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Abstract

Performance monitoring and diagnosis are essential for data

centers. The emergence of programmable switches has led to

the development of a slew of monitoring systems, but most of

them do not explicitly target posterior diagnosis. On one hand,

“query-driven” monitoring systems must be pre-configured

with a static query, but it is difficult to achieve high coverage

because the right query for posterior diagnosis may not be

known in advance. On the other hand, “blanket” monitoring

systems have high coverage as they always collect telemetry

data from all switches, but they collect excessive data. Spi-

derMon is a system that co-designs monitoring and posterior

diagnosis in a closed loop to achieve low overhead and high

coverage simultaneously, by leveraging “wait-for” relations

to guide its operations. We evaluate SpiderMon in both Tofino

hardware and BMv2 software switches and show that Spider-

Mon diagnoses performance problems accurately and quickly

with low overhead.

1 Introduction

An efficient network monitoring and diagnosis system are

essential to meeting the performance requirements of modern

applications. Since production clouds have stringent SLAs,

even a small network performance degradation may lead to

significant application slowdown [13, 30]. Many network

performance problems, such as high end-to-end latency, low

throughput, and packet drops [38], can be attributed to traffic

contention of some kind [4], although across scenarios, the

root causes for the contention are diverse (e.g., bursty UDP

traffic, ECMP load imbalance, and routing loops).

The emergence of programmable switches has led to a slew

of monitoring systems being developed [12, 16, 32, 33, 39, 44,

48], but most of them do not explicitly target posterior diagno-

sis. For instance, “query-driven” monitoring systems [16, 32]

need to be pre-configured with a static query. Since root

causes for performance degradation could vary, and there

may be a wide variety of reasons for performance problems,

it is challenging to select the right query in advance. In princi-

ple, one could adaptively change the monitoring query based

on the observed symptom; but in practice, many transient

problems happen at fine timescales and their sporadic nature

requires always-on monitoring. On the other hand, “blanket”

monitoring systems always monitor and collect telemetry data

from the switches to achieve high coverage [10,14,22,26,27].

However, this would result in excessive data that may not be

needed by the diagnosis in the first place.

Therefore, having a monitoring and diagnosis system that

achieves either low overhead or high coverage is not hard,

but achieving both simultaneously is challenging. The key

question we explore is whether it is possible to design a

streamlined system that performs efficient monitoring but

achieves high coverage, achieving the “best of both worlds”.

We present SpiderMon, a system where the monitoring and

diagnosis operations are explicitly designed to work with

each other in a closed loop. It enables a suitable tradeoff be-

tween accuracy and overhead when debugging network-wide

performance problems. To achieve efficient and accurate mon-

itoring, SpiderMon leverages a concept called “wait-for” [46]

relations. Since many performance problems stem from in-

network contention, “wait-for” relations target such behaviors

in the telemetry collection in a precise manner. Moreover,

such information is also exactly what is needed in diagno-

sis. For instance, a victim flow with high latency may have

“waited for” many interfering events across multiple hops.

By capturing and analyzing such relations, SpiderMon can

achieve an effective diagnosis, with precise, targeted, but also

high-coverage operations.

Since the symptom of “wait-for” events is usually high

latency, SpiderMon uses timing information to trigger reac-

tive telemetry collection. Precisely, SpiderMon detects perfor-

mance problems when it encounters flows with excessively

high queuing delay. After a problem is detected, SpiderMon

uses the wait-for relations to track and collect other relevant in-

formation in the data plane across the network. For diagnosis,

SpiderMon also identifies the root causes of the performance

problem by summarizing the most significant wait-for rela-

tions from the collected telemetry data. It does so by jointly

analyzing wait-for patterns together with other types of net-

work knowledge (e.g., topology) and telemetry data (e.g.,

flow-level results). In this way, SpiderMon collects teleme-

try data only when the diagnosis process needs to analyze a

problem, and it performs targeted collection based on what



the diagnosis process would require.

To realize this idea, SpiderMon addresses three technical

challenges. The first challenge is to detect performance degra-

dation without interfering with actual packet processing. Spi-

derMon leverages programmable switches to record telemetry

data about network traffic. It piggybacks telemetry data in

packet headers and checks for performance anomalies. The

second challenge is to precisely collect the relevant telemetry

information across the network. Relying on wait-for relations,

SpiderMon notifies relevant switches and activates teleme-

try data collection from these locations. Finally, SpiderMon

identifies the root causes of the performance problem using

the telemetry information and the knowledge of the network

configuration. The wait-for relation again is critical for iden-

tifying abnormal network behaviors, and for matching those

behaviors to the signatures of root causes.

Contributions. Overall, SpiderMon is a closed-loop system

for monitoring and diagnosing performance problems in the

network. We have implemented a prototype of SpiderMon,

and our results show that SpiderMon can diagnose perfor-

mance problems accurately and quickly with low overhead.

2 Motivation

SpiderMon focuses on network performance problems that

arise due to contention, which are challenging for at least three

reasons. First, network contention may occur due to many

root causes, so its diagnosis requires a general mechanism.

Second, the root cause can be unpredictable both spatially and

temporally, requiring agile solutions that can capture transient

problems. A third practical challenge is that the solution must

have a sufficiently low overhead on the network. SpiderMon

does not target problems that happen because of silent packet

drops, packet corruptions, control plane misconfigurations,

slow servers, or other causes unrelated to network contention,

although it can be used in combination with other techniques

for these scenarios.

2.1 Root Causes Are Diverse

To illustrate the diversity of root causes of network perfor-

mance problems, consider some examples in a 3-layer Clos

network as shown in Figure 1.

Micro-bursts. Recent studies [10, 22, 45] found micro-

bursts—i.e. momentary surges in traffic volume—to be a

common root cause for sporadic excessive delays and packet

losses. Detecting and diagnosing a micro-burst requires

switch queuing delays to be monitored and the main contribu-

tor to queuing delays to be identified before the micro-burst

disappears.

Multiple flow contentions. A victim flow encounters multi-

ple contentions at different switches—flow 1 (e.g., a bursty

UDP flow) and flow 2 (e.g., a high-priority flow) contend

with the victim flow at switch 0 and switch 6, respectively

(Figure 1(a)). The end-to-end latency for the victim flow be-

comes very high. For detection, we need to monitor per-flow
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Figure 1: Several performance degradation problems

latency; for diagnosis, information about all contending flows

is needed to identify the root causes.

ECMP load imbalance. Due to the skewed nature of flow

distributions or imperfect hash mechanisms, ECMP load im-

balance is a common problem in data centers [3]. Consider the

network in Figure 1(b), where all links are 40Gbps. Switch 0

assigns 25% of the total traffic (32Gbps) to path 1 and 75%

to path 2. The victim flow contends with the flows on path

2, which leads to high congestion at switch 7. This could be

avoided if switch 0 assigns the traffic for the two paths equally.

The root cause for this problem is the imbalanced assignment

at switch 0, but the performance degradation occurs at switch

7, which is 3 hops away from switch 0. Once high latency is

detected at switch 7, the previous hops’ information of the

flows involved in the congestion is required for debugging.

Transient/persistent loops. During network updates, the con-

figurations of different switches may not be synchronized.

Some switches may fail to execute the reconfiguration com-

mands silently. Under those circumstances, a forwarding loop

may form [28]. An example is shown in Figure 1(c), where

switches 6 and 9 are wrongly configured, which causes some

flows to be stuck in a loop, leading to congestion and packet

drops. The incompatible switch configurations should be

blamed for the loop in the network. However, to identify

the switches that need to be reconfigured, information from

all the switches along the loop, namely, switches 6, 9, 4, and

8, needs to be collected for analysis.

2.2 Root Causes Are Unpredictable

There are three key features that make network performance

problems challenging to detect or diagnose.

Sporadic. Performance degradation is usually sporadic, oc-

curring occasionally at different places and at an unpredictable

time [1]. Any flow may be affected, so detection algorithms

need to monitor every flow all the time.

Network-wide. The root causes may be network-wide, e.g.,

contention at different hops. The interfering flows may even

have normal performance [38], despite the fact that they cause

performance degradation to other flows. Thus root cause di-

agnosis requires network-wide monitoring.



Transient. Traffic contentions sometimes are transient and

disappear quickly [21]. For instance, transient loops may only

form for a short time during network updates, but the perfor-

mance problem introduced by packet drops may need a much

longer time to fully recover. This feature requires the debug-

ging system to maintain fine-grained information about recent

events, in case the problems disappear quickly but happen in

the network frequently.

2.3 Existing Solutions Fall Short

Existing solutions all fall short in monitoring and diagnosing

network performance problems due to the above challenges.

Host-based solutions. Solutions like Trumpet [31] and Dap-

per [14] rely on end hosts to store telemetry data for diagnosis.

