
A Vision for Runtime Programmable Networks

Jiarong Xing
Rice University

Yiming Qiu
Rice University

Kuo-Feng Hsu
Rice University

Hongyi Liu
Rice University

Matty Kadosh
Nvidia

Alan Lo
Nvidia

Aditya Akella
UT Austin

Thomas Anderson
University of Washington

Arvind Krishnamurthy
University of Washington

T. S. Eugene Ng
Rice University

Ang Chen
Rice University

Abstract

Our community has made significant progress in develop-

ing programmable network infrastructure, starting from the

control plane and expanding to the data plane. As a latest

trend, network devices are becoming runtime programmable

while serving live traffic. This allows for reprogramming of

individual device programs at fine-grained timescales to add

or remove network functions. Many applications and services,

however, need control over a combination of devices, includ-

ing end host stacks, NICs, and switches, to accomplish their

goals. We lay out our vision for runtime programmable net-

works, building upon device-level features to provide live,

network-wide, runtime reprogramming. A whole-stack ap-

proach is needed with new programming models, compiler

support, and network management abstractions. We outline a

research agenda as a call to arms to the community.

CCS Concepts

• Networks → Programmable networks;

Keywords

Programmable networks

ACM Reference Format:

Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Hongyi Liu, Matty Ka-

dosh, Alan Lo, Aditya Akella, Thomas Anderson, Arvind Krish-

namurthy, T. S. Eugene Ng, and Ang Chen. 2021. A Vision for

Runtime Programmable Networks. In The Twentieth ACM Workshop

on Hot Topics in Networks (HotNets ’21), November 10±12, 2021,

Virtual Event, United Kingdom. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3484266.3487377

1 Introduction

Our community has made significant progress in making the

network infrastructure programmable. Network programma-

bility started with the control plane, but has rapidly expanded

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotNets’21, November 10-12, 2021, Virtual Event, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00

https://doi.org/10.1145/3484266.3487377

to the data plane. Programmable data plane devices, such as

switches [5, 7, 51], NICs [2, 8], FPGAs [4, 61], and software

targets [48], have gained popularity. This in turn has changed

the way in which we control and operate our networks. In a

programmable network, operators are capable of customizing

the network infrastructure end-to-end, by writing and deploy-

ing network programs at the host stacks, NICs, or switches.

Without any need for hardware upgrades, new functions can

be introduced and unused ones removed by reflashing the

devices with different programs.

Up until recently, one missing piece of this puzzle has

been runtime programmability. Existing work [16, 24, 38,

40, 42, 67] has extensively studied the opportunities afforded

by compile-time programmabilityÐi.e., customizing device

behaviors by compiling a new network program and reflash-

ing the data plane before the device starts to serve traffic. In

compile-time programmable networks, devices that need to

be ªrepurposedº are first isolated by management operations

(e.g., draining traffic), reconfigured with a different program,

before they are redeployed to the network again. In contrast,

runtime programming of network devices, while keeping the

network disruption-free, enables a new paradigm. With run-

time programmable devices, reprogramming takes place at

much finer timescales hitlessly. The data plane is kept live

while program changes are reconfigured. Example runtime

programmable switches include Nvidia/Mellanox Spectrum

series (with P4) [66], Broadcom Trident4 and Jericho2 (with

NPL). Runtime programmable targets also includes FPGAs

and software switches, as they are inherently capable of live,

partial reconfiguration.

This paper investigates a vision that we call FlexNet, which

leverages the trend of device-level runtime programmability,

but considers broader design principles for an end-to-end

runtime programmable network.

FlexNet envisions a network infrastructure that shapeshifts

in response to real-time change. At any point, the end-to-end

network is optimally tuned for the current requirements and

traffic workloads. But if network requirements change in the

next minute, reconfigurations across devices will present the

network as a new infrastructure. This requires runtime pro-

gramming of individual devices as a building block, but also

synchronized reconfigurations across the network. Network

functions migrate seamlessly from one location to another,

both vertically (host stacks vs. NICs. vs. switches) and hori-

zontally (end-to-end network paths). They run atop devices

with different architectures, programming models, and per-

formance characteristics. Security defenses are summoned

to the network via precise injection to attack locations for

real-time mitigation, and they dynamically scale in and out

based on attack traffic volume. End-to-end, the network is

piloted by a central controller that maintains a global view

of the topology and traffic patterns, as well as the locations

and resource requirements of the network apps. The software

controller initiates centralized management operations, but

they are handed over to data plane hardware when feasible

for efficient, distributed execution.

While ambitious, we believe this goal is within reach. The

emergence of runtime programmable data planes points to the

technological feasibility. The need for runtime programma-

bility is evidenced by industry support from disparate ven-

dors [3, 5, 6, 10] and academic research that approximates

this capability [18, 30, 62, 70]. Though not yet pervasive

across all devices, commercial incentives for adding such

support in upcoming device models seem compelling. In fact,

we view runtime programmability as a crucial step to the

overall success of programmable networks. It simultaneously

addresses two critical needs in large networks: rapid innova-

tion of network features [23] and their deployment with high

network availability and near-zero downtime [28].

