Runtime Programmable Switches

Jiarong Xing Kuo-Feng Hsu Matty Kadosh? Alan Lo
Yonatan Piasetzky' Arvind Krishnamurthy* Ang Chen

Rice University "Nvidia *University of Washington

Abstract

Programming the network to add, remove, and modify func-
tions has been a longstanding goal in our community. Un-
fortunately, in today’s programmable networks, the velocity
of change is restricted by a practical yet fundamental barrier:
reprogramming network devices is an intrusive change, requir-
ing management operations such as draining and rerouting
traffic from the target node, re-imaging the data plane, and
redirecting traffic back to its original route. This project in-
vestigates design techniques to make future networks runtime
programmable. FlexCore enables partial reconfiguration of
switch data planes at runtime with minimum resource over-
heads, without service disruption, while processing packets
with consistency guarantees. It involves design considerations
in switch architectures, partial reconfiguration primitives, re-
configuration algorithms, as well as consistency guarantees.
Our evaluation results demonstrate the feasibility and benefits
of runtime programmable switches.

1 Introduction

Programming the network to add, remove, and modify func-
tions has been a longstanding goal in the networking commu-
nity. Programmable switches [3, 8] represent the latest step
toward this vision. Using high-level languages like P4 [3],
network operators can customize packet processing behaviors
at the switch program level. To change network processing,
operators can deploy a different P4 program to the data plane,
without the need for hardware changes or device upgrades.
Programmable switches have enabled a host of new network
applications in telemetry [15, 27, 35], measurement [40], se-
curity [39], and application offloading [18, 19].
Unfortunately, in today’s programmable networks, the ve-
locity of change is restricted by a practical yet fundamental
barrier: switch functions are only programmable at compile-
time, but they effectively become fixed functions at runtime.
The switch program cannot be easily modified at runtime
without reflashing the data plane hardware and carefully man-
aging network-wide changes. To reprogram a network switch,
operators need to first drain and reroute traffic from the target,
install the new program image, and then redirect traffic back
to its route. The error-prone nature of network maintenance
procedures, the amount of manual coordination required, and
the need to satisfy stringent SLAs pose severe constraints

on runtime program changes. To the extent that functions
can be “hard-coded” in the device, they can be invoked for
runtime response [41]. However, new functions that haven’t
been accounted for, or functions that cannot fit into the switch
resources, are difficult to deploy at runtime. This stands in
stark contrast to software data planes on host servers, where
changes are easily accommodated and functions go through
frequent upgrades [12]. The ultimate vision of programmable
networks that seamlessly incorporates function changes at
any time (e.g., based on traffic workloads or multi-tenancy
requirements) still remains an elusive goal.

In this project, we pave the way toward runtime pro-
grammable switches by investigating the necessary build-
ing blocks and proposing concrete designs for each of them.
FlexCore enables switch functions to be continuously pro-
grammable throughout the lifetime of the network. It devel-
ops a new set of control plane API to modify P4 program
elements—match/action tables, control flow branches, and
parsing graphs—while the switch data plane serves live traf-
fic. These operations precisely instrument the switch program
using partial reconfiguration primitives without affecting the
rest of the data plane. This new modality of network pro-
grammability introduces an array of applications:

¢ Just-in-time network optimizations: When an optimiza-

tion (e.g., network-accelerated multicast) is needed, it
can be added just-in-time to serve the traffic workloads,
and removed soon afterwards to keep the network lean.

* Real-time attack mitigation: If network attacks (e.g.,
DDoS, data exfiltration) are detected, we can inject mit-
igation modules exactly where needed; new attack pat-
terns would trigger removal of expired modules and the
insertion of new program components.

* Scenario-specific network extensions: A tenant can in-
ject switch program extensions to the network. VM mi-
gration will carve out and graft the relevant program
components to a different location of the network.

Also, telemetry applications do not have to commit to a fixed
set of queries [27]; new network protocols can be added and
removed dynamically; load-aware routing algorithms can be
injected when needed [17]; different versions of switch pro-
grams can be deployed for canarying [42]. In fact, many (if
not all) of today’s programmable network applications will
have more powerful, runtime programmable equivalents.

Achieving this goal requires a range of research challenges
to be addressed: switch architecture designs that make runtime
programmability natural, partial reconfiguration primitives for
modifying live switch programs, atomicity and consistency
guarantees on runtime changes, and algorithms for effectively
computing reconfiguration plans. FlexCore makes contribu-
tions in all these dimensions.

Switch architecture. We base our FlexCore design upon
a variant of disaggregated RMT (dRMT) [11]. dRMT sep-
arates switch memory from compute, and our architecture
introduces another twist in its partial disaggregation design,
where a small compute-local memory holds a indirection data
structure that we call a program description table (PDT). This
table contains metadata about the program control flow and is
our target for reconfiguration. Decoupling program logic from
its physical realization separates concerns: physical resources
can be allocated and deallocated in scratch areas before pro-
gram elements are modified for the changes to be visible.

Partial reconfiguration primitives. We develop a set of
new primitives for adding, removing, and modifying pro-
gram elements—this includes match/action tables, control
flow branches and parser states. Unlike today’s control plane
API, which manipulates switch memory (e.g., adding/remov-
ing entries), the new API reconfigures switch compute.

Consistency guarantees. We propose three consistency
guarantees for runtime reconfiguration: program consistency,
element consistency, and execution consistency, with increas-
ingly relaxed guarantees. These guarantees constrain the kind
of “intermediate programs” that packets are allowed to en-
counter during partial reconfiguration. Program consistency
states that all program modifications must take effect simulta-
neously. Element consistency is weaker, and states that modi-
fications can be made visible in an element-by-element basis
(e.g., one table at a reconfiguration step). Execution consis-
tency is the weakest, but it still guarantees useful properties:
packets never traverse execution paths that mix old and new
program elements. In all cases, reconfigurations are atomic
and do not disrupt data plane forwarding.

Algorithms. We develop algorithms for computing recon-
figuration plans for different levels of guarantees.

Evaluation. We implement our design on a 12.8 Tbps mer-
chant silicon (Nvidia Spectrum-2 SN3000 series), as well as
a software simulator based upon bmv2. We evaluate the scal-
ability of the reconfiguration algorithms and demonstrate a
set of use cases in hardware and software platforms, showing
that FlexCore enables a truly adaptive network core.

2 A Case for Runtime Programmability

The quest for network programmability has been an impor-
tant undertaking in the community. Network switches used to
be blackboxes, with opacity at both control and data planes.
OpenFlow SDN opened up the control plane for program-
matical control, and as of late, programmable data planes
enable flexible packet processing pipelines without hardware

upgrade. Operators can customize the data plane by remov-
ing unnecessary switch functions or adding new ones at the
program level. P4 switch programs are compiled into a binary
image, which is flashed to data plane hardware for deployment.
Researchers have seized this opportunity to systematically
rearchitect network telemetry [15, 27, 35], measurement [40],
security [39], and application offloading [19].

However, today’s programmable data planes have a notable
limitation—they cannot be reprogrammed at runtime. If an
operator can anticipate all required functions at compile time,
and if these functions can fit into the switch resource con-
straints, then they can be combined and deployed together in
the switch. But once deployed, the switch is committed to
the hardcoded behaviors as specified at compile time, until
the next program reflash. At runtime, only ‘micro’ changes
are permitted, such as modifying flow table entries or register
values from the control plane. This affords some flexibil-
ity [41]; however, as macro-level program logic changes are
hard to make, accommodating requirements that truly arise
‘on-demand’ (e.g., security incidents) remain an elusive goal.
Also, since switches have constrained resources, even if we
had an ‘oracle’ planner that anticipates all needed functions,
they may not fit into the switch together at compile time.

To remedy this problem, we need runtime programmable
switches. This not only enables new use cases as motivated
above, but also calls for a rethink as to how networks can
be specialized. The operator can, at any point in time, ag-
gressively optimize the network data plane to only retain a
minimal amount of processing logic. This reduces switch re-
source footprints, improves network energy efficiency, and
also keeps network latency at a minimum. If extra functional-
ity is required, the program elements can be injected precisely
where and when they are needed. If a functionality is no
longer in use, it can be removed to ensure that the data plane
stays at its leanest. Viewed from the lens of the classic ‘end-to-
end’” arguments [31], in-network processing no longer incurs
a common overhead to all applications.

3 The FlexCore Switch Architecture

Our switch architecture adopts a disaggregated RMT
model [11], where compute resources (i.e., match/action pro-
cessors) are split from memory (i.e., SRAM/TCAM), and
they are interconnected via a crossbar. Each MA processor
holds a copy of the P4 program, and processes packets in a
run-to-completion manner.

