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Abstract

Today’s computing systems pay a heavy “OS tax”, as ker-
nel execution accounts for a significant amount of resource
footprint. This is not least because today’s kernels abound
with hardcoded heuristics that are designed with unstated
assumptions, which rarely generalize well for diversifying
applications and device technologies.

We propose the concept of reconfigurable kernel datap-
aths that enables kernels to self-optimize dynamically. In
this architecture, optimizations are computed from empirical
data using machine learning (ML), and they are integrated
into the kernel in a safe and systematic manner via an in-
kernel virtual machine. This virtual machine implements the
reconfigurable match table (RMT) abstraction, where tables
are installed into the kernel at points where performance-
critical events occur, matches look up the current execution
context, and actions encode context-specific optimizations
computed by ML, which may further vary from applica-
tion to application. Our envisioned architecture will support
both offline and online learning algorithms, as well as var-
ied kernel subsystems. An RMT verifier will check program
well-formedness and model efficiency before admitting an
RMT program to the kernel. An admitted program can be
interpreted in bytecode or just-in-time compiled to optimize
the kernel datapaths.
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1 Introduction

Operating system kernels are being stressed from above and
below. As a general-purpose resource manager, the OS kernel
needs to support different applications, and it needs to mul-
tiplex different types of hardware platforms. As of late, both
applications and hardware platforms are diversifying rapidly.
On the applications side, for instance, container or microser-
vice workloads are latency-sensitive, while MapReduce-like
data processing jobs are throughput-oriented with intensive
IO requirements (e.g., for bulk synchronization, checkpoint-
ing, or recovery). Home user applications (e.g., document or
photo editing software) are yet another class, with their own
complex disk IO patterns [25] and frequent interactions with
the cloud. This complexity ensures that no one-size-fits-all
optimization strategy exists that would simultaneously work
well for all scenarios.

Likewise, hardware technologies are developing faster
than the software system stack [7], with characteristics that
differ from generation to generation, and from vendor to
vendor within each generation. The best IO scheduling al-
gorithms for hard disks will inevitably underperform for
both SSDs and density-optimized shingled disks. To compli-
cate this picture even further, devices are becoming smarter,
enclosing embedded controllers that run proprietary algo-
rithms for local management. Having these uncontrolled,
blackbox code running in the devices may confound even
the best-tuned kernel optimizations.

The confluence of these two trends calls for a fundamen-
tal rethink as to how the OS kernel should specialize for a
particular scenario in order to perform well, and how these
specializations should generalize for unseen scenarios that



may arise. Two recent approaches can be viewed as approx-
imating this goal. The kernel bypass approach argues that
resource management is best left to the application. User-
land applications are given direct access to network cards
or disks (e.g., using DPDK/SPDK), and they implement their
own optimizations as needed. Alternatively, eBPF allows an
application to dynamically inject constrained code into the
kernel for customization, aiming to achieve similar effects.
However, neither approach answers the question as to what
optimizations should be implemented when. Applications
may not have sufficient knowledge about the entire software
and hardware stack (or even about their own behaviors) to
adequately implement good optimizations, and any changes
may be invalidated by new hardware. When individual appli-
cations choose their own strategies, the kernel also loses its
centralized view needed for cross-application optimizations.

Our vision: Reconfigurable kernel datapaths. In this
paper, we advocate for a fundamentally different approach,
and provide an answer that draws inspiration from two lines
of recent work—the increasingly powerful set of machine
learning (ML) techniques, and the efforts in specializing net-
work stacks with reconfigurable match table (RMT). Our key
idea is to develop reconfigurable kernel datapaths, where the
mechanisms are based on an RMT-style architecture in the
kernel, and the policies are learned using ML. The OS kernel
dynamically discovers the best policies for each scenario in
the form of an RMT program, and enforces these policies by
configuring the in-kernel virtual machine. By translating this
programmable yet lightweight primitive into the OS kernel,
we provide an architecture that allows for varied types of
adaptivity. By harnessing the power of ML, we can eliminate
many best-effort heuristics that abound in today’s kernel
datapaths, and enable optimizations to generalize to unseen
applications, workloads, or hardware platforms.

Application-specific kernel optimizations and extensions
were well explored in the 1990s. Exokernel [19] argues for
eliminating OS abstractions entirely and leaving their imple-
mentations to the applications. SPIN [9], on the other hand,
allows applications to inject safe code into the kernel for
dynamic extension. They share similar limitations as their
modern equivalents with kernel bypass and eBPF injection.
In contrast, a key goal of our idea is to automatically identify
kernel optimizations via ML-based reconfiguration, so ap-
plications no longer have to specialize the kernel in one-off
manners.

