
Runtime Programmable Switches

Jiarong Xing Kuo-Feng Hsu Matty Kadosh† Alan Lo†

Yonatan Piasetzky† Arvind Krishnamurthy‡ Ang Chen

Rice University †Nvidia ‡University of Washington

Abstract

Programming the network to add, remove, and modify func-

tions has been a longstanding goal in our community. Un-

fortunately, in today’s programmable networks, the velocity

of change is restricted by a practical yet fundamental barrier:

reprogramming network devices is an intrusive change, requir-

ing management operations such as draining and rerouting

traffic from the target node, re-imaging the data plane, and

redirecting traffic back to its original route. This project in-

vestigates design techniques to make future networks runtime

programmable. FlexCore enables partial reconfiguration of

switch data planes at runtime with minimum resource over-

heads, without service disruption, while processing packets

with consistency guarantees. It involves design considerations

in switch architectures, partial reconfiguration primitives, re-

configuration algorithms, as well as consistency guarantees.

Our evaluation results demonstrate the feasibility and benefits

of runtime programmable switches.

1 Introduction

Programming the network to add, remove, and modify func-

tions has been a longstanding goal in the networking commu-

nity. Programmable switches [3, 8] represent the latest step

toward this vision. Using high-level languages like P4 [3],

network operators can customize packet processing behaviors

at the switch program level. To change network processing,

operators can deploy a different P4 program to the data plane,

without the need for hardware changes or device upgrades.

Programmable switches have enabled a host of new network

applications in telemetry [15, 27, 35], measurement [40], se-

curity [39], and application offloading [18, 19].

Unfortunately, in today’s programmable networks, the ve-

locity of change is restricted by a practical yet fundamental

barrier: switch functions are only programmable at compile-

time, but they effectively become fixed functions at runtime.

The switch program cannot be easily modified at runtime

without reflashing the data plane hardware and carefully man-

aging network-wide changes. To reprogram a network switch,

operators need to first drain and reroute traffic from the target,

install the new program image, and then redirect traffic back

to its route. The error-prone nature of network maintenance

procedures, the amount of manual coordination required, and

the need to satisfy stringent SLAs pose severe constraints

on runtime program changes. To the extent that functions

can be “hard-coded” in the device, they can be invoked for

runtime response [41]. However, new functions that haven’t

been accounted for, or functions that cannot fit into the switch

resources, are difficult to deploy at runtime. This stands in

stark contrast to software data planes on host servers, where

changes are easily accommodated and functions go through

frequent upgrades [12]. The ultimate vision of programmable

networks that seamlessly incorporates function changes at

any time (e.g., based on traffic workloads or multi-tenancy

requirements) still remains an elusive goal.

In this project, we pave the way toward runtime pro-

grammable switches by investigating the necessary build-

ing blocks and proposing concrete designs for each of them.

FlexCore enables switch functions to be continuously pro-

grammable throughout the lifetime of the network. It devel-

ops a new set of control plane API to modify P4 program

elements—match/action tables, control flow branches, and

parsing graphs—while the switch data plane serves live traf-

fic. These operations precisely instrument the switch program

using partial reconfiguration primitives without affecting the

rest of the data plane. This new modality of network pro-

grammability introduces an array of applications:

• Just-in-time network optimizations: When an optimiza-

tion (e.g., network-accelerated multicast) is needed, it

can be added just-in-time to serve the traffic workloads,

and removed soon afterwards to keep the network lean.

• Real-time attack mitigation: If network attacks (e.g.,

DDoS, data exfiltration) are detected, we can inject mit-

igation modules exactly where needed; new attack pat-

terns would trigger removal of expired modules and the

insertion of new program components.

• Scenario-specific network extensions: A tenant can in-

ject switch program extensions to the network. VM mi-

gration will carve out and graft the relevant program

components to a different location of the network.

Also, telemetry applications do not have to commit to a fixed

set of queries [27]; new network protocols can be added and

removed dynamically; load-aware routing algorithms can be

injected when needed [17]; different versions of switch pro-

grams can be deployed for canarying [42]. In fact, many (if

not all) of today’s programmable network applications will

have more powerful, runtime programmable equivalents.

Achieving this goal requires a range of research challenges

to be addressed: switch architecture designs that make runtime

programmability natural, partial reconfiguration primitives for

modifying live switch programs, atomicity and consistency

guarantees on runtime changes, and algorithms for effectively

computing reconfiguration plans. FlexCore makes contribu-

tions in all these dimensions.

Switch architecture. We base our FlexCore design upon

a variant of disaggregated RMT (dRMT) [11]. dRMT sep-

arates switch memory from compute, and our architecture

introduces another twist in its partial disaggregation design,

where a small compute-local memory holds a indirection data

structure that we call a program description table (PDT). This

table contains metadata about the program control flow and is

our target for reconfiguration. Decoupling program logic from

its physical realization separates concerns: physical resources

can be allocated and deallocated in scratch areas before pro-

gram elements are modified for the changes to be visible.

Partial reconfiguration primitives. We develop a set of

new primitives for adding, removing, and modifying pro-

gram elements—this includes match/action tables, control

flow branches and parser states. Unlike today’s control plane

API, which manipulates switch memory (e.g., adding/remov-

ing entries), the new API reconfigures switch compute.

Consistency guarantees. We propose three consistency

guarantees for runtime reconfiguration: program consistency,

element consistency, and execution consistency, with increas-

ingly relaxed guarantees. These guarantees constrain the kind

of “intermediate programs” that packets are allowed to en-

counter during partial reconfiguration. Program consistency

states that all program modifications must take effect simulta-

neously. Element consistency is weaker, and states that modi-

fications can be made visible in an element-by-element basis

(e.g., one table at a reconfiguration step). Execution consis-

tency is the weakest, but it still guarantees useful properties:

packets never traverse execution paths that mix old and new

program elements. In all cases, reconfigurations are atomic

and do not disrupt data plane forwarding.

Algorithms. We develop algorithms for computing recon-

figuration plans for different levels of guarantees.

Evaluation. We implement our design on a 12.8 Tbps mer-

chant silicon (Nvidia Spectrum-2 SN3000 series), as well as

a software simulator based upon bmv2. We evaluate the scal-

ability of the reconfiguration algorithms and demonstrate a

set of use cases in hardware and software platforms, showing

that FlexCore enables a truly adaptive network core.

2 A Case for Runtime Programmability

The quest for network programmability has been an impor-

tant undertaking in the community. Network switches used to

be blackboxes, with opacity at both control and data planes.

OpenFlow SDN opened up the control plane for program-

matical control, and as of late, programmable data planes

enable flexible packet processing pipelines without hardware

upgrade. Operators can customize the data plane by remov-

ing unnecessary switch functions or adding new ones at the

program level. P4 switch programs are compiled into a binary

image, which is flashed to data plane hardware for deployment.

Researchers have seized this opportunity to systematically

rearchitect network telemetry [15, 27, 35], measurement [40],

security [39], and application offloading [19].

However, today’s programmable data planes have a notable

limitation—they cannot be reprogrammed at runtime. If an

operator can anticipate all required functions at compile time,

and if these functions can fit into the switch resource con-

straints, then they can be combined and deployed together in

the switch. But once deployed, the switch is committed to

the hardcoded behaviors as specified at compile time, until

the next program reflash. At runtime, only ‘micro’ changes

are permitted, such as modifying flow table entries or register

values from the control plane. This affords some flexibil-

ity [41]; however, as macro-level program logic changes are

hard to make, accommodating requirements that truly arise

‘on-demand’ (e.g., security incidents) remain an elusive goal.

Also, since switches have constrained resources, even if we

had an ‘oracle’ planner that anticipates all needed functions,

they may not fit into the switch together at compile time.

To remedy this problem, we need runtime programmable

switches. This not only enables new use cases as motivated

above, but also calls for a rethink as to how networks can

be specialized. The operator can, at any point in time, ag-

gressively optimize the network data plane to only retain a

minimal amount of processing logic. This reduces switch re-

source footprints, improves network energy efficiency, and

also keeps network latency at a minimum. If extra functional-

ity is required, the program elements can be injected precisely

where and when they are needed. If a functionality is no

longer in use, it can be removed to ensure that the data plane

stays at its leanest. Viewed from the lens of the classic ‘end-to-

end’ arguments [31], in-network processing no longer incurs

a common overhead to all applications.

3 The FlexCore Switch Architecture

Our switch architecture adopts a disaggregated RMT

model [11], where compute resources (i.e., match/action pro-

cessors) are split from memory (i.e., SRAM/TCAM), and

they are interconnected via a crossbar. Each MA processor

holds a copy of the P4 program, and processes packets in a

run-to-completion manner.