In the RMT architecture [8], each stage contains a slice of
compute and memory resources that cannot be reassigned to
other stages. This tight coupling makes runtime reconfigura-
tions challenging. For instance, inserting an MA table to a
stage may require device-wide table shuffling and reallocation
to make space. Removing an MA table from a stage will leave
‘holes’—fragmented resources that cannot be easily reused by
other program elements. These operations can be intrusive.

A disaggregated architecture, on the other hand, breaks

Deparser

Parser

Ty
e

Q

Cvsicr Pl

In
B — |
MA processors é = I"
$ $ $

‘ .és. Load-balanced crossbar

el s

Memory bank 1

Match
éction}
DT

Disaggregated,

[Table1 shards
sharded access

B Table2 shards
[Table3 shards

Memory bank t

Figure 1: The FlexCore switch architecture. Highlighted in
bold+italic are the customizations to dRMT [11].

resource allocation boundaries and enables reconfigurations to
be performed locally—i.e., it enables partial reconfiguration.
If a reconfiguration releases a table, the deallocated resources
can be dedicated to any other program elements irrespective
of their ‘locations’. New tables can be inserted to any part
of the program without having to change existing resource
allocation decisions. Similar properties hold for resources that
implement control flow branches and parsing graphs.

dRMT customizations. Our silicon also implements sev-
eral customizations for performance, flexibility, and usability.
Figure 1 shows the high-level architecture.

(i) Sharded resource allocation. In the dARMT architecture,
an MA table is allocated in one specific SRAM/TCAM bank.
Simultaneous accesses to the same table (or different tables
in the same memory bank) from different processors creates
contention at the crossbar. In FlexCore, all tables are r-way
sharded, where ¢ is the number of memory banks. When in-
serting a table entry, FlexCore first computes a hash & from
the match key as the shard ID, and then allocates the entry in
the h-th SRAM/TCAM bank. When performing a match, the
same hash function is computed to retrieve the shard ID. This
allows FlexCore to sustain linerate without complex mecha-
nisms to detect and avoid access contention. The crossbar is
always load-balanced and has uniform access patterns.

(ii) Hybrid programmability. Our switch exports a set of
fixed-function ASIC modules as common building blocks
(e.g., L2 bridging, L3 routing). These functions can be called
by or bypassed from the P4-programmable logic. The fixed
blocks are more resource- and energy-efficient, as their im-
plementations are heavily-optimized, hardwired ASIC. By
providing these building blocks, P4 programmers don’t need
to redevelop them from scratch. Moreover, they also represent
a minimum “baseline” program that, if necessary, traffic can
always fallback on during reconfiguration.

(iii) Indirection. FlexCore employs a partially disaggre-
gated design, where each processor has a small amount of
local SRAM to store a special program description table
(PDT) for indirection. Accesses to PDT do not go through the
crossbar and enjoy lower latency. PDT stores the ‘program
skeleton’—the control flow graph—and decouples the control
flow operations from main SRAM accesses. Our partial recon-

TCAM
5 TCAM region

TCAM region

TCAM region

Actions, next action pointer

Actions, next action pointer

Actions, next action pointer

prog_desc_0
+ Match key

« Action ptr
« Next tab/branch ptr

SRAM region

5 SRAM region
SRAM

Figure 2: Runtime reconfigurable tables and control flow
branches, the indirection mechanism via the program descrip-
tion table (PDT), and an example execution as illustration.

figuration mechanisms make heavy use of the PDT to modify
program elements. Similarly, a parser state table (PST) serves
as indirection for the parsing hardware.

4 Runtime Reconfiguration Primitives

FlexCore introduces a set of novel primitives that, when in-
voked by the control plane, partially reconfigure a P4 switch
program. These primitives operate on a graph representation
of a P4 program by adding, removing, or modifying nodes
and edges. In a P4 program, the match/action logic is cap-
tured by the ‘table flow graph’ [8], where nodes represent MA
tables or conditional branches (realized in table-independent
actions), and edges represent non-conditional, table depen-
dency control flow. For the parser logic, the nodes represent
parser states (which also contain header extraction rules), and
the transition rules are the edges. Next, we first describe the
primitives on the table flow graph and then the parsing graph.

4.1 Program description table

A key indirection data structure that enables partial recon-
figuration of the table flow graph is what we call a program
description table (PDT), as shown in Figure 2. Each match/ac-
tion processor maintains a local PDT and it is dedicated to a
specific switch port. All packets arriving at a port will first hit
a default entry in the PDT to activate packet processing.

The entries in the PDT are compiled from a P4 program.
Each entry stores metadata about a program element, which
could be a match/action table or a table-independent ALU
action that implements conditional control flow. The metadata
contains entry type, match key/type, and a resource pointer
that refers to the physical realization of that program element.
The pointer address could be an SRAM location (for exact and
algorithmic ternary matches), a TCAM location (for ternary
matches), or an action location (for conditional branches)—
with a ‘union’ semantics as only one pointer type can be valid
for a PDT entry. The address is specified by the base address
of a memory region, the size of the region, as well as the offset
from the base address. Each PDT entry also contains a ‘next’

pointer, which encodes unconditional control flow to the next
program element (i.e., MA table or conditional branch).

This indirection provides several advantages for runtime
programmability: a) operations for adding and removing a
program element are decoupled from resource allocation op-
erations, as the first occur in the PDT and the second in the
memory regions; b) PDT entries serve as a local scratch—
entry modifications are lightweight and do not touch switch-
wide shared resources, and they can be changed in a trans-
actional manner. The PDT enables runtime reconfiguration
of match/action tables and the control flow graph, which we
discuss next.

4.2 Runtime reconfigurable tables

MA tables are the key processing elements in a P4 program.
FlexCore enables the addition and deletion of tables using
several partial reconfiguration primitives.

Allocation+deallocation. ALLOCTBL(T) allocates a new
table, and DEALLOCTBL(T) deallocates an existing one. Both
are control plane operations that have a centralized view of
PDT tables, and they accept the table definition T as the input
argument. Allocations first identify free slots to create new
PDT entries. In a new PDT entry, the match key and type are
filled in with the specified table attributes. SRAM and TCAM
resources are then allocated based on the table attributes, and
both are sharded across all memory banks. Finally, the control
plane fills in the resource pointer, finishing the table alloca-
tion. Deallocations could directly remove the entry and its
resources, or it may defer their removal to a later garbage
collection phase. (Actual table entries are added/removed just
like in today’s switches, via existing control plane API such as
that defined in P4Runtime [5].) Importantly, allocation/deal-
location operations are not visible to network traffic until we
invoke insertion/deletion primitives.

Insertion+deletion. Changes are made visible via another
primitive: SETPTR(T,NXT) modifies T’s next pointer to NXT.
Table insertions invoke multiple SETPTR calls to place T in
the program; deletions perform the opposite operations. In-
sertions must happen after resources have been allocated, and
deletions before deallocation. Each pointer change is atomic
in hardware. (To ensure atomicity for a collection of changes,
we need another mechanism called a ‘flex branch’ as dis-
cussed later.) Insertions and deletions alter the view of the
program state from the perspective of network traffic.

4.3 Runtime reconfigurable control flow

Conditional branches are implemented in ALUs as table-
independent actions. Like tables, a conditional branch takes
up one PDT entry, but its resource pointer addresses the ac-
tion memory instead of SRAM/TCAM. In addition, the PDT
entry for a conditional branch has a null ‘next’ pointer; its
two jump addresses are instead encoded in the ALU action,
one for each branch condition. N-way conditionals are imple-
mented as cascading binary branches. Control flow branch

PDT Table t

= Deleted
a=1, b=1, act=act1, priority=1)
prog_desc_entry — Active
a=2, b=2, act=act1, priority=1

a=3, b=3, act=act2, priority=1
/ a=4, b=4, act=act2, priority=1
a=5, b=5, act=act1, priority=1

Table t’

a=1, b=1, c=1, act=act3, priority=2

prog_desc_i

Action
resolver

Table
group

Figure 3: Primitives for in-place table modification.

prog_desc_j
act3

a=2, b=2, c=1, act=act3, priority=2

a=3, b=3, c=2, act=act3, priority=2

modifications are performed using the following primitives.