Research challenges. Realizing our vision of reconfig-
urable kernel datapaths requires tackling a wide range of
challenges: architecting an RMT-style virtual machine into
the kernel, developing lightweight in-kernel learning algo-
rithms, and applying the architecture to key kernel subsys-
tems (e.g., scheduling, memory management, file systems,
networking). We hope to make a notable dent in reducing the
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OS tax: it has been reported that kernel execution accounts
for 20% of data center CPU cycles [28] while data centers rep-
resent 1% of worldwide electricity consumption [1]. There-
fore, improving the efficiency of OS kernels has significant
implications for a wide range of deployment scenarios.

2 Motivation

Machine learning techniques have produced early but suc-
cessful results in computer systems, replacing well-tuned
index structures for data retrieval [29], predicting hardware
device state for better management [24], and managing C++
object memory efficiently [39]. Zhang and Huang [54] have
argued that ML should be applied to the OS kernel as well.
Our idea is inspired by this work, and it proposes a system-
atic approach to integrate ML into the kernel via an RMT
virtual machine.

2.1 Envisioned benefits

We believe that reconfigurable kernel datapaths has the po-
tential to unleash four classes of benefits that are hard to
achieve in today’s OS kernels.

#1. Lean monitoring: Operating system kernels employ
a large set of runtime monitors, which aim at characterizing
current workloads and activating different built-in heuristics.
These monitoring events, however, introduce cache pollution,
runtime overhead, and in some cases, they work by inten-
tionally causing some performance degradation. An example
of the latter is the CPU scheduler on a NUMA machine—
in order to detect memory affinity, the scheduler needs to
monitor a thread’s page-level access pattern; Linux does this
by periodically unmapping a process’s pages, so that the
kernel can trap the page faults and monitor access locations.
By introducing ML, we can potentially enable the kernel to
reduce the amount of necessary monitoring. For instance,
a feature selection process using feature importance rank-
ing [33] may allow the kernel to forego the monitoring of
events that contribute little useful information.

#2. Better configurations: The wide range of heuristics
and configuration parameters in the OS kernel may not be
optimal; tuning kernel parameters to achieve better configu-
rations is also a challenging task. Moreover, heuristics are
activated only after a bootstrapping phase (e.g., is this partic-
ular thread I/O bound? then increase its scheduling priority).
In our design, ML algorithms should be able to explore a
broader range of decision making strategies, resulting in bet-
ter configuration parameters, informed policies, and higher
performance. The bootstrapping phase may be shortened
or even eliminated if the OS kernel can predict application
behaviors, activating a suitable configuration as soon as an
application starts. Configuration parameters and policies can
also be tuned at runtime as an application runs, instead of
being statically configured into the kernel.



#3. Generalization: Another powerful feature of ML is
its ability to generalize to unseen data points [38] for certain
tasks. Replacing handcrafted, ad-hoc heuristics in the kernel
with ML models could lead to more robust decisions. In to-
day’s kernels, applications that exhibit new behaviors, not
captured by existing heuristics, often have opaque and un-
predictable performance. These performance cliffs are only
caught and fixed slowly by the kernel development commu-
nity over time by extensive, and often application-specific,
benchmarking.

#4. Cross-application optimization: Moreover, our vi-
sion enables the kernel to learn the behaviors of multiple
applications, how they relate to each other, as well as op-
portunities for joint optimizations. These cross-application
optimizations will lead to better system-wide resource alloca-
tion. As an example, monitoring may detect that tasks exhibit
producer-consumer behaviors, and activate optimizations
for their efficient communication.

Of course, ML is not a silver bullet—in general, one needs
to be judicious in matching the right learning techniques
with the right problems [38]. The same principle should hold
for the OS kernel: the effectiveness of ML will naturally vary
based on the tasks at hand, and in certain cases, well-tuned
heuristics may already go a long way. Our position is that
ML techniques hold significant promise in the context of the
OS kernel, and this paper serves as a call to arms for a more
thorough investigation.

2.2 Why RMT?

In order to leverage ML, we need a suitable architecture for
its integration into the kernel. Such an architecture must
satisfy a set of properties:

o Sufficiently general: We need a generic architecture
that can represent different types of reconfiguration
requirements, for varied kernel components, and also
for different phases of learning (e.g., data collection,
training, and inference).

e Restricted: The form of reconfiguration must be re-

stricted, so that one can easily reason about and verify

the correctness of a configuration before installing it
to the kernel.