But they all use inference algorithms to reconstruct what may

have happened in the network from the collected data, which

may not be accurate. Instead, SpiderMon collects data from

the switches to achieve a better in-network view for diagnosis.

In-network solutions. Some existing solutions also collect

telemetry data from the switches. (i) Blanket telemetry sys-

tems like NetSight [17] and PINT [8] collect information

network-wide indiscriminately, even on network nodes un-

related to the problem. Those systems usually have high

overheads, and much of the collected data is unnecessary

for diagnosis. (ii) Query-based systems deploy queries into

switches for data collection, such as Sonata [16], Marple [32],

FlowRadar [26], and NetSeer [47]. They require that the op-

erators know the nature and location of the problems, but

problems could arise from sporadic congestion at random lo-

cations. Although in principle, queries can be changed based

on the monitoring results, this happens at coarse timescales

and cannot capture transient problems. SpiderMon can cover

problems that cannot be succinctly defined using static queries

and only capture events relevant to the problems.

3 SpiderMon Design

SpiderMon monitors and diagnoses performance problems

caused by in-network contention in three steps: 1) SpiderMon

encodes every packet’s accumulated latency in header fields,

and triggers telemetry collection once excessive latency is

detected (§3.1); 2) the switch that detects high latency initiates

“spider” packets and rapidly delivers them to relevant switches

using the wait-for relations; relevant switches receiving spider

packets report their telemetry data (§3.2); 3) the root cause

analyzer constructs wait-for relations from the evidence for

root cause analysis (§3.3).

3.1 Problem Monitoring

Goal: Detect excessive cumulative queuing delays. Rather

than wait for the occurrence of harmful events (e.g., packet

loss, TCP congestion window back-off), SpiderMon detects

the performance problems based on a much earlier sign—

abnormal cumulative queuing delays experienced by packets.

It reacts quickly to performance degradation.

Design: 1) Use cumulative latency for detection. Instead

of storing per-hop latency information in the header, Spider-

Mon uses cumulative latency to guarantee that the header

length stays constant regardless of hop count. The cumula-

tive latency L is updated at every hop based on the current

queuing delay and the cumulative latency experienced by the

packet so far, L = L+ queuing_delay. Every switch on the

path checks whether the cumulative delay exceeds the latency

threshold. To further reduce overhead, SpiderMon can com-

press the additional fields to less than 2 bytes by extracting the

most significant bits (more in §C.2). 2) Assign different la-

tency thresholds for different traffic types. Given that the

tolerable latency varies for different applications, SpiderMon

allows network operators to customize the latency thresholds

for different applications. 3) Detect problems and trigger

telemetry in the switch data plane. Unlike some monitor-

ing systems using a central controller to monitor network

problems [6, 31, 48], SpiderMon triggers fast reactions in

the data plane. The communication delay within the data

plane (tens of ns) is much lower than that between the data

plane and the control plane (hundreds of µs). 4) Monitor

every packet at every hop for target flows. Compared to

sampling-based detection [2, 34], SpiderMon achieves full

coverage without losing any important information. Also,

rather than detecting problems at the end hosts [9,24], Spider-

Mon detects performance problems inside the network and

reacts more quickly to the problem. 5) Be transparent to

end-hosts. The latency threshold and cumulative latency are

added at the edge switches when packets enter the network

and removed when packets leave the network. Hosts remain

unchanged.

Consider Figure 1(a) as an example. The victim flow suffers

from queuing delay at switches 0 and 6, but the cumulative

latency exceeds the threshold only at switch 6. Thus the prob-

lem is detected at switch 6, and switch 6 triggers the telemetry

collection procedure.

3.2 Telemetry Collection

Goal: Only collect evidence relevant to root cause analy-

sis. SpiderMon maintains a small amount of telemetry infor-

mation as evidence on the switches to facilitate subsequent

diagnosis; this information is not collected from the switches

unless needed. First, to minimize the amount of telemetry

data collected to the analyzer while maintaining the diagnosis

accuracy, SpiderMon only targets switches relevant to the

observed performance problem as detailed in §3.2.1. Second,

SpiderMon collects the relevant telemetry data within a short

time such that each switch only needs to keep a small amount

of historical telemetry data as detailed in §3.2.2.

3.2.1 Relevant Switches Notification

#1: Only collect data after problem detection. Compared

to other systems which collect data to a centralized collec-

tor all the time [6, 16, 32, 48], SpiderMon uses a default-off



collection strategy to minimize overhead. After the problem

is detected, a special ‘spider” packet is generated to notify

relevant switches and start the telemetry collection on those

switches. A “spider” packet carries: 1) an event_ID, which

concatenates the switch ID and the event index to uniquely

identify the problem, and 2) the 5-tuple of the victim flow.

Spider packets are generated by mirroring the packet that trig-

gered the diagnosis and recirculating it for transmission, while

the original packet transmits as normal. To prevent possible

packet drops during the transmission, all “spider” packets are

prioritized in the network for lossless transfer.

#2: Only collect data from relevant switches. Instead of

collecting telemetry from all switches, SpiderMon identifies

the switches that are relevant to the detected problem by track-

ing packet-level provenance; it only retrieves data from these

switches to minimize overhead. Packet-level provenance is

modeled as G := (V,E) for a detected event and the corre-

sponding causality relations. G is a directed acyclic graph,

where each node v represents an event, and each directed edge

e = (v1→ v2) represents that v1 leads to the event v2. For la-

tency problems in a network, all wait-for contentions in the

switch queues are considered events in the provenance data.

Since events at the upstream switches affect the events at the

downstream switch, such upstream events are also incorpo-

rated into the provenance model. In this way, we can construct

a provenance graph for a performance problem. By analyz-

ing the locations of events, SpiderMon can select switches

relevant to the specific problem.

#3: Track the provenance graph in the data plane. Unlike

the central controller that Trumpet uses to inform relevant

nodes, SpiderMon performs this procedure entirely in the data

plane to reduce the latency of notifying relevant switches. It

only requires switches to maintain telemetry data for a shorter

time for the recent interval without losing necessary data. To

achieve this, SpiderMon repeats the following two steps on

each switch that receives the “spider” packet: 1) sends a trace-

back “spider” packet along the historical path of the victim

flow, where the path is obtained using a bloom filter, 2) sends

branch-search “spider” packets to ports that sent traffic and

contended with the victim flow, where the ports are identified

by a per-port traffic meter. Switches drop spider packets with

duplicate IDs to avoid unnecessary processing (§C.1).

Timeout bloom filter. SpiderMon uses a timeout bloom fil-

ter (TBF) to track the victim flow’s historical path. Regular

bloom filters allow the insertion and the membership test of a

flow ID. However, they can only support insertions, and the

false positive rates increase with the number of inserted flows.

A rotating bloom filter, on the other hand, can instantiate one

instance per epoch, so that older data can be safely discarded;

however, this is very coarse-grained as it only supports per-

epoch deletion. To address those problems, SpiderMon adds

a timeout feature to remove unneeded data from the bloom

filter; this method provides a “sliding window” of histori-

cal flow information. For a switch with N ports, each egress

Algorithm 1: Timeout bloom filter data structure

Input: B: Timeout bloom filter, inPort: Incoming port index,

5− tuple: 5-tuple, curr_T S: Current timestamp, epoch:

Timeout epoch

1 Function updateBF(inPort, 5− tuple):

2 hashValues = HASH (5− tuple)
3 for hashValue ∈ hashValues do

4 B [hashValue] [inPort]← curr_T S

5 return

6 Function checkBF(inPort, 5− tuple):

7 hashValues← HASH (5− tuple)
8 for hashValue in hashValues do

9 stamps← B [hashValue] [inPort]
10 if curr_T S− stamp > epoch then

11 return False

12 return True

pipeline maintains a bloom filter group with M rows and

N cells per row, and each column represents a bloom filter

for the corresponding port. The TBF replaces the bit record

with a short timestamp, which can be used to recognize the

outdated records when querying the TBF. The details about

maintaining and querying the TBF are shown in Algorithm 1,

Figure 2(a) and Figure 2(b). The memory footprint of TBF

can be reduced by shrinking the size of stored timestamps

(§C.2).

Most recent, per-port traffic meter. SpiderMon identifies

the relevant ports that contribute to high latency. To distin-

guish an ingress port with low throughput, SpiderMon main-

tains a traffic meter for each ingress port’s traffic volume in

the most recent time. Normal traffic meters in the switch are

reset to 0 periodically, leading to information loss. Therefore,

SpiderMon divides the time window into several small win-

dows and associates those meters’ values to realize a sliding

window of the traffic amount within the most recent time

window (details in §B).

