é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Back-Propagating System Dependency Impact
for Attack Investigation

Pengcheng Fang, Case Western Reserve University; Peng Gao, Virginia Tech;
Changlin Liu and Erman Ayday, Case Western Reserve University; Kangkook Jee,
University of Texas at Dallas; Ting Wang, Penn State University; Yanfang (Fanny) Ye,
Case Western Reserve University; Zhuotao Liu, Tsinghua University; Xusheng Xiao,
Case Western Reserve University

https://www.usenix.org/conference/usenixsecurity22/presentation/fang

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

Back-Propagating System Dependency Impact for Attack Investigation

Pengcheng Fang!* Peng Gao®*

Ting Wang*

Changlin Liu'
Yanfang (Fanny) Ye'

3

Erman Ayday! Kangkook Jee

Zhuotao Liu’ Xusheng Xiao!

' Department of Computer and Data Sciences, Case Western Reserve University, USA

2Department of Computer Science, Virginia Tech, USA

3Department of Computer Science, University of Texas at Dallas, USA

4College of Information Sciences and Technology, Penn State University, USA

3 Institute For Network Sciences And Cyberspace, Tsinghua University, China

Ypxf109, cx11029, exa208, yanfang.ye, xusheng.xiao} @ case.edu *penggao@vt.edu 3kangkook.jee @utdallas.edu

4bw5359@psu.edu >zhuotaoliu@tsinghua.edu.cn

Abstract

Causality analysis on system auditing data has emerged
as an important solution for attack investigation. Given a
POI (Point-Of-Interest) event (e.g., an alert fired on a sus-
picious file creation), causality analysis constructs a depen-
dency graph, in which nodes represent system entities (e.g.,
processes and files) and edges represent dependencies among
entities, to reveal the attack sequence. However, causality
analysis often produces a huge graph (> 100,000 edges) that
is hard for security analysts to inspect. From the dependency
graphs of various attacks, we observe that (1) dependencies
that are highly related to the POI event often exhibit a differ-
ent set of properties (e.g., data flow and time) from the less-
relevant dependencies; (2) the POI event is often related to a
few attack entries (e.g., downloading a file). Based on these
insights, we propose DEPIMPACT, a framework that identifies
the critical component of a dependency graph (i.e., a sub-
graph) by (1) assigning discriminative dependency weights to
edges to distinguish critical edges that represent the attack
sequence from less-important dependencies, (2) propagating
dependency impacts backward from the POI event to entry
points, and (3) performing forward causality analysis from the
top-ranked entry nodes based on their dependency impacts
to filter out edges that are not found in the forward causality
analysis. Our evaluations on the 150 million real system au-
diting events of real attacks and the DARPA TC dataset show
that DEPIMPACT can significantly reduce the large depen-
dency graphs (~ 1,000,000 edges) to a small graph (~ 234
edges), which is 4611 x smaller. The comparison with the
other state-of-the-art causality analysis techniques shows that
DEPIMPACT is 106 x more effective in reducing the depen-
dency graphs while preserving the attack sequences.

1 Introduction

Recent cyber attacks have plagued many well-protected busi-
nesses, causing significant financial losses [1-3, 6, 8,24,75].

*Equal contribution

These attacks often exploit multiple types of vulnerabili-
ties to infiltrate into target systems in multiple stages, pos-
ing challenges for detection and investigation. To counter
these attacks, recent approaches based on ubiquitous sys-
tem monitoring have emerged as an important approach for
monitoring system activities and performing attack investi-
gation [28,30,31,44,45,48,49,55,56]. System monitoring
collects kernel auditing events about system calls as system
audit logs. The collected data enables approaches based on
causality analysis [33,38,45,47-49,55,57] to identify entry
points of intrusions (backward tracing) and ramifications of
attacks (forward tracing), which have been shown to be ef-
fective in reducing false alerts of intrusions [38,67,71] and
assisting timely system recovery [33,47].

Despite the great promise of causality analysis, existing
approaches require non-trivial efforts of inspection [38,39],
which limits their wide adoption. Causality analysis ap-
proaches assume causal dependencies between system en-
tities (e.g., files, processes, and network connections) that are
involved in the same system call event (e.g., a process reading
a file). Based on such assumption, these approaches orga-
nize system call events in a system dependency graph, with
nodes being system entities and edges being system events.
By inspecting such a dependency graph, security analysts can
obtain the contextual information of an attack by reconstruct-
ing the chain of events that lead to the POI (Point-Of-Interest)
event (i.e., an alert event reported by anomaly detection tools
or manually observed). Such contextual information is par-
ticularly effective in distinguishing benign and attack-related
events such as distinguishing benign uses of ZIP from ran-
somware [38,46]. However, due to the dependency explosion
problem [53,74,78], the dependency graph could be gigantic,
typically containing >100,000 edges [38,39]. As a result, it
is difficult for security analysts to soundly reason the graph,
and find the edges that are critical to the attack.

Key Insight. By carefully inspecting the dependency graphs
of various attacks [31,45,55,57], we have two key observa-
tions. First, on a large dependency graph constructed from
a POI event, a small number of critical edges (e.g., events

USENIX Association

31st USENIX Security Symposium 2461

that create and execute malicious payloads) that represent
the attack sequence are typically buried in many non-critical
edges (e.g., events that perform irrelevant system activities).
Compared to non-critical edges, critical edges typically ex-
hibit a different set of properties and are more related to the
POI event in these properties. For example, critical edges that
read data from a suspicious IP and then write the data to a
malicious script file will have the similar data flow amount as
the script file’s size. Second, a POI event is often caused by a
few sources, referred to as attack entries. These attack entries
are represented as entry points of the attack sequence that lead
to the POI event, and are buried in many other irrelevant entry
nodes (i.e., nodes without incoming edges) in the dependency
graph. For example, many attacks start by injecting a mali-
cious script into the victim host and may further download
more tools along the attack. Such an attack is captured in
a dependency graph with the attack entries representing the
downloaded malicious script and tools.

Challenges. While identifying critical edges and attack en-
tries has the great potentials in reducing the size of the depen-
dency graph while preserving the attack sequence, there are
three major challenges for achieving such goals.