Allocation+deallocation. FlexCore introduces a primitive,
ALLOCCOND(B, PRED, BR{, BRy), to allocate a control flow
branch based on PRED, where BR; and BR, are the jump ad-
dresses for the true and false branches, respectively. Allo-
cation of an N-way conditional is performed by successive
invocations of ALLOCCOND with cascading jump addresses.
A predicate PRED corresponds to an ALU action that checks
the condition and produces a true/false evaluation. This bi-
nary result is consumed by a hardware ‘goto’ microcode that
jumps to the next program element. If PRED evaluates to true,
‘goto BR;’ directs the control flow to the next table or a cas-
cading branch; otherwise, it branches to BR,. Deallocations
free action memory and PDT entries.

Insertion+deletion. A conditional branch can be activated
by a) SETPTR(T,B), which points a table’s next pointer to the
new branch B, and b) SETCONDPTR(B,N,N»), which sets one
or both of the jump addresses of a branch. In the case where
SETCONDPTR modifies two pointers, the operation is not
atomic. Atomicity is achieved similarly using ‘flex branches’
that we will discuss later. Deletions achieve opposite effects.

4.4 In-place table modifications

So far, all primitives that we have described can be used
at any level of consistency guarantees. In this and the next
subsections, we describe two special sets of primitives for
table modifications and parser reconfigurations as well as
their respective consistency properties.

Table modifications can be performed by adding a new
table and deleting the old, in which case the intermediate
state has size 2x|T| (assuming both tables have size |T|).
But FlexCore also exposes a more efficient primitive to re-
format a table in-situ with an intermediate state of |T|. A
MODTBL(T,T') primitive reformats T using the definition as
specified in the new table definition T/, which could include
new match key/type and actions. This is achieved by a PDT
mechanism called table groups. Several PDT entries can be
‘grouped’ together and processed in parallel at the MA proces-
sor. MODTBL creates a new PDT entry using T’ and groups it
with the entry for T. It then gradually moves entries from T to
T/, reformatting each entry using the new key or action, and
setting the entries in T with higher priority. In this transient
state, the MA processor looks up both tables and resolves

Header 1 Key :0x0800
Next header ID: 2 | 'PV4 Parallel
+ Header ID: 1
« Transition key: EthType table
« Header length: [0:14] Key :0x86DD lookups

Next header ID: 3 | IPv6

State transition lookup =1

Extraction array

Extraction 1
* Register ID: 2

+ Offset: Eth[0:5]
* Mask: Oxfffffffffff

Extraction 2

* Register ID: 3
« Offset: Eth[6:11]
* Mask: OXffffffffffff

Header n

* Header ID: n
« Transition key:

Extraction 3

* Register ID: 4
- Offset: Eth[12:13]
*+ Mask: Oxffff

Parser state table

Extraction points

Figure 4: Runtime reconfigurable parsers and the indirection
mechanism via the parser state table (PST).

them using an action resolver that chooses the higher-priority
result. When T become empty, the PDT entries are de-grouped
and T gets deleted. MODTBL triggers simultaneous applica-
tions of parallel tables, so this mechanism is different from
the ‘flex branch’. We will discuss its consistency guarantees
later in Section 4.6.

4.5 Runtime reconfigurable parsers

Header parsing logic requires different mechanisms for recon-
figuration. We describe the parser hardware next, and then the
reconfiguration primitives for the parser graph.

The parser state table (PST). Figure 4 presents the hard-
ware architecture for the reconfigurable parser. The key in-
direction data structure is a parser state table (PST), which
stores an array of parser states. Each entry stores a) parsing
information for that header, b) an extraction array that extracts
header fields, as well as c¢) a parallel transition lookup compo-
nent that determines the next state based on the current header
values. Similar as the PDT, this indirection ensures that state
additions and removals are easily achieved at runtime.

The PST implements a finite state machine, where each
entry represents one state and contains transition rules to other
states. This array is indexed by a logically assigned header ID
that starts with one and ends with the maximum state ID as
constructed from the program. When a packet comes in, it first
matches against the default entry (ID=1) for parsing. At every
step, the hardware uses the ‘header length’ and ‘transition
key’ defined in the current entry (as well as a base register
that remembers how much data has been parsed) to identify
the correct offset into the packet. A chunk of data of the
size ‘header length’ is then sent to extraction logic, which
uses shift-and-mask to further segment the data chunk into
multiple fields (e.g., EtherType, SMAC, DMAC) of varied
sizes. These extracted fields are stored in an extraction array
that is associated with the current header entry. These are
further combined using a recombiner into a PHV (packet
header vector) and streamed to the ingress blocks.

Simultaneously with header extraction, FlexCore uses a
parallel set of logic to identify relevant headers to compute
the next parsing state. This relies on a similar extraction logic
but does not materialize header fields in the extraction array.
Rather, it uses the preconfigured ‘transition key’ to perform a
parallelized lookup. It muxes the key through a lookup table
that contains all transition rules as compiled from the parser—
e.g., IPv4 packets transition to ID=2, and IPv6 to ID=3. A
demux combines the lookup results from all rules and com-
putes the next state ID. Parsing continues until it encounters
an accept state, at which point the extracted headers are sent
to the ingress logic for MA processing.

Reconfiguration primitives. Runtime parser reconfigura-
tion modifies the parser states, extraction rules, and transitions.
FlexCore exports ALLOCSTATE(S), ALLOCTRANS(S1,52), and
ALLOCEX(R) for allocation of new states, transitions, and ex-
traction rules, respectively. ALLOCSTATE(S) creates a new PST
entry and the respective transition key and header length.
ALLOCTRANS(S1, $2) sets up transition rules in the transition
matching mux and demux. ALLOCEX(R) sets up an extraction
rule in a parser state that locates a certain offset in the current
header and outputs the result to an extraction register. Each
primitive has its DEALLOC analogue.

Edits to the transition rules with ALLOCTRANS are immedi-
ately visible to network traffic, so for multiple changes, Flex-
Core requires the parser diff or the new parser to be prepared
in PST scratch, before they are activated together in a single
atomic step. Otherwise, network traffic will be parsed with
a mix of old and new parsing logic. In the current hardware,
parser changes are only possible with ‘program consistency’,
which, as we will discuss later, requires higher resource head-
room to maneuver. This limitation stems from the lack of a
‘flex branch’ equivalent in the current parser hardware, which
is necessary for using the version metadata for transactions.
In future hardware generations, this can be incorporated by
adding transition version numbers as well as match logic
using the versions.

4.6 Summary

We now discuss the two special-case primitives: table modifi-
cations and parser changes. MODTBL relies on ‘table groups’
instead of ‘flex branches’. When a MoDTBL operation is in
progress, it guarantees that each packet is only processed
with the old or new version of the table; in this sense, the
intermediate states as seen by the packets satisfy ‘execu-
tion consistency’. However, MODTBL cannot be parallelized
with other program modifications, as ‘table groups’ do not
atomically control which version is encountered by packets.
Parser changes, on the other hand, satisfy program consis-
tency; but the current hardware doesn’t support weaker guar-
antees, which require ‘flex branches’. In the next section, our
reconfiguration algorithms primarily focus on changing MA
tables and control flow branches, where all three consistency
guarantees apply and are achievable at different overheads.

BN Unchanged BB Deleted [Added Z Z Z; Xch(el,e2) operations

Program consistency Element consistency Execution consistency

[Flex branches that check version metadata

: ' @ ‘ @ ‘ @@
? P '\\@([,p'."ca 00 /@
elo)

(b) Weaker consistency levels permit finer-grained transactions

O+ Qo ! o
e' &9 @ \/ ‘®
® & G ANG!

(a) Minimal common supergraph

NoRolo

(c) The use of flex branches

Figure 5: (a) FlexCore constructs a minimum common supergraph between two programs. (b) Weaker consistency guarantees
reduce resource requirements for reconfigurations, and allow more intermediate states to be exposed to network traffic. (c) To
ensure atomicity, FlexCore inserts ‘flex branches’ that can branch to the old or new versions depending on the version metadata.
These branches are deleted after reconfiguration completes. Nodes A-F represent MA tables or conditional control flow branches.
Virtual nodes r and s are added as the sources and sinks of the DAGs, respectively. Virtual nodes i denote flex branches.

S Runtime Reconfiguration Algorithms

The FlexCore reconfiguration algorithms rely on the partial
reconfiguration primitives to transform an existing switch
program prog to a new one prog*. We represent each P4 pro-
gram as a directed acyclic graph (DAG), G for prog and G*
for prog*. Nodes are the MA tables and conditional branches,
and edges represent unconditional dependencies (or packet
dataflow through the program). Our goal is to compute a re-
configuration script [9], a series of graph edit operations to
nodes and edges to transform G into G*. We denote the re-
configuration sequence as G — S} — --- — S, — G, where
S;,in € [1..n] are the intermediate DAGs and each step from
S; to the next state is atomic. Depending on whether (or what
types of) intermediate states are allowed to be exposed to
network traffic, we propose three levels of consistency guaran-
tees: program consistency, element consistency, and execution
consistency, with a decreasing order of strictness. Stronger
guarantees are achieved by preparing larger portions of the
program diff in scratch memory, requiring that the switch
resources must have enough slack for the reconfiguration.
Weaker guarantees allow FlexCore to operate within more re-
stricted headroom. Figure 5 includes an illustrative example.