1.1 A Case for Runtime Programmable Networks

FlexNet enables a range of powerful use cases.

Dynamic apps. Programmable networks have found many

applications [29, 34, 38, 40, 50] but today’s apps are stati-

cally compiled into the network and cannot change at run-

time. Recent projects call out this limitation and propose

approximating solutions. They essentially work by baking

all needed logic at compile time but changing how it is used

from the control plane. DynamiQ [18] designs a monitoring

system where query operators are flexibly mapped at runtime

to compile-time allocated resources. Mantis [70] hardcodes

all runtime response logic at compile time, and invokes dif-

ferent responses at runtime by modifying control registers.

HyPer4 [30] emulates different network programs with a vir-

tualization layer. In contrast, runtime programmable networks

offer direct support for dynamic program changes. One does

not need to anticipate all network requirements in advance or

statically bake everything into the network.

Real-time security. Statically-baked network programs are

particularly problematic for security defenses [37, 42, 67±

69], as attacks are in nature fast-changing and difficult to

anticipate or provision for. Runtime programmable defenses

can be summoned into the network on-the-fly and retired

when attacks subside. Such defenses are also elastic, capable

of scaling, replicating, and migrating to other locations based

on changing attack strengths and patterns. Real-time defense

deployments also enable hot-patching the network against

zero-day attacks before a permanent fix is rolled out.

Live infrastructure customization. Whole-network infras-

tructure customization is challenging in today’s datacenters.

Deploying new transport protocols [39, 43], for instance, re-

quires changes not only to host kernels but also telemetry and

congestion control (CC) algorithms at the NICs and switches.

The optimal choice of CC algorithms further depends on the

mix of applications and workloads [49], which fluctuate dy-

namically at runtime. FlexNet enables quick, incremental

upgrades of the end-to-end infrastructure at runtime.

Tenant extensions. Cloud datacenters must accommodate

the varied networking requirements of each tenant. The num-

ber of virtual networks and their needs change rapidly due

to tenant churn. FlexNet allows tenants to inject customer-

specific network extensions (e.g., new CC algorithms at the

hosts and NICs, or custom security defenses at the switches)

as they arrive. Tenant departures trigger program removal to

trim the network and release unused resources.

1.2 Research Challenges

Realizing this vision requires a whole-stack approach that

rethinks how FlexNet networks should be programmed, opti-

mized, and managed at scale.

Whole-network programming. Building upon device-level

runtime programmability as a basis, FlexNet aims to enable

whole-network runtime programming end-to-end. This raises

interesting research questions on developing suitable pro-

gramming abstractions for vertical and horizontal function

distribution, which simultaneously take into account device

heterogeneity in terms of programming models, architectures

and performance characteristics.

Programming runtime changes. Specifying runtime cha-

nges is different from writing a new program from scratch. It

requires incremental programming support. FlexNet permits

runtime modifications to the ªinfrastructureº program (e.g.,

as supplied by the network operator), as well as ªextensionº

programs (e.g., provided by the tenants) in a modular manner.

Runtime changes are programmed in an incremental manner

to avoid intrusive modifications to the base program.

Compiling fungible programs. FlexNet also introduces

research opportunities for new network compiler designs. Ex-

isting compilers [27, 36] assume a non-fungible network, and

their primary concern is to bin-pack program elements into

resource-constrained devices. Runtime programmable net-

works enable a new operating point for compilers because

network resources become fungible. When they are not in

use, programs are removable to release resources. Therefore,

FlexNet compilers have the option of optimizing for alter-

native goals (e.g., performance, energy) even if they come

with resource overheads. Extra resources can be reallocated

or reclaimed elsewhere in the network.

Compiling runtime changes. Compiling changes into the

network must be done in a least-intrusive manner to avoid

significant resource reallocation and shuffling across the net-

work. Redistribution of program elements may also require

recompilation to a different target, as well as conversion and

migration of program state to a different representation.

(a) Whole-network programming (b) Programming runtime changes (c) Real-time network control

Control plane interface

App

migration

App

scaling

infrastructure.flex

lb

vlan

ACL

telemetry

L2+L3

tenant.flexupdate.flex

fungible datapath

dRPCs

Figure 1: The FlexNet vision and its key components. FlexNet provides a ªfungible datapathº abstraction and enables

runtime whole-network programming. The compiler analyzes the program and runtime extensions, and distributes the

components vertically and horizontally. The network is piloted by a central controller for real-time management.

Piloting runtime programmable networks. Significantly

greater responsibility will fall unto the network management

system in a runtime programmable network. Traditional man-

agement and control platforms [33, 35, 55] are not up to the

task: they manage devices that perform tasks of the same

nature (i.e., forwarding), so their primary job is to optimize

the forwarding behavior (e.g., alleviate congestion via traf-

fic engineering). But as FlexNet devices host different apps,

which in turn consume variable amounts of resources, exhibit

different performance characteristics, and are capable of run-

time migration, their management becomes more challenging.