#4: Reduce the collected telemetry data by pruning the

provenance graph. Some causality relations are more im-

portant than others. SpiderMon leverages this to reduce over-

head without sacrificing diagnosis accuracy. Specifically, if

the traffic volume from some ingress ports is significantly

lower than others, it is excluded from the possible root causes;

so switches that contribute minimally to the problems are

ignored. SpiderMon provides a tunable threshold and only

sends spiders to the ports with high traffic rates. The robust-

ness of this threshold is shown in §4.3.

To illustrate the relevant switch notification procedure, we

use Figure 3 as an example of a multiple contention scenario.

The high latency is detected at switch 0. Then the traceback

“spider” is sent to the reverse path of the victim flow, namely,

switches 1, 2, and 3. At the same time, the branch-search “spi-

der” is sent to switches 4 and 6, with switch 5 being ignored

due to the small traffic volume. If the traffic from switch

4 came from two other switches has sufficient volume, the

branch-search “spider” packets will also be sent to those ports.



(a) Update timeout bloom filter (b) Test timeout bloom filter (c) Per-port Traffic Meter (d) Telemetry data structure

Figure 2: SpiderMon data structures

Figure 3: “Spider” packets propagation

3.2.2 Telemetry Data Collection

#1: Collect per-epoch per-flow information. Per-packet

telemetry incurs a very high overhead and usually is unnec-

essarily fine-grained for diagnosis. SpiderMon records the

history with a per-epoch flow-level log, which is stored in

the switches’ egress pipeline and each egress port has its

own log. Dividing into epochs this way allows SpiderMon to

observe changes among epochs. Each switch keeps a fixed

number of epochs on the data plane and keeps the most recent

ones in a circular buffer. When reporting the telemetry data,

information of all epochs will be sent to the analyzer.

SpiderMon collects 36 bytes of data per flow, including the

flow’s 5-tuple, sequence number range, total traffic volume,

total packet count, total queuing depth, the priority of the

flow, and the incoming port. The network operators can add

extra flow-level information in the telemetry data structure

for diagnosing other network problems. The total amount of

telemetry data varies with the flow arrival rate. To update,

SpiderMon first identifies the right telemetry table based on

the outgoing port, then hashes the flow ID to assign a slot in

the telemetry data structure for that flow. By doing a bit-wise

XOR between the packet’s 5-tuple and the 5-tuple in the slot,

we can determine whether this packet belongs to the existing

flow by checking whether the result is 0. If so, this packet will

be used to update this entry; otherwise, it will be considered

as a new flow and replace the old one. The old entry will be

packed and sent to the control plane for storage.

SpiderMon must maintain telemetry data for a minimum

duration to ensure that the needed evidence for diagnosis

is available, and this duration can be estimated as follows.

Denote the threshold for detecting an unacceptable cumulative

delay as T and the maximum round-trip propagation delay

across the network as RT T . The time it takes to propagate

spider packets from the initiator to relevant switches—recall

that spider packets have high transmission priority and do not

wait for normal traffic—is half RT T in the worst case. Since

the problem is detected after accumulated delay exceeds T ,

the time duration a switch must maintain telemetry data to

diagnose this problem is, therefore, T + RT T
2

. The common

RT T and T in the data center network is 0.5-2 ms and 10-15

ms respectively [15], so it would be more than enough for

SpiderMon to preserve history for 20 ms.

#2: Provide synchronization among switches using flows’

sequence number. The host-based solution cannot replay

accurately, one of the reasons is the various network delay

for packets, namely, the order of packets is not preserved at

switches. SpiderMon has a similar problem when choosing

the most relevant epoch on different switches for analysis.

The correct epoch for the switch that triggered the problem

is no doubt the most recent epoch, but for other switches on

the historical path, the delay from the queuing and propa-

gation may have caused the most relevant epoch to become

a historical epoch. To solve this, SpiderMon keeps track of

the [min_seq, max_seq] for each flow, and uses the victim

flow’s sequence numbers to find the correct epoch with the

maximum overlap with this sequence number interval for the

relevant switches.

#3: Trigger telemetry packet generation in the data plane.

Unlike NetSight that uses mirroring for collection, SpiderMon

uses the packet generator to report the per-epoch per-flow

log to the root causes analyzer. The packet generator can

be directly triggered in the data plane to minimize latency.

Compared to retrieving the data via the switch control plane

as in several previous works [27], SpiderMon is much more

agile because it bypasses the low bandwidth and high latency

connection between the data plane and the control plane.

The telemetry packet header contains 1) an event ID for

identifying the performance problem; 2) a switch ID; 3) a

partition index of the telemetry data; 4) a part of the teleme-

try data. The telemetry packets are generated by the packet

generator on a programmable switch. The generated packets

only have Ethernet and IPv4 headers without the payload for

bandwidth savings. The IPv4 destination address of telemetry

packets is set to the root cause analyzer so that the network

will forward the packets to the analyzer. There is a maximum

amount of telemetry data that can be inserted into a single

packet, which is around 200 bytes due to the limitation of

the PHV fields for the programmable switches. So the packet

generator will generate a fixed number of telemetry packets

according to the size of the telemetry tables.



Algorithm 2: Replay the queue condition

Input: T : the epoch period; N: flow packets count, s: time for the

last packet

Output: time_list: time list for the packets

1 for t ∈ N do

2 t← s+ T
N

3 time_list← time_list + t

4 return time_list

#4: Only collect the telemetry data from relevant ports to

reduce overhead. When a switch receives a spider packet

from a certain port, usually only the telemetry data for that

port will be reported to the analyzer, which reduces the

amount of data collected.

3.3 Root Cause Analysis

SpiderMon develops a diagnosis strategy that is generalizable

to diverse root causes with high precision and recall.

Efficiently localizing network problems and accurately

identifying the root causes can be difficult, especially when

the network conditions are dynamic and complex. Firstly, a

good diagnosis algorithm needs to understand flow interac-

tions and find the corresponding flows that occupied the queue.

Secondly, once the problem has been localized, the diagnostic

algorithm needs to further identify each problematic scenario

with one or more root causes, such as micro-bursts or transient

loops. However, most existing diagnostic algorithms do not

have a clear boundary between those two steps. The identi-

fications of the root causes are based on the matching of the

problem patterns and observations, leading to slow diagnosis

time and reduced diagnosis accuracy.

SpiderMon addresses these challenges with a two-step di-

agnostic algorithm: 1) efficiently analyze the queuing infor-

mation at both flow level and aggregate level to recall all

the problematic flows using wait-for graphs (WFG), as dis-

cussed in §3.3.1; 2) apply signature matching between the

problematic flows and the root cause type, as described in

§3.3.2.

3.3.1 Find the Possible Root Causes

To find all possible root causes with a high recall rate, Spi-

derMon uses WFG at both flow-level and aggregate-level to

identify the abnormal behaviors from the telemetry data.

Wait-for relation. If a packet from flow A enters a queue

where the packets from flow B already exist in the queue, then

flow A waits for flow B at this queue.

Flow-level wait-for graph (WFG). Each vertex represents a

flow, and a directed edge from vertex A to vertex B represents

that flow A waits for flow B.

Wait-for weight. Each directed edge’s weight is calculated

as follows: for a packet pk from flow A, if xk packets from flow

B exist in the queue when pk enters, then flow B blocks flow A

with weight xk. For all n packets from flow A during a certain

period, the average weight 1
n
·∑k∈[1,n] xk is the wait-for weight

for the directed edge from vertex A to vertex B.

Figure 4: Identify the main contributors in WFG

Algorithm 3: Wait-for Graph Construction

Input: Seq: A sequence of packet, level: flow or port

Output: G: Wait-for graph for the given sequence

1 for i ∈ [0,Seq.length] do

2 if level=flow then

3 Seq[i].vertex← Seq[i]. f low

4 else if level=port then

5 Seq[i].vertex← Seq[i].port

6 if Seq[i].vertex /∈ G then

7 G.AddVertex(Seq[i].vertex)

8 for i ∈ [0,Seq.length] do

9 for j ∈ [0, pkt.qdepth] do

10 edge← (Seq[i].vertex⇒ Seq[i− j].vertex)
11 G.AddEdgeWeight(edge,1)

12 return G

Aggregated wait-for graph. SpiderMon also aggregates the

flow according to the source IP, incoming port, or other keys

to construct aggregated-level WFGs to find root causes other

than flows’ misbehavior. One typical example used in Spider-

Mon is the port-level WFG.

After receiving all the telemetry data from the switches,

SpiderMon uses the gap-based sampling strategy [25] to re-

play the queuing condition on the switch (Algorithm 2). The

actual sequence of the packets is not important since we only

need the generated wait-for graph to be similar.