5.1 Program consistency

This is the strongest level of consistency guarantees: no inter-
mediate state is exposed to any packets. The switch program
as encountered by network traffic is either G or G*. This is
important for any scenario that requires strong network pro-
cessing guarantees, where exposing intermediate state would
cause operational disruption. For instance, a load balancer or
NAT may contain two match/action tables, one for mapping
DIP to VIP and another for the reverse direction [25]. Updates
to the program (e.g., rehashing) should not take effect until
both tables have been reconfigured.

Program consistency. A sequence G—S; —---— S, — G*
achieves program consistency if the following property holds
forall S;,i € [1..n]. For any element t (node or edge) in S;, if
t € G* andt ¢ G, then S; = G*. Similarly, for any element t

inS; ift €Gandt ¢ G, then S; = G.

Put in simpler terms, reconfigured program elements aren’t
visible to network traffic until all reconfigurations finish: an

“all-or-nothing” guarantee. To achieve this, all edits must be

prepared in an ‘offline’ scratch area. They are made visible
in an atomic transaction that, from the packets’ perspective,
changes G to G* in one single step. Without the partial re-
configuration primitives in FlexCore, one would need to in-
stantiate the entire program prog* in the scratch while the
old one prog is still active. Therefore, the switch resources
must have enough slack to accommodate the co-existence of
both programs—i.e., there must be a headroom of |G|+|G*|.
Supposing that |G|~ |G*|, then the switch resource utilization
must be kept to < 50% for runtime changes to be feasible.
This is a stringent requirement.

Algorithm. Our new primitives enable FlexCore to only
prepare the ‘diff” while reusing shared program elements, so
the switch only needs to accommodate |G| and newly inserted
elements of the size A < |G*|. In order to compute the diff,
FlexCore merges two DAGs G and G* into a minimum com-
mon supergraph (MCS) [9]. An MCS is the union of the input
DAGs that minimizes the diff as caused by mismatched ele-
ments. In our context, only nodes take up resources and edges
are pointer fields in the nodes and do not consume physical re-
sources; so our MCS algorithm primarily extracts node-level
diff. Using this MCS, we compute a set of edit operations
as our reconfiguration script. INs(v) and DEL(V) inserts and
deletes a node, respectively; and INs(e) and DEL(e) operate
on edges. A special edge substitution operation XcH(e,e') is
allowed if both edges share the same source node and are
of the same type (i.e., both are ‘next’ pointers or both are
true/false jump addresses). In terms of resource overheads,
INs(v) reduces and DEL(v) increases switch headroom by |v|,
respectively, where |v| is the table size (for MA tables) or
action memory size (for conditional branches). Edge opera-
tions do not affect resource headroom. Figure 6 shows the
algorithm, which colors the MCS: shared elements in black,
new elements in green, and deleted elements in red.

function PROGRAMCONSISTENCY (prog, prog™)
// Compute minimum common supergraph
G < GETP4DAG(prog); G* <— GETP4DAG(prog*)
G <~ MERGEDAGS(G, G*)
/I Compute reconfiguration script
Script < 0
for node or edge t € G do
ift e GAte G* then
COLORBLK(t)
elseift € G At ¢ G* then
COLORRED(t); Script. Add(DEL(t))
elseift ¢ G At € G* then
COLORGRN(t); Script. Add(INS(t))
Script.IdentifyEdgeXch(G)
return Script

Figure 6: The program consistency algorithm.

Atomicity. To ensure that intermediate states are not visible
until all reconfigurations complete, FlexCore groups the edits
in a transaction to achieve atomicity. We use a hardware
mechanism that we call a flex branch. During the transaction,
inserted program elements are guarded by an extra conditional
branch that implements a check on special version metadata:
‘if (meta.v==0)" branches to the old program elements and ‘if
(meta.v==1)’ to the new. Deletions are also guarded by flex
branches instead of being deleted right away. The transaction
is committed when FlexCore modifies the version metadata,
after which deleted elements can be safely removed.

5.2 Element consistency

A relaxed consistency guarantee, which allows reconfigura-
tions to proceed within more restricted headroom. In pro-
gram consistency, preparing the diff in scratch area leads to
a resource spike of A. Therefore, in order to accommodate
runtime reconfigurations, the switch utilization must be upper-
bounded to leave sufficient headroom A.

Element consistency breaks the reconfiguration into several
finer-grained transactions that can be performed with lower
headroom & < A. This allows FlexCore to drive up switch
utilization even further while still preserving the ability to
make runtime reconfigurations. Every smaller transaction will
add and remove certain program elements, with the goal of
releasing some switch resources to accommodate subsequent
transactions. Under this guarantee, intermediate states can
be exposed to traffic, but only if there is a consistent view as
to which program elements have been updated (inserted or
deleted). If program elements (nodes or edges) are reachable
from each other, they must be updated together. Unreachable
edits are partitioned to different transactions as they are in-
dependent from the view of network traffic. This property is
useful when program updates can be applied incrementally
with well-defined semantics. For instance, a firewall that uses
independent ACL tables for different types of traffic (e.g.,
TCP vs. UDP) can be added or removed on a table-by-table
basis. A traffic normalizer [1, 22, 39] may apply different

function ELEMENTCONSISTENCY (prog, prog*)
/I Compute overall script
Script <~ PROGRAMCONSISTENCY(prog, prog*)
/I Reachability analysis. Optimization using Xch operations.
for all Xch(u—v, u—v’) € Script do
u.Reachability <~ DFS(u, G)
// Partition script by reachability
Partitions <— INITPARTITIONFOREACHEDIT(Script)
while 3 reachable partitions p, q do
MERGEPARTITIONS(p, q)

return Partitions

Figure 7: The element consistency algorithm.

security functions for incoming and outgoing traffic—e.g.,
normalizing TTL fields for incoming packets, but clearing
TCP options for outgoing ones.

Element consistency. For any intermediate state S;,i € [1..n],
we require the following properties to hold. For any element
tinS; ift € G* andt ¢ G, then for any other element t' in
G* where t' ~*t (i.e., t' can reach t in G*) ort ~*t', we
require that t' € S;. Similarly, for any element t in S;, ift € G
and t ¢ G*, then for any other element t' in G wheret' ~t ('
can reach t in G) ort ~ t', we require thatt' € S;.

Stated simply, if a new program element is visible in the inter-
mediate state, it should be visible to all packets that traverse
this element in the new program, even if they follow different
execution paths through the program. A deleted element is no
longer visible to packets regardless of their execution paths.

Algorithm. As Figure 7 shows, we first invoke the program
consistency algorithm to compute the overall reconfiguration
script, and then partition this script into independent, smaller
transactions. This relies on a DFS search on G to compute
whether one edit may affect another. If two edits operate on
unreachable regions of the graph, they may proceed indepen-
dently; otherwise they belong to the same partition. Initially,
each edit is in its own partition. Partitions are merged if they
are reachable from one another—p and ¢ are said to be reach-
able if their edit operations involve elements that are reachable
in either direction in G. This implies that the algorithm scales
quadratically with the number of edit operations.

Although we can perform DFS from all nodes and edges
in G in polynomial time, in practice we only need to do
so from nodes that are involved in an XcH operation. This
computes all needed reachability information to merge the
partitions, because such nodes are the boundaries between the
new and old graphs. Red nodes/edges are reachable from at
least one such XcH node by following its red outgoing edges,
and similar properties hold for the green color. When no
further merges are possible, the algorithm returns a partition
of the reconfiguration script.

Atomicity. Each smaller transaction begins with
‘meta.v==0’. Flex branches guard intermediate changes or
make them visible by changing ‘meta.v’. The reconfiguration
finishes after all constituent transactions are committed.

function EXECUTIONCONSISTENCY (prog, prog™)
/I Compute overall script
Script +— PROGRAMCONSISTENCY (prog, prog*)
// Bounded reachability analysis
for each Xch(u—v, u—v’) € Script do
Xch.Reachability <— BOUNDEDDFS(u, G)
INITSUBPARTITION(Xch.Reachability)
/I Order partitions
for each Xch1, Xch2 € Script do
if Xch1~~*Xch2 then
ADDCONSTRAINT(Xch1 > Xch2)
if Xch1~»Xch?2 then
ADDCONSTRAINT(Xch1 < Xch2)
if Xchl < Xch2 A Xchl > Xch2 then
MERGESUBPARTITIONS(Xch1, Xch2)
Subpartitions <— CONSTRAINEDSORT(Subpartitions)
Subpartitions <— DEDUPEDITS(Subpartitions)
return Subpartitions

Figure 8: The execution consistency algorithm.