New control plane API operating at the ªappº level is needed

for management. Control operations may also be handed over

to the data plane for efficient execution. Network control

needs to be aware of mixed deployments with compile-time

programmable and non-programmable elements. Consensus,

availability, and fault tolerance also need to be revisited for

developing logically centralized but physically distributed

controllers [13, 45].

In the rest of this paper, we outline the FlexNet vision and

a research agenda.

2 Runtime Programmability

Our vision is based upon the trend that network devices are

becoming runtime programmable. We describe the current

ecosystem of runtime programmable targets and their varying

degrees of flexibility.

Switches. Switch vendors are increasingly exposing run-

time programmability in their ASICs. Our recent work has

developed runtime programming support for Nvidia/Mellanox

Spectrum series of switches, reconfigurable in P4 [66]. While

keeping the device live, match/action tables can be added

and removed on-the-fly without packet loss. Parser states can

be similarly manipulated to add and remove header types

and protocols. Program changes complete within a second,

and during this transition, packets are either processed by the

new program or old one in a consistent manner. Broadcom

Trident4 and Jericho2 switches are runtime programmable

in NPL. Dynamic tables can be runtime reconfigured to per-

form a different task or change to different table keys without

downtime.

FPGAs and SmartNICs. FPGAs and SoC-based Smart-

NICs are inherently more flexible than switching ASICs, both

for compile-time and runtime reconfiguration. Live, partial

reconfiguration of FPGAs has been extensively studied in the

hardware community [60]. Traditional FPGA development re-

quires Verilog or VHDL programming, but when FPGAs are

used as network devices, high-level languages like P4 have

gained wide support. SoC-based SmartNICs, like Netronome

Agilio, Nvdia/Mellanox BlueField, and Pensando DPUs, en-

close general-purpose SoC cores and are programmable in C.

As of late, they also ship P4 compilers for the NICs. As SoC

cores are general-purpose in nature, no fundamental barrier

exists in supporting other languages (e.g., NPL). For FPGA

and SoC targets, their raw capability of runtime reconfigura-

tion carries over to the network programs that they host. For

instance, when hosting a P4 program on such a device, partial

reconfiguration primitives for tables and parsers would simi-

larly apply. On these targets, runtime programming primarily

requires more mature tooling support that specifically target

network programs in P4 or NPL.

Host kernels. The kernel network stack allows for runtime

customization via the eBPF framework [12]. eBPF kernel

extensions are constrained C programs, and can be injected

to the network stack without any disruption. Runtime recon-

figurations occur at eBPF program level, e.g., by reloading a

different program.

To summarize, runtime programmable variants exist for

all classes of popular targets for network programming. Al-

though their programming models, flexibility, and perfor-

mance characteristics vary, the existing ecosystem already

presents sufficient building blocks to develop end-to-end run-

time programmable networks. We believe the time is ripe to

explore this FlexNet vision.

3 Open Problems

An array of research challenges exists in the development of

runtime programmable networks. Figure 1 illustrates.

Scenario. In the ensuing discussion, we assume a generic

deployment scenario where the network infrastructure is op-

erated by its owner but individual tenants dynamically arrive

and depart. The network provider maintains an ªinfrastruc-

tureº program, which implements basic functions for the net-

work as well as utility functions for management and control.

Tenants provide ªextensionº programs that are dynamically

injected into and removed from the network. The infrastruc-

ture program forms a trusted base, and the extensions are

admitted by the network owner after access control validation.

Extension programs are isolated from each other and from

the infrastructure code via, e.g., VLAN-based isolation mech-

anisms. Tenant arrivals trigger the generation of new VLAN

configurations from the control plane, as well as infrastruc-

ture program changes to accommodate the new extensions.

Departures achieve opposite effects. All programs are contin-

uously updated in real time, and changes are integrated into

the network seamlessly without downtime.

3.1 Runtime Whole-Network Programming

From a whole-stack perspective, runtime network program-

ming goes much beyond programming packet processing

pipelines, e.g., in P4 [7], NPL [5], or their combination [27].

Vertically, host kernel stacks and SmartNICs expose general-

purpose programming models in C or restricted C (e.g., eBPF).

They are also capable of a wider range of network customiza-

tion tasks, e.g., custom congestion control [17] and transport

protocols [15, 31, 43], or TCP offloads [44]. While these

domain-specific tasks are also constrained in nature, they are

very different from packet-oriented processing. To enable

whole-network customization vertically and horizontally, new

programming models and abstractions are required.

Abstractions. We envision that a FlexNet program is writ-

ten against a network abstraction that hides away the details

of vertical and horizontal distribution, as well as device het-

erogeneity in terms of architectures, performance character-

istics, and programming models. The compiler analyzes the

program, and automatically splits it to the physical network.

