS.2016.013

	Introduction
	Methodology
	Dataset Collection
	Dataset Analysis
	Limitations

	Study Results
	Overview
	General Patterns
	Triggering Conditions
	Implications

	Related Work
	Conclusion & Future Work