5.3 Execution consistency

We next consider an even more relaxed guarantee with more
finer-grained transactions. Under execution consistency, a
new program element may only be visible to some execu-
tion paths but not others. Likewise, if an element is deleted
from some execution paths, other executions may still use this
element until all reconfigurations finish. Such intermediate
states are still consistent in that a packet never experiences
an execution path that mixes old and new elements. This is
the weakest level of consistency that we consider in FlexCore.
It is a suitable guarantee for program changes that are in na-
ture non-disruptive—e.g., functions that do not interfere with
packet processing decisions, or functions where inaccuracy
is tolerable. For instance, a telemetry module that samples or
aggregates traffic can be added or removed using execution
consistency. The intermediate states merely introduce noise
to the monitoring data, but do not break functionality.

Execution consistency. For any intermediate state S;,i €
[1..n], any execution path through this program, p € S;, should
satisfy that p € G or p € G*.

This allows reconfigurations to proceed at a per execution
path basis. Paths are added to the program as a whole, or they
are deleted as a whole. But packets will not encounter partial
paths or paths that mix old and new elements.

Algorithm. Figure 8 shows the pseudocode. As before, we
perform a reachability analysis from Xch nodes; but unlike
in element consistency, the DFS terminates when encoun-
tering other Xch nodes or shared (black) nodes. The visited
elements form a subpartition for each Xch node. In element
consistency, if Xchl reaches Xch2, they are merged into the
same transaction. But execution consistency only requires
the merge of certain Xch regions, but not all. If independent
reconfigurations of Xchl and Xch2 do not lead to partial or
mixed paths, then their edits can be performed separately.

Specifically, we analyze the ordering relation between all
pairs of Xch nodes. If Xchl can reach Xch2 via a green
(new) path pg, then reconfiguring Xchl before Xch2 will
lead to a situation where the part of p, in Xchl is activated
but its extension into Xch?2 is not, leading to a mixed path.
Reconfiguring Xch2 before Xchl, on the other hand, is safe
because the changes are not reachable from Xchl. Of course,
this reconfiguration will not enable p,, but this may enable
other paths elsewhere so it is a valid plan to be considered.
Similarly, if Xch1 reaches Xch?2 via a red (old) path p,, then
reconfiguring Xch2 before Xchl will delete p, from its end
while its earlier part is still in use, resulting in mixed colors.
Reconfiguring Xchl1 before Xch2, on the other hand, is valid
because it simply removes p,. If Xchl can reach Xch2 via
green and red paths, then the only valid plan is to reconfigure
both regions atomically.

This above ordering relation generates a set of constraints
across Xch nodes, as well as an ordered set of subpartitions.
These subpartitions are finer-grained than the partitions in
element consistency, so they enable smaller transactions. One
final care must be taken: since subpartitions may be reachable
from each other, the bounded DFS may reach shared elements
from different Xch nodes. The edit operations in two subpar-
titions, therefore, may have overlaps. A deduplication step
over the subpartitions ensures that a deletion operation is de-
ferred to the last subpartition where the deleted element is
used, and that an insertion operation is performed in the first
subpartition where the new element occurs. This concludes
the execution consistency algorithm, whose complexity is
quadratic with regard to the number of Xch nodes.

Atomicity. The use of flex branches makes each subparti-
tion visible to network traffic atomically. The entire transac-
tion finishes when all subpartitions have been reconfigured.

5.4 Summary

The reconfiguration script is then realized by the partial re-
configuration primitives in Section 4—e.g., an operation on v
will translate into a table or branch operation depending on
v’s type. For program consistency, all edits are applied in one
single, atomic step, but for element and execution consistency,
the (sub)partitions are applied sequentially. This raises an-
other consideration as to the ordering of the transactions in the
latter two algorithms to minimize the maximum utilization
peak. We perform an exhaustive search over the order. This
search terminates when it has identified a feasible order or
when it concludes that no such order exists.

6 Limitations and Discussions

Program equivalence. The FlexCore partial reconfiguration
primitives and algorithms operate on P4 program elements, re-
lying on the structural differences between two P4 programs.
It currently doesn’t analyze whether structurally different pro-
grams may have the same semantics [10, 13], which is an
interesting avenue for future work.

Stateful packet processing. FlexCore currently does not sup-
port stateful switch programs. The P4 standard defines per-
sistent state as an “extern” feature that is up to the individual
architectures to implement (e.g., registers in PSA). Partial
reconfiguration of stateful features raises additional questions
as to how network state should be ported to the new program,
e.g., with programmer-supplied state transformation func-
tions, much like in SDN software controller upgrades [32].
Resource headroom. The FlexCore algorithms require that
the switches have sufficient resource slack, but there could
be scenarios where even the weakest consistency would re-
quire more resource headroom than available. To address this,
one could relax execution consistency even further to capture
which types of ‘mixed’ executions are still semantically mean-
ingful; alternatively, one could also migrate certain resources
to other devices to make room for the reconfiguration.
Other architectures. The FlexCore primitives target P4
program changes, so they are in principle architecture-
independent. The dRMT variant that FlexCore uses makes
runtime reconfiguration particularly natural, but most P4 tar-
gets have some degree of runtime flexibility. The RMT archi-
tecture, for instance, may be augmented with the ability to
reconfigure each stage independently. Software switch targets
(e.g., for the host or NIC) expose even more runtime flexibility
than switch ASICs. Although the original dRMT project [11]
didn’t provide an ASIC implementation, we believe that our
indirection structures are compatible with its outlined design.
Other languages. FlexCore’s reconfiguration primitives tar-
get P4 programs, but for other languages (e.g., NPL [2],
PoF [36]), one should be able to develop analogous recon-
figuration primitives based upon their respective language
features. The property of runtime programmability is not tied
to a specific language.

7 Implementation

We have implemented FlexCore in several components. The
reconfiguration primitives are implemented by manipulating
the hardware ASIC control registers via the PCle interconnect
from the control plane. The indirection structures are imple-
mented in the Spectrum-2 silicon design, and FlexCore is the
first effort to leverage them for runtime, partial reconfigura-
tion. Our compiler uses p4c [4] as the frontend; it implements
incremental compilation of P4 program elements, generating
an individual binary image for each component, instead of
outputting a monolithic binary for the entire program. The
consistency algorithms are implemented at the control plane.

The hardware cost to enable runtime programmability
comes from the use of indirection structures, including the
PDT and PST. The PDT supports full reconfigurability at all
consistency levels, but the PST only supports program consis-
tency. We estimate the cost of the current PDT and the cost
for making the PST fully reconfigurable at runtime.

Each MA processor has a local PDT, which holds roughly
1k entries—i.e., the largest P4 program it supports should

have no more than ~ 1k MA tables and conditional branches.
The ASIC supports up to 128 MA processors overall. Recall
the PDT format as shown in Figure 2: each entry contains
a) a description of the match key, b) entry type (SRAM/T-
CAM/Actions), c) resource pointer, and d) next table/branch
pointer. In the worst-case scenario, each MA table has a dif-
ferent key, resulting in 1k distinct keys that the switch needs
to support; this requires 10 bits to represent each distinct key
in the PDT entry. The entry type field distinguishes between
three types, requiring 2 bits. The resource pointer requires
20 bits, which is able to index one million distinct memory
lines for SRAM/TCAM/Actions, roughly 20MB in size (the
‘main database’). The next table/branch pointer requires 10
bits to index another PDT entry as the next hop. Overall,
each PDT entry requires 42 bits, each PDT table consumes
5.25kB for 1k entries, and across 128 PDT tables the hard-
ware overhead is 0.67MB, or 3.3% of the main database. The
flex branch mechanism is implemented using existing ALUs,
so it doesn’t require dedicated hardware. For the PST, the
Spectrum-2 parser hardware only supports runtime reconfig-
uration at program consistency level. This does not contain
the ‘flex branch’ equivalent and the ‘version’ support for tran-
sition rules, which would be necessary for other consistency
levels. We estimate the overhead of these additional structures
to be under 1% of the main database.