First, the processes that are causally related to the POI
event usually perform other irrelevant system activities in
the background, causing a large number of less-important
dependencies to be included in the dependency graphs. More-
over, these irrelevant system activities often trace back to
many irrelevant sources (e.g., irrelevant web browsing and
file downloads) that have low impact on the POI event, and
thus causality analysis may identify more than a thousand
entry nodes (Section 5.1). As a result, it is often infeasible to
manually inspect these daunting number of edges and entry
nodes to identify critical edges and attack entries.

Second, data flow amount seems like a promising feature
for distinguishing critical edges in some attacks. However,
based on our empirical observations (Section 5.1), for many
attacks, there are usually lots of non-critical edges that have
the similar data amount as the critical edges in the depen-
dency graphs. This indicates that a single feature is limited in
addressing diversified attack scenarios.

Third, while existing techniques have also made attempts
to identify critical edges, they mainly rely on heuristic
rules that cause loss of information [48], intrusive system
changes [45,57] such as binary instrumentation and kernel
customization, or execution profiles [38], hindering their prac-
tical adoption. For example, PrioTracker [55] assigns pro-
cesses with many dependencies lower priorities to focus the
search on a smaller scope (i.e., processes with fewer depen-
dencies). But such strategy will miss the attacks that utilize
the vulnerable complex software (e.g., web browsers) that
have lots of dependencies (e.g., read/write many files and
interact with other processes). Another common component
adopted by existing techniques is to use execution profiles
for detecting anomaly events. However, for large enterprises,

the number of running instances is huge and they have very
diverse behaviors. Obtaining a general execution profile for
these instances is almost impossible under such complex sce-
narios. Thus, there is a strong need for a general solution that
does not suffer from the same adoption limitations.

Contributions. Based on the key insights, we propose DE-
PIMPACT, a novel framework that facilitates attack investiga-
tion by identifying critical edges and attack entries in large
dependency graphs. Specifically, given a POI event to be
investigated, DEPIMPACT first applies causality analysis to
construct a backward dependency graph for the POI event,
and then employs automated techniques to identify the criti-
cal component of the dependency graph. Critical component
is a subgraph of the dependency graph that preserves the in-
formation critical to attack investigation (i.e., critical edges
and attack entries) and eliminates irrelevant system activities.
As it preserves attack information and its size is significantly
reduced from the original dependency graph, it drastically
reduces the complexity for revealing attack steps, facilitating
attack investigation. DEPIMPACT develops three major tech-
niques to address the aforementioned technical challenges.

(1) Dependency Weight Computation: Unlike existing work
that relies on execution profiles [38] or a single feature [55],
DEPIMPACT captures the differences between critical edges
and non-critical edges by profiling multiple features for each
edge, including timing, data flow amount, and node degree
(Section 4.2.2). Then, DEPIMPACT employs a discrimina-
tive feature projection scheme based on Linear Discriminant
Analysis (LDA) [60] to compute a weight score based on the
features, referred to as dependency weight (Section 4.2.3).
This scheme aims to maximize the weight differences be-
tween critical and non-critical edges. Instead of using global
weights as the existing work [38], for each node, DEPIMPACT
normalizes the weights of its outgoing edges, and thus the
final weights are local weights for each node. This addresses
the limitation of using global weights: certain critical edges
might be important when compared to the other edges origi-
nating from the same sources, but they may receive very low
global weights when they are far from the POI event. An edge
with a higher dependency weight (ranging from 0.0 to 1.0)
implies more relevance to the POI event, and is more likely
to be a critical edge.

(2) Dependency Impact Back-Propagation & Entry Node
Ranking: To reveal attack entries, DEPIMPACT employs a no-
tion of dependency impact. The dependency impact of a node
is defined as a score that models the node’s impact on the POI
event, i.e., a higher score implies a higher impact. To compute
the dependency impacts for all nodes, DEPIMPACT employs a
weighted score propagation scheme that propagates the depen-
dency impact from the nodes in the POI event backward along
the edges to all entry nodes. Inspired by TrustRank [36], our
score propagation scheme computes the dependency impact
of a node as a weighted sum of its children’s dependency im-
pact scores where each child node’s weight is the normalized

2462 31st USENIX Security Symposium

USENIX Association

dependency weight of the edge between the parent node and
the child node. The intuition behind our score propagation
scheme is that an attack entry’s impact on the POI event is
proportionally distributed to its children based on the edge
dependency weights. After propagation, DEPIMPACT ranks
the entry nodes based on their dependency impacts, and the
top-ranked entry nodes are more likely to be attack entries.

(3) Forward Causality Analysis for Critical Component
Identification: After ranking the entry nodes, DEPIMPACT
performs forward causality analysis from the top-ranked entry
nodes, producing another dependency graph, called forward
dependency graph. The overlapping part between the forward
graph and the original backward dependency graph accurately
preserves the nodes and edges that are highly relevant to
both the POI event and the attack entries. We refer to this
overlapping part as the critical component of the original
dependency graph.

Evaluation. We implemented a prototype of DEPIMPACT in
roughly ~20K lines of code and deployed it on a physical
testbed for evaluation. We performed 7 attacks that are used in
prior studies [23,52,55,78] and 3 multi-host intrusive attacks
based on the Cyber Kill Chain framework [11] and CVE [63],
and applied DEPIMPACT to investigate them. During our eval-
uation, the deployed hosts continue to resume their routine
tasks to emulate the real-world deployment where irrelevant
system activities and attack activities co-exist. We addition-
ally include 5 attack cases in DARPA TC dataset [22] in our
evaluation. In total, we collected ~100 million system au-
diting events for our performed attacks and the DARPA TC
dataset contains ~50 million events. Our tool and dataset are
available at the project website [12].

The evaluation results demonstrate that DEPIMPACT is
highly effective in revealing critical edges and attack entries.
On average, the size of the critical component produced by
DEPIMPACT has ~ 234 edges, which is ~ 4611x smaller
than the size of the original dependency graph (~ 1 million
edges). Such a high reduction rate is achieved without missing
any critical edge, which is mainly due to the fact that DE-
PIMPACT consistently ranks the attack entries at the top. The
comparison with four other state-of-the-art causality analysis
techniques (CPR [78], ReadOnly [54], PrioTracker [55], and
NoDoze [38]) shows that DEPIMPACT is at least 72X more
effective in dependency graph reduction, and does not miss
critical edges as the compared techniques. Additionally, com-
pared with the version of DEPIMPACT that uses less features
and the average-projection approach that uses an average
projection vector for computing dependency impacts, DE-
PIMPACT achieves at least 69.91% improvement in ranking
attack entries, demonstrating the superiority of DEPIMPACT’s
discriminative feature projection scheme and proving the ne-
cessity of features. Finally, DEPIMPACT finishes analyzing an
attack within 6 minutes, which is ~ 4 x faster when compared
with the average-projection approach. The results also show
that DEPIMPACT and NoDoze have similar runtime perfor-

mance for most of the attacks, while DEPIMPACT achieves
much better reduction rates than NoDoze.