In the RMT architecture [8], each stage contains a slice of

compute and memory resources that cannot be reassigned to

other stages. This tight coupling makes runtime reconfigura-

tions challenging. For instance, inserting an MA table to a

stage may require device-wide table shuffling and reallocation

to make space. Removing an MA table from a stage will leave

‘holes’—fragmented resources that cannot be easily reused by

other program elements. These operations can be intrusive.

A disaggregated architecture, on the other hand, breaks

M
a

tc
h

A
ct

io
n

P
k

t Out

D
e

p
a

rs
e

r

P
a

rs
e

r

In

…

P
k

t

P
D
T

…MA processors

Load-balanced crossbar

Disaggregated,

sharded access

…

Memory bank 1 Memory bank t

M
a

tc
h

A
ct

io
n

P
D
T

M
a

tc
h

A
ct

io
n

P
D
T

Table1 shards

Table2 shards

Table3 shards

Figure 1: The FlexCore switch architecture. Highlighted in

bold+italic are the customizations to dRMT [11].

resource allocation boundaries and enables reconfigurations to

be performed locally—i.e., it enables partial reconfiguration.

If a reconfiguration releases a table, the deallocated resources

can be dedicated to any other program elements irrespective

of their ‘locations’. New tables can be inserted to any part

of the program without having to change existing resource

allocation decisions. Similar properties hold for resources that

implement control flow branches and parsing graphs.

dRMT customizations. Our silicon also implements sev-

eral customizations for performance, flexibility, and usability.

Figure 1 shows the high-level architecture.

(i) Sharded resource allocation. In the dRMT architecture,

an MA table is allocated in one specific SRAM/TCAM bank.

Simultaneous accesses to the same table (or different tables

in the same memory bank) from different processors creates

contention at the crossbar. In FlexCore, all tables are t-way

sharded, where t is the number of memory banks. When in-

serting a table entry, FlexCore first computes a hash h from

the match key as the shard ID, and then allocates the entry in

the h-th SRAM/TCAM bank. When performing a match, the

same hash function is computed to retrieve the shard ID. This

allows FlexCore to sustain linerate without complex mecha-

nisms to detect and avoid access contention. The crossbar is

always load-balanced and has uniform access patterns.

(ii) Hybrid programmability. Our switch exports a set of

fixed-function ASIC modules as common building blocks

(e.g., L2 bridging, L3 routing). These functions can be called

by or bypassed from the P4-programmable logic. The fixed

blocks are more resource- and energy-efficient, as their im-

plementations are heavily-optimized, hardwired ASIC. By

providing these building blocks, P4 programmers don’t need

to redevelop them from scratch. Moreover, they also represent

a minimum “baseline” program that, if necessary, traffic can

always fallback on during reconfiguration.

(iii) Indirection. FlexCore employs a partially disaggre-

gated design, where each processor has a small amount of

local SRAM to store a special program description table

(PDT) for indirection. Accesses to PDT do not go through the

crossbar and enjoy lower latency. PDT stores the ‘program

skeleton’—the control flow graph—and decouples the control

flow operations from main SRAM accesses. Our partial recon-

• Match key
• Key type
• SRAM ptr
• TCAM ptr
• Action ptr
• Next tab/branch ptr

prog_desc_0

。。。

Program description table

TCAM region

TCAM region

TCAM region

…

。。。

SRAM region

SRAM region

SRAM region

…prog_desc_i

…

TCAM

SRAM

prog_desc_entry Actions, next action pointer

Action memory

Actions, next action pointer

Actions, next action pointer

…

prog_desc_n

…

…

⓪
①

②

⑤

⑦

⑥

④

③

Figure 2: Runtime reconfigurable tables and control flow

branches, the indirection mechanism via the program descrip-

tion table (PDT), and an example execution as illustration.

figuration mechanisms make heavy use of the PDT to modify

program elements. Similarly, a parser state table (PST) serves

as indirection for the parsing hardware.

4 Runtime Reconfiguration Primitives

FlexCore introduces a set of novel primitives that, when in-

voked by the control plane, partially reconfigure a P4 switch

program. These primitives operate on a graph representation

of a P4 program by adding, removing, or modifying nodes

and edges. In a P4 program, the match/action logic is cap-

tured by the ‘table flow graph’ [8], where nodes represent MA

tables or conditional branches (realized in table-independent

actions), and edges represent non-conditional, table depen-

dency control flow. For the parser logic, the nodes represent

parser states (which also contain header extraction rules), and

the transition rules are the edges. Next, we first describe the

primitives on the table flow graph and then the parsing graph.

4.1 Program description table

A key indirection data structure that enables partial recon-

figuration of the table flow graph is what we call a program

description table (PDT), as shown in Figure 2. Each match/ac-

tion processor maintains a local PDT and it is dedicated to a

specific switch port. All packets arriving at a port will first hit

a default entry in the PDT to activate packet processing.

The entries in the PDT are compiled from a P4 program.

Each entry stores metadata about a program element, which

could be a match/action table or a table-independent ALU

action that implements conditional control flow. The metadata

contains entry type, match key/type, and a resource pointer

that refers to the physical realization of that program element.

The pointer address could be an SRAM location (for exact and

algorithmic ternary matches), a TCAM location (for ternary

matches), or an action location (for conditional branches)—

with a ‘union’ semantics as only one pointer type can be valid

for a PDT entry. The address is specified by the base address

of a memory region, the size of the region, as well as the offset

from the base address. Each PDT entry also contains a ‘next’

pointer, which encodes unconditional control flow to the next

program element (i.e., MA table or conditional branch).

This indirection provides several advantages for runtime

programmability: a) operations for adding and removing a

program element are decoupled from resource allocation op-

erations, as the first occur in the PDT and the second in the

memory regions; b) PDT entries serve as a local scratch—

entry modifications are lightweight and do not touch switch-

wide shared resources, and they can be changed in a trans-

actional manner. The PDT enables runtime reconfiguration

of match/action tables and the control flow graph, which we

discuss next.

4.2 Runtime reconfigurable tables

MA tables are the key processing elements in a P4 program.

FlexCore enables the addition and deletion of tables using

several partial reconfiguration primitives.

Allocation+deallocation. ALLOCTBL(T) allocates a new

table, and DEALLOCTBL(T) deallocates an existing one. Both

are control plane operations that have a centralized view of

PDT tables, and they accept the table definition T as the input

argument. Allocations first identify free slots to create new

PDT entries. In a new PDT entry, the match key and type are

filled in with the specified table attributes. SRAM and TCAM

resources are then allocated based on the table attributes, and

both are sharded across all memory banks. Finally, the control

plane fills in the resource pointer, finishing the table alloca-

tion. Deallocations could directly remove the entry and its

resources, or it may defer their removal to a later garbage

collection phase. (Actual table entries are added/removed just

like in today’s switches, via existing control plane API such as

that defined in P4Runtime [5].) Importantly, allocation/deal-

location operations are not visible to network traffic until we

invoke insertion/deletion primitives.

Insertion+deletion. Changes are made visible via another

primitive: SETPTR(T,NXT) modifies T’s next pointer to NXT.

Table insertions invoke multiple SETPTR calls to place T in

the program; deletions perform the opposite operations. In-

sertions must happen after resources have been allocated, and

deletions before deallocation. Each pointer change is atomic

in hardware. (To ensure atomicity for a collection of changes,

we need another mechanism called a ‘flex branch’ as dis-

cussed later.) Insertions and deletions alter the view of the

program state from the perspective of network traffic.

4.3 Runtime reconfigurable control flow

Conditional branches are implemented in ALUs as table-

independent actions. Like tables, a conditional branch takes

up one PDT entry, but its resource pointer addresses the ac-

tion memory instead of SRAM/TCAM. In addition, the PDT

entry for a conditional branch has a null ‘next’ pointer; its

two jump addresses are instead encoded in the ALU action,

one for each branch condition. N-way conditionals are imple-

mented as cascading binary branches. Control flow branch

act2

a=1, b=1, act=act1, priority=1

Table t

a=2, b=2, act=act1, priority=1

a=3, b=3, act=act2, priority=1

…

a=4, b=4, act=act2, priority=1

a=5, b=5, act=act1, priority=1

a=1, b=1, c=1, act=act3, priority=2

Table t’

a=2, b=2, c=1, act=act3, priority=2

a=3, b=3, c=2, act=act3, priority=2

act3

act3

Deleted

Active

prog_desc_i

PDT

prog_desc_j

prog_desc_entry

…

Action

resolver

Table

group

Figure 3: Primitives for in-place table modification.

modifications are performed using the following primitives.

Allocation+deallocation. FlexCore introduces a primitive,

ALLOCCOND(B, PRED, BR1 , BR2), to allocate a control flow

branch based on PRED, where BR1 and BR2 are the jump ad-

dresses for the true and false branches, respectively. Allo-

cation of an N-way conditional is performed by successive

invocations of ALLOCCOND with cascading jump addresses.