Existing abstractions like the ªone big switchº model [16]

serve similar goals for networking programming, but are in-

sufficient for capturing vertical implementations across host

stacks, NICs, and switches. They also do not model a network

infrastructure where resources can be reallocated, reclaimed,

and redistributed at runtime.

We call this abstraction a ªfungible datapathº, which log-

ically models a whole-stack network device, including L2

and L3 functionalities, but also programmable transport pro-

tocols [15, 43] or even higher-layer offloads [40]. Under the

hood, it is implemented on a physical slice of the end-to-end

network. The compiler analyzes the datapath program and

determines which components should run where. Within a

fungible datapath, program components may freely migrate

and elastically scale in and out on different physical devices.

The shape and size of the physical slice are additionally regu-

lated by the network control policies and the negotiated SLAs.

Tenant datapaths are laid atop the infrastructure datapath with

proper access control isolation.

Programming languages. We envision that fungible data-

paths require a domain-specific language that mixes match/-

action-style packet processing and eBPF-style offloads, which

we will call FlexBPF. In our vision, FlexBPF should expose

a logical and constrained form of network state, organized

in key/value ªmapsº. The FlexBPF control flow and oper-

ations need to go well beyond matches and actions, so as

to fully leverage device programmability. With constrained

state, FlexBPF programs are analyzable to certify bounded

execution, well-behavedness, and to enable automated compi-

lation to constrained targets [72]. FlexBPF programs express

programmable congestion control, transport protocols, con-

strained higher-layer offloads, and packet-processing pipelines

in the fungible datapath.

The logical key/value maps maintain a virtualized view of

network state at different layers. Virtualizing network state is

crucial, as individual devices have drastically different ways

of implementing this state. Consider some examples. The

P4 language standard defines stateful registers and counters

as ªexternº constructs that are up to the device vendor. PoF

devices expose a different abstraction: flow state instruction

sets [51]. Nvidia/Mellanox devices pursue yet another route:

stateful tables that are indexed with flow key, with flow in-

sertions and removals performed in the data plane [58]. If

a program assumes a specific way of state encoding (e.g.,

registers), function migration becomes difficult. In FlexBPF,

the compiler selects the proper state encodings for different

program components based on the target devices. Program

migration carries its state in this logical representation.

3.2 Programming Runtime Changes

Specifying runtime changes, whether updating the infras-

tructure program or injecting tenant extensions, presents a

different set of challenges. Runtime changes require incre-

mental programming and compilation support to minimize

intrusiveness.

Incremental upgrades. Updates to the infrastructure or

tenant programs, by themselves, need not specify a complete

network processing stack. They are simply additions, dele-

tions, or changes to the existing programs. Our goal is to

develop a domain-specific language that concisely specify

where, when, and how an existing FlexNet program is up-

dated. Programs in this DSL precisely model the changes

that need to be made, without having to re-specify the entire

stacks all over again. For instance, this DSL may expose name

matching utilities (e.g., via pattern matches on match/action

tables and actions) to programmatically select and modify the

firewall- or CC-related functions in the base program. The

FlexNet compiler jointly analyzes the pattern matching pro-

gram with the base program and regenerates program changes

exactly where needed.

Datapath composition. Runtime changes also include in-

jecting or removing an end-to-end tenant datapath. For these

situations, FlexNet needs to enable datapath composition.

Recent work [52] has developed modular, composable ab-

stractions for P4 programs (e.g., one modular for L2 pro-

cessing and another for L3). Similar properties are useful for

FlexBPF programs, but additional analyses are requiredÐe.g.,

the tenant extensions have restricted access control permis-

sions; different tenants may inject logically-sharable code that

present optimization opportunities or conflicting datapaths

that need to be resolved.

3.3 Compiling Fungible Programs

Runtime programmable networks open up new operating reg-

imes for compiler design. Existing network compilers [27, 36]

assume that device resource limits are an unyielding con-

straint and primarily focus on bin-packing programs within

available resources. However, since a runtime programmable

network can dynamically remove unused functions, device re-

sources become fungible. This enables a new search space for

compiler optimizations. For instance, the FlexNet compiler

may operate in multiple iterations. If compiling a FlexNet

datapath to its resource slice fails, the compiler recursively

invokes optimization primitives for its datapath to perform re-

source reallocation and garbage collection, before attempting

another round of compilation.

Resource fungibility. Resource fungibility varies across

device architectures, and shuffling program elements may

also result in a physical datapath with different performance

characteristics.

(i) RMT. The RMT (reconfigurable match table) architec-

ture [19] adopts a pipeline model with a fixed number of

stages, and packets are processed by MA (match/action) ta-

bles stage by stage. Example switch ASICs that adopt this

architecture include Intel FlexPipe and Tofino. For Tofino,

resources in the same hardware stage are fungible. By adding

runtime support to reconfigure individual stages in a live man-

ner, tables can be potentially shuffled across stages and all

pipeline resources would become fungible.