2 Background and Motivation

2.1 System Monitoring

System monitoring collects auditing events about system
calls that are crucial in security analysis, describing the in-
teractions among system entities. As shown in previous stud-
ies [30,31,33,38,44,45,48,49,55,56], on mainstream operat-
ing systems (Windows, Linux, and Mac OS), system entities
in most cases are files, processes, and network connections,
and the collected system calls are mapped to three major types
of system events: (1) file access, (2) processes creation and
destruction, and (3) network access. Following the established
trend, in this work, we consider system entities as files, pro-
cesses, and network connections. We consider a system event
as the interaction between two system entities represented as
(subject, operation, object). Subjects are processes originat-
ing from software applications (e.g., Chrome), and objects
can be files, processes, and network connections. We catego-
rize system events into three types according to the types of
their object entities, namely file events, process events, and
network events. Both entities and events have critical security-
related attributes (Tables 1 and 2). Representative attributes
of entities include file name, process executable name, IP, and
port. Representative attributes of events include event origins
(e.g., start time/end time) and operations (e.g., file read/write).

2.2 Causality Analysis

Causality analysis [33, 38, 45,47-49, 55, 57] analyzes the
auditing events to infer their dependencies and present the
dependencies as a directed graph. In the dependency graph
G(E,V),anode v €V represents a process, a file, or a network
connection. An edge e(u,v) € E indicates a system auditing
event that involves two entities u and v (e.g., process creation,
file read or write, and network access), and its direction (from
the source node u to the sink node v) indicates the direction of
data flow. Each edge is associated with a time window, rw(e).
We use ts(e) and ze(e) to represent the start time and the end
time of e. Formally, in the dependency graph, for two events
e1(ur,v1) and ez (uz,v7), there exists causal dependency be-
tween e; and e; if vi = up and ts(e;) < re(ez).

Causality analysis enables two important security appli-
cations: (1) backward causality analysis that identifies entry
points of attacks, and (2) forward causality analysis that in-
vestigates ramifications of attacks. Given a POI event e, (u,v),
a backward causality analysis traces back from the source
node u to find all events that have causal dependencies on u,
and a forward causality analysis traces forward from the sink
node v to find all events on which v has causal dependencies.

USENIX Association

31st USENIX Security Symposium 2463

: XX XX XX XX : |)

. b XX XX XX XX .
. XX.XXXXXX [Rank 10] 192.1.1.254 .
. [Rank ...] .

ping

N

- Ibin/mv
Ranking of Entry Nodes ~__) [Rank 1]

IP Prefixes
192.1.1.254: 1 — .

XX.XX.XX.XX: 10

libxxx.s0

/bin/mv: 1 libxxx.s0

mal.sh: 2) libxxx.so
Xxx: 3 libxxx.so

libxxx.s0 libxxx.so
Processes

libxxx.so

Network Entry Nodes: ~27K File Entry Nodes: ~7K

Irrelevant Nodes: ~194K

XX XX XX.XX

[-]

XX XX XX XX

KX XX XX XX

ping
k ping
bas%)

bash _history

(

Network Entry
,,,,, Node

File Entry
[z=E C . j Node

E j Process Entry
. Nod!
Point-of-Interest Event : oce

— Critical Edge
e Irrelevant System
Entity

Process Entry Nodes: 62
Non-Critical Edges: ~3 Million

Critical Edges: 12

Figure 1: Partial dependency graph of an attack that downloads a malicious file and hides the file by renaming it (rectan-
gles for processes, ovals for files, parallelograms for network connections). The complete dependency graph constructed
from the POI event (renaming to user/file.txt) via backward causality analysis contains 194,208 nodes and 3,273,769
edges. The critical component identified by DEPIMPACT is colored in dark black, which contains 10 nodes (including
2 attack entries) and 12 edges (these edges are all critical edges). As can be seen, DEPIMPACT significantly reduces the
size of the dependency graph while preserving the critical attack information.

Table 1: Representative attributes of system entities

Entity Attributes Shape in Graph
File Name, Path Ellipse
Process PID, Name, User, Cmd Square

Network Connection IP, Port, Protocol Parallelogram

Table 2: Representative attributes of system events
Operation | Read/Write, Execute, Start/End
Time Start Time/End Time, Duration
Misc. Subject ID, Object ID, Data Amount, Failure Code

2.3 Motivating Example

Figure 1 shows a partial dependency graph of a file hiding
activity: a suspicious script mal.sh is executed to download a
malicious file ma1 from a remote host 192.1.1.254. The file is
then moved to user/mal and renamed to user/file.txt. Given
a POI event which renames the file to user/file.txt, the de-
pendency graph produced by backward causality analysis
contains 194,208 nodes and 3,273,769 edges. The critical
edges and attack entries (192.1.1.254, mal.sh) that represent
the attack sequence are colored in dark black. The goal of at-
tack investigation is to inspect the dependency graph to reveal
critical edges and attack entries of the attack.

Challenges. As observed in Figure 1, attack investigation is
a process of finding a needle in a haystack: a limited number
of critical edges (i.e., 12) are buried in an overwhelmingly
large number (~ 3 million) of non-critical edges (i.e., less-

important dependencies), and same for attack entries (i.e.,
2 out of ~ 35K irrelevant entry nodes). When existing tech-
niques, such as PrioTracker [55] and NoDoze [38], are applied
to identify these critical edges, they achieve poor performance.
PrioTracker relies on the fanout value of a node to prioritize
the edges. As the process bash has a high fanout value and
the critical edges are connected with it, PrioTracker needs a
higher threshold to keep the critical edges, and thus produc-
ing a dependency graph with 114,614 edges. NoDoze relies
on an execution profile to filter irrelevant events. However,
due to the complex nature of computer systems, it is almost
impossible to obtain an execution profile that covers most
common system behaviors. Specifically, there are many edges
introduced by the irrelevant process grep, which is not fre-
quently observed when the execution profile is trained. Such
rare benign events cause NoDoze to produce a dependency
graph with 37,251 edges.