Lightweight: It should enable efficient reconfigura-

tion with small runtime overhead. Ideally, it should be

hardware-friendly so that it can be feasibly integrated
to CPU architectures, just like how page table walkers
have been standardized into hardware.

Our proposed answer is based on reconfigurable match
table (RMT), a recent development in the networking com-
munity to specialize network data planes. An RMT program
consists of a pipeline of reconfigurable tables where spe-
cialized packet processing occurs. The execution of a table
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#include <linux/rmt.h> \

ineludel
#include “rmt_helpers.h’ \‘ O |:>

rmt_table page_access_tab = { \
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.action = data_collection(); ‘\ F
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struct page* swap_cluster_readahead {
/I hooking: page_prefetch_tab T
& \

\

rmt_table page_prefetch_tab = {
.loc = swap_cluster_readahead;
.match = pid;
.action = ml_prediction();
}: Il page prefetch prediction
rmt_ml_dtdt 1={
.split_rule = gini_index;
.data = page_access_tab.action;
}; /' ml model configuration

Kernel ML

st
<’/

vV

int rmt_prefetch_prog {
/I configure RMT tables
page_access_entry a1 = {.pid =

56; .f_0=true; .f_1 =false;}; | Integer SVM _ Decision tree
page_prefetch_entry p1 = {.pid = 1 )
56; .ml = dt_1;}; H ’
page_access_tab.insert(al); 1 X
! Quantized DNN

page_prefetch_tab.insert(p1); i

}

Figure 1: In-kernel RMT virtual machine.

performs matches that check one or more packet header
fields and triggers actions to activate different processings
based on the match results. The RMT programming model is
restricted yet general enough for a wide range of reconfigu-
ration scenarios, and has been demonstrated to be feasible at
high speeds (Tbps). These properties make RMT an attractive
candidate for in-kernel reconfiguration, where analogies ex-
ist: tables are the decision points (e.g., prefetching), matches
check on the current execution environment (e.g., past access
patterns), and actions consult an ML model (e.g., predicting
the next set of pages to prefetch).

3 Reconfigurable Kernel Datapaths

In this section, we describe our design, its research chal-
lenges, and the tentative solutions.

3.1 The in-kernel RMT virtual machine

An RMT program is produced by machine learning from past
or current runs, and it is injected to the kernel from user-
land. The program runs in the virtual machine in interpreted
mode or it is just-in-time (JIT) compiled to machine code
for efficiency. Many mechanisms are akin to eBPF [49], but
RMT programs take a different form than eBPF as they are
customized for machine learning.

RMT programs. The key building block of an RMT pro-
gram is a pipeline of match/action tables. Each table repre-
sents a kernel hooking point, which may trigger data col-
lection about the current execution, intercept performance-
critical kernel events, or consult ML models based on the
execution context. An RMT program can be written in con-
strained C or a domain-specific language and compiled into
machine-independent bytecode, and installed via a system
call. A program verifier checks well-formedness and bounded



execution, and it prevents arbitrary kernel calls or data mod-
ification. The RMT bytecode can further be JIT compiled
directly to machine code for efficiency. At runtime, an RMT
program has access to a constrained set of kernel functions
that are dedicated to learning and inference. It also has access
to kernel memory that stores execution context, historical
data, and the ML models themselves.

Tables. Each table represents a key decision point in the
kernel datapath—i.e., the critical paths for kernel execution
and adaptivity. The number of tables, the types of deci-
sions, and where to install these tables, are configurable.
For instance, rmt_table page_patterns may be inserted
in the lookup_swap_cache function in the memory subsys-
tem to collect data about page access patterns in the swap
area; later, rmt_table page_prefetch is inserted in the
swap_cluster_readahead function to predict the next set
of pages to prefetch. Each table contains a set of match/action
entries, which can be statically encoded in the RMT program
or dynamically inserted or removed via an API at runtime.