A predicate PRED corresponds to an ALU action that checks

the condition and produces a true/false evaluation. This bi-

nary result is consumed by a hardware ‘goto’ microcode that

jumps to the next program element. If PRED evaluates to true,

‘goto BR1’ directs the control flow to the next table or a cas-

cading branch; otherwise, it branches to BR2. Deallocations

free action memory and PDT entries.

Insertion+deletion. A conditional branch can be activated

by a) SETPTR(T,B), which points a table’s next pointer to the

new branch B, and b) SETCONDPTR(B,N1 ,N2), which sets one

or both of the jump addresses of a branch. In the case where

SETCONDPTR modifies two pointers, the operation is not

atomic. Atomicity is achieved similarly using ‘flex branches’

that we will discuss later. Deletions achieve opposite effects.

4.4 In-place table modifications

So far, all primitives that we have described can be used

at any level of consistency guarantees. In this and the next

subsections, we describe two special sets of primitives for

table modifications and parser reconfigurations as well as

their respective consistency properties.

Table modifications can be performed by adding a new

table and deleting the old, in which case the intermediate

state has size 2×|T | (assuming both tables have size |T |).
But FlexCore also exposes a more efficient primitive to re-

format a table in-situ with an intermediate state of |T |. A

MODTBL(T,T′) primitive reformats T using the definition as

specified in the new table definition T
′, which could include

new match key/type and actions. This is achieved by a PDT

mechanism called table groups. Several PDT entries can be

‘grouped’ together and processed in parallel at the MA proces-

sor. MODTBL creates a new PDT entry using T
′ and groups it

with the entry for T. It then gradually moves entries from T to

T
′, reformatting each entry using the new key or action, and

setting the entries in T
′ with higher priority. In this transient

state, the MA processor looks up both tables and resolves

• Header ID: 1
• Transition key: EthType
• Header length: [0:14]

Header 1

State transition lookup

Extraction array

Parser state table

• Header ID: n
• Transition key:

…

Header n

…

Key :0x0800
Next header ID: 2

Key :0x86DD
Next header ID: 3

Extraction points

• Register ID: 2
• Offset: Eth[0:5]
• Mask: 0xffffffffffff

Extraction 1

• Register ID: 3
• Offset: Eth[6:11]
• Mask: 0xffffffffffff

Extraction 2

• Register ID: 4
• Offset: Eth[12:13]
• Mask: 0xffff

Extraction 3

IPv4

IPv6

①

②

③

Parallel
table
lookups

Figure 4: Runtime reconfigurable parsers and the indirection

mechanism via the parser state table (PST).

them using an action resolver that chooses the higher-priority

result. When T become empty, the PDT entries are de-grouped

and T gets deleted. MODTBL triggers simultaneous applica-

tions of parallel tables, so this mechanism is different from

the ‘flex branch’. We will discuss its consistency guarantees

later in Section 4.6.

4.5 Runtime reconfigurable parsers

Header parsing logic requires different mechanisms for recon-

figuration. We describe the parser hardware next, and then the

reconfiguration primitives for the parser graph.

The parser state table (PST). Figure 4 presents the hard-

ware architecture for the reconfigurable parser. The key in-

direction data structure is a parser state table (PST), which

stores an array of parser states. Each entry stores a) parsing

information for that header, b) an extraction array that extracts

header fields, as well as c) a parallel transition lookup compo-

nent that determines the next state based on the current header

values. Similar as the PDT, this indirection ensures that state

additions and removals are easily achieved at runtime.

The PST implements a finite state machine, where each

entry represents one state and contains transition rules to other

states. This array is indexed by a logically assigned header ID

that starts with one and ends with the maximum state ID as

constructed from the program. When a packet comes in, it first

matches against the default entry (ID=1) for parsing. At every

step, the hardware uses the ‘header length’ and ‘transition

key’ defined in the current entry (as well as a base register

that remembers how much data has been parsed) to identify

the correct offset into the packet. A chunk of data of the

size ‘header length’ is then sent to extraction logic, which

uses shift-and-mask to further segment the data chunk into

multiple fields (e.g., EtherType, SMAC, DMAC) of varied

sizes. These extracted fields are stored in an extraction array

that is associated with the current header entry. These are

further combined using a recombiner into a PHV (packet

header vector) and streamed to the ingress blocks.

Simultaneously with header extraction, FlexCore uses a

parallel set of logic to identify relevant headers to compute

the next parsing state. This relies on a similar extraction logic

but does not materialize header fields in the extraction array.

Rather, it uses the preconfigured ‘transition key’ to perform a

parallelized lookup. It muxes the key through a lookup table

that contains all transition rules as compiled from the parser—

e.g., IPv4 packets transition to ID=2, and IPv6 to ID=3. A

demux combines the lookup results from all rules and com-

putes the next state ID. Parsing continues until it encounters

an accept state, at which point the extracted headers are sent

to the ingress logic for MA processing.

Reconfiguration primitives. Runtime parser reconfigura-

tion modifies the parser states, extraction rules, and transitions.

FlexCore exports ALLOCSTATE(S), ALLOCTRANS(S1,S2), and

ALLOCEX(R) for allocation of new states, transitions, and ex-

traction rules, respectively. ALLOCSTATE(S) creates a new PST

entry and the respective transition key and header length.

ALLOCTRANS(S1, S2) sets up transition rules in the transition

matching mux and demux. ALLOCEX(R) sets up an extraction

rule in a parser state that locates a certain offset in the current

header and outputs the result to an extraction register. Each

primitive has its DEALLOC analogue.

Edits to the transition rules with ALLOCTRANS are immedi-

ately visible to network traffic, so for multiple changes, Flex-

Core requires the parser diff or the new parser to be prepared

in PST scratch, before they are activated together in a single

atomic step. Otherwise, network traffic will be parsed with

a mix of old and new parsing logic. In the current hardware,

parser changes are only possible with ‘program consistency’,

which, as we will discuss later, requires higher resource head-

room to maneuver. This limitation stems from the lack of a

‘flex branch’ equivalent in the current parser hardware, which

is necessary for using the version metadata for transactions.

In future hardware generations, this can be incorporated by

adding transition version numbers as well as match logic

using the versions.

4.6 Summary

We now discuss the two special-case primitives: table modifi-

cations and parser changes. MODTBL relies on ‘table groups’

instead of ‘flex branches’. When a MODTBL operation is in

progress, it guarantees that each packet is only processed

with the old or new version of the table; in this sense, the

intermediate states as seen by the packets satisfy ‘execu-

tion consistency’. However, MODTBL cannot be parallelized

with other program modifications, as ‘table groups’ do not

atomically control which version is encountered by packets.

Parser changes, on the other hand, satisfy program consis-

tency; but the current hardware doesn’t support weaker guar-

antees, which require ‘flex branches’. In the next section, our

reconfiguration algorithms primarily focus on changing MA

tables and control flow branches, where all three consistency

guarantees apply and are achievable at different overheads.

(a) Minimal common supergraph (b) Weaker consistency levels permit finer-grained transactions (c) The use of flex branches

+

Unchanged Deleted Added Flex branches that check version metadata

A

B

E

s

C

F

A

B

s

C

A

B

E

s

C

F

Xch(e1,e2) operations

D
D

r r r

D

A

B

E

s

C

F

r

D
i i

B

E

s

C

F

D

Program consistency

B

E

s

D

s

C

F

Element consistency

B

E

s s

C

F
E

s

D

Execution consistency

i
T

F
T

TF

F

Figure 5: (a) FlexCore constructs a minimum common supergraph between two programs. (b) Weaker consistency guarantees

reduce resource requirements for reconfigurations, and allow more intermediate states to be exposed to network traffic. (c) To

ensure atomicity, FlexCore inserts ‘flex branches’ that can branch to the old or new versions depending on the version metadata.

These branches are deleted after reconfiguration completes. Nodes A-F represent MA tables or conditional control flow branches.

Virtual nodes r and s are added as the sources and sinks of the DAGs, respectively. Virtual nodes i denote flex branches.

5 Runtime Reconfiguration Algorithms

The FlexCore reconfiguration algorithms rely on the partial

reconfiguration primitives to transform an existing switch

program prog to a new one prog∗. We represent each P4 pro-

gram as a directed acyclic graph (DAG), G for prog and G∗

for prog∗. Nodes are the MA tables and conditional branches,

and edges represent unconditional dependencies (or packet

dataflow through the program). Our goal is to compute a re-

configuration script [9], a series of graph edit operations to

nodes and edges to transform G into G∗. We denote the re-

configuration sequence as G→ S1→ ·· · → Sn→ G∗, where

Si, in ∈ [1..n] are the intermediate DAGs and each step from

Si to the next state is atomic. Depending on whether (or what

types of) intermediate states are allowed to be exposed to

network traffic, we propose three levels of consistency guaran-

tees: program consistency, element consistency, and execution

consistency, with a decreasing order of strictness. Stronger

guarantees are achieved by preparing larger portions of the

program diff in scratch memory, requiring that the switch

resources must have enough slack for the reconfiguration.