8 Evaluation

We present a comprehensive evaluation of FlexCore, by ap-
plying our design to a 12.8 Tbps hardware ASIC and also a
software simulator (a fork of bmv?2) that has been integrated
with the same reconfiguration primitives. To evaluate scala-
bility, we have used a set of synthetic and real-world P4 pro-
grams. To synthesize the P4 corpus, our tool takes a specified
program size and generates a random control flow graph. For
real-world programs, we have used switch.p4, NetCache [19],
and NetHCF [23], which represent large, medium, and small
programs, respectively. The program edits are also generated
randomly, which may mutate, insert, remove, or swap pro-
gram elements. The edits are controlled by a parameter ., the
reconfiguration ratio. If a program has 100 program elements,
and a reconfiguration adds, removes, or exchanges 10 of them,
we say that oo = 10%. To evaluate realistic reconfiguration sce-
narios, we perform case studies using switch-based multicast,
telemetry, attack mitigation, and tenant-specific extensions,
on hardware and software platforms.

8.1 Reconfiguration primitives

We start by measuring the number of hardware operations
that each reconfiguration primitive involves. These primitives
are invoked by the control plane, and they modify a memory-
mapped region of the PCle device (i.e., the data plane). The
PCle bus sustains a peak throughput of ~1 million operations
per second. The control plane, however, is bottlenecked by the
software speed; each operation took several milliseconds to

0.6

0.4 -

Time (sec)

0.2

0.3

Reconfiguration ratio (a)

(b) NetCache (V=109, E=129).

04 05 0 0.1 02 03 04 05

Reconfiguration ratio (a)

(c) switch.p4 (V=168, E=242).

Figure 9: Scalability of FlexCore on three real-world programs. V: number of nodes, E: number of edges.

0.03 - 03
| —— Elem | —— Elem
—8&— Exec —&— Exec
8 M g 02r Prog
& L
) B) B
E Sis E
= 0.01 AN
1 1 1 1] 1 1
0 01 02 03 04 05 0 0.1 0.2
Reconfiguration ratio (a)
(a) NetHCF (V=43, E=58).
0.6 2 200
05 —»— Elem ':—‘3
’ —8— Exec “g’_ 150
3 04 Prog 5
3 2
> 03 5 100
E 8
F 02 -
S 50
0.1 g
0 e 1 1 J § 0 1 1 1 J
0 50 100 150 200 0 50 100 150 200

Program size (# nodes) Program size (# nodes)

(a) Turnaround time (b) Number of primitives

Figure 10: The FlexCore algorithms scale well.

complete with software overhead. Table 1 shows the number
of hardware register DWORD writes for each reconfiguration
primitive. As we can see, table operations are the most heavy-
weight, control flow branch operations follow, then parser
operations, and finally, edge edits complete within one write
and are atomic. Deallocations have the same number of oper-
ations as their allocation analogues.

| Primitive | RegAccess | Primitive | RegAccess |
ALLOCTBL 112 GROUPTBL 112
ALLOCCOND 43 ALLOCSTATE 22
ALLOCTRANS 5 ALLOCEX 3
SETPTR 1 SETCONDPTR 2

Table 1: The number of hardware register accesses (in
DWORDS) for each reconfiguration primitive. Allocation
and deallocation primitives as measured only operate on meta-
data (i.e., PDT and PST), not including SRAM/TCAM/action
memory resources. The cost for the latter varies depending
on the allocation/deallocation sizes.

8.2 Consistency algorithms

Synthesized programs. We evaluate the scalability of Flex-
Core in generating reconfiguration scripts for programs of
different sizes. We generated 100 programs of each size (800
in total), and set ot = 40% for FlexCore to generate reconfig-
uration scripts. Figure 10a shows the results. As expected,
program consistency took the least amount of time, as the only
analysis is on the program diff; all edits are then grouped as a

whole. The turnaround time for element consistency grows
roughly quadratically with regard to the program size (more
strictly, to the size of the diff, which is fixed to 40% of the
program size). Execution consistency algorithm lies in be-
tween, as it scales with the number of Xch nodes, which is
smaller than the program diff. Overall, FlexCore generated
reconfiguration scripts for all programs within one second.

Next, we measure the number of invocations of the partial
reconfiguration primitives as well as the version metadata op-
erations. As shown in Figure 10b, the numbers of operations
for different consistency levels are roughly the same. This
is because the number of reconfiguration operations are the
same regardless of the consistency level. But the number of
transactions increases for weaker guarantees due to the extra
version metadata operations.

Real-world programs. We then tested FlexCore on three
real-world programs of different sizes, and further varied the
reconfiguration ratio o from 5% to 50%. As Figure 9 shows,
the FlexCore turnaround time is longer for larger programs
and higher reconfiguration ratios. But the overall takeaways
are similar as before: FlexCore algorithms scale well for com-
puting reconfiguration scripts. In the Appendix, we further
include scalability results for ordering the transactions.

Consistency levels. Figure 11a shows the CDF of the trans-
action sizes under different consistency guarantees for the
synthetic programs with different sizes and o. Under stronger
consistency guarantees, the transactions have larger sizes (we
fix all tables to the same size). We also measure the head-
room requirements. Figure 11b visualizes the step-by-step
reconfiguration for one such program: program consistency
requires a large peak headroom, but weaker guarantees have
less stringent requirements. All consistency levels eventually
converge to the same utilization level after reconfiguration
completes. Figure 11c tests another program in the software
simulator, which plots the percentage of traffic that experi-
ences the old program after the first update is enabled during
the reconfiguration under different consistency levels. As we
can see, program consistency does not expose any interme-
diate state, but weaker guarantees lead to more traffic that is

=t 100 100 -
c [—————— - ~ — Exec Elem —— Prog
2 g ef = g gt
2 =~ L Q
= () k=
2 —%— Elem & 80 S 60
o —&— Exec 5 _ S
> > -
e Prog S 70 1= g 40 -
E 5 7
E s 60| s 2}
(@] Elem — Exec — - Prog o
J 50 | | | | | | 0 d d L 1 J
0 2 4 6 8 10 0 10 20 30 40 50 60 70 0 5 10 15 20 25 30

Transaction size

(a) Transaction sizes

Reconfiguration step

(b) Resource headroom

Reconfiguration step

(c) Consistency

Figure 11: (a) Weaker consistency guarantees lead to smaller transaction sizes; they require lower resource headroom, but more
traffic will encounter the old program during reconfiguration. In (b), the initial switch utilization when the reconfiguration starts
is 80%. In (c), we use a program whose control flow graph is presented in Figure 5; Y-axis shows the traffic ratio processed by
the old program after the first reconfiguration transaction is committed at the 6th step.

processed using the old program during the reconfiguration.
8.3 Case study: Accelerated multicast

Just-in-time optimization. Next, we present a case study us-
ing the hardware ASIC, where program elements are injected
to the switch pipeline at runtime to accelerate multicast appli-
cations. Initially, the switch is configured with a baseline pro-
gram without any multicast optimizations, and it connects one
ZeroMQ unicast sender and multiple receivers. Just before
the ZeroMQ application starts, we initiate a partial reconfigu-
ration to extend the switch program with Elmo [34], a switch-
based multicast function. Elmo performs source-routed multi-
cast in hardware with customized protocol headers to improve
scalability. After ZeroMQ finishes, another reconfiguration re-
moves the Elmo components from the switch pipeline. These
changes are performed under program consistency. Each re-
configuration took less than 0.5 s to complete in control plane
software.

Just-in-time telemetry. Just before removing Elmo, we in-
ject a co-located telemetry application to observe the effect
of Elmo removal, by monitoring the average pipeline latency
of randomly sampled packets. This telemetry application is
unloaded after the removal of Elmo.

Reconfiguration. Figure 12a plots the throughput of a third
background iPerf application during the entire reconfiguration.
As we can see, the reconfigurations did not cause any service
interruption, as the iPerf throughput was stable throughout
the experiment; the switch drop counters also showed no
packet loss. Figure 12b plots the additional resource usage
in terms of PDT memory, PST memory, and table entries
during the runtime reconfigurations. The insertion of Elmo
caused a resource usage increase, as did the insertion of the
telemetry application. But in both cases, the extra resource
overheads for PDT and PST are under 200 bytes. Table rules
for multicast and telemetry, on the other hand, are the domi-
nant overheads. All resources are released after the program
modules are removed from the pipeline.

Performance. Figure 12c¢ shows that the injection of Elmo
improves multicast scalability, where we measure the comple-
tion time to send 200 k ZeroMQ messages. Before injecting
Elmo, a preceding ZeroMQ run via unicast took up to nearly
60 seconds for six receivers; and the completion time grows
roughly linearly with the number of receivers. After injecting
Elmo, the switch-based multicast scales independently of the
number of receivers, finishing at roughly 20 seconds across
all tested configurations. The injected telemetry application
detected that the pipeline latency experienced a 20 ns decrease
after Elmo was removed from the pipeline.