Match/action entries. Each entry represents a decision
control flow. For instance, to collect per-file access patterns,
new entries are inserted when a file is opened. Another set of
entries may monitor per-application patterns, where entries
are inserted when applications are created. The match fields
of the entry control the pattern matching methods—e.g., in-
ode numbers for per-file entries, and PIDs for per-application
entries. Entries may also be aggregates, e.g., per subdirectory
or cgroup. We call these match fields the “execution context”,
and such information is organized in a key/value map of the
type RMT_CTXT and can be retrieved using a match key. In
essence, the execution context is akin to today’s kernel mon-
itoring data, but the pattern match strips away unnecessary
monitoring and only preserves monitors critical to decision
making. This is also constant-time in a system-wide manner
without having to walk complex kernel data structures. Un-
der the hood, table matches are compiled into RMT bytecode
instructions, such as memory accesses (e.g., RMT_LD_CTXT)
and compute instructions (e.g., RMT_MATCH_CTXT). An action
may modify the execution context (e.g., append to access
pattern history) using instructions like RMT_ST_CTXT, or it
may call into an ML model using CALL instructions.

Updating RMT entries. The RMT datapath represent
decision points, but their policies are reconfigured via the
control plane API. This API supports adding, removing, mod-
ifying match/action entries and ML models. For instance,
the ML training component may periodically update table
entries to reflect the latest monitoring data—e.g., by adding
extra table entries for newly started applications. Alterna-
tively, the control plane relies on past prediction accuracy
to detect workload changes and adjust the table entries. For
instance, if the prefetching accuracy falls below a threshold,
the control plane will recompute ML decisions to be more
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conservative in prefetching, and reconfigure the RMT tables
to reflect the workload changes.

RMT data structures. The virtual machine also provides
an additional set of data structures for in-kernel ML. This
includes data structures for monitoring purposes (e.g., akin
to different types of eBPF maps), as well as ones for training
and inference (e.g., decision trees, NNs). Standard interfaces
will be added to these data structures to make them accessible
to different kernel subsystems as well as the userspace.

3.2 Lightweight in-kernel ML

As discussed above, the library of ML data structures (e.g.,
conv_layer) and helper functions (e.g., matrix_multiply),
can help RMT programs to construct more complex ML mod-
els (e.g., action_cnn). These actions are also triggered from
RMT tables, and are compiled into RMT bytecode with a dedi-
cated ML instruction set (e.g., RMT_VECTOR_LD, RMT_MAT_MUL,
RMT_SCALAR_VAL), which is patterned after hardware ISA for
neural processors [36]. Models can be added to this library,
but they must satisfy a set of performance requirements
(e.g., the number of NN layers, memory accesses, or floating
point operations). The RMT verifier will statically check the
model—e.g., by computing the number of floating point oper-
ations for a convolutional layer using the height, width and
number of channels of the input feature map [41]—before JIT-
compiling it to machine code. After computing a prediction
result (e.g., page numbers to prefetch), ML-based actions will
EXIT the RMT pipeline and enter regular kernel execution.
Models can also be cascaded using TAIL_CALL when needed.
Several research challenges exist for in-kernel ML.

ML training. We aim to support both offline and online,
real-time training in the kernel. They involve different chal-
lenges. Offline training can be done in an asynchronous
manner, so it does not incur additional overhead to kernel
workloads. However, real-time training in an online manner
can better handle rapidly changing workloads and scenar-
ios [43]. In fact, real-time learning [2] is a recent trend in
the ML community, with many open problems and ongoing
research efforts. Its use in the OS kernel creates even more
challenges, especially with regard to latency. For instance, a
decision system for self-driving cars may take several mil-
liseconds, but the latency requirement for CPU scheduling
is on the order of microseconds. Moreover, offline training
can be performed in mature libraries and frameworks, and
it can benefit from GPU or TPU support. Online training
inside the OS kernel, on the other hand, may require the
use of floating point operations, which are by default dis-
abled in kernel execution. As enabling FPUs in-kernel would
create high overhead, a promising approach is to rely on
lightweight learning models, such as integer-based learn-
ing [17, 23, 50, 51]. As another approach, ML training could
be performed in real-time in userspace using floating point



operations, with models periodically quantized and pushed
to the kernel for inference.

ML inference. Unlike learning, ML inference must be
performed in the critical execution path, so it must be very
efficient. The overall performance gain will depend on the
tradeoff between inference overhead and prediction accuracy.
A well-established line of work relies on knowledge distil-
lation [16] to convert large “teacher” models to drastically
smaller “students” without sacrificing much in accuracy (e.g.,
simpler NNs or even decision trees). Distillation to inter-
pretable models like decision trees will also elucidate which
features are key to decision making, facilitating the goal of
“lean monitoring”. Feature importance ranking algorithms
are also useful for understanding the weights of the fea-
tures. Quantizing pretrained models for inference [50] has
also been shown to have good performance. Depending on
the kernel subsystem, inference could be performed locally
at CPUs, or in standalone or cache-coherent GPUs if the
round-trip time to and from the GPUs is acceptable for that
subsystem. If the training takes place in userspace, the model
can be periodically updated, quantized, and installed to the
kernel. When appropriate, inference results can be cached
and reused in a kernel subsystem without incurring repeated
queries. Moreover, the RMT program verifier should reason
about the efficiency of the ML models [3, 32] before admit-
ting them to the kernel. On-demand model compression [37]
techniques can also trim a model based on a specified perfor-
mance goal and resource constraints—e.g., as a subsequent
step that can be invoked from the RMT verifier.