Weaker guarantees allow FlexCore to operate within more re-

stricted headroom. Figure 5 includes an illustrative example.

5.1 Program consistency

This is the strongest level of consistency guarantees: no inter-

mediate state is exposed to any packets. The switch program

as encountered by network traffic is either G or G∗. This is

important for any scenario that requires strong network pro-

cessing guarantees, where exposing intermediate state would

cause operational disruption. For instance, a load balancer or

NAT may contain two match/action tables, one for mapping

DIP to VIP and another for the reverse direction [25]. Updates

to the program (e.g., rehashing) should not take effect until

both tables have been reconfigured.

Program consistency. A sequence G→ S1→·· ·→ Sn→G∗

achieves program consistency if the following property holds

for all Si, i ∈ [1..n]. For any element t (node or edge) in Si, if

t ∈ G∗ and t /∈ G, then Si = G∗. Similarly, for any element t

in Si, if t ∈ G and t /∈ G∗, then Si = G.

Put in simpler terms, reconfigured program elements aren’t

visible to network traffic until all reconfigurations finish: an

“all-or-nothing” guarantee. To achieve this, all edits must be

prepared in an ‘offline’ scratch area. They are made visible

in an atomic transaction that, from the packets’ perspective,

changes G to G∗ in one single step. Without the partial re-

configuration primitives in FlexCore, one would need to in-

stantiate the entire program prog∗ in the scratch while the

old one prog is still active. Therefore, the switch resources

must have enough slack to accommodate the co-existence of

both programs—i.e., there must be a headroom of |G|+|G∗|.
Supposing that |G|≈ |G∗|, then the switch resource utilization

must be kept to ≤ 50% for runtime changes to be feasible.

This is a stringent requirement.

Algorithm. Our new primitives enable FlexCore to only

prepare the ‘diff’ while reusing shared program elements, so

the switch only needs to accommodate |G| and newly inserted

elements of the size ∆≪ |G∗|. In order to compute the diff,

FlexCore merges two DAGs G and G∗ into a minimum com-

mon supergraph (MCS) [9]. An MCS is the union of the input

DAGs that minimizes the diff as caused by mismatched ele-

ments. In our context, only nodes take up resources and edges

are pointer fields in the nodes and do not consume physical re-

sources; so our MCS algorithm primarily extracts node-level

diff. Using this MCS, we compute a set of edit operations

as our reconfiguration script. INS(v) and DEL(v) inserts and

deletes a node, respectively; and INS(e) and DEL(e) operate

on edges. A special edge substitution operation XCH(e,e′) is

allowed if both edges share the same source node and are

of the same type (i.e., both are ‘next’ pointers or both are

true/false jump addresses). In terms of resource overheads,

INS(v) reduces and DEL(v) increases switch headroom by |v|,
respectively, where |v| is the table size (for MA tables) or

action memory size (for conditional branches). Edge opera-

tions do not affect resource headroom. Figure 6 shows the

algorithm, which colors the MCS: shared elements in black,

new elements in green, and deleted elements in red.

function PROGRAMCONSISTENCY(prog, prog∗)

// Compute minimum common supergraph

G← GETP4DAG(prog); G∗ ← GETP4DAG(prog∗)

G← MERGEDAGS(G, G∗)

// Compute reconfiguration script

Script← /0

for node or edge t ∈ G do

if t ∈ G ∧ t ∈ G∗ then

COLORBLK(t)

else if t ∈ G ∧ t /∈ G∗ then

COLORRED(t); Script.Add(DEL(t))

else if t /∈ G ∧ t ∈ G∗ then

COLORGRN(t); Script.Add(INS(t))

Script.IdentifyEdgeXch(G)

return Script

Figure 6: The program consistency algorithm.

Atomicity. To ensure that intermediate states are not visible

until all reconfigurations complete, FlexCore groups the edits

in a transaction to achieve atomicity. We use a hardware

mechanism that we call a flex branch. During the transaction,

inserted program elements are guarded by an extra conditional

branch that implements a check on special version metadata:

‘if (meta.v==0)’ branches to the old program elements and ‘if

(meta.v==1)’ to the new. Deletions are also guarded by flex

branches instead of being deleted right away. The transaction

is committed when FlexCore modifies the version metadata,

after which deleted elements can be safely removed.

5.2 Element consistency

A relaxed consistency guarantee, which allows reconfigura-

tions to proceed within more restricted headroom. In pro-

gram consistency, preparing the diff in scratch area leads to

a resource spike of ∆. Therefore, in order to accommodate

runtime reconfigurations, the switch utilization must be upper-

bounded to leave sufficient headroom ∆.

Element consistency breaks the reconfiguration into several

finer-grained transactions that can be performed with lower

headroom δ≪ ∆. This allows FlexCore to drive up switch

utilization even further while still preserving the ability to

make runtime reconfigurations. Every smaller transaction will

add and remove certain program elements, with the goal of

releasing some switch resources to accommodate subsequent

transactions. Under this guarantee, intermediate states can

be exposed to traffic, but only if there is a consistent view as

to which program elements have been updated (inserted or

deleted). If program elements (nodes or edges) are reachable

from each other, they must be updated together. Unreachable

edits are partitioned to different transactions as they are in-

dependent from the view of network traffic. This property is

useful when program updates can be applied incrementally

with well-defined semantics. For instance, a firewall that uses

independent ACL tables for different types of traffic (e.g.,

TCP vs. UDP) can be added or removed on a table-by-table

basis. A traffic normalizer [1, 22, 39] may apply different

function ELEMENTCONSISTENCY(prog, prog∗)

// Compute overall script

Script← PROGRAMCONSISTENCY(prog, prog∗)

// Reachability analysis. Optimization using Xch operations.

for all Xch(u→v, u→v′) ∈ Script do

u.Reachability← DFS(u, G)

// Partition script by reachability

Partitions← INITPARTITIONFOREACHEDIT(Script)

while ∃ reachable partitions p, q do

MERGEPARTITIONS(p, q)

return Partitions

Figure 7: The element consistency algorithm.

security functions for incoming and outgoing traffic—e.g.,

normalizing TTL fields for incoming packets, but clearing

TCP options for outgoing ones.

Element consistency. For any intermediate state Si, i∈ [1..n],
we require the following properties to hold. For any element

t in Si, if t ∈ G∗ and t /∈ G, then for any other element t ′ in

G∗ where t ′ ∗ t (i.e., t ′ can reach t in G∗) or t ∗ t ′, we

require that t ′ ∈ Si. Similarly, for any element t in Si, if t ∈ G

and t /∈G∗, then for any other element t ′ in G where t ′ t (t ′

can reach t in G) or t t ′, we require that t ′ ∈ Si.

Stated simply, if a new program element is visible in the inter-

mediate state, it should be visible to all packets that traverse

this element in the new program, even if they follow different

execution paths through the program. A deleted element is no

longer visible to packets regardless of their execution paths.

Algorithm. As Figure 7 shows, we first invoke the program

consistency algorithm to compute the overall reconfiguration

script, and then partition this script into independent, smaller

transactions. This relies on a DFS search on G to compute

whether one edit may affect another. If two edits operate on

unreachable regions of the graph, they may proceed indepen-

dently; otherwise they belong to the same partition. Initially,

each edit is in its own partition. Partitions are merged if they

are reachable from one another—p and q are said to be reach-

able if their edit operations involve elements that are reachable

in either direction in G. This implies that the algorithm scales

quadratically with the number of edit operations.

Although we can perform DFS from all nodes and edges

in G in polynomial time, in practice we only need to do

so from nodes that are involved in an XCH operation. This

computes all needed reachability information to merge the

partitions, because such nodes are the boundaries between the

new and old graphs. Red nodes/edges are reachable from at

least one such XCH node by following its red outgoing edges,

and similar properties hold for the green color. When no

further merges are possible, the algorithm returns a partition

of the reconfiguration script.