8.4 Case study: Dynamic telemetry upgrade

In-place application upgrade. We perform another ASIC-
based case study under execution consistency. The operator
modifies the telemetry application discussed earlier to use
different flow keys. Initially, the application uses the IPv4
five tuple as the match key and is configured with 30 k en-
tries. Packets of interest are sampled to software for telemetry
processing. The operator issues a reconfiguration to modify
the match key to the source and destination addresses instead,
using the MoDTBL primitive. This modification also reduces
the resource usage, as entries become smaller.
Reconfiguration. Figure 13 plots the performance of a back-
ground iPerf application, which shows stable throughput. The
blue area further shows an additional IPv4 test trace that
we generated to specifically trigger the telemetry table. The
switch counters indicated zero packet loss for iPerf and the
IPv4 test traffic. We have set the migration rate to be 3k entries
per second, so the modified table was populated in ~10s. The
PDT operations at the control plane software took 400 ms.
Utilization. Figure 14 shows the intermediate program sizes
using MODTBL, and compares it with the baseline that inserts
the new table and then deletes the old. The baseline incurs
a resource utilization spike, which occurs when both tables
are co-resident in the switch. As the old table is gradually
deallocated, the resource usage drops to the size of the new

® |perf (Gbps) * Elmo load/unload ® Elmo run = Table Desciptor = Parser Resouces - Rules ¢ Unicast 4 ElImo

1250

® Telemetry < Telemetry load/unload 60
0
10 g 1000
@
a & —
a8 © 750 O 40
e g 3
£ 6 3 -~
T @ 500]
% 4 o E 20 = " o A
8 2 250 =
o 2 e
0 o 0
0 25 50 75 100 125 0 25 50 75 100 125 1 2 3 4 5 6

Time (sec) Time (sec) Num of subscribers

(a) Hitless reconfigurations. (b) Resource overheads. (c) Performance improvements.

Figure 12: FlexCore inserts Elmo, a switch-based multicast program, just-in-time to accelerate ZeroMQ performance. It also

inserts a telemetry application to observe the effect of the removal of Elmo.

® Reconfiguration traffic ® Background traffic
* Reconfig start * Reconfig done
~12
210

®

Traffic rate (Gbps

0 20 40 60 80
Time (sec)

Figure 13: Hitless table modification.

® In-place modification ® Regular addition

§100

2

¥ 75

z

© 50

jo2}

@

123

S 25

2

o 0

“ 0 20 40 60 80

Time (sec)

Figure 14: Resource usage with in-place table modification.

table. The final SRAM usage shows the resource reduction in
changing the flow keys. In contrast, our in-place modification
consistently reduces resource usage reduction right from the
beginning, until resource usage approaches its final state.

8.5 Simulator case studies

We have performed two case studies in the software simulator
with element consistency. The appendix includes concrete
results. We highlight here that all reconfigurations were effec-
tive and free of interruptions.

Real-time attack mitigation. This case study injects a TCP
normalizing firewall [1] and a covert channel defense [39]
upon attack detection. The normalizer pads all TTL values
to avoid inconsistent views at host IDS [22], and the covert
channel defense clears TCP reserved bits to avoid data leak-
age [39]. The normalizer inspects incoming traffic, but the
covert channel defense inspects outgoing traffic.

Tenant-specific network extensions. VM migration triggers

FlexCore to carve out the tenant’s ACL functions from the
original switch and inject it to the destination switch.

9 Related work

Programmable networks. Network programmability has
been a longstanding goal in the community—starting with
‘active networks’ [6, 33, 37], each step in this direction has
led to significant innovation in the networking ecosystem.
FlexCore takes the next step to enable runtime programmable
switches. Recent projects P4Visor [42] and Hyper4 [16] also
use DAG merging algorithms on P4 programs, but our focus
is on partial program reconfiguration.

Consistent updates. Network updates are common to data-
centers [20, 28], and ensuring the absence of service interrupt
is a key goal [24]. Researchers have considered live migration
of BPG sessions and virtual routers [21, 38], and per-packet
and per-flow consistency guarantees for OpenFlow network
updates [29, 30]. Our work tackles the problem of achieving
reliable switch program updates at runtime, and proposes a
new set of consistency guarantees.

OS+network specialization. The vision of FlexCore is in-
spired by prior work in OS and network specialization.
SPIN [7] is an OS that allows applications to inject safe
and dynamic extensions to the kernel. Exokernel [14] en-
ables applications to specialize OS functions at user level.
ESwitch [26] specializes OpenFlow software data planes to
achieve higher performance for a given workload. Our work
aims to enable similar goals for programmable switches.

10 Conclusion

FlexCore argues that runtime programmability should be a
first-order goal in future networks, allowing functions to be
added or removed dynamically. FlexCore contributes design
considerations on switch architectures, partial reconfiguration
primitives, reconfiguration algorithms and consistency guaran-
tees. Our evaluation shows that the FlexCore reconfiguration
algorithms are scalable, and that runtime reconfigurations are
beneficial and free of disruption.

Acknowledgments: We thank our shepherd Laurent Van-
bever and the anonymous reviewers for their insightful com-
ments and suggestions. This work was supported in part by
CNS-1801884, CNS-1942219, CNS-2016727, CNS-2106388,
and CNS-2106751.

References

[1] Cisco: TCP normalization. https://www.cisco.com/
c/en/us/td/docs/security/asa/asa%96/configu
ration/firewall/asa-96-firewall-config/con
ns-connlimits.html.

[2] nplang. https://github.com/nplang.

[3] The P4 language repositories. https://github.com

/p4lang.

[4] The p4c compiler. https://github.com/pdlang/p4
c.

[5] The P4Runtime Specification. https://github.com
/pd4lang/pdruntime.

[6] D. Scott Alexander, William A. Arbaugh, Michael W.
Hicks, Panka J. Kakkar, Angelos D. Keromytis,
Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles,
and Jonathan M. Smith. The SwitchWare active network
architecture. IEEE Network, 12(3):29-36, 1998.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility Safety and Performance in the SPIN Operat-
ing System. In SOSP, 1995.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. ACM SIGCOMM CCR, 43(4):99-110, 2013.

[9] H. Bunke, X. Jiang, and A. Kandel. On the mini-
mum common supergraph of two graphs. Computing,
65(1):13-26, 2020.

[10] Eric Hayden Campbell, William T. Hallahan, Priya
Srikumar, Carmelo Cascone, Jed Liu, Vignesh Rama-
murthy, Hossein Hojjat, Ruzica Piskac, Robert Soulé,
and Nate Foster. Avenir: Managing data plane diversity
with control plane synthesis. In Proc. NSDI, 2021.

[11] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
et al. dRMT: Disaggregated programmable switching.
In Proc. SIGCOMM, 2017.

[12] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In Proc.
NSDI, 2018.

[13] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Dataplane equiva-
lence and its applications. In Proc. NSDI, 2019.

[14] D.R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-
nel: An Operating System Architecture for Application-
level Resource Management. In SOSP, 1995.

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proc.
SIGCOMM, 2018.

[16] David Hancock and Jacobus van der Merwe. HyPer4:
Using P4 to virtualize the programmable data plane. In
Proc. CoNEXT, 2016.

[17] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rex-
ford, Praveen Tammana, and David Walker. Contra: A
programmable system for performance-aware routing.
In Proc. NSDI, 2020.

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soule, Changhoon Kim, and Ion
Stoica. NetChain: Scale-free sub-RTT coordination. In
Proc. NSDI, 2018.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Proc. SOSP, 2017.

[20] Naga Praveen Katta, Jennifer Rexford, and David
Walker. Incremental consistent updates. In Proc. Hot-
Nets, 2013.

[21] Eric Keller, Jennifer Rexford, and Jacobus E van der
Merwe. Seamless BGP migration with router grafting.
In Proc. NSDI, 2010.

[22] Christian Kreibich, Mark Handley, and V Paxson. Net-
work intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proc. USENIX
Security, 2001.

[23] Guanyu Li, Menghao Zhang, Chang Liu, Xiao Kong,
Ang Chen, Guofei Gu, and Haixin Duan. NetHCF: En-
abling line-rate and adaptive spoofed IP traffic filtering.
In Proc. ICNP, 2019.