To find the main contributors for the queuing, we rely on

the wait-for graphs to show the provenance relations between

contending flows. For each queue, SpiderMon will construct

flow-level WFGs and port-level WFGs as in Algorithm 3,

which will be used to determine the main contributors. Basi-

cally, to identify the main contributors of the queue is to divide

the flows in the queue into victims (suffer from queuing) and

main contributors (contribute to queuing) and maximize the

wait-for relations between those two groups. SpiderMon is

able to show that this division can be easily derived by the

following Theorem 1, and identify the main contributors as

in Algorithm 4. We prove Theorem 1 in Appendix §A.

Degree of the vertex. Sum of all incoming edge weights sub-

tracts the outgoing edge weights.



Algorithm 4: FindContributor

Input: G: Wait-for graph for the given sequence

Output: ctrs: A set of main contributors

1 for X ∈ G do

2 D(X) = ∑
e
e∈{<i, j>| j=A}we−∑

e
e∈{<i, j>|i=A}we

3 if D(X)>0 then

4 ctrs← ctrs+X

5 return ctrs

Theorem 1. The wait-for relation between two groups, di-

vided by one cut, is maximum, if and only if one group only

contains positive degree vertices while the other contains only

negative degree vertices.

Figure 4 is an example scenario of micro-burst with flows 0

and 1 as the burst flows, and both of them have been identified

by the algorithm as the main contributors.

3.3.2 Precisely Identify Root Causes

To precisely identify the reason behind the main contributors

determined in the first step, SpiderMon relies on signature

matching to recognize different root causes. We give four

signatures for four common root causes in Algorithm 5, using

both telemetry and network configuration information. The

signatures can be extended if more root causes are added.

For better illustration, we consider the scenarios in Figure 1

and show the signatures in Figure 5. A detailed signature

definition can be found at §G.

Micro-bursts. SpiderMon can identify all the main flow-level

contributors at different hops along the victim flow’s historical

path. As shown in Figure 5(a), the micro-burst flow has many

wait-for edges with large weights pointing to itself due to a

large amount of traffic during the problematic time.

Different priorities. For contention between flows with dif-

ferent priorities, SpiderMon checks the priority of the victim

flow and the main flow-level contributors. The contributor

flows with higher priority compared to the victim flow can be

identified as the root causes, as shown in Figure 5(b).

ECMP load imbalance. For the load imbalance problem

displayed in Figure 1(b), SpiderMon will find the flow-level

main contributors and check if they are routed by ECMP. Then

SpiderMon calculates the ECMP imbalance ratio with the

throughput of all flows routed by ECMP rules, using the traffic

volume provided by per-flow telemetry data. The problematic

ECMP groups can be identified when the calculated ratio is

largely imbalanced as in Figure 5(c).

Transient/persistent loops. For the latency problem caused

by transient or persistent loops as shown in Figure 1(c), Spider-

Mon searches the port-level contributors along the contributor

traffic’s path. If the same port is observed twice during the

search procedure, all those ports have a high possibility to

form a loop for specific traffic. Furthermore, the flow ID will

be checked to further confirm the transient/persistent loop.

Algorithm 5: Root Causes Diagnostic Algorithm

Input: f _WFG: flow-level WFG, p_WFG: port-level WFG, T :

Telemetry information, K: Network topology and

configuration

1 /* Diagnose flow-level problems */

2 for sw ∈ Switches on victim’s path do

3 f _CT Rsw← FindContributor( f _WFGsw)
4 for f ∈ f _CT Rsw do

5 // Is micro-burst?

6 check flow f throughput

7 // Is priority problem?

8 check flow f priority

9 // Is routed by ECMP rules?

10 check aggregated throughput for ECMP switches

11 /* Diagnose port-level problems */

12 for sw ∈ Switches on victim flow’s path do

13 p← victim flow’s outgoing port

14 CheckPort(p,{})

15 /* Recursive function for port-level */

16 Function CheckPort(p, p_set):

17 // Does routing contain loop?

18 check whether there is a loop

19 // Search dominant port contributors

20 p_CT Rsw← FindContributor(p_WFGsw)
21 for p′ ∈ p_CT Rsw do

22 // Check the related port

23 src_p← the port connect to port p′

24 CheckPort(src_p, p_set + p)

4 Evaluation

Next, we evaluate SpiderMon along several dimensions: diag-

nosis effectiveness, overheads, and robustness.

Setup. Our hardware testbed deploys SpiderMon to a Bare-

foot Tofino switch, written in 1147 lines of P4-Tofino code,

to evaluate the switch-level performance. The switch is logi-

cally partitioned to emulate a topology with multiple logical

switches; logical links are emulated by port-to-port connec-

tions using direct attach cables. The switch is also physically

connected to eight servers through 25 Gbps links. The switch

has 32× 100Gbps ports, and each can be configured as four

25Gbps ports with a breakout cable; each server has two six-

core 3.4GHz CPUs, 128GB RAM, and one 25Gbps NIC. In

addition, we have set up a simulation environment that uses

the BMv2 software switches in the NS3 simulator with 945

lines of P4 code running on CloudLab servers, evaluating

the network-level performance. Each server has an eight-core

2.0GHz CPU and 32GB RAM. A K=4 standard fat-tree topol-

ogy with 20 switches and 32 hosts is simulated with 1 Gbps

link bandwidth. We also implement the root causes analyzer

with 843 lines of Python code.

Workloads. We simulate empirical workloads from produc-

tion networks for our evaluation. The flow size distribution is

taken from three different traces: web search [5], cache [35],

and Hadoop [35]. The arrival time of different flows is based

on a Poisson process and the flow arrival rate is varied to

obtain different load utilizations in the network. The source

and destination for each flow are chosen uniformly at random.



All flows are TCP.

Baseline systems. We compare SpiderMon against five base-

line solutions. 1) Trumpet [31]: a trigger-based reactive host

system. When it detects a problem requiring network-wide in-

formation on one host, the controller will collect data from re-

lated servers upon a trigger. This incurs a latency of at least an

RTT. 2) NetSight [17]: an in-network system that proactively

collects ‘postcards’ for each packet from the switches. 3)

Marple [32]: a query-based in-network system, which is de-

ployed to all switches using monitoring queries that a) detect

high latency, b) query packet counts, and c) perform ‘EWMA

over latencies’. 4) Pathdump [37] and SwitchPointer [38]:

two proactive, network+host solutions. Pathdump tracks paths

and performs diagnosis on end-hosts, and SwitchPointer fur-

ther tracks packet epochs in the network.

4.1 Diagnosis Effectiveness

We evaluate the diagnostic effectiveness of SpiderMon using

multiple scenarios.

1. Micro-bursts are created by injecting 5 short-lived (10-100

µs) UDP flows from SW0 to SW1 and from SW2 to SW3

as in Figure 1(a). The throughput of micro-burst flows is set

to 90%×line-rate. Diagnosis: Fig. 5(a) shows the combined

wait-for graph at two switch ports generated by SpiderMon,

which shows that the two micro-burst flows E and H domi-

nate the queues and are the only two main contributors with

positive degrees. The other 3 UDP flows are not included in

the WFG since they end before the victim flow starts or start

later than the 2 contending UDP flows.

2. Priority contentions inject 5 high-priority TCP flows with

priority queuing from SW0 to SW1 and from SW2 to SW3

as in Figure 1(a). Diagnosis: As Figure 5(b) shows, flow C

and D are the main contributors to the congestion with higher

priority and larger degrees. Other priority flows have no inter-

ference with the victim flow so the WFG excludes them.

3. ECMP imbalance scenarios randomly pick a switch (ex-

cept core switches) and split traffic to two uplink ports with

4:1 imbalanced load. The ECMP group imbalanced lasted

for hundreds of microseconds. Diagnosis: When we find

the main contributors to the queuing, SpiderMon will check

whether they are routed by ECMP policy. In Figure 5(c), both

main contributors (flow C and D) are routed by ECMP rules

on switch 0, so SpiderMon uses the telemetry information

for switch 0 and computes the number of flows and traffic

amount sent to each ECMP port. If the number of flows or

traffic amount within that epoch is largely imbalanced, then

there is an issue with the ECMP rules or hash functions.

4. Loops create a 4-hop routing loop with 2 aggregation

switches and 2 core switches as in Figure 1(c). The routing

loop only affects a small group of flows and the problem only

lasts for 100 µs. Diagnosis: Port-level WFGs identify a loop

as the root cause: the victim flow is reported on switch 8 port 1

so that the WFG leads us to the main contributor, port 0. Since

SW8-P0 receives traffic from SW4-P0, we further construct

a WFG for SW4-P0 and determine another main contributor.

With this recursive searching procedure, SpiderMon finds that

the port-level contributors form a loop and the traffic belongs

to the same group of flows.