Atomicity. Each smaller transaction begins with

‘meta.v==0’. Flex branches guard intermediate changes or

make them visible by changing ‘meta.v’. The reconfiguration

finishes after all constituent transactions are committed.

function EXECUTIONCONSISTENCY(prog, prog∗)

// Compute overall script

Script← PROGRAMCONSISTENCY(prog, prog∗)

// Bounded reachability analysis

for each Xch(u→v, u→v′) ∈ Script do

Xch.Reachability← BOUNDEDDFS(u, G)

INITSUBPARTITION(Xch.Reachability)

// Order partitions

for each Xch1, Xch2 ∈ Script do

if Xch1 ∗Xch2 then

ADDCONSTRAINT(Xch1 ≥ Xch2)

if Xch1 Xch2 then

ADDCONSTRAINT(Xch1 ≤ Xch2)

if Xch1 ≤ Xch2 ∧ Xch1 ≥ Xch2 then

MERGESUBPARTITIONS(Xch1, Xch2)

Subpartitions← CONSTRAINEDSORT(Subpartitions)

Subpartitions← DEDUPEDITS(Subpartitions)

return Subpartitions

Figure 8: The execution consistency algorithm.

5.3 Execution consistency

We next consider an even more relaxed guarantee with more

finer-grained transactions. Under execution consistency, a

new program element may only be visible to some execu-

tion paths but not others. Likewise, if an element is deleted

from some execution paths, other executions may still use this

element until all reconfigurations finish. Such intermediate

states are still consistent in that a packet never experiences

an execution path that mixes old and new elements. This is

the weakest level of consistency that we consider in FlexCore.

It is a suitable guarantee for program changes that are in na-

ture non-disruptive—e.g., functions that do not interfere with

packet processing decisions, or functions where inaccuracy

is tolerable. For instance, a telemetry module that samples or

aggregates traffic can be added or removed using execution

consistency. The intermediate states merely introduce noise

to the monitoring data, but do not break functionality.

Execution consistency. For any intermediate state Si, i ∈
[1..n], any execution path through this program, p∈ Si, should

satisfy that p ∈ G or p ∈ G∗.

This allows reconfigurations to proceed at a per execution

path basis. Paths are added to the program as a whole, or they

are deleted as a whole. But packets will not encounter partial

paths or paths that mix old and new elements.

Algorithm. Figure 8 shows the pseudocode. As before, we

perform a reachability analysis from Xch nodes; but unlike

in element consistency, the DFS terminates when encoun-

tering other Xch nodes or shared (black) nodes. The visited

elements form a subpartition for each Xch node. In element

consistency, if Xch1 reaches Xch2, they are merged into the

same transaction. But execution consistency only requires

the merge of certain Xch regions, but not all. If independent

reconfigurations of Xch1 and Xch2 do not lead to partial or

mixed paths, then their edits can be performed separately.

Specifically, we analyze the ordering relation between all

pairs of Xch nodes. If Xch1 can reach Xch2 via a green

(new) path pg, then reconfiguring Xch1 before Xch2 will

lead to a situation where the part of pg in Xch1 is activated

but its extension into Xch2 is not, leading to a mixed path.

Reconfiguring Xch2 before Xch1, on the other hand, is safe

because the changes are not reachable from Xch1. Of course,

this reconfiguration will not enable pg, but this may enable

other paths elsewhere so it is a valid plan to be considered.

Similarly, if Xch1 reaches Xch2 via a red (old) path pr, then

reconfiguring Xch2 before Xch1 will delete pr from its end

while its earlier part is still in use, resulting in mixed colors.

Reconfiguring Xch1 before Xch2, on the other hand, is valid

because it simply removes pr. If Xch1 can reach Xch2 via

green and red paths, then the only valid plan is to reconfigure

both regions atomically.

This above ordering relation generates a set of constraints

across Xch nodes, as well as an ordered set of subpartitions.

These subpartitions are finer-grained than the partitions in

element consistency, so they enable smaller transactions. One

final care must be taken: since subpartitions may be reachable

from each other, the bounded DFS may reach shared elements

from different Xch nodes. The edit operations in two subpar-

titions, therefore, may have overlaps. A deduplication step

over the subpartitions ensures that a deletion operation is de-

ferred to the last subpartition where the deleted element is

used, and that an insertion operation is performed in the first

subpartition where the new element occurs. This concludes

the execution consistency algorithm, whose complexity is

quadratic with regard to the number of Xch nodes.

Atomicity. The use of flex branches makes each subparti-

tion visible to network traffic atomically. The entire transac-

tion finishes when all subpartitions have been reconfigured.

5.4 Summary

The reconfiguration script is then realized by the partial re-

configuration primitives in Section 4—e.g., an operation on v

will translate into a table or branch operation depending on

v’s type. For program consistency, all edits are applied in one

single, atomic step, but for element and execution consistency,

the (sub)partitions are applied sequentially. This raises an-

other consideration as to the ordering of the transactions in the

latter two algorithms to minimize the maximum utilization

peak. We perform an exhaustive search over the order. This

search terminates when it has identified a feasible order or

when it concludes that no such order exists.

6 Limitations and Discussions

Program equivalence. The FlexCore partial reconfiguration

primitives and algorithms operate on P4 program elements, re-

lying on the structural differences between two P4 programs.

It currently doesn’t analyze whether structurally different pro-

grams may have the same semantics [10, 13], which is an

interesting avenue for future work.

Stateful packet processing. FlexCore currently does not sup-

port stateful switch programs. The P4 standard defines per-

sistent state as an “extern” feature that is up to the individual

architectures to implement (e.g., registers in PSA). Partial

reconfiguration of stateful features raises additional questions

as to how network state should be ported to the new program,

e.g., with programmer-supplied state transformation func-

tions, much like in SDN software controller upgrades [32].

Resource headroom. The FlexCore algorithms require that

the switches have sufficient resource slack, but there could

be scenarios where even the weakest consistency would re-

quire more resource headroom than available. To address this,

one could relax execution consistency even further to capture

which types of ‘mixed’ executions are still semantically mean-

ingful; alternatively, one could also migrate certain resources

to other devices to make room for the reconfiguration.

Other architectures. The FlexCore primitives target P4

program changes, so they are in principle architecture-

independent. The dRMT variant that FlexCore uses makes

runtime reconfiguration particularly natural, but most P4 tar-

gets have some degree of runtime flexibility. The RMT archi-

tecture, for instance, may be augmented with the ability to

reconfigure each stage independently. Software switch targets

(e.g., for the host or NIC) expose even more runtime flexibility

than switch ASICs. Although the original dRMT project [11]

didn’t provide an ASIC implementation, we believe that our

indirection structures are compatible with its outlined design.

Other languages. FlexCore’s reconfiguration primitives tar-

get P4 programs, but for other languages (e.g., NPL [2],

PoF [36]), one should be able to develop analogous recon-

figuration primitives based upon their respective language

features. The property of runtime programmability is not tied

to a specific language.

7 Implementation

We have implemented FlexCore in several components. The

reconfiguration primitives are implemented by manipulating

the hardware ASIC control registers via the PCIe interconnect

from the control plane. The indirection structures are imple-

mented in the Spectrum-2 silicon design, and FlexCore is the

first effort to leverage them for runtime, partial reconfigura-

tion. Our compiler uses p4c [4] as the frontend; it implements

incremental compilation of P4 program elements, generating

an individual binary image for each component, instead of

outputting a monolithic binary for the entire program. The

consistency algorithms are implemented at the control plane.

The hardware cost to enable runtime programmability

comes from the use of indirection structures, including the

PDT and PST. The PDT supports full reconfigurability at all

consistency levels, but the PST only supports program consis-

tency. We estimate the cost of the current PDT and the cost

for making the PST fully reconfigurable at runtime.

Each MA processor has a local PDT, which holds roughly

1k entries—i.e., the largest P4 program it supports should

have no more than ∼ 1k MA tables and conditional branches.

The ASIC supports up to 128 MA processors overall. Recall

the PDT format as shown in Figure 2: each entry contains

a) a description of the match key, b) entry type (SRAM/T-

CAM/Actions), c) resource pointer, and d) next table/branch

pointer. In the worst-case scenario, each MA table has a dif-

ferent key, resulting in 1k distinct keys that the switch needs

to support; this requires 10 bits to represent each distinct key

in the PDT entry. The entry type field distinguishes between

three types, requiring 2 bits. The resource pointer requires

20 bits, which is able to index one million distinct memory

lines for SRAM/TCAM/Actions, roughly 20MB in size (the

‘main database’). The next table/branch pointer requires 10

bits to index another PDT entry as the next hop. Overall,

each PDT entry requires 42 bits, each PDT table consumes

5.25kB for 1k entries, and across 128 PDT tables the hard-

ware overhead is 0.67MB, or 3.3% of the main database. The

flex branch mechanism is implemented using existing ALUs,

so it doesn’t require dedicated hardware. For the PST, the

Spectrum-2 parser hardware only supports runtime reconfig-

uration at program consistency level. This does not contain

the ‘flex branch’ equivalent and the ‘version’ support for tran-

sition rules, which would be necessary for other consistency

levels. We estimate the overhead of these additional structures

to be under 1% of the main database.