Using DEPIMPACT to Identify Critical Component. DE-
PIMPACT first divides the entry nodes into 3 categories (i.e.,
network connections, files, and processes), and ranks the en-
try nodes in each category. Here, DEPIMPACT ranks the IP
192.1.1.254 for ma1 downloading as top 1, the malicious script
mal.sh and the executable /bin/mv as top 1 and top 2. By per-
forming forward causality analysis from top-ranked entry
nodes and taking the overlap, DEPIMPACT filters out most
less-important dependencies (~ 3 million) and identifies the
critical component (colored in dark black; 10 nodes, 12 edges)
that preserves all critical edges and attack entries. Note that

2464 31st USENIX Security Symposium

USENIX Association

Table 3: Representative system calls processed
Event Category

Relevant System Call

Process/File read, write, readv, writev
Process/Process execve, fork, clone
Process/Network read, write, sendto, recvfrom, recvmsg

PrioTracker’s graph is ~ 141x bigger than DEPIMPACT s
graph, and NoDoze’s graph is ~ 46x bigger than the DE-
PIMPACT s graph.

3 Overview

Figure 2 shows the architecture of DEPIMPACT. Given a
POI event, DEPIMPACT automatically identifies the critical
component of the dependency graph produced by causality
analysis. DEPIMPACT consists of three phases: (1) depen-
dency graph generation, (2) dependency weight computation,
and (3) critical component identification.

In Phase I, DEPIMPACT leverages mature system audit-
ing frameworks [19, 59, 69,73] to collect system audit logs.
Given a POI event, DEPIMPACT parses the collected logs
and performs backward causality analysis [48,49] to gen-
erate a backward dependency graph for the POI event. In
Phase II, DEPIMPACT first employs state-of-the-art depen-
dency graph reduction techniques [78] to reduce the graph
size (Section 4.2.1). Then, DEPIMPACT extracts features for
edges and employs a discriminative feature projection scheme
based on LDA to compute dependency weights from the fea-
tures, so that critical edges can be better revealed. The output
of Phase II is a weighted dependency graph for the POI event.
In Phase III, DEPIMPACT first employs a weighted score prop-
agation scheme to propagate the dependency impact from the
POI event backward along the edges to all entry nodes. Then,
DEPIMPACT ranks entry nodes based on their dependency
impacts and selects the top candidates. Finally, DEPIMPACT
performs forward causality analysis from the top-ranked entry
nodes and identifies the overlap of the backward dependency
graph and the forward dependency graph as the critical com-
ponent for output.

Threat Model. Our threat model is similar to the threat model
of previous work on system monitoring [28, 30, 31, 38, 48,
49,54,55]. We assume that kernel and kernel-layer auditing
framework [19, 59, 69, 73] are part of our trusted comput-
ing base (TCB), and existing software and kernel hardening
techniques [16,21] can be used to secure log storage. Any
kernel-level attack that deliberately compromises security au-
diting systems is beyond the scope of this work. We assume
an outside attacker that attacks the system remotely (from
outside of the system). Thus, the attacker either utilizes the
vulnerabilities in the system or convinces the user to down-
load a file with malicious payload.

We do not consider the attacks performed using implicit
flows (e.g., side channels) or inter-procedural communica-
tions (IPC) that do not go through kernel-layer auditing and

thus cannot be captured by the underlying provenance tracker.
Finer-grained auditing tools that capture memory traces or
program analysis techniques can be used to address these
types of the attacks and it is not the focus of this work. We
also do not consider mimicry attacks [76] where attackers de-
liberately evade intrusion detection systems through a chain
of events that seem benign in enterprises. Existing intrusion
detection systems [17,51,64] often rely on heuristics or anal-
ysis based on the properties of a single event, and thus are
vulnerable to such attacks. While detecting mimicry attacks is
the limitation of the detection systems, it is beyond the scope
of this work since our focus is to identify the relevant events
as the contextual information for the alerts generated by the
detection systems.

4 Design of DEPIMPACT

In this section, we present the design details of each phase
shown in Figure 2. Specifically, Section 4.1 describes how
DEPIMPACT collects system audit logs and generates a de-
pendency graph, Section 4.2 describes how DEPIMPACT com-
putes the weight for each edge in the dependency graph to
generate a weighted dependency graph, and Section 4.3 de-
scribes how DEPIMPACT identifies critical components based
on the weighted dependency graph.

4.1 Dependency Graph Generation

In Phase I, DEPIMPACT leverages system monitoring to col-
lect auditing logs of system activities and applies causality
analysis on the collected logs to generate a dependency graph
based on the given POI events.

4.1.1 System Auditing

DEPIMPACT leverages mature system auditing frame-
works [19,59,69,73] to collect system audit logs about system
calls from the kernel. DEPIMPACT then parses the collected
logs to build a global system dependency graph, where nodes
represent system entities and edges represent system (call)
events. In particular, DEPIMPACT focuses on three types of
system entities/events: (i) file access, (ii) process creation
and destruction, and (iii) network access. Table 3 shows the
representative system calls (in Linux) processed by DEPIM-
PACT. Failed system calls are filtered out by DEPIMPACT, as
processing them will cause false dependencies among events.
Tables 1 and 2 show the representative attributes of entities
and events extracted by DEPIMPACT. Following the existing
work [30,31,55], to uniquely identify entities, for a process
entity, we use the process name and PID as its unique iden-
tifier. For a file entity, we use the absolute path as its unique
identifier. For a network connection entity, we use 5-tuple
((srcip, srcport, dstip, dstport, protocol)) as a network con-
nection’s unique identifier. Failing to distinguish different

USENIX Association

31st USENIX Security Symposium 2465

POI Event

OS Kernel
=L
ISystem Auditing|

1

1

Backward '
Causality Analysis |

-
1
|
1
|
1
|
1
|
1
|
1
v

Dependency Weight
Computation

:

i : i o

Dependency|! 1 1 i N
%raph y, Edge Merge ! Weighted ! ' i

! . ! |Dependency Graph| || Back-Propagation Eniv Node] ¢ !
I ' .]
! . ' ! Ranking b
1

i

:

:

Critical Component|

Figure 2: Architecture of DEPIMPACT

entities causes problems in relating events to entities and
tracking the dependencies among events.