5. Complex problem diagnosis. Next, we test a diagnostic

scenario with multiple problems. In Figure 6, the victim flow

contends with a micro-burst flow at switch 1, a high priority

flow at switch 7, and high-volume traffic caused by ECMP

imbalance at switch 5. First, SpiderMon constructs the WFG

with the collected information for the problem and identifies 5

flows (flow C, E, F, J, and L) with positive degrees. Next, Spi-

derMon checks the property of each such flow and identifies

flow C as a micro-burst flow without any congestion control,

while flow J is a flow with higher priority than any other flows

crossing those switches. Then it checks the amount of the

transmitted traffic in the same epoch and identifies flows E

and F to be related to an ECMP imbalance. However, flow L

is removed from the root causes; it is a normal TCP flow since

its degree is small and there is no further evidence from the

telemetry information to show that this flow is problematic.

6. Sporadic & transient problem diagnosis. We also evalu-

ate multiple diagnostic situations with sporadic and transient

problems. The traffic workloads are generated from random

sources and destinations, and the problems could happen at

different locations in the network randomly with short-lived

root causes. Take the micro-burst experiment as an example.

A high throughput UDP flow is introduced between a random

source and destination at a random time, lasting for 100 µs.

The experimental results shown in Section 4.2 are generated

with sporadic problems for each scenario.

4.2 Comparison with Baseline Systems

Precision and recall. We first show the precision and recall

rate for different solutions, by tuning the parameters of each

system so that it can achieve the best performance for each

scenario. Those include the maximum tolerable link load

imbalance ratio, link utilization, per-flow throughput, and so

on. Details about each scenario’s parameters are in §F. Here

we show the results for web trace only, the results for cache

and Hadoop traces are included in §E.2. For the web trace,

30% of the flows are 1–30MB, so that multiple large flows

can be concurrently active from/to one switch port.

As shown in Figure 7, Trumpet cannot achieve both high

recall and accuracy at the same time for the transient conges-

tion since it can only infer the in-network condition based on

the calculated link utilization and end-to-end delay. Due to

the different network delays and packet loss, the evidence for

the transient problems may be inaccurate and unreliable on

the host. Trumpet also fails to diagnose the ECMP imbalance

problem because it does not have path information for every

flow to identify the traffic split at the ECMP switches. Trum-

pet also fails to diagnose the loop problem because packets

involved in loops do not reach the hosts, leaving no evidence

for Trumpet to find out the root cause.



WFG for switch 4 port 0
SW4‐P1 is found => SW9‐P0

WFG for switch 6 port 1
SW6‐P0 is found => SW8‐P1

Both flow C, D routed by ECMP on SW 0
Check telemetry information on SW 0
SW0‐P1’s ECMP traffic amount >> SW0‐P0’s
SW0‐P1’s ECMP flow number >> SW0‐P0’s

(a) Micro-burst Contention (b) Priority Contention (c) ECMP Load Imbalance (d) Loop

WFG for switch 9 port 0
SW9‐P1 is found => SW6‐P1

WFG for switch 8 port 1
SW8‐P0 is found => SW4‐P0

Figure 5: Example wait-for graphs of several root causes. Each box (TCP flow/port), circle (UDP flow), and pentagon

(High priority flows) represent one flow or port, and the port name is described according to Figure 1(c). Bolder edges

represent heavier wait-for relations, edges with small weights are tailored. The number under the flow/port name shows

the node degree, and positive degrees will be identified as main contributors.
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Figure 6: The WFG for victim flow P, with a micro-burst,

a priority-related contention, and an ECMP imbalance

at different hops.

Marple falls short in diagnosing transient contention like

micro-bursts. This is because Marple enables queries only

when needed, so it collects data reactively, which incurs an

additional latency. The per-hop queuing information is only

collected when the accumulated queuing latency exceeds the

threshold. This control loop delay leads to information loss

for transient problems—when the system begins collecting

data from a switch near the destination, the transient bursty

flow at a previous hop may have already ended. Only Marple

and Trumpet are reactive systems in our evaluation.

PathDump and SwitchPointer both achieve relatively good

performance. PathDump carries path information along with

the packets, and SwitchPointer upgrades PathDump with

switch data that records the flows that travel the same switch

in the same epoch, which outperforms PathDump. However,

both of them failed to identify transient problems since they

lack queuing information—they instead recompute link uti-

lization using packets received at end hosts. If a large amount

of packets are dropped in the network due to congestion loss

or TTL expiration, it would be very hard to reconstruct the

transient network condition. Another interesting fact is that

both solutions add extra in-network mechanisms (path track-

ing [37]) to detect the routing loop, so they both achieve great

performance in detecting and diagnosing loops.

NetSight achieves the second-best performance since it

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Marple and

Trumpet overlap at the top right corner)

Figure 7: Diagnostic effectiveness for different solutions

collects per-packet postcards. One drawback is that to keep

overhead down, NetSight omits important data like packet

priority or precise timestamps. Instead, it uses topology infor-

mation to place the postcards in order. However, information

that describes how flows interact cannot be obtained, which

is essential for diagnosing transient problems.

SpiderMon is able to achieve nearly 100% recall and pre-

cision for all tested scenarios. The reason is that SpiderMon

collects accurate packet-level information within a time inter-

val. For micro-burst and priority flow contention, each flow’s

throughput within the same epoch where congestion happens

will be recorded and reported in the telemetry data; for the

ECMP imbalance problem, the flow ID and output port will

be recorded, so that the ECMP imbalance ratio can be calcu-

lated; for the loop problem, the loop can be easily detected in

the procedure of WFG construction.

To summarize, host-based solutions (Trumpet, PathDump



(a) Diagnostic data complexity (b) Additional bandwidth overhead

Figure 8: Diagnostic data complexity for different sys-

tems; the additional per-packet header shows the band-

width overheads for Trumpet (TP), PathDump (PD),

SwitchPointer (SP), NetSight (NS), Marple (MP), and

SpiderMon (SMon).

and SwitchPointer) all lack accurate in-network information,

like accurate queuing information and the packet loss for traf-

fic other than TCP (they can only observe packet loss at the

sender with the help of TCP’s congestion control). As for

the proactive in-network approach in NetSight, it scarifies

the telemetry data granularity to keep overhead low. Only

the packet header, switch ID, output port, and a version num-

ber are included. It uses topology information to assemble

out-of-order postcards since the fine-grained timestamps and

queuing information are not included in the postcards. The

reactive in-network Marple system can potentially collect the

information at very fine granularity but it can only start this

reactive network-wide query after a half-RTT delay after the

problem has been detected. The experiments over Cache and

Hadoop traces have qualitatively similar results with the web

search trace; more details can be found in §E.2.

Diagnostic overhead. To evaluate the diagnosis complex-

ity and resource usage of different solutions, we measure

the amount of collected data and the extra bandwidth re-

quirements. We measure the diagnosis complexity using the

amount of telemetry data stored and used in the diagnostic

procedure, using (flow×port) as the unit to denote the com-

plexity of flow information collected at switch ports. Since the

host-based solutions collect information from the end hosts,

and they reconstruct the utilization of different links [37],

we multiply the average path length with the flow×host as

the overall complexity. Both switches and hosts have limited

storage spaces and may restrict the scalability of the solu-

tions. Under the same scenario for diagnosing micro-bursts,

we show the amount of telemetry data for different systems

in Figure 8(a). Reducing the diagnosis complexity not only

relieves the burden to process the collected information for

the central controller but also saves the storage space to store

the diagnostic data for future usages.

Trumpet processes packets and match triggers in real time

during the monitoring phase, so no packet is stored. But in

the reactive data gather-report phase, data from multiple hosts

will be reported. In order to construct every link utilization,

the throughput of all flows will be reported and stored for

(a) The resource usage on Tofino

switch is low. Per-port traffic meter is

too small to be visible in the figure.

(b) Relative memory usage under dif-

ferent controller latency with Spider-

Mon as the baseline.

Figure 9: Switch memory occupation

further analysis. Pathdump and SwitchPointer need to store

per-packet history, since the problem may be detected after

analysis. But both systems rely on the path information to

find out the flows that travel the same link with the victim

flow so that the data complexity can be reduced by filtering

out irrelevant flows. Marple stores the query results from

every switch to reproduce the scenarios, so such data will

be transmitted as well as stored on the hosts. But Marple

starts the collection after problem detection and stops after the

problem disappears, collecting less but potentially incomplete

data. NetSight stores all packet postcards and processes them

in real time. All flows from all the switch ports are collected

and stored, leading to a similar data complexity as Trumpet.

SpiderMon only collects data after a problem is detected and

only from relevant switches. Thus, the overhead for collecting

telemetry data is much lower than the other systems.

Monitoring bandwidth overhead. Next, we measure the

amount of extra bandwidth usage during monitoring. Trumpet

never collects in-network data; it only uses the network to

communicate with other servers, so it has a low overhead.