8 Evaluation

We present a comprehensive evaluation of FlexCore, by ap-

plying our design to a 12.8 Tbps hardware ASIC and also a

software simulator (a fork of bmv2) that has been integrated

with the same reconfiguration primitives. To evaluate scala-

bility, we have used a set of synthetic and real-world P4 pro-

grams. To synthesize the P4 corpus, our tool takes a specified

program size and generates a random control flow graph. For

real-world programs, we have used switch.p4, NetCache [19],

and NetHCF [23], which represent large, medium, and small

programs, respectively. The program edits are also generated

randomly, which may mutate, insert, remove, or swap pro-

gram elements. The edits are controlled by a parameter α, the

reconfiguration ratio. If a program has 100 program elements,

and a reconfiguration adds, removes, or exchanges 10 of them,

we say that α= 10%. To evaluate realistic reconfiguration sce-

narios, we perform case studies using switch-based multicast,

telemetry, attack mitigation, and tenant-specific extensions,

on hardware and software platforms.

8.1 Reconfiguration primitives

We start by measuring the number of hardware operations

that each reconfiguration primitive involves. These primitives

are invoked by the control plane, and they modify a memory-

mapped region of the PCIe device (i.e., the data plane). The

PCIe bus sustains a peak throughput of∼1 million operations

per second. The control plane, however, is bottlenecked by the

software speed; each operation took several milliseconds to

0.01

0.02

0.03

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
 (

s
e

c
)

Reconfiguration ratio (α)

Elem

Exec

Prog

(a) NetHCF (V=43, E=58).

0.1

0.2

0.3

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
 (

s
e

c
)

Reconfiguration ratio (α)

Elem

Exec

Prog

(b) NetCache (V=109, E=129).

0.2

0.4

0.6

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
 (

s
e

c
)

Reconfiguration ratio (α)

Elem

Exec

Prog

(c) switch.p4 (V=168, E=242).

Figure 9: Scalability of FlexCore on three real-world programs. V: number of nodes, E: number of edges.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

T
im

e
 (

s
e
c
)

Program size (# nodes)

Elem

Exec

Prog

(a) Turnaround time

 0

 50

 100

 150

 200

 0 50 100 150 200

N
u
m

b
e
r

o
f
re

c
o
n
fig

.
o
p
e
ra

ti
o
n
s

Program size (# nodes)

Exec

Elem

Prog

(b) Number of primitives

Figure 10: The FlexCore algorithms scale well.

complete with software overhead. Table 1 shows the number

of hardware register DWORD writes for each reconfiguration

primitive. As we can see, table operations are the most heavy-

weight, control flow branch operations follow, then parser

operations, and finally, edge edits complete within one write

and are atomic. Deallocations have the same number of oper-

ations as their allocation analogues.

Primitive RegAccess Primitive RegAccess

ALLOCTBL 112 GROUPTBL 112

ALLOCCOND 43 ALLOCSTATE 22

ALLOCTRANS 5 ALLOCEX 3

SETPTR 1 SETCONDPTR 2

Table 1: The number of hardware register accesses (in

DWORDS) for each reconfiguration primitive. Allocation

and deallocation primitives as measured only operate on meta-

data (i.e., PDT and PST), not including SRAM/TCAM/action

memory resources. The cost for the latter varies depending

on the allocation/deallocation sizes.

8.2 Consistency algorithms

Synthesized programs. We evaluate the scalability of Flex-

Core in generating reconfiguration scripts for programs of

different sizes. We generated 100 programs of each size (800

in total), and set α = 40% for FlexCore to generate reconfig-

uration scripts. Figure 10a shows the results. As expected,

program consistency took the least amount of time, as the only

analysis is on the program diff; all edits are then grouped as a

whole. The turnaround time for element consistency grows

roughly quadratically with regard to the program size (more

strictly, to the size of the diff, which is fixed to 40% of the

program size). Execution consistency algorithm lies in be-

tween, as it scales with the number of Xch nodes, which is

smaller than the program diff. Overall, FlexCore generated

reconfiguration scripts for all programs within one second.

Next, we measure the number of invocations of the partial

reconfiguration primitives as well as the version metadata op-

erations. As shown in Figure 10b, the numbers of operations

for different consistency levels are roughly the same. This

is because the number of reconfiguration operations are the

same regardless of the consistency level. But the number of

transactions increases for weaker guarantees due to the extra

version metadata operations.

Real-world programs. We then tested FlexCore on three

real-world programs of different sizes, and further varied the

reconfiguration ratio α from 5% to 50%. As Figure 9 shows,

the FlexCore turnaround time is longer for larger programs

and higher reconfiguration ratios. But the overall takeaways

are similar as before: FlexCore algorithms scale well for com-

puting reconfiguration scripts. In the Appendix, we further

include scalability results for ordering the transactions.

Consistency levels. Figure 11a shows the CDF of the trans-

action sizes under different consistency guarantees for the

synthetic programs with different sizes and α. Under stronger

consistency guarantees, the transactions have larger sizes (we

fix all tables to the same size). We also measure the head-

room requirements. Figure 11b visualizes the step-by-step

reconfiguration for one such program: program consistency

requires a large peak headroom, but weaker guarantees have

less stringent requirements. All consistency levels eventually

converge to the same utilization level after reconfiguration

completes. Figure 11c tests another program in the software

simulator, which plots the percentage of traffic that experi-

ences the old program after the first update is enabled during

the reconfiguration under different consistency levels. As we

can see, program consistency does not expose any interme-

diate state, but weaker guarantees lead to more traffic that is

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
ve

 d
is

tr
ib

u
ti
o

n

Transaction size

Elem

Exec

Prog

(a) Transaction sizes

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

M
e

m
o

ry
 u

s
a

g
e

 (
%

)

Reconfiguration step

Elem Exec Prog

(b) Resource headroom

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

O
ld

-v
e

rs
io

n
 t

ra
ffi

c
 (

%
)

Reconfiguration step

Exec Elem Prog

(c) Consistency

Figure 11: (a) Weaker consistency guarantees lead to smaller transaction sizes; they require lower resource headroom, but more

traffic will encounter the old program during reconfiguration. In (b), the initial switch utilization when the reconfiguration starts

is 80%. In (c), we use a program whose control flow graph is presented in Figure 5; Y-axis shows the traffic ratio processed by

the old program after the first reconfiguration transaction is committed at the 6th step.

processed using the old program during the reconfiguration.

8.3 Case study: Accelerated multicast

Just-in-time optimization. Next, we present a case study us-

ing the hardware ASIC, where program elements are injected

to the switch pipeline at runtime to accelerate multicast appli-

cations. Initially, the switch is configured with a baseline pro-

gram without any multicast optimizations, and it connects one

ZeroMQ unicast sender and multiple receivers. Just before

the ZeroMQ application starts, we initiate a partial reconfigu-

ration to extend the switch program with Elmo [34], a switch-

based multicast function. Elmo performs source-routed multi-

cast in hardware with customized protocol headers to improve

scalability. After ZeroMQ finishes, another reconfiguration re-

moves the Elmo components from the switch pipeline. These

changes are performed under program consistency. Each re-

configuration took less than 0.5 s to complete in control plane

software.

Just-in-time telemetry. Just before removing Elmo, we in-

ject a co-located telemetry application to observe the effect

of Elmo removal, by monitoring the average pipeline latency

of randomly sampled packets. This telemetry application is

unloaded after the removal of Elmo.

Reconfiguration. Figure 12a plots the throughput of a third

background iPerf application during the entire reconfiguration.

As we can see, the reconfigurations did not cause any service

interruption, as the iPerf throughput was stable throughout

the experiment; the switch drop counters also showed no

packet loss. Figure 12b plots the additional resource usage

in terms of PDT memory, PST memory, and table entries

during the runtime reconfigurations. The insertion of Elmo

caused a resource usage increase, as did the insertion of the

telemetry application. But in both cases, the extra resource

overheads for PDT and PST are under 200 bytes. Table rules

for multicast and telemetry, on the other hand, are the domi-

nant overheads. All resources are released after the program

modules are removed from the pipeline.

Performance. Figure 12c shows that the injection of Elmo

improves multicast scalability, where we measure the comple-

tion time to send 200 k ZeroMQ messages. Before injecting

Elmo, a preceding ZeroMQ run via unicast took up to nearly

60 seconds for six receivers; and the completion time grows

roughly linearly with the number of receivers. After injecting

Elmo, the switch-based multicast scales independently of the

number of receivers, finishing at roughly 20 seconds across

all tested configurations. The injected telemetry application

detected that the pipeline latency experienced a 20 ns decrease

after Elmo was removed from the pipeline.