4.1.2 Backward Causality Analysis

Given a POI event, DEPIMPACT performs backward causality
analysis (Section 2.2) to generate a local backward depen-
dency graph G, for the POI event. Briefly speaking, back-
ward causality analysis adds the POI event to a queue, and
repeats the process of finding eligible incoming edges of the
edges/events (i.e., incoming edges of the source nodes of
edges) in the queue until the queue is empty. The output of
Phase I is a backward dependency graph that only contains
system events (and associated entities) and that are causally
dependent on the POI event.

4.2 Dependency Weight Computation

In Phase II, DEPIMPACT first merges parallel edges between
two nodes in the dependency graphs, and compute the weights
of the edges using three types of features, including timing,
data flow amount, and node degree. Based on these features,
DEPIMPACT clusters edges into two groups and leverages
LDA to compute a weight score such that the weight dif-
ferences of the edges in these two groups are maximized.
The final step of the weight computation is to normalize the
weights of all outgoing edges for each node. This step miti-
gates the weight degradation for the edges that are far from
the POI events.

4.2.1 Edge Merge

The dependency graph produced by causality analysis often
has many parallel edges between two nodes [78]. The rea-
son is that OS typically finishes a read/write task (e.g., file
read/write) by distributing the data proportionally to multi-
ple system calls. Inspired by the recent work for dependency
graph reduction [78], DEPIMPACT merges the edges between
two nodes if the time differences of these edges are smaller
than a given threshold. We tried different values for the merge
threshold and selected 10s, as it gives reasonable results in
merging system calls for file manipulations, file transfers, and
network communications, which is consistent with [78].

4.2.2 Feature Extraction

For each edge, DEPIMPACT extracts three features to com-
pute a dependency weight, enabling DEPIMPACT to address
scenarios where a single feature (e.g., data flows) cannot be
used to distinguish critical edges.

Data Flow Relevance fg,). Intuitively, edges that have simi-
lar data flow amount as the data size of the entities in the POI
event are more likely to be relevant. As such, we design fea-
ture fp(,) to model the data flow relevance of an edge e(u,v)
to the POI event:

Ise) = 1/(| s = se, | +0t) (D

where s, and s, represent the data flow amount associated
with the edge e and the POI event e;. The smaller the differ-
ence | s, — Se, |, the higher the data flow relevance f(). Note
that we use a small positive number o (we set o0 = le—4) to
handle the special case when e is the POI event: POI event
has the highest feature value fg.,) = 1/0..

Temporal Relevance f7). Intuitively, edges that occurred
at relatively the same time are more likely to be relevant. As
such, we design feature f7(,) to model the temporal relevance
of an edge e(u,v) to the POI event:

frey=I(1+1/[te—1]) 2

where 7(,) and 7, represent the timestamp values (we use the
event end time) of the edge e and the POI event ;. The smaller
the difference | #, —t,, |, the higher the temporal relevance
J7(e)- To handle the special case when e is the POI event
(i.e., | te — 1o, |=0), we use one tenth of the minimal time unit
(nanosecond) in the audit logging framework (i.e., le-10) to
compute its feature value: fr () = In(1+1e10). This ensures
that the POI event has the highest feature value.

Concentration Ratio f¢(,). In the backward causality anal-
ysis, if the number of source nodes that can be traced from
anode vis 1 (i.e., only one incoming edge from v), we say
that the dependency represented by this edge is highly con-
centrated for v. Also, we would like to give higher weights
to the node that can be reached from multiple paths in the
backward direction. Thus, we define the concentration ratio
for the edge e(u,v) as:

fc(e) = OutDegree(v) /InDegree(v) 3)

2466 31st USENIX Security Symposium

USENIX Association

Here, InDegree(v) and OutDegree(v) represent the in-
degree and out-degree of the sink node v.

4.2.3 Dependency Weight Computation

To compute a dependency weight from the features, DEPIM-
PACT leverages linear projection that is known for high inter-
pretability and low computational cost [26]. Instead of directly
taking the average, DEPIMPACT employs a discriminative fea-
ture projection scheme based on Linear Discriminant Analysis
(LDA) [60] to compute a projection vector to maximize the
differences between critical edges and non-critical edges, with
critical edges assigned with higher weights. Next, we present
the scheme in detail.

Step 1: Edge Clustering. In the first step, DEPIMPACT lever-
ages clustering to separate edges into two groups: one is
likely to contain critical edges, and the other for non-critical
edges. Specifically, DEPIMPACT first normalizes features to
0-1 range [26], and then employs Multi-KMeans++ clustering
algorithm [15], which improves over standard KMeans algo-
rithm on initial seeds selection and clustering robustness. We
choose k = 2 since we want to cluster edges into two groups,
as required by LDA. We experimented a range of values for n
([5,30]) and chose n = 20 as it delivers the best clustering re-
sults without much overhead. While the clustering results can
be used to directly distinguish critical and non-critical edges,
such approach will suffer from the same problem as global
weights [38], which is shown to be ineffective in Section 5.2.

Step 2: Discriminative Feature Projection. Given two
groups of edges, DEPIMPACT leverages Linear Discriminant
Analysis (LDA) [60] to compute an optimal projection vec-
tor that maximizes the separation between group projections.
LDA finds the optimal projection plane such that the pro-
jected points in the same group are close to each other, and
the projected points in different groups are far from each
other. Formally, LDA finds the projection vector ® that max-
imizes the Fisher criterion, J(®) = 355”2’), where S}, and S,,
are between-group scatter matrix and :Vithin-group scatter
matrix, respectively. Solving the optimization problem yields:

o* = argmaxJ(0) = S, (u —) “4)

Denote the solution to Equation (4) as @ = [0} 0} o).
For an edge e, its unnormalized weight W,,,,, is computed as:

Weyy = 05fs(e) + OF () + O fe(e) ©)

One remaining issue is that Equation (4) does not guarantee
the direction of the projection vector, and it might be possible
that critical edges have lower weights than non-critical edges.
To address the issue, we leverage the observation that, in most
cases, the number of critical edges is significantly less than
the number of non-critical edges (as can be seen from attack
cases in Section 5.1). Specifically, we negate the direction of
the projection vector if the average of the projected weights

Algorithm 1: Dependency Impact Propagation

Input: Weighted dependency graph, G
threshold, &
Output: Weighted dependency graph, G; nodes are
associated with dependency impact scores
1 POl .score <1
2 while diff > d do

3 diff+0

4 for Vu € G do

5 if u is POI then

6 | continue

7 else

8 res < 0

9 for Vv € G.childNodes(u) do

10 ‘ res +=v.score * G.edge(u,v).weight
11 dif f += |u.score — res|
12 u.score <— res

for a smaller edge group (likely to be the group of critical
edges) is smaller. As shown in Section 5.4, compared to the
naive approach of taking the average of features (the average-
projection approach), our feature projection scheme preserves
as much of the group discriminatory information as possible
and leads to better performance for entry node ranking.