PathDump and SwitchPointer both use two VLAN tags of

24 bits for path and switch epoch information. NetSight al-

ways collects per-packet postcards to the host for analysis,

and the per-packet additional bandwidth occupation is 15

bytes/packet × average hop count because NetSight will gen-

erate a postcard for the packet at every hop. Marple introduces

a 16-bit header to carry the per-packet end-to-end latency, and

during the monitoring phase, it will group the packets with

their per-hop queuing latency and sent them to the controller.

SpiderMon adds a 16-bit monitor header to every packet when

it enters the network, and removes it before forwarding the

packet to the end-host as mentioned in §3.1.

Switch resource overhead. Figure 9(a) shows the switch

resource usage of SpiderMon, which fits comfortably in a

Tofino pipeline. It also shows how SpiderMon scales with the

number of flows seen during a collection period. Modern data

centers have millions of concurrent flows per switch, but since

SpiderMon only keeps tens of milliseconds of history, the

number of flows per epoch is much smaller. Switch memory

size increases steadily over time [29], so SpiderMon can scale

to even more flows with more recent hardware.



(a) Diagnosis time for root cause (b) Collected telemetry data size

(c) Diagnosis time with different num-

ber of switches

(d) The latencies for “spider” packets

and telemetry

Figure 10: Branch-search metrics for SpiderMon

To show the benefit of informing related switches in the

data plane in a distributed manner, we compare SpiderMon

with a centralized reactive strawman system, which uses a cen-

tralized node to receive the detected problems, identifies the

related switches, and retrieves data from them. We vary the

additional latency that this centralized controller introduces.

Figure 9(b) shows that this solution requires more memory to

store a larger amount of historical data to avoid the loss of rel-

evant evidence for diagnosis. In comparison, SpiderMon only

needs to preserve the history within the maximum queuing

latency + half RTT (§3.2.2).

4.3 Diagnostic Robustness

We finally evaluate the diagnostic robustness of SpiderMon us-

ing different metrics related to branch-search coverage, epoch

length, and cumulative latency. Within a range of adjustments,

SpiderMon can diagnose the performance problems with ideal

precision and recall. Network operators are allowed to adjust

the parameters of SpiderMon according to their requirements.

Overall methodology. SpiderMon empirically adjusts the pa-

rameters under different network loads. Given a particular

network traffic load, operators could systematically test the

precision and recall rates of SpiderMon with different met-

ric choices. Suitable choices should strike a good balance

between the recall rate and the size of collected telemetry

data for throughput metrics, switch memory consumption for

epoch metrics, and the sensitivity of problem detection for

latency metrics. The optimal parameters vary under different

network loads. We provide the results of parameter adjust-

ments using our experimental settings in the following, while

network operators could follow the same methodology to

obtain their preferred parameters.

Branch-search threshold. SpiderMon provides different op-

tions for spider packet propagation in terms of its reach (e.g.,

(a) Precision & recall rate for the root

causes with 30% load

(b) Upper-bound of throughput thresh-

old

Figure 11: Throughput metrics for SpiderMon

all or some branches). Figure 10(a) and Figure 10(b) provide

comparisons with different options on both the diagnosis time

of root cause analysis and the size of collected telemetry data.

Note that the number of relevant switches in SpiderMon is

generally much smaller than the total network size since Spi-

derMon uses the wait-for relation and provenance model to

precisely target only those relevant switches that contribute

to the observed performance problem. Therefore, even with

all-branches spider packets propagation (search all ports with

> 0 throughputs), SpiderMon is efficient compared to more

rudimentary diagnosis strategies that must comb through all

data from all switches. Even for relatively widespread perfor-

mance problems involving up to 30 relevant switches, it takes

under 4 seconds to run the root cause diagnosis algorithm

(Algorithm 5) on a 4.3GHz CPU, as shown in Figure 10(c).

In addition, we evaluate the latency for spider packets prop-

agation and the subsequent retrieval of the telemetry data,

using 50 Gbps link bandwidth and 20µs link delay. From the

results shown in Figure 10(d), we can see that a few microsec-

onds are enough to perform the entire retrieval operation with

arbitrary fat-tree topologies, no matter the choices of branch-

search options. This is because SpiderMon’s mechanisms run

in the data plane. As a result, network operators can send

“spider” packets without setting the branch-search threshold

if the overhead can be tolerated based on their requirements.

We further evaluate the precision and recall rates under

different branch-search coverage with different network loads.

Figure 11(a) shows the results under 30% network load, indi-

cating that the precision can always achieve 100% while the

recall rates decrease if the threshold is too high. To trade-off

the branch-search overhead and the recall rates, we suggest

using 70% as the threshold in this case since it strikes a good

balance. Following the same strategy, we summarize the up-

per bound of branch-search thresholds for operators to adjust

under different network loads, as shown in Figure 11(b).

Epoch length. SpiderMon can change the length of the

telemetry epoch to save memory but trade-off telemetry gran-

ularity. Network operators can adjust the telemetry epoch ac-

cording to their requirements. Under different network loads,

we provide the upper bound of the epoch length. For exam-

ple, Figure 12(a) shows the results with the network load at

30%. We evaluate the precision and recall rates under dif-

ferent epoch lengths. The precision is always 100%, while



(a) Precision & recall rate for the root

causes with 30% load

(b) Upper-bound of epoch length

Figure 12: Epoch metrics for SpiderMon

the recall rate decreases in some scenarios when the length

of epoch exceeds 30 ms. We further measure the precision

and recall rates under different network loads, and identify

the upper-bounds of epoch length, as shown in Figure 12(b).

The upper-bound epoch length used for telemetry collection

decreases with increasing network load.

Cumulative latency threshold. SpiderMon provides a tun-

able cumulative latency threshold for problem detection, al-

lowing network operators to customize problem trigger fre-

quency for different applications. Figure 13(a) shows the CDF

of different cumulative latency under different network loads

in the absence of problems, where the cumulative latency

is normalized by the maximum queuing latency of a single

switch. Under different loads, the choice of cumulative latency

threshold varies according to the trade-off between overhead

and recall rate. The higher the sensitivity of the network to

problem detection, the more switches are visited, and thus

higher overhead. We further evaluate the recall rates of Spi-

derMon under different loads and summarize the upper bound

of cumulative latency thresholds for reaching 100% recall in

all scenarios in Figure 13(b).

5 Related Work

Switch-based telemetry. Telemetry systems such as Sonata

[16], Marple [32], FlowRadar [26], *Flow [36], NetSeer [47]

and Dapper [14] leverage programmable switches for fine-

grained data collection. However, query-driven systems [16,

32] cannot dynamically change the targeted events at small

timescales, and blanket monitoring systems [17,36] incur high

collection overhead. SpiderMon aims to achieve lightweight

yet accurate telemetry information collection. Two recent

works, NetSeer [47] and PINT [8], share our high-level goal of

reducing telemetry overhead. NetSeer detects per-flow perfor-

mance events for compression, and PINT aggregates telemetry

information across hops or flows to save bandwidth. Com-

pared to these works, SpiderMon co-designs monitoring and

posterior diagnosis based on wait-for relations for closed-loop

diagnosis.

Diagnosis systems. SwitchPointer [38] and PathDump [37]

collect both in-network and host data for diagnosis. Trum-

pet [31] monitors every packet at hosts and reports triggered

events. SNAP [43] diagnoses network problems using logs

(e.g., TCP statistics, socket calls) collected at hosts. How-

(a) Cumulative latency under different

network loads

(b) Upper-bound of cumulative latency

threshold

Figure 13: Latency metrics for SpiderMon

ever, these systems rely on a central controller and perform

software-based monitoring. NetMedic [23], 007 [6], Net-

Poirot [7] use statistical methods and/or machine learning

to identify root causes. Network provenance [42] tracks how

packets flow through a network and apply formal reasoning

to identify root causes. Deter [25] can process and replay a

TCP trace to diagnose performance degradation. Compared to

these works, SpiderMon leverages the telemetry information

from programmable switches, and it uses wait-for relations to

reason about performance contention in-network. Our recent

workshop paper sketches a similar roadmap [41], but it does

not contain a concrete design, implementation, or evaluation.

Monitoring. Another line of recent work focuses on design-

ing compact data structures [11, 18, 19, 27, 44] with tradeoffs

between accuracy and resource footprints. OmniMon [19] di-

vides flow-level monitoring across different network entities

to satisfy resource constraints. BeauCoup [11] supports mul-

tiple distinct counting queries simultaneously while requiring

a small number of memory accesses. These data structures

complement SpiderMon by reducing switch resource usage.