8.4 Case study: Dynamic telemetry upgrade

In-place application upgrade. We perform another ASIC-

based case study under execution consistency. The operator

modifies the telemetry application discussed earlier to use

different flow keys. Initially, the application uses the IPv4

five tuple as the match key and is configured with 30 k en-

tries. Packets of interest are sampled to software for telemetry

processing. The operator issues a reconfiguration to modify

the match key to the source and destination addresses instead,

using the MODTBL primitive. This modification also reduces

the resource usage, as entries become smaller.

Reconfiguration. Figure 13 plots the performance of a back-

ground iPerf application, which shows stable throughput. The

blue area further shows an additional IPv4 test trace that

we generated to specifically trigger the telemetry table. The

switch counters indicated zero packet loss for iPerf and the

IPv4 test traffic. We have set the migration rate to be 3k entries

per second, so the modified table was populated in ∼10s. The

PDT operations at the control plane software took 400 ms.

Utilization. Figure 14 shows the intermediate program sizes

using MODTBL, and compares it with the baseline that inserts

the new table and then deletes the old. The baseline incurs

a resource utilization spike, which occurs when both tables

are co-resident in the switch. As the old table is gradually

deallocated, the resource usage drops to the size of the new

Time (sec)

B
an

dw
id

th
 (G

bp
s)

0

2

4

6

8

10

12

0 25 50 75 100 125

Iperf (Gbps) Elmo load/unload Elmo run
Telemetry Telemetry load/unload

(a) Hitless reconfigurations.

Time (sec)

R
es

ou
rc

e
us

ag
e

(b
yt

es
)

0

250

500

750

1000

1250

0 25 50 75 100 125

Table Desciptor Parser Resouces Rules

(b) Resource overheads.

Num of subscribers

Ti
m

e
(s

ec
)

0

20

40

60

1 2 3 4 5 6

Unicast Elmo

(c) Performance improvements.

Figure 12: FlexCore inserts Elmo, a switch-based multicast program, just-in-time to accelerate ZeroMQ performance. It also

inserts a telemetry application to observe the effect of the removal of Elmo.

Time (sec)

Tr
af

fic
 ra

te
 (G

bp
s)

0
2
4
6
8

10
12

0 20 40 60 80

Reconfiguration traffic Background traffic
Reconfig start Reconfig done

Figure 13: Hitless table modification.

Time (sec)

S
R

A
M

 u
sa

ge
 (*

1K
 ru

le
s)

0

25

50

75

100

0 20 40 60 80

In-place modification Regular addition

Figure 14: Resource usage with in-place table modification.

table. The final SRAM usage shows the resource reduction in

changing the flow keys. In contrast, our in-place modification

consistently reduces resource usage reduction right from the

beginning, until resource usage approaches its final state.

8.5 Simulator case studies

We have performed two case studies in the software simulator

with element consistency. The appendix includes concrete

results. We highlight here that all reconfigurations were effec-

tive and free of interruptions.

Real-time attack mitigation. This case study injects a TCP

normalizing firewall [1] and a covert channel defense [39]

upon attack detection. The normalizer pads all TTL values

to avoid inconsistent views at host IDS [22], and the covert

channel defense clears TCP reserved bits to avoid data leak-

age [39]. The normalizer inspects incoming traffic, but the

covert channel defense inspects outgoing traffic.

Tenant-specific network extensions. VM migration triggers

FlexCore to carve out the tenant’s ACL functions from the

original switch and inject it to the destination switch.

9 Related work

Programmable networks. Network programmability has

been a longstanding goal in the community—starting with

‘active networks’ [6, 33, 37], each step in this direction has

led to significant innovation in the networking ecosystem.

FlexCore takes the next step to enable runtime programmable

switches. Recent projects P4Visor [42] and Hyper4 [16] also

use DAG merging algorithms on P4 programs, but our focus

is on partial program reconfiguration.

Consistent updates. Network updates are common to data-

centers [20, 28], and ensuring the absence of service interrupt

is a key goal [24]. Researchers have considered live migration

of BPG sessions and virtual routers [21, 38], and per-packet

and per-flow consistency guarantees for OpenFlow network

updates [29, 30]. Our work tackles the problem of achieving

reliable switch program updates at runtime, and proposes a

new set of consistency guarantees.

OS+network specialization. The vision of FlexCore is in-

spired by prior work in OS and network specialization.

SPIN [7] is an OS that allows applications to inject safe

and dynamic extensions to the kernel. Exokernel [14] en-

ables applications to specialize OS functions at user level.

ESwitch [26] specializes OpenFlow software data planes to

achieve higher performance for a given workload. Our work

aims to enable similar goals for programmable switches.

10 Conclusion

FlexCore argues that runtime programmability should be a

first-order goal in future networks, allowing functions to be

added or removed dynamically. FlexCore contributes design

considerations on switch architectures, partial reconfiguration

primitives, reconfiguration algorithms and consistency guaran-

tees. Our evaluation shows that the FlexCore reconfiguration

algorithms are scalable, and that runtime reconfigurations are

beneficial and free of disruption.

Acknowledgments: We thank our shepherd Laurent Van-

bever and the anonymous reviewers for their insightful com-

ments and suggestions. This work was supported in part by

CNS-1801884, CNS-1942219, CNS-2016727, CNS-2106388,

and CNS-2106751.

References

[1] Cisco: TCP normalization. https://www.cisco.com/

c/en/us/td/docs/security/asa/asa96/configu

ration/firewall/asa-96-firewall-config/con

ns-connlimits.html.

[2] nplang. https://github.com/nplang.

[3] The P4 language repositories. https://github.com

/p4lang.

[4] The p4c compiler. https://github.com/p4lang/p4

c.

[5] The P4Runtime Specification. https://github.com

/p4lang/p4runtime.

[6] D. Scott Alexander, William A. Arbaugh, Michael W.

Hicks, Panka J. Kakkar, Angelos D. Keromytis,

Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles,

and Jonathan M. Smith. The SwitchWare active network

architecture. IEEE Network, 12(3):29–36, 1998.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.

Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-

tensibility Safety and Performance in the SPIN Operat-

ing System. In SOSP, 1995.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-

ese, Nick McKeown, Martin Izzard, Fernando Mujica,

and Mark Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for

SDN. ACM SIGCOMM CCR, 43(4):99–110, 2013.

[9] H. Bunke, X. Jiang, and A. Kandel. On the mini-

mum common supergraph of two graphs. Computing,

65(1):13–26, 2020.

[10] Eric Hayden Campbell, William T. Hallahan, Priya

Srikumar, Carmelo Cascone, Jed Liu, Vignesh Rama-

murthy, Hossein Hojjat, Ruzica Piskac, Robert Soulé,

and Nate Foster. Avenir: Managing data plane diversity

with control plane synthesis. In Proc. NSDI, 2021.

[11] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-

man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-

hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,

et al. dRMT: Disaggregated programmable switching.

In Proc. SIGCOMM, 2017.

[12] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan

Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,

Enrique Cauich Zermeno, Erik Rubow, James Alexander

Docauer, et al. Andromeda: Performance, isolation, and

velocity at scale in cloud network virtualization. In Proc.

NSDI, 2018.

[13] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici,

Lorina Negreanu, and Costin Raiciu. Dataplane equiva-

lence and its applications. In Proc. NSDI, 2019.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-

nel: An Operating System Architecture for Application-

level Resource Management. In SOSP, 1995.

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In Proc.

SIGCOMM, 2018.

[16] David Hancock and Jacobus van der Merwe. HyPer4:

Using P4 to virtualize the programmable data plane. In

Proc. CoNEXT, 2016.

[17] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rex-

ford, Praveen Tammana, and David Walker. Contra: A

programmable system for performance-aware routing.

In Proc. NSDI, 2020.

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,

Jeongkeun Lee, Robert Soule, Changhoon Kim, and Ion

Stoica. NetChain: Scale-free sub-RTT coordination. In

Proc. NSDI, 2018.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,

Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion

Stoica. NetCache: Balancing key-value stores with fast

in-network caching. In Proc. SOSP, 2017.

[20] Naga Praveen Katta, Jennifer Rexford, and David

Walker. Incremental consistent updates. In Proc. Hot-

Nets, 2013.

[21] Eric Keller, Jennifer Rexford, and Jacobus E van der

Merwe. Seamless BGP migration with router grafting.

In Proc. NSDI, 2010.

[22] Christian Kreibich, Mark Handley, and V Paxson. Net-

work intrusion detection: Evasion, traffic normalization,

and end-to-end protocol semantics. In Proc. USENIX

Security, 2001.

[23] Guanyu Li, Menghao Zhang, Chang Liu, Xiao Kong,

Ang Chen, Guofei Gu, and Haixin Duan. NetHCF: En-

abling line-rate and adaptive spoofed IP traffic filtering.