Customized ML. When existing ML models cannot be
used out of the box, we also need to identify customized
models for each subsystem and task. In this direction, neural
architecture search (NAS) [27] is a method for searching for
an appropriate neural network architecture given a certain
data sample. It can automatically construct NNs with differ-
ent depths, widths, and hyperparameters using ML building
blocks (e.g., convolution layers) for a given task; such ar-
chitectures have been shown to have superior performance
on a range of tasks [15, 26, 34, 35, 46, 47]. NAS is usually a
time-consuming operation, so it is performed in an offline
training phase. Once a good neural network architecture has
been identified and trained, it can be installed to the kernel
for inference. At different RMT tables, hyper-parameter op-
timization [8] techniques will be applied to fine-tune their
models and meta learning (or “learning to learn”) [20] tech-
niques used to identify the best ML models to use. As another
form of ML customization, the OS kernel runs atop a diverse
range of hardware platforms (e.g., different ISAs, standalone
vs. cache-coherent GPUs, or specialized ML accelerators);
we should tune or and co-design the ML algorithms based on
the underlying platform [31], and automate the construction
of platform cost models [53].
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3.3 The RMT verifier

Any code that is downloaded into the kernel must be safe.
Like eBPF, the RMT virtual machine and verifier are key
to address safety concerns, such as ensuring that programs
which pass the check will only influence kernel decisions
in a constrained manner. While eBPF assumes that the in-
jected code is by nature untrusted user logic, in our case the
RMT programs are meant as system-level performance opti-
mizations injected by trusted users or system administrators.
Our RMT program verifier also needs to target its reasoning
on performance implications and handling the (sometimes)
opaque nature of ML models.

Performance interference. The verifier should prevent
an RMT program from inducing the kernel to enter undesir-
able states, e.g., one where resource allocations violate some
fair-share policies. For instance, if an RMT program aggres-
sively prefetches disk pages for a certain application, or it
always predicts that an application should be given more
hugepages, then the verifier may insert additional logic to
enforce rate limits.

Model safety. The line of work in adversarial machine
learning [11] has repeated shown that the blackbox nature
of ML models can sometimes be exploited by an attacker. In
this regard, the RMT verifier directly benefits from recent
work that aims to verify the correctness of ML models [44] or
add guardrails to blackbox inference to prevent worst-case
behaviors [40].

Privacy. If ML decisions are made in a cross-application
fashion, the verifier may also need to check that privacy
goals are met. For instance, it has been shown that the Linux
page cache can leak page-level access patterns via side chan-
nels [22]. In general, side channels and privacy leakage are
difficult to prevent in a shared-resource environment [30].
One idea is to introduce privacy mechanisms that ensure
RMT queries only leak data in well-understood ways. For
instance, if an RMT query returns some aggregate statistics,
we can leverage differential privacy (DP) [18] to noise the
outputs. In our design, the fact that queries occur at well-
defined points (i.e., each RMT table) is helpful for reasoning.
The kernel can maintain a “privacy budget”, in DP terms,
and subtract from this overall budget for each table match.

4 Initial Validation

We present our current progress. We have developed an in-
kernel RMT prototype that is hardcoded at specified hook
points in Linux kernel v5.9.15, and performed two case stud-
ies on page prefetching and CPU scheduling.

Case study #1. The Linux page prefetcher bridges the
speed difference between main memory and external disks.
The default readahead prefetcher [52] detects sequential page
accesses and prefetches the next set of pages. Recent work,



Benchmark | OpenCV video resize | Numpy matrix conv

Metric Linux | Leap | Ours | Linux | Leap | Ours
Accuracy (%) 40.69 | 45.40 | 78.89 | 12.50 | 48.86 | 92.91
Coverage (%) 65.09 | 66.81 | 84.13 | 19.28 | 65.62 | 88.51
Completion time (s) 24.60 | 23.02 | 17.79 | 31.74 | 17.48 | 13.90

Table 1: Case study: Page prefetching,.