6 Conclusion

SpiderMon is a system that achieves high coverage and low

overhead in monitoring and diagnosing network performance

problems. It monitors every flow in the data plane and triggers

diagnostic events upon problem detection. It precisely collects

diagnostic information in an as-needed fashion. We prototype

SpiderMon on Tofino hardware and BMv2 software switches

and show that it can leverage wait-for relations to accurately

pinpoint root causes for complex problems. SpiderMon also

has low overheads for telemetry collection, switch resources,

and network bandwidths.
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A Proof for Contributors Identification Algo-

rithm

Definition 6. Degree of vertex. In a WFG, the degree of vertex

A is the sum of all the adjacent edges’ weights we:

D(A) =
e

∑
{e=<i, j>|i=A‖ j=A}

αe ·we (1)

where αe is 1 when A is the sink of edge e and -1 when vertex

A is the source.

Lemma 1. For a WFG, the sum of all the vertex’s degree is 0:

X

∑
X∈V

D(X) = 0 (2)

Proof: the WFG is a directed graph where every edge is

pointing from a vertex to another vertex in the graph, so each

edge will add weight w to the sink vertex and weight −w to

the source vertex.

Definition 7. Flux of cut. For a cut in a WFG, the vertex will

be divided into two sets, S1 and S2. Given all edges in the

WFG has a positive weight according to the definition, we

denote the flux of this cut as:

Flux(cut) =

∣

∣

∣

∣

∣

e=<i, j>

∑
i∈S1, j/∈S1

we +
e=<i, j>

∑
i/∈S1, j∈S1

−we

∣

∣

∣

∣

∣

(3)

where e represents the edge from vertex i to vertex j

Though the sum of all vertex’s degree is 0, we can always

find a cut whose flux is maximum, representing the prove-

nance relation between vertexes from those two groups is the

strongest. The set with a positive degree considers as the main

contributor to the queue, while the other set contains victims

of the queue, like normal flows or small flows. To find this cut

efficiently, we have shown the hints by the following lemmas

and theorems.

Lemma 2. The flux of one cut is just the absolute value of the

sum of all vertices’ degrees in either set.

Proof: The absolute value of the sum of all vertices’ degrees

in one set (ASD) can be written as:

ASD =

∣
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∣

∣
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e=<i, j>

∑
i∈S1| j∈S1

αe ·we
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∑
i∈S1& j∈S1

αewe +
e=<i, j>

∑
i∈S1& j/∈S1

αewe +
e=<i, j>

∑
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αewe
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−we +
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i/∈S1& j∈S1

we

∣
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∣

= Flux(cut)

(4)

Theorem 1*. The WFG cut with maximum flux will divide

the vertices with positive degrees into one set and negative

degrees into the other set.

Given the sum of all vertices’ degrees are 0, for any cut:

∑X∈S1 D(X) = −∑Y∈S2 D(Y ), namely, the absolute sum of

degree for two sets are the same. Thus, for the cut that divide

all vertices with positive degrees into one set, by contradiction,

we can easily prove this is the cut with maximum flux.

The flux represents the wait-for relation between two

groups from a cut of the wait-for graph, and the degree repre-

sents the value of incoming edges weights subtracting outgo-

ing edges weights so that Theorem 1 is proofed.

B Fine-grained Sliding Window

During the telemetry collection process, SpiderMon main-

tains bloom filter and per-port per-epoch data structures to

trace back all the relevant switches. However, part of these

structures (e.g. traffic meter) needs to be reset to 0 at the be-

ginning of an epoch due to the limited resources of the switch

data plane. Therefore, there will be some information loss at

the beginning of an epoch, leading to the diagnosis algorithm

being inaccurate. SpiderMon employs a fine-grained sliding

window on the data plane to achieve high accuracy for the

used data structures.

The sliding window strategy slices each epoch into multiple

pieces, and it proceeds in two actions: an update action and a

decrease action. To explain simply, we take the traffic meter in

the per-port data structure as an example. Assume one epoch

T is divided into n small time slots. There will be n sub-traffic

meters and each of them aims at a single time slot. When a

switch receives a new packet during the update phase, the

switch will update the corresponding sub-traffic meter based

on the current time slot, as well as the total traffic meter. For

decrease action, when the oldest sub-traffic meter no longer

exists in the sliding window, the value of the corresponding

sub-traffic will be subtracted from the total traffic meter and

that sub-traffic meter will be reset to 0. Network operators are

able to tune the fine-grained sliding window according to their

demands. Basically, the more time slots an epoch is divided

into, the higher the accuracy that the system can achieve. On

the other hand, the overhead of telemetry data structures can

be reduced with fewer time slots.

C Resource Usage Optimization

C.1 Avoid Duplicate Detection

In the scenario of the performance problem, there are lots

of packets from the victim flow suffering from high latency

problems, but not all of them will generate a diagnostic event

independently. SpiderMon sets a limitation on the interval

between two diagnostic events generated by the same flow,

meaning that during one congestion, only the first packet

suffering from high accumulated latency will trigger the di-

agnostic event. To avoid receiving multiple audit requests for

the same diagnosis event, the switches will drop the duplicate

"spider" packets with the same event ID as well.



C.2 Data Field Compression

For the applications like SpiderMon built on top of the pro-

grammable switches, keeping track of some data fields in the

packet header or on the switch memory is always required.

Compressing those data fields in order to reduce the extra

header size or switch memory occupation is critical to the

application performance. SpiderMon provides a method to

compress the size of the data by extracting the most signifi-

cant bits. This idea can be widely applied to many recorded

data in such systems, and here are two typical examples that

use this strategy:

The timeout bloomfilter in SpiderMon requires storing a

large number of timestamps for each slot in the bloom fil-

ter, which is very resource consuming and inefficient. The

timestamp is usually stored with 48 bits on the switch and

SpiderMon uses the timestamp to perform the timeout op-

eration. Given that the only operation on the timestamp is

the subtraction of two timestamps and compare the differ-

ence with the timeout period, we can easily observe that the

only significant bits in the timestamp are the bits around the

period. Take the timeout period as 1 ms as an example, the

most significant bits in the timestamp are the 10th, 11th, and

12th bits from the right, representing 0.512 ms, 1.024 ms, and

2.048 ms respectively. By extracting these three bits from the

original timestamps and comparing the difference with bit

array 010, we can get an approximation of the exact value

that is calculated with the original timestamp. Adding more

bits on the left (e.g. 13th and 14th) can prevent us from the

danger of overflow while adding more bits on the right (e.g.

9th and 8th) can help us obtain a more precise result of the

subtraction. With this method, SpiderMon only needs to store

6 bits for each timestamp and reduce the memory usage of

the timeout bloomfilter by 87.5%.

Another example is the queuing information carried by

the packets in SpiderMon, which is used to detect the perfor-

mance problem by comparing the accumulated delay with the

maximum delay threshold. For a certain application, the max-

imum delay threshold may be 1 ms. Then when we calculate

the accumulated delay, the most significant bits are 8th, 9th,

and 10th bits from the right, representing 0.128 ms, 0.256 ms,

and 0.512 ms respectively. If any bit on the left of the 10th

bit is not 0, SpiderMon will trigger the problem immediately,

since it exceeds the threshold with this single-hop delay. In

this way, SpiderMon only needs to add an extra header with

4 bits to carry each delay field instead of 19 bits, shrinking

the overhead from the extra header by 78.95%. Note that in

evaluation, we use 8 bits for each data field to provide better

accuracy.

D Implementation

We have implemented SpiderMon on a Barefoot Tofino switch

with 1147 lines of P4-Tofino code and also a BMv2 version

for NS3 and MiniNet environments with 945 lines of P4 code.

We also implement the root causes analyzer on the end-host

with 843 lines of Python code.

Figure 14 depicts different components in a switch and the

workflow for different packet types. The event record is used

for checking duplicate “spider” packets, and the telemetry

counter for guiding telemetry packet generation. Those two

data structures are placed in the ingress because they need

to make decisions on whether to mirror packets in the traffic

management unit. The per-port meter and timeout bloom filter

provide provenance data to guide the propagation of the “spi-

der” packets, and the telemetry data structure stores historical

flow information for diagnosis. Those two data structures,

along with the problem detection component, are placed in

the egress pipeline because they may require queuing infor-

mation, which is only available in the egress pipeline. Note

that the per-port telemetry information is stored separately

on the switch, but not necessarily one table per stage. One

stage in SpiderMon can store multiple egress ports’ telemetry

information.

To implement SpiderMon, the egress pipeline is required to

detect the problems, store telemetry information, and provide

temporary provenance hints for “spider” packet propagation.

For switch architectures like SimpleSumeSwitch [20] (NetF-

PGA), P4FPGA [40], and SmartNICs, SpiderMon can also

be implemented by taking the next switch’s pipeline as the

“egress pipeline” of former switches to detect congestion and

collect telemetry information. This design requires more com-

munication among switches, so both the latency for diagnos-

ing the problem and the link bandwidth used by SpiderMon

would also increase.

As for the hardware switch resource, modern switches have

increasing memory sizes [29], and more ports usually repre-

sent more on-chip memory, which, we shall demonstrate in

§4, is more than sufficient to support SpiderMon.