[24] Honggiang Harry Liu, Xin Wu, Ming Zhang, Lihua
Yuan, Roger Wattenhofer, and David Maltz. zUpdate:
updating data center networks with zero loss. In Proc.
SIGCOMM, 2013.

[25] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching ASICs.
In Proc. SIGCOMM, 2017.

[26] Laszl6 Molnar, Gergely Pongricz, Gabor Enyedi,
Zoltan Lajos Kis, Levente Csikor, Ferenc Juhdsz, At-
tila Korosi, and Gébor Rétvdri. Dataplane specialization
for high-performance OpenFlow software switching. In
Proc. SIGCOMM, 2016.

[27] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proc. SIGCOMM, 2017.

[28] Thanh Dang Nguyen, Marco Chiesa, and Marco Canini.
Decentralized consistent updates in SDN. In Proc.

SOSR, 2017.

[29] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for net-
work update. In Proc. SIGCOMM, 2012.

[30] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David
Walker. Consistent updates for software-defined net-
works: Change you can believe in! In Proc. HotNets,
2011.

[31] Jerome H Saltzer, David P Reed, and David D Clark.
End-to-end arguments in system design. ACM Trans.
Comput. Syst., 2(4), 1984.

[32] Karla Saur, Joseph Collard, Nate Foster, Arjun Guha,
Laurent Vanbever, and Michael Hicks. Safe and flexible
controller upgrades for SDNs. In Proc. SOSR, 2016.

[33] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou,
R. D. Rockwell, and C. Partridge. Smart packets for
active networks. In Proc. OpenArch, 1999.

[34] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford,
Nick Feamster, Ori Rottenstreich, and Mukesh Hira.
Elmo: Source routed multicast for public clouds. In
Proc. SIGCOMM, 2019.

[35] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller,
and Jonathan M Smith. Scaling hardware accelerated
network monitoring to concurrent and dynamic queries
with *flow. In Proc. USENIX ATC, 2018.

[36] Haoyu Song. Protocol-oblivious forwarding: Unleash
the power of SDN through a future-proof forwarding
plane. In Proc. HotSDN, 2013.

[37] D. L. Tennenhouse and D. J. Wetherall. Towards an
active network architecture. ACM SIGCOMM CCR,
26(2):5-18, 1996.

[38] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus Van
Der Merwe, and Jennifer Rexford. Virtual routers on the
move: live router migration as a network-management
primitive. ACM SIGCOMM CCR, 38(4):231-242, 2008.

[39] Jiarong Xing, Qiao Kang, and Ang Chen. Netwarden:
Mitigating network covert channels while preserving
performance. In Proc. USENIX Security, 2020.

[40] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-
chronized network snapshots. In Proc. SIGCOMM,
2018.

[41] Liangcheng Yu, John Sonchack, and Vincent Liu. Man-
tis: Reactive programmable switches. In Proc. SIG-
COMM, 2020.

[42] Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4Visor: Lightweight virtualization and composition
primitives for building and testing modular programs.
In Proc. CoONEXT, 2018.

11 Appendix
11.1 Case study: Real-time attack mitigation

In this case study, we present how FlexCore facilitates real-
time attack mitigation by reconfiguring two defense functions
to the software switch simulator.

Traffic normalizers [22] are firewall utilities that prevent
inconsistent views between network IDS and end hosts. As
an example, some packets may be seen by the IDS, but their
TTL values are crafted in such a way that they are dropped
soon after the network IDS and do not trigger processing at
end hosts. This leads to vulnerabilities [22]. A normalizer
firewall can pad TTL values to ensure that the IDS and the
hosts always have the same view.

Covert channels [39] leak secret data by repurposing packet
header fields as data carrier. For instance, an attacker that
compromise a server that hosts confidential data may leak the
secret by padding them into the TCP reserved bits of network
traffic. A defense needs to clear such optional header fields to
prevent leakage.

Real-time attack mitigation. In our case study, we in-
ject a TCP normalizing firewall [1] and a covert channel
defense [39] upon attack detection. Since these two defenses
are independent, they can be reconfigured under element con-
sistency. Figure 15 shows the workflow for the reconfigura-
tion. After each defense is deployed, the attack traffic can be
recognized and blocked; its throughput drops to zero. The
normal traffic does not experience any loss or interruption
during the reconfiguration.

11.2 Case study: Tenant-specific network extensions

In this case study, we focus on multi-tenant datacenters where
each tenant can inject her own network extensions to the
switch. Upon VM migration, the switch modules are carved
out from the source and grafted to the new destination switch.

Program grafting in VM migration. In this scenario, a
tenant has her ACL module injected to the ToR switch, and her
VM migration will bring this module to a different destination
rack. This is achieved by carving out the ACL components
and grafting them to the destination switch using partial re-
configurations. Figure 16 shows the traffic rate of the tenant’s
traffic and the background traffic. The migration is achieved
in several steps. It first inserts the ACL module to the new
switch, and then routes traffic to the new switch by updating
the routing rules of upstream switches. Finally, it removes the
ACL module in the old switch. As we can see, the migration
does not cause throughput drops of the background traffic
during the reconfiguration, and the tenant’s traffic is migrated
to the new switch without service interruption.

11.3 Evaluation: Ordering the transactions

For element and execution consistency, the reconfiguration
proceeds in multiple steps. So FlexCore additionally performs
an exhaustive search to identify a feasible sequence under
the current headroom. The problem can be stated as: given

® Normal Out ® Normal In = IDS evasion
® Covert channel * Transaction 1 done
* Transaction 2 done

15

10

ST (pps)

0 10 20 30 40
Simulation time (sec)
Figure 15: Simulation traffic rates (ST) when reconfiguring
the switch using element consistency to inject real-time net-
work defenses.

B Background traffic ® Migrated traffic
* Reconfig done
Destination switch

Reconfig start

Ty [
2 8
=
=
0 4 |\/—\/-\/—\M
0
Source switch
12
2 s
S~~~ —
— 4
%]
0

0 20 40 60 80
Simulation time (sec)

Figure 16: Simulation traffic rates (ST) during a reconfigura-
tion triggered by VM migration, which carves out an tenant-
specific ACL module from the source switch and grafts it to
the destination switch.

1

0.8
— r=10%

= = -r=20%

r=30%
------ r=40%
—-— r=50%

0.6

CDF
CDF

0.4

0.2

g
0 005 01 015 02 125 0 0.5 1 15 6s

0

Time (ms) Time (ms)

(a) Element consistency (b) Execution consistency

Figure 17: The turnaround time for finding a feasible sequence
for the transactions, under element and execution consistency.

a set of transactions tx1,1x2, - - -, txy, find a feasible sequence
that fits into the current resource headroom, or conclude that
such a sequence doesn’t exist. For element consistency, the
transactions do not have a hard constraint as to their order.
The search only focuses on optimizing for resource head-
room. Execution consistency has hard constraints as to which
transactions should be ordered before others. The search also
encodes such constraints as induced from the XcH nodes.

In Section 8.2, we have evaluated the scalability of the algo-
rithm in generating reconfiguration scripts. Here, we further
evaluate the turnaround time for identifying a feasible se-
quence of transactions that can be applied within the available
headroom. We have used an o ranging from 10% to 50% on
the synthesized programs, and tried different switch resource

headrooms as denoted by r (ranging from 10% to 50%).

Figure 17a shows the results for element consistency. We
can see that FlexCore finishes within 0.2ms for all programs
across different headrooms except for r=10%. With 10% head-
room, the switch has very small slack for the reconfiguration,
so it takes more time to search for a feasible plan or determine
that no solution exists.

Figure 17b shows the results for execution consistency,
where the turnaround time is higher because of two reasons.
First, execution consistency needs to merge and deduplicate
the subpartitions following their constraints. Second, execu-
tion consistency could generate more candidate solutions,
resulting in longer searching time. However, the algorithm
can still complete within 1.5ms for 98% programs and within
6s for all programs.

	Introduction
	A Case for Runtime Programmability
	The FlexCore Switch Architecture
	Runtime Reconfiguration Primitives
	Program description table
	Runtime reconfigurable tables
	Runtime reconfigurable control flow
	In-place table modifications
	Runtime reconfigurable parsers
	Summary

	Runtime Reconfiguration Algorithms
	Program consistency
	Element consistency
	Execution consistency
	Summary

	Limitations and Discussions
	Implementation
	Evaluation
	Reconfiguration primitives
	Consistency algorithms
	Case study: Accelerated multicast
	Case study: Dynamic telemetry upgrade
	Simulator case studies

	Related work
	Conclusion
	Appendix
	Case study: Real-time attack mitigation
	Case study: Tenant-specific network extensions
	Evaluation: Ordering the transactions