Step 3: Edge Weight Normalization. For an edge e(u,v),
we normalize its projected weight by the sum of weights of
all outgoing edges of the source node u:

We =Weyy / Z We;/ N (6)

e’ eoutgoingEdge(u)

The rationale behind is to ensure that for each node, the
weights of all its outgoing edges are in the range [0.0,1.0]
and the sum of the weights is equal to 1.0. Coupled with
our score propagation scheme for dependency impact (Sec-
tion 4.3), such way of normalization ensures that (1) the de-
pendency impact of any node does not exceed the maximum
dependency impact of its child nodes, and (2) the dependency
impact of any node does not exceed the dependency impact of
the nodes in the POI event (i.e., 1.0). The output of Phase 11
is a weighted backward dependency graph for the POI event,
in which the dependency weights encode the differences be-
tween critical edges and non-critical edges.

4.3 Critical Component Identification

In Phase III, given the weighted dependency graph computed
in Phase II, DEPIMPACT propagates the dependency impact
from the POI event to the entry nodes based on the depen-
dency weights. DEPIMPACT then ranks entry nodes based on
the dependency impacts and performs forward analysis from
the top-ranked entry nodes to identify the critical component
from the dependency graph.

USENIX Association

31st USENIX Security Symposium 2467

4.3.1 Dependency Impact Back-Propagation

Given a weighted dependency graph, DEPIMPACT propagates
the dependency impact from the POI event to all other nodes
backward along the weighted edges. The dependency impact
for the nodes (both source node and sink node) in the POI
event is 1.0 by default. For a node u, its dependency impact is
iteratively updated by taking the weighted sum of dependency
impacts of its child nodes:

DI, = Y

vechildNodes(u)

DI, We(u,v) @)

where DI, denotes the dependency impact of node u and
We(u,v) denotes the dependency weight (after normalization)
of edge e(u,v). Such score propagation scheme guarantees
that the score of any node does not exceed the maximum score
of its child nodes, and the score of any node does not exceed
the score of the nodes in the POI event. Furthermore, com-
pared to the distribution-based score propagation algorithms
like PageRank [65], our scheme preserves the scores along
long dependency paths and prevents fast degradation.

Algorithm 1 illustrates our dependency impact score propa-
gation algorithm. In each iteration, the algorithm updates the
dependency impact score of each node by taking the weighted
sum of the scores of all its child nodes (Line 10), and com-
putes the sum of score differences for all nodes (Line 11).
The propagation terminates when the aggregate difference
between the current iteration and the previous iteration is
smaller than a threshold, & (Line 2), indicating that the scores
of all nodes have reached a stable point. We set & = 1e-13 as
it gives robust results from our evaluations.

4.3.2 Entry Node Ranking

After dependency impact propagation, DEPIMPACT ranks the
entry nodes based on their dependency impacts. The intuition
behind entry node ranking is that entry nodes with higher
dependency impacts are more related to the POI event and are
more likely to be the attack entries, and thus their descendant
nodes and associated edges are more likely to be included in
the critical component. Specifically, we classify entry nodes
into three categories: (1) file entry node: file nodes that do
not have incoming edges except system libraries; (2) process
entry node: process nodes whose parent nodes are all system
libraries; (3) network entry node: network nodes that do not
have incoming edges. In particular, system library files are
typically loaded by certain processes, and do not have incom-
ing edges on the dependency graph [74]. Thus, for system
library nodes, we take the process nodes that load them as
entry nodes. We then select the top-ranked entry nodes from
each category.

4.3.3 Critical Component Identification

From the top-ranked entry nodes, DEPIMPACT performs for-
ward causality analysis until reaching the POI event. As a
final step, DEPIMPACT identifies the overlap of the backward
dependency graph and the forward dependency graph as the
critical component for output. Compared to the original large
backward dependency graph, the critical component contains
the parts of dependencies that are actually relevant to the POI
event and its size is significantly reduced. Furthermore, the
critical component illustrates how the attack-relevant infor-
mation flows from attack entries to the POI event through
critical edges, which facilitates further attack investigation.

5 Evaluation

We built DEPIMPACT (~20K lines of code in Java) upon
Sysdig [73], and evaluate DEPIMPACT using both the attack
cases constructed based on the known exploits [23,52,55,78]
and the attack cases collected by the DARPA Transparent
Computing (TC) program [22]. In the evaluations, we aim to
answer the following research questions:

* RQ1: How effective is DEPIMPACT in revealing attack
sequences in comparison with other state-of-art techniques?

* RQ2: How many top-ranked entry nodes should be used in
DEPIMPACT for revealing attack sequences?

* RQ3: How effective is DEPIMPACT in revealing attack
entries?

* RQ4: How efficient is DEPIMPACT in investigating an at-
tack?

5.1 Evaluation Setup

We deployed Sysdig [73] on 5 Linux hosts to collect system
auditing events and then applied DEPIMPACT to perform at-
tack investigation. DEPIMPACT is executed on a server with
an Intel(R) Xeon(R) CPU E5-2637 v4 (3.50GHz), 256GB
RAM running 64bit Ubuntu 18.04.1. For investigating the
attack cases based on the known exploits, we performed 10
attacks in the deployed environment: 7 attacks based on com-
monly used exploits and 3 multi-host and mutli-step intrusive
attacks based on the Cyber Kill Chain framework [11] and
CVE reports [63]. The deployed hosts have 12 active users
with hundreds of processes, and are used for various types of
daily tasks such as file manipulation, text editing, and soft-
ware development, which are representative of real-world
usage. During evaluation, the deployed hosts continue to re-
sume their routine tasks to emulate the real-world deployment
where irrelevant system activities and attack activities co-exist.
The routine tasks on these machines ensure that enough noise
of irrelevant system activities is collected. In total, the real
system audit logs collected in our deployed hosts contain
~100 million events. The DARPA dataset includes system
audit logs collected from 5 hosts with different OS systems.