E Additional Experiment Results

E.1 Header Bandwidth Usage

Packet Size (B) 1480 1000 500 100

SpiderMon (Gbps) 23.51 23.5 22.84 20.51

Baseline (Gbps) 23.65 23.5 22.84 21.87

Table 1: SpiderMon’s maximum throughput is quite close

to the baseline switch with only forwarding rule.

As the monitor header added by SpiderMon is removed

before forwarding the packet to the end-host, the correspond-

ing overhead of the additional header is very trivial. We use

iPerf to show the maximum throughput of traffic with differ-

ent average packet sizes on the Tofino switch equipped with

SpiderMon in Table 1 and compare it with a baseline switch

program with only basic forwarding rules. As expected, Spi-

derMon ’s end-to-end throughput is nearly identical to the

baseline, meaning that the bandwidth overhead of the moni-

toring phase could be neglected.



Figure 14: The placement of SpiderMon components on the switch stages

E.2 Cache & Hadoop Workloads

Besides the Web search trace, we also run the same experi-

ments on the Cache trace and Hadoop Trace.

For the Cache trace, most of its flow sizes fall into 1KB

to 100KB. Thus, to reach the same link utilization, we have

to insert more number flows during the simulation. The re-

sults for Cache trace are similar to the Web search trace. The

only difference is that all algorithms have improved perfor-

mance. This is because the flow sizes are very small so that

the root-cause traffic (e.g. micro-burst) flow can be easily

distinguished from the normal flows; false positive and false

negative are reduced.

For the Hadoop trace, most of the flows have less than 10

KB flow size. Similar to the Cache trace, we also increase

the number of flows to keep the same link utilization. The

overall results for the Hadoop trace are also similar to the

Cache trace.

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Trumpet

all overlap at the top right corner)

Figure 15: Diagnostic effectiveness with Cache trace

(a) Micro-burst (b) Priority contention

(c) ECMP imbalance (d) Loops (solutions except Marple

and Trumpet all overlap at the top right

corner)

Figure 16: Diagnostic effectiveness with Hadoop trace

F Tunable Parameters for Different Solutions

We vary the following parameters when using those systems

to diagnose problems of the four scenarios. The goal is to find

the parameter sets with the best precision and recall rate. We

do nested iterations over different parameters by fixing some

parameters and iterate the other parameters. The parameters

are different across systems, and for the same system, the

parameters vary according to the scenarios that we are trying

to diagnose. The details are shown in Table 2 and Table 3.

G Constructing Signatures for Root Causes

SpiderMon uses both the collected telemetry information and

the static network configuration information to recognize the

root causes. The telemetry information is collected by Spider-

Mon, and the configuration information is simply provided



Micro-burst-related Contention Priority-related contention

Trumpet

Tolerable per-flow throughput,

tolerable end-to-end latency difference,

tolerable TCP packet loss

Tolerable per-flow throughput,

tolerable end-to-end latency differences,

tolerable TCP packet loss

PathDump
Tolerable per-flow throughput,

tolerable link utilization

Tolerable per-flow throughput,

tolerable link utilization

SwitchPointer
Tolerable per-flow throughput,

tolerable link utilization

Tolerable per-flow throughput,

tolerable link utilization

NetSight
Related time intervel length,

tolerable link utilization

Related time intervel length,

tolerable link utilization,

postcard arrival sequences

Marple
Network-wide query lasting time,

tolerable per-flow throughput

Network-wide query lasting time,

tolerable per-flow throughput

SpiderMon Maximum allowed flow throughput /

Table 2: Parameters for micro-burst and priority

ECMP load imbalance Loop

Trumpet / /

PathDump
Tolerable link utilization,

tolerable link utilization imbalance ratio
Maximum header size

SwitchPointer
Tolerable link utilization,

tolerable link utilization imbalance ratio
Maximum header size

NetSight

Related time intervel length,

tolerable link utilization,

tolerable link utilization imbalance ratio

/

Marple
Network-wide query lasting time,

tolerable link utilization imbalance ratio
Network-wide query lasting time

SpiderMon Tolerable link utilization imbalance ratio /

Table 3: Parameters for load imbalance and Loop

by the topology information and routing information, which

is known by the operator in advance.

To add a new signature for a new root cause, network opera-

tors could simply use the above information to construct their

own signatures. Here we provide some telemetry information

and static configuration information used in the 4 example

signatures in Table 4. This is not an exhaustive list and more

information could be added when new signatures are intro-

duced. To construct new signatures, we should know that any

signature consists of two parts: 1) the root cause’s pattern, like

a flow with large throughput for the micro-burst root cause;

2) the relation between the problematic flow and the victim

flow, namely, the problematic flow should be one of the main

contributors to the victim flow’s poor performance. Here we

also provide 4 different signatures as examples.

Telemetry Info

Edge weight from flow i to flow j:

E( f lowi, f low j)

Main contributors for a queue:

Contributors(SwitchiPort j)

Flows traveling a switch port:

Flows(SwitchiPort j)

Priority: P(flow)

Data volume: V(flow)

Config Info

Port mapping in Topology:

Topo(SwitchiPort j)=SwitchxPorty
Flows belonging to an ECMP group:

Flows(group)

Table 4: Selected telemetry information and static config-

uration information

Micro-bursts. SpiderMon can identify all the main flow-level

contributors at different hops along the victim flow’s histori-

cal path. As shown in Figure 5(a), the micro-burst flows have

many wait-for edges with large weights pointing to them-

selves due to a large amount of traffic during the problematic

time. For example, for the micro-burst problem, there must

exist one micro-burst node root which satisfies:

The root cause flow has the same priority as the victim

flow:

P(victim) = P(root) (5)

The root cause flow has similar edge weight to itself as to

other flows:

E(root,root)≈ E(victim,root) (6)

The victim flow contends with the root cause flow:

∃m,n,where

victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)

(7)

The larger the weights of E(root,root) and E(victim,root),
the more confidence SpiderMon has on determining the micro-

burst flow.

Different priorities. For contention between flows with dif-

ferent priorities, SpiderMon checks the priority of the victim

flow and the main flow-level contributors. The contributor

flows with higher priority compared to the victim flow can

be identified as the root causes, as shown in Figure 5(b). The

high priority flow root should satisfy:

The root cause flow has higher priority than the victim

flow:

P(victim)< P(root) (8)

The root cause flow has smaller edge weight for the edge

pointing to itself than the edge pointing to the victim:

E(root,root)< E(victim,root) (9)

The victim flow contends with the high priority flow:

∃m,n,where

victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)

(10)

ECMP load imbalance. For the load imbalance problem

displayed in Figure 1(b), SpiderMon will find the flow-level

main contributors and check if they are routed by ECMP. Then

SpiderMon calculates the ECMP imbalance ratio with the

throughput of all flows routed by ECMP rules, using the traffic

volume provided by per-flow telemetry data. The problematic

ECMP groups can be identified when the calculated ratio is

highly imbalanced as in Figure 5(c). Within the problematic

ECMP group ecmp on Switch Switchx, there must exist one

or more flows root, which satisfies:



The ECMP traffic split on some switches is not balanced:

T hroughput(SwitchxPorty) = ∑V ( f lowi),

where f lowi ∈ Flows(SwitchxPorty)
(11)

∃x,y,∀i 6= y,

T hroughput(SwitchxPorty)

> T hroughput(SwitchxPorti)

(12)

The root cause flow is one of the flows from the ECMP

port that has larger throughput.

root ∈ Flows(ecmp)∩Flows(SwitchxPorty) (13)

On another switch, the victim flow contends with the root

cause flow:

∃m,n,where

victim ∈ Flows(SwitchmPortn)

root ∈Contributors(SwitchmPortn)

(14)

Transient/persistent loops. For the latency problem caused

by transient or persistent loops as shown in Figure 1(c), Spider-

Mon searches the port-level contributors along the contributor

traffic’s path. If the same port is observed twice during the

search procedure, all those ports are highly likely to have

formed a loop for specific traffic. Furthermore, the flow ID

will be checked to further confirm the transient/persistent loop.

The formal signature for a flow root with a transient/persistent

loop can be written as:

Exist a port list:[Switchm0
Portn0

, ...,Switchmk
Portnk

] (15)

The port list forms a ring in the topology and the root cause

flow routed in a loop on that ring:

∀i,

Topo(Switchmi
Portni

) == Switchmi+1
Portni+1

root ∈ Flows(Switchmi
Portni

)

(16)

The victim flow contends with the loop traffic on one of

the switches on that ring:

∃ j,where j ∈ [0,1, ...,k]

victim ∈ Flows(Switchm j
Portn j

)

root ∈Contributors(Switchm j
Portn j

)

(17)
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