(ii) dRMT. The disaggregated RMT architecture [22], on

the other hand, removes the static stage boundaries by dis-

aggregating compute from memory. A set of MA processors

execute a P4 program in a run-to-completion manner for each

incoming packet. MA table entries are physically separated

from the processors in SRAM or TCAM. Unrestricted by

stage boundaries, any processor can access any table, at any

point in the P4 program. Our previous work also builds upon

a similar architecture as implemented in the Nvidia/Mellanox

Spectrum model [66]. On this architecture, memory and ac-

tion resources are fungible due to disaggregation.

(iii) Tiles, Elastic Pipes. Tiled and Elastic Pipe architec-

tures, as adopted by Broadcom’s Trident4 and Jericho2, are

yet another class. For Trident4, hash and index tiles are re-

alized in SRAM; alongside TCAM tiles, they are exposed

to the programmer [10]. NPL programs determine inter-tile

connectivity and tile programmability. Jericho2’s Elastic Pipe

architecture, on the other hand, consists of a standard pipeline

of stages that is extended by a Programmable Elements Matrix

(PEM) [3]. On these architectures, fungibility occurs within

the same tile types and the PEM elements.

(iv) SmartNICs, FPGAs, and Hosts. Resources are essen-

tially fully fungible on these architectures.

Across the network, resources that lie on the same net-

work path are fungible as traffic flow through a sequence of

devices [27]. By co-desiging routing and placement mecha-

nisms for a logical datapath, more opportunities will open up

(e.g., via routing detours to a program component).

Performance and energy optimizations. Leveraging re-

source fungibility, the FlexNet compiler is able to explore

additional objectives beyond resource bin-packing. Resources

on switching ASIC, SmartNICs, FPGAs, and hosts, though

fungible, have different performance characteristics. There-

fore, our compiler must take performance SLA into consid-

eration when it maps a logical datapath to the physical in-

frastructure. In a similar spirit, different targets also have

varied energy consumption envelopes [57]. By leveraging this

fungibility layer, FlexNet is able to shuffle resource around

and optimize for the current workload regarding network en-

ergy consumption. Moreover, fungible resources also allow

for optimizations that trade performance/energy goals with

resource utilizations. Merging two match/action tables, for

instance, will lead to increased memory usage due to a table

ªcross productº, but it saves one table lookup time and reduces

latency for packet processing on certain architectures.

Incremental recompilation. When compiling runtime ch-

anges into the network, FlexNet also needs to perform incre-

mental recompilation. FlexNet not only needs to generate

optimized programs, but also needs to minimize the amount

of resource reshuffling by identifying ªmaximally adjacent

reconfigurationsº that lead to non-intrusive redistribution.

As resource shuffling may also affect datapath performance,

FlexNet needs to re-certifying SLA objectives as well. A fine

balance between compilation time and optimization levels

is necessary. For fast reactions to network changes, it may

be desirable to generate non-optimal implementations in a

shorter turnaround time.

3.4 Real-time Network Control

New network control and management systems are required

to effectively pilot runtime programmable networks. Exist-

ing designs, such as OpenFlow SDN controllers [33, 55] and

traditional network management systems [20, 21], are pri-

marily concerned with managing forwarding behaviors. In

these traditional networks, devices perform tasks of the same

naturÐi.e., routing and forwardingÐdespite ªmicro-levelº

device heterogeneity (e.g., differences in hardware vendors,

generations, or control interfaces). Therefore, network con-

trol primarily performs traffic engineering to alleviate conges-

tion [33] and carries out disruption-free network updates [55].

A runtime programmable network, however, requires a very

different kind of network piloting, as ªmacro-levelº hetero-

geneity exists across devices that host different apps. Deciding

on optimal app locations, reasoning about app resource re-

quirements, elastic app scaling, resilient state replication, app

migration, as well as the traditional goal of managing routing

behaviors, are all up to the network management system.

Control plane abstractions. In FlexNet, we propose to

expose abstractions for app-level network management. The

P4Runtime standard [11] has a set of control plane API to

manage and interact with P4-capable devices, but they operate

at the data plane element level, e.g., manipulating counters,

meters, and table rules. This is a starting point, but FlexNet

also requires higher-level abstractions to manage the apps. For

instance, the controller is able to ªnameº in-network apps by

their URIs (instead of, say, IP addresses), and perform man-

agement operations using the URI as a handle (e.g., expand

a certain resource type). In other words, application-centric

abstractions are needed as first-class primitives. Their transla-

tion into lower-level commands (e.g., via P4Runtime) is done

automatically by the FlexNet management system.

Data plane execution. We envision that the network con-

trol operations are invoked by the control plane, but their

execution may take place partially or entirely in the data

plane. Unlike existing network control platforms [63] that

manage software-based entities, FlexNet controller needs to

efficiently manipulate in-network, data plane programs. These

apps process and produce linespeed data, and their internal

state also mutates per-packet at nanosecond timescales. If

all control operations are performed in software, many tasks

become extremely challenging or infeasible.