2468 31st USENIX Security Symposium

USENIX Association

Table 4: Statistics of dependency graphs generated for all the 15 attacks

Attack Causality Analysis # V Causality Analysis # E Edge Merge #V Edge Merge # E Entry Nodes Critical Edge Attack Entries POI
Wget Executable 126 673 126 363 46 8 2 ~50MB
Illegal Storage 8,450 93,085 8,450 62,073 960 6 2 ~50MB
Illegal Storage2 42,450 658,913 42,450 378,326 3,499 4 2 ~50MB
Hide File 194,208 6,464,098 194,208 3,273,769 35,203 12 2 ~50MB
Steal Information 195,636 6,493,626 195,636 3,291,208 35,213 2 ~50MB
Backdoor Download 7,510 69,479 7,510 60,390 157 8 2 ~50MB
Annoying Server User 114 585 114 318 34 10 2 ~50MB
Shellshcok 1,648 20,332 1,648 3,600 1,273 30 3 124B
Dataleak 407 2,262 407 1,152 234 18 3 7.1KB
VPN Filter 1,195 5,212 1,195 1,879 999 10 2 1.6KB
Five Dir Casel 240 272 240 272 232 2 1 50.78KB
Five Dir Case3 5,907 78,075 5,907 78,075 879 4 1 121.85KB
Theia Casel 184,352 816,277 184,352 816,277 151,827 8 2 166.78KB
Theia Case3 334,441 1,500,717 334,441 1,500,717 282,651 6 2 166.64KB
Trace Case5 263 971 263 971 28 3 1 95.KB
AVG 65,129.80 1,080,305.13 65,129.80 631,292.67 34,215.67 8.87 1.93 -

We developed a tool to parse the released logs and loaded the
events into our databases. In total, the DARPA dataset used in
our evaluation contains ~50 million events. We next describe
these attacks in detail.

5.1.1 Attacks Based on Commonly Used Exploits

These 7 attacks are used in prior work’s evaluations [23,52,

55, 78], which consist of the following scenarios:

» Wget Executable: A vulnerable server allows the attacker to
download executable files using wget. The attacker down-
loads python scripts and executes the scripts.

* [llegal Storage: A server administrator uses wget to down-
load suspicious files to a user’s home directory.

* lllegal Storage 2: A server administrator uses curl to down-
load suspicious files to a user’s home directory.

* Hide File: The goal of the attacker is to hide malicious file
among the user’s normal files. The attacker downloads the
malicious script and hides it by changing its file name and
location.

* Steal Information: The attacker steals the user’s sensitive
information and writes the information to a hidden file.

* Backdoor Download: A malicious insider uses the ping
command to connect to the malicious server, and then down-
loads the backdoor script from the server and hides the
script by renaming it.

* Annoying Server User: The annoying user logs into other
user’s home directories on a vulnerable server and writes
some garbage data to other user’s files.

5.1.2 Multi-host Intrusive Attacks

These 3 multi-host intrusive attacks capture the important
traits of attacks depicted in the Cyber Kill Chain frame-
work [11] and CVE [63]. In these 3 attacks, the attacker
uses an external host, referred to as the C2 (Command and
Control) server, to perform penetration, distribute malware,
and receive data. The first host that is compromised by the
attack is called Host 1, which is a starting point to perform

lateral movement and other malicious actions to compromise
more hosts inside the network (i.e., Host 2, ..., Host n).

Attack 1: Shellshock Penetration. After the initial shell-
shock penetration at Host 1, the attacker connects to Cloud
services (e.g., Dropbox, Twitter) and downloads an image
where C2 server’s IP address is encoded in the EXIF meta-
data. The behavior is a common practice shared by APT
attacks [14, 25] to evade the network-based detection sys-
tem based on DNS blacklisting. Based on the IP, the attacker
downloads a malware from the C2 server to Host 1. When
the script is executed, it scans the ssh configuration file to
locate reachable hosts in the network, discovering Host 2,
Host 3, and Host 4. After this discovery phase, the malware
downloads another script from the C2 server and sends it to
these discovered hosts and steals password from them.

Attack 2: Data Leakage After Shellshock Penetration. Af-
ter the previous reconnaissance, the attacker downloads an-
other malware, 1eak_data.sh, from the C2 server and sends
it to Host 2. The malware scans for hidden files and files
containing sensitive strings, and compresses them in a tarball
leak.tar.bz2. The malware then transfers the tarball back to
Host 1. On Host 1, the tarball is encrypted and uploaded to
the Internet.

Attack 3: VPN Filter. At this stage, the attacker seeks to
maintain a direct connection to the victim hosts from the
C2 server. He utilizes the notorious VPN Filter malware [7]
which infected millions of IoT devices by exploiting a number
of known or zero-day vulnerabilities [4,5]. After the initial
penetration on Host 1 and discovery of Host 2, the attacker
downloads the VPN Filter stage 1 malware from the C2 server
to Host 1 and transfers it to Host 2. This malware then down-
loads another executable from the C2 server, and executes it to
launch the attack and establish a connection to the C2 server.
Using this connection, the attacker transfers a malicious script
to Host 2 which will gather sensitive data on Host 2.

USENIX Association

31st USENIX Security Symposium 2469

5.1.3 DARPA TC Attack Cases

The dataset released by the DARPA TC program contains
attack cases performed on different operating systems. Based
on the attack descriptions provided in the dataset, we excluded
the attack cases that fail to launch the attacks, and the attack
cases on the Android system since mobile applications’ be-
haviors are constrained by the Android sandbox and are not
suitable for our analysis. We also excluded the phishing e-mail
attacks since most of their operations are through clicking
links in the browsers and leave limited traces in the system
audit logs. In total, we chose five attacks that target different
operating systems (Linux, Windows) and exploit different vul-
nerabilities (Firefox backdoor and browser extensions). These
attack cases span multiple days (e.g., Theia data contains logs
for 8 days).