Metric | Full-Featured MLP | Leaner-Featured MLP | Linux
Benchmark Acc (%) | JCT(s) | Acc (%) JCT (s) JCT (s)
Blackscholes 99.08 19.010 94.0 18.770 18.679
Streamcluster 99.38 58.136 94.3 57.387 57.362

Fib Calculation 99.81 19.567 99.7 19.533 19.543
Matrix Multiply 99.7 16.520 99.6 16.514 16.337

Table 2: Case study: Linux Scheduler.

Leap [4], has extended this to detect striding patterns. To
demonstrate the benefits of ML, we have developed a in-
kernel integer decision tree that can capture more complex
access patterns.

Our RMT pipeline collects page access traces for each pro-
cess for online training and inference. It trains a new decision
tree periodically in the background for each time window,
while discarding the old ones. Upon prefetching, another
RMT table queries the ML model to predict the next pages to
fetch. Figure 1 compares the performance of our infrastruc-
ture against Linux as well as Leap, using an OpenCV video
resizing application and a Numpy matrix convolution pro-
gram [12, 45]. The results show that the ML model leads to
accuracy improvements of 28%-80% compared to Linux and
23%-44% to Leap, cutting job completion times significantly.

Case study #2. The Linux Completely Fair Scheduler
(CFS) periodically migrates tasks across CPUs for load bal-
ancing, while taking into account a range of factors to avoid
performance regression. A recent project [14] shows that
an MLP (Multilayer Perceptron) ML model can mimic Linux
CFS decisions effectively. Our next case study investigates
this scenario using our infrastructure.

The can_migrate_task function in CFS calls into RMT
to query the ML model to predict whether or not a task
should be migrated. We first replicate the experiment in
[14] using our infrastructure for offloading training with
quantized models. Using the Blackscholes and other mod-
els in the PARSEC benchmark suite [10], as well as matrix
multiplication and Fibonacci calculation programs, our in-
frastructure achieves 99% prediction accuracy in mimicking
the Linux CFS decision similar as [14]. Next, we used the
scikit-learn toolbox to rank and identify two key features
for load balancing (out of 15 used in [14]) With this leaner
monitoring, our prototype still achieves 94+% accuracy; it
achieves competitive results in terms of job completion times.
Table 2 compares the performance of ML versus the Linux
CFS heuristics.

180

5 Related Work

ML for systems. ML has found applications in index re-
trieval [29], bloom filter queries [29], CPU scheduling [14],

C++ memory management [39], and many other contexts.
Zhang and Huang [54] argue for its use to optimize OS ker-
nels. The DBOS [13] project also proposes to build a data-
centric OS where components could be learned using ML.
Our project pursues a similar goal but it contributes a con-
crete proposal to integrate ML into the kernel based upon

the RMT architecture.

OS specialization. OS specialization [9, 19] has been a long-
standing goal in the community, and recently, eBPF has

gained popularity. In Hypercallbacks [6] and Hyperupcalls [5],
VMs use eBPF to inject untrusted code to the hypervisor for

policy enforcement. LBM [48], on the other hand, injects

protection programs into the kernel to defense against mali-
cious peripherals. Verification techniques have also been de-
veloped for eBPF programs [21] and their JIT compilers [42]

for high assurance of injected code. Our idea is inspired by

the eBPF infrastructure, but RMT programs are enhanced

with a dedicated ML instruction set and ML models, and

their verifier needs to check more advanced properties be-
yond bounded execution—such as ML model performance

and privacy goals.

6 Summary and Future Work

We have argued for a novel reconfigurable kernel datapaths
architecture based upon RMT that enables efficient machine
learning in OS kernels, and presented the research challenges
in RMT program design, in-kernel machine learning, and
program safety checks. We have also presented some initial
results with two case studies. Going forward, much is yet
to be done. Customizing ML techniques for different kernel
subsystems, striking a good balance between ML overheads
and prediction accuracy, when and how to invoke accelera-
tors like GPUs, as well as a full design and implementation
of RMT in the kernel, are all interesting avenues of research.

Overall, we believe that the use of in-kernel ML represents
an interesting point in the design space. Analogous to SPIN
and exokernel, such a design would account for application
diversity and the need for specialization. However, instead of
modifying the OS and allowing applications to take control
over policy decisions, the use of ML could result in more
robust kernel policies despite application differences. The use
of data-driven approaches also has the potential of placing
kernel optimizations on a firmer foundation than what exists
today.
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