Consider migrating a stateful network app (e.g., one that

maintains a count-min sketch). As the sketch state is updated

for each packet, copying state via control plane software is

impossible [41]. Recent work has developed tools to per-

form state migration entirely in data plane [41, 65]. FlexNet

needs more control primitives of this kind that are realizable

in hardware data planes. In particular, in-network monitor-

ing, execution tracking, and diagnosis primitives will prove

useful for runtime programmable app management, as such

networks experience higher dynamics. These ªutilityº func-

tions for network control do not have a persistent footprint

inside the network, but are injected in real-time for mainte-

nance tasks and removed soon after. In mixed deployments

of runtime programmable, compile-time programmable, and

non-programmable devices, FlexNet also needs to account

for the topological locations of these network elements.

dRPCs. Realizing control operations in the data plane also

requires handling devices with different programming ca-

pabilities and performance characteristics. Since not every

device will support all operations, we envision that the infras-

tructure program will provide a set of data plane RPC services

for common utilities (e.g., app migration or state replication).

Tenant datapaths need not reinvent the wheel but rather invoke

these remote services via data plane RPC calls (dRPCs). Ten-

ant programs may also expose tenant-specific RPC services

that the infrastructure program can invoke. Service discov-

ery occurs either at control plane or via an in-network RPC

registry and discovery protocol in real time.

Fault tolerance and consistency. To detect and tolerate

device failures, the FlexNet controller replicates important

network state in a logical datapath across multiple physical

devices. State consistency is ensured via state replication and

update protocols [71]. Functional updates to a logical datap-

ath also need application-level, consistent packet processing,

which goes beyond controlling the order of rule updates [46],

and varied levels of consistency guarantees may apply [66]. It

is the network controller’s job to ensure that traffic in the data-

path is routed through the correct sequence of network devices

to receive processing. For large networks, logically central-

ized controllers are realized in physically distributed nodes,

which brings classic distributed systems concerns on con-

sensus and availability [13, 45]. In a runtime programmable

network, developing a new consistency model and enforcing

it across distributed controller nodes also raises interesting

research questions.

4 Related Work

Network programming. Recent work has developed support

for network programming both for single devices [5, 7] and

distributed environments [16, 27, 54]. Pronto [26] lays out

a vision for closed-loop network programming, observation,

and verification. FlexNet is closely related to these work, but

it investigates runtime network programmability.

Runtime reconfigurability. Runtime reprogrammability

has been studied in several contexts. The architecture com-

munity has extensively explored the capability of live, par-

tial reconfiguration of FPGAs [60]. The OS community has

considers kernel reconfiguration via eBPF [12, 59] and live

VM migration [9, 53]. The networking community has de-

veloped support for eBPF-style reconfiguration in XDP [32]

and SmartNIC offloads [1]. FlexNet explores the vision of

whole-network reconfigurability at runtime.

Active networks. Active networking research has laid the

foundation for many important developments in network pro-

grammability [14, 47, 56]. Recent work also revisits this

line of work and its progression to programmable networks

today [25, 64]. FlexNet is aligned with this vision and inves-

tigates the next step in making programmable networks even

more flexible than they are today.

5 A Call to Arms

Networking research is entering a ªgolden eraº. Ossifica-

tion concerns start to dissipate and exciting possibilities are

opening up. Making the network infrastructure end-to-end

programmable at runtime is not only technologically feasible

today, but also pays great dividends. We believe that runtime

programmability is an attractive next step in our commu-

nity’s intellectual trajectory. Joint community efforts from

both academia and industry are needed in this endeavor.

Acknowledgments: We thank the anonymous reviewers for

their helpful feedback on this work. This work was partially

supported by NSF grants CNS-1565277, CNS-1717039, CNS-

1801884, CNS-1856636, CNS-1942219, and CNS-2105868.

References

[1] Agilio CX SmartNICs. https://www.netronome.com/products/agilio-cx

/.

[2] BlueField SmartNIC Ethernet. https://www.mellanox.com/products/Bl

ueField-SmartNIC-Ethernet.

[3] Jericho2. https://www.broadcom.com/products/ethernet-connectivity/

switching/stratadnx/bcm88850.

[4] Mellanox Innova-2 Flex Open Programmable SmartNIC. https://www.

mellanox.com/products/smartnics/innova-2-flex/.

[5] nplang. https://github.com/nplang.

[6] Nvidia/Mellanox Spectrum Ethernet Switches. https://www.nvidia.c

om/en-us/networking/ethernet-switching/spectrum-sn4000/.

[7] The P4 language repositories. https://github.com/p4lang.

[8] SmartNIC Overview - Netronome. https://www.netronome.com/prod

ucts/smartnic/overview/.

[9] Supporting live migration of vms communicating with bare-metal rdma

endpoints. https://www.openfabrics.org/wp-content/uploads/2021-wo

rkshop-presentations/402_Hansen_PVRDMA.pdf.

[10] Trident4 boosts enterprise switch capacity to 12.8 terabit. http://www.

gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-

capacity-to-128-terabit.html.