In Proc. ICNP, 2019.

[24] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua

Yuan, Roger Wattenhofer, and David Maltz. zUpdate:

updating data center networks with zero loss. In Proc.

SIGCOMM, 2013.

[25] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun

Lee, and Minlan Yu. Silkroad: Making stateful layer-4

load balancing fast and cheap using switching ASICs.

In Proc. SIGCOMM, 2017.

[26] László Molnár, Gergely Pongrácz, Gábor Enyedi,

Zoltán Lajos Kis, Levente Csikor, Ferenc Juhász, At-

tila Kőrösi, and Gábor Rétvári. Dataplane specialization

for high-performance OpenFlow software switching. In

Proc. SIGCOMM, 2016.

[27] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,

Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-

malkumar Jeyakumar, and Changhoon Kim. Language-

directed hardware design for network performance mon-

itoring. In Proc. SIGCOMM, 2017.

[28] Thanh Dang Nguyen, Marco Chiesa, and Marco Canini.

Decentralized consistent updates in SDN. In Proc.

SOSR, 2017.

[29] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole

Schlesinger, and David Walker. Abstractions for net-

work update. In Proc. SIGCOMM, 2012.

[30] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David

Walker. Consistent updates for software-defined net-

works: Change you can believe in! In Proc. HotNets,

2011.

[31] Jerome H Saltzer, David P Reed, and David D Clark.

End-to-end arguments in system design. ACM Trans.

Comput. Syst., 2(4), 1984.

[32] Karla Saur, Joseph Collard, Nate Foster, Arjun Guha,

Laurent Vanbever, and Michael Hicks. Safe and flexible

controller upgrades for SDNs. In Proc. SOSR, 2016.

[33] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou,

R. D. Rockwell, and C. Partridge. Smart packets for

active networks. In Proc. OpenArch, 1999.

[34] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford,

Nick Feamster, Ori Rottenstreich, and Mukesh Hira.

Elmo: Source routed multicast for public clouds. In

Proc. SIGCOMM, 2019.

[35] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller,

and Jonathan M Smith. Scaling hardware accelerated

network monitoring to concurrent and dynamic queries

with *flow. In Proc. USENIX ATC, 2018.

[36] Haoyu Song. Protocol-oblivious forwarding: Unleash

the power of SDN through a future-proof forwarding

plane. In Proc. HotSDN, 2013.

[37] D. L. Tennenhouse and D. J. Wetherall. Towards an

active network architecture. ACM SIGCOMM CCR,

26(2):5–18, 1996.

[38] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus Van

Der Merwe, and Jennifer Rexford. Virtual routers on the

move: live router migration as a network-management

primitive. ACM SIGCOMM CCR, 38(4):231–242, 2008.

[39] Jiarong Xing, Qiao Kang, and Ang Chen. Netwarden:

Mitigating network covert channels while preserving

performance. In Proc. USENIX Security, 2020.

[40] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-

chronized network snapshots. In Proc. SIGCOMM,

2018.

[41] Liangcheng Yu, John Sonchack, and Vincent Liu. Man-

tis: Reactive programmable switches. In Proc. SIG-

COMM, 2020.

[42] Peng Zheng, Theophilus Benson, and Chengchen Hu.

P4Visor: Lightweight virtualization and composition

primitives for building and testing modular programs.

In Proc. CoNEXT, 2018.

11 Appendix

11.1 Case study: Real-time attack mitigation

In this case study, we present how FlexCore facilitates real-

time attack mitigation by reconfiguring two defense functions

to the software switch simulator.

Traffic normalizers [22] are firewall utilities that prevent

inconsistent views between network IDS and end hosts. As

an example, some packets may be seen by the IDS, but their

TTL values are crafted in such a way that they are dropped

soon after the network IDS and do not trigger processing at

end hosts. This leads to vulnerabilities [22]. A normalizer

firewall can pad TTL values to ensure that the IDS and the

hosts always have the same view.

Covert channels [39] leak secret data by repurposing packet

header fields as data carrier. For instance, an attacker that

compromise a server that hosts confidential data may leak the

secret by padding them into the TCP reserved bits of network

traffic. A defense needs to clear such optional header fields to

prevent leakage.

Real-time attack mitigation. In our case study, we in-

ject a TCP normalizing firewall [1] and a covert channel

defense [39] upon attack detection. Since these two defenses

are independent, they can be reconfigured under element con-

sistency. Figure 15 shows the workflow for the reconfigura-

tion. After each defense is deployed, the attack traffic can be

recognized and blocked; its throughput drops to zero. The

normal traffic does not experience any loss or interruption

during the reconfiguration.

11.2 Case study: Tenant-specific network extensions

In this case study, we focus on multi-tenant datacenters where

each tenant can inject her own network extensions to the

switch. Upon VM migration, the switch modules are carved

out from the source and grafted to the new destination switch.

Program grafting in VM migration. In this scenario, a

tenant has her ACL module injected to the ToR switch, and her

VM migration will bring this module to a different destination

rack. This is achieved by carving out the ACL components

and grafting them to the destination switch using partial re-

configurations. Figure 16 shows the traffic rate of the tenant’s

traffic and the background traffic. The migration is achieved

in several steps. It first inserts the ACL module to the new

switch, and then routes traffic to the new switch by updating

the routing rules of upstream switches. Finally, it removes the

ACL module in the old switch. As we can see, the migration

does not cause throughput drops of the background traffic

during the reconfiguration, and the tenant’s traffic is migrated

to the new switch without service interruption.

11.3 Evaluation: Ordering the transactions

For element and execution consistency, the reconfiguration

proceeds in multiple steps. So FlexCore additionally performs

an exhaustive search to identify a feasible sequence under

the current headroom. The problem can be stated as: given

Simulation time (sec)

S
T

(p
ps

)

0

5

10

15

0 10 20 30 40

Normal Out Normal In IDS evasion
Covert channel Transaction 1 done

Transaction 2 done

Figure 15: Simulation traffic rates (ST) when reconfiguring

the switch using element consistency to inject real-time net-

work defenses.

Figure 16: Simulation traffic rates (ST) during a reconfigura-

tion triggered by VM migration, which carves out an tenant-

specific ACL module from the source switch and grafts it to

the destination switch.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.1 0.15 0.2 1.25

C
D

F

Time (ms)

r=10%

r=20%

r=30%

r=40%

r=50%

(a) Element consistency

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.5 1 1.5 6s

C
D

F

Time (ms)

r=10%

r=20%

r=30%

r=40%

r=50%

(b) Execution consistency

Figure 17: The turnaround time for finding a feasible sequence

for the transactions, under element and execution consistency.

a set of transactions tx1, tx2, · · · , txk, find a feasible sequence

that fits into the current resource headroom, or conclude that

such a sequence doesn’t exist. For element consistency, the

transactions do not have a hard constraint as to their order.

The search only focuses on optimizing for resource head-

room. Execution consistency has hard constraints as to which

transactions should be ordered before others. The search also

encodes such constraints as induced from the XCH nodes.

In Section 8.2, we have evaluated the scalability of the algo-

rithm in generating reconfiguration scripts. Here, we further

evaluate the turnaround time for identifying a feasible se-

quence of transactions that can be applied within the available

headroom. We have used an α ranging from 10% to 50% on

the synthesized programs, and tried different switch resource

headrooms as denoted by r (ranging from 10% to 50%).

Figure 17a shows the results for element consistency. We

can see that FlexCore finishes within 0.2ms for all programs

across different headrooms except for r=10%. With 10% head-

room, the switch has very small slack for the reconfiguration,

so it takes more time to search for a feasible plan or determine

that no solution exists.

Figure 17b shows the results for execution consistency,

where the turnaround time is higher because of two reasons.

First, execution consistency needs to merge and deduplicate

the subpartitions following their constraints. Second, execu-

tion consistency could generate more candidate solutions,

resulting in longer searching time. However, the algorithm

can still complete within 1.5ms for 98% programs and within

6s for all programs.

	Introduction
	A Case for Runtime Programmability
	The FlexCore Switch Architecture
	Runtime Reconfiguration Primitives
	Program description table
	Runtime reconfigurable tables
	Runtime reconfigurable control flow
	In-place table modifications
	Runtime reconfigurable parsers
	Summary

	Runtime Reconfiguration Algorithms
	Program consistency
	Element consistency
	Execution consistency
	Summary

	Limitations and Discussions
	Implementation
	Evaluation
	Reconfiguration primitives
	Consistency algorithms
	Case study: Accelerated multicast
	Case study: Dynamic telemetry upgrade
	Simulator case studies

	Related work
	Conclusion
	Appendix
	Case study: Real-time attack mitigation
	Case study: Tenant-specific network extensions
	Evaluation: Ordering the transactions