[11] P4Runtime. https://p4.org/p4-runtime/.

[12] What is eBPF? https://ebpf.io/.

[13] A. Akella and A. Krishnamurthy. A highly available software defined

fabric. In Proc. HotNets, 2014.

[14] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. j Kakkar, A. D.

Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith.

The SwitchWare active network architecture. IEEE Network, 12(3):29±

36, 1998.

[15] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker. pFabric: Minimal near-optimal datacenter transport. In

Proc. SIGCOMM, 2013.

[16] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.

SNAP: Stateful network-wide abstractions for packet processing. In

Proc. SIGCOMM, 2016.

[17] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and

D. Wentzlaff. Enabling programmable transport protocols in high-speed

NICs. In Proc. NSDI, 2020.

[18] R. Bhatia, A. Gupta, R. Harrison, D. Lokshtanov, and W. Willinger. Dy-

namiQ: Planning for dynamics in network streaming analytics systems.

arXiv preprint arXiv:2106.05420, 2021.

[19] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-

zard, F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for SDN. ACM

SIGCOMM Computer Communication Review, 43(4):99±110, 2013.

[20] X. Chen, Y. Mao, Z. M. Mao, and K. van der Merwe. Declarative

configuration management for complex and dynamic networks. In Proc.

CoNEXT, 2010.

[21] X. Chen, Z. M. Mao, and J. V. der Merwe. PACMAN: a platform

for automated and controlled network operations and configuration

management. In Proc. CoNEXT, 2009.

[22] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,

G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, et al. drmt:

Disaggregated programmable switching. In Proc. SIGCOMM, 2017.

[23] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs, D. Ru-

binstein, E. C. Zermeno, E. Rubow, J. A. Docauer, et al. Andromeda:

Performance, isolation, and velocity at scale in cloud network virtual-

ization. In Proc. NSDI, 2018.

[24] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. NetPaxos:

Consensus at network speed. In Proc. SOSR, 2015.

[25] N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An intel-

lectual history of programmable networks. ACM SIGCOMM CCR,

44(2):87±98, 2014.

[26] N. Foster, N. McKeown, J. Rexford, G. Parulkar, L. Peterson, and

O. Sunay. Using deep programmability to put network owners in

control. SIGCOMM Comput. Commun. Rev., 50(4):82±88, 2020.

[27] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,

M. Zhang, and M. Yu. Lyra: A cross-platform language and compiler for

data plane programming on heterogeneous ASICs. In Proc. SIGCOMM,

2020.

[28] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. Evolve

or die: High-availability design principles drawn from Google’s network

infrastructure. In Proc. SIGCOMM, 2016.

[29] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-

inger. Sonata: Query-driven streaming network telemetry. In Proc.

SIGCOMM, 2018.

[30] D. Hancock and J. van der Merwe. HyPer4: Using P4 to virtualize the

programmable data plane. In Proc. CoNEXT, 2016.

[31] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-

tichi, and M. Wöjcik. Re-architecting datacenter networks and stacks

for low latency and high performance. In Proc. SIGCOMM, 2017.

[32] T. Hùiland-Jùrgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-

bert, D. Ahern, and D. Miller. The express data path: Fast programmable

packet processing in the operating system kernel. In Proc. CoNEXT.

[33] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer. Achieving high utilization with software-driven

WAN. In Proc. SIGCOMM, 2013.

[34] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D. Walker.

Contra: A programmable system for performance-aware routing. In

Proc. NSDI, 2020.

[35] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,

and A. Vahdat. B4: Experience with a globally-deployed software

defined WAN. In Proc. SIGCOMM, 2013.

[36] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling packet

programs to reconfigurable switches. In Proc. NSDI, 2015.

[37] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo. Pro-

grammable in-network security for context-aware BYOD policies. In

Proc. USENIX Security, 2020.

[38] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula: Scalable

load balancing using programmable data planes. In Proc. SOSR, 2016.

[39] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,

M. Zhang, F. Kelly, M. Alizadeh, and M. Yu. Hpcc: High precision

congestion control. In Proc. SIGCOMM, 2019.

[40] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya.

IncBricks: Toward in-network computation with an in-network cache.

In Proc. ASPLOS, 2017.

[41] S. Luo, H. Yu, and L. Vanbever. Swing State: Consistent updates for

stateful and programmable data planes. In Proc. SOSR, 2017.

[42] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev. NetHide:

Secure and practical network topology obfuscation. In Proc. USENIX

Security, 2018.

[43] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A receiver-

driven low-latency transport protocol using network priorities. In Proc.

SIGCOMM, 2018.

[44] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. AccelTCP: Accelerating

network applications with stateful TCP offloading. In Proc. NSDI,

2020.

[45] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker. SCL:

Simplifying distributed SDN control planes. In Proc. NSDI, 2017.

[46] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent updates

for software-defined networks: Change you can believe in! In Proc.

HotNets, 2011.

[47] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell,

and C. Partridge. Smart packets for active networks. In Proc. OpenArch,

1999.

[48] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and

J. Rexford. PISCES: A programmable, protocol-independent software

switch. In Proc. SIGCOMM, 2016.

[49] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan,

S. Clark, M. M. K. Martin, M. McLaren, P. Chandra, R. Cauble, H. M. G.

Wassel, B. Montazeri, S. L. Sabato, J. Scherpelz, and A. Vahdat. 1RMA:

Re-envisioning remote memory access for multi-tenant datacenters. In

Proc. SIGCOMM, 2020.

[50] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith. Scaling

hardware accelerated network monitoring to concurrent and dynamic

queries with *flow. In Proc. USENIX ATC, 2018.

[51] H. Song. Protocol-oblivious forwarding: Unleash the power of SDN

through a future-proof forwarding plane. In Proc. HotSDN. ACM,

2013.

[52] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster. Composing

dataplane programs with 𝜇p4. In Proc. SIGCOMM, 2020.

[53] R. Stoyanov and M. J. Kollingbaum. Efficient live migration of linux

containers. In International Conference on High Performance Comput-

ing. Springer, 2018.

[54] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,

S. Burad, A. Dehon, and B. T. Loo. Flightplan: Dataplane disaggrega-

tion and placement for P4 programs. In Proc. NSDI, 2021.

[55] P. Sun, A. Arefin, R. Mahajan, J. Rexford, L. Yuan, and M. Zhang. A

network-state management service. In Proc. SIGCOMM, 2014.

[56] D. L. Tennenhouse and D. J. Wetherall. Towards an active network

architecture. ACM SIGCOMM CCR, 26(2):5±18, 1996.

[57] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman. The

case for in-network computing on demand. In Proc. EuroSys, 2019.

[58] A. Tulumello, M. Bonola, S. Pontarelli, M. Kadosh, and Y. Piasetzki.

Extending P4 to Realize a Scalable Flow Caching Mechanism. https:

//opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-A

ngelo-Tulumello-Slides.pdf, 2021.

[59] M. A. Vieira, M. S. Castanho, R. D. Pacífico, E. R. Santos, E. P. C.

Júnior, and L. F. Vieira. Fast packet processing with ebpf and xdp:

Concepts, code, challenges, and applications. ACM Computing Surveys

(CSUR), 53(1):1±36, 2020.

[60] K. Vipin and S. A. Fahmy. FPGA dynamic and partial reconfiguration:

A survey of architectures, methods, and applications. ACM Comput.

Surv., 51(4), 2018.

[61] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and

H. Weatherspoon. P4FPGA: A rapid prototyping framework for P4. In

Proc. SOSR, 2017.

[62] T. Wang, X. Yang, G. Antichi, A. Sivaraman, and A. Panda. Isolation

mechanisms for high-speed packet-processing pipelines. arXiv preprint

arXiv:2101.12691, 2021.

[63] Y. Wang, E. Keller, B. Biskeborn, J. Van Der Merwe, and J. Rex-

ford. Virtual routers on the move: live router migration as a network-

management primitive. ACM SIGCOMM Computer Communication

Review, 38(4):231±242, 2008.

[64] D. Wetherall and D. Tennenhouse. Retrospective on "towards an

active network architecture". SIGCOMM Comput. Commun. Rev.,

49(5):86±89, Nov. 2019.

[65] J. Xing, A. Chen, and T. E. Ng. Secure state migration in the data plane.

In Proc. SIGCOMM SPIN, 2020.

[66] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,

and A. Chen. Runtime programmable switches. In Proc. NSDI (to

appear), 2022.

[67] J. Xing, Q. Kang, and A. Chen. Netwarden: Mitigating network covert

channels while preserving performance. In Proc. USENIX Security,

2020.

[68] J. Xing, W. Wu, and A. Chen. Architecting programmable data plane

defenses into the network with fastflex. In Proc. HotNets, 2019.

[69] J. Xing, W. Wu, and A. Chen. Ripple: A programmable, decentralized

link-flooding defense against adaptive adversaries. In Proc. USENIX

Security, 2021.

[70] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive programmable

switches. In Proc. SIGCOMM, 2020.

[71] L. Zeno, D. Ports, J. Nelson, and M. Silberstein. SwiShmem: Dis-

tributed shared state abstractions for programmable switches. In Proc.

HotNets, 2020.

[72] K. Zhang, D. Zhuo, and A. Krishnamurthy. Gallium: Automated soft-

ware middlebox offloading to programmable switches. In Proc. SIG-

COMM, 2020.

	Abstract
	1 Introduction
	1.1 A Case for Runtime Programmable Networks
	1.2 Research Challenges

	2 Runtime Programmability
	3 Open Problems
	3.1 Runtime Whole-Network Programming
	3.2 Programming Runtime Changes
	3.3 Compiling Fungible Programs
	3.4 Real-time Network Control

	4 Related Work
	5 A Call to Arms
	References