5.1.4 Obtaining Ground Truth for the Attacks

For the attack cases performed on our hosts, we identified
the POI events based on the performed attacks and applied
backward causality analysis from the POI events to obtain the
system dependency graphs. For the attack cases in the DARPA
dataset, we queried the databases that are loaded with the logs
to identify the POI events based on the attack description, and
applied backward causality analysis from the POI events to
obtain the system dependency graphs. For the attacks involv-
ing multiple hosts, DEPIMPACT performs cross-host causality
analysis based on the existing techniques [49, 55], which
produces causality graphs that include special network con-
nection edges to represent connections among multiple hosts.
Finally, within our best efforts, we manually ensured that the
critical edges and the attack entries were identified based
on the knowledge of the performed attacks and the attack
descriptions in these system dependency graphs.

Table 4 shows the statistics of the generated dependency
graphs for the attacks. Columns “Causality Ana. # V” and
“Causality Ana. # E” show the number of nodes and edges
after performing the causality analysis from the POI events.
Columns “Edge Mer. # V” and “Edge Mer. # E” show the
number of nodes and edges after applying edge merges (Sec-
tion 4.2.1). Columns “Entry Nodes” and “Critical Edge” show
the number of entry nodes and critical edges of the depen-
dency graphs. Column “Attack Entries” shows the number of
entry nodes that are labelled as attack entries. Column “POI”
shows the data size of the files in the POI events. We clearly
observe that even after edge merges, there still remains a large
number of edges in the dependency graphs (631K on average
with the max being 3.3 million edges), which motivates the
further pruning provided by DEPIMPACT. Moreover, in these
15 attacks, the files in the POI events have diversified sizes,
ranging from 124 bytes to 50M bytes, and on average, there
are 42,757 edges (with the max being 962,706) that have
similar data sizes as the files in the POI events. Thus, directly
using the data flow amount to reveal attack sequences will

include lots of irrelevant edges in the results, which motivates
DEPIMPACT to combine multiple features for computing edge
weights to achieve better performance.

Evaluation Metrics. Besides measuring false positives (de-
tected edges that are not critical edges) and false negatives
(missing edges that are critical edges), we compute the false
negative rate FNR = FN/E,, where FN represents the num-
ber of false positives and E, represents the number of critical
edges (Column “Critical Edge” in Table 4), and the false pos-
itive rate FPR = FP/E;4, Where F P represents the number
of false positives and E;, represents the number of edges
from the Column “Edge Merge # E” in Table 4.

5.2 RQI1: Revealing Attack Sequences

To demonstrate the effectiveness of DEPIMPACT in reveal-
ing the attack sequence by pruning non-critical edges, we
compare DEPIMPACT with 4 state-of-the-art techniques:
CPR [78], ReadOnly [54], PrioTracker [55], and NoDoze [38].
For each attack, DEPIMPACT ranks the entry nodes based on
their dependency impacts and chooses the nodes one by one
based on the ranks to perform forward causality analysis;
DEPIMPACT stops choosing new nodes if the newly chosen
node causes the critical component to include significantly
more edges (i.e., 1% of the total edges of the dependency
graphs). CPR merges edges between two nodes if the time
differences between the edges are within a threshold (i.e., 10
seconds). ReadOnly removes the edge whose source node is
the read-only file. PrioTracker mainly uses the fanout of nodes
to prioritize the dependencies in the causality analysis. We
then adapt the computed priories as the dependency weights
for edges and filter the edges with low weights. NoDoze as-
signs an anomaly score for each edge based on the frequency
of the corresponding system event, and then computes the
anomaly score for each path. As NoDoze requires an execute
profile, we use the daily log file of the deployed system as the
execution profile for the attacks in our deployed hosts, and
use the normal events in the logs (except the events whose
observed time are within the attack period) for the attacks in
the DARPA TC dataset. Based on the ground truth of each
attack, we manually assign lower reputation scores for the
malicious files and IP addresses as required by NoDoze. Once
NoDoze finishes computing the anomaly scores for the whole
graph, we perform the graph reduction based on the anomaly
score of each path in the dependency graph.

Table 5 shows the dependency graph reduction of DEPIM-
PACT and the other techniques. The results show that DEPIM-
PACT achieves the best performance for dependency graph
reduction. On average, the size of the dependency graph gen-
erated by DEPIMPACT (i.e., the critical component output by
DEPIMPACT) is at least 72x smaller than the second-best
result (i.e., NoDoze) and three or four orders of magnitudes
smaller than the other 3 techniques. Moreover, DEPIMPACT
does not lose any critical edges as other techniques. We next

2470 31st USENIX Security Symposium

USENIX Association

Table 5: Dependency graphs generated by each technique

Attack CPR ReadOnly Priotracker NoDoze DepImpact
FP FN # Edges FP FN # Edges FP FN # Edges FP FN # Edges FP FN # Edges
Waet Executable 355 0 363 50 0 58 50 0 58 283 3 288 45 0 53
Tllegal Storage 62067 0 62073 16206 1 16211 6943 1 6948 10254 0 10260 71 0 77
Tllegal Storage2 378322 0 378326 89775 0 89779 37108 0 37112 19509 1 19512 624 0 628
Hide File 3273757 0 3273769 613294 3 613303 | 114604 2 114614 37241 2 37251 797 0 809
Steal Information 3291204 0 3291208 618021 0 618025 | 115219 0 115223 20423 1 20426 854 0 858
Backdoor Download 60382 0 60390 15982 0 15990 6017 1 6024 261 0 269 121 0 129
Annoying Server User 308 0 318 46 0 56 31 2 39 219 2 227 14 0 24
Shellshcok 3570 0 3600 577 17 590 493 5 518 885 4 911 444 0 474
Dataleak 1134 0 1152 220 7 231 199 6 211 673 4 687 214 0 232
VPN Filter 1869 0 1879 290 2 298 238 4 244 208 1 217 59 0 69
Five Dir Casel 270 0 272 17 1 18 17 1 18 255 0 257 8 0 10
Five Dir Case3 78071 0 78075 77824 4 77824 7493 1 7496 595 1 598 29 0 33
Theia Casel 816269 0 816277 325459 8 325459 | 176794 2 176800 | 151233 1 151240 54 0 62
Theia Case3 1500711 0 1500717 537424 6 537424 | 269274 3 269277 9010 1 9015 46 0 52
Trace Case5 968 0 971 910 3 910 458 2 459 509 2 510 1 0 4
AVG 631283.80 0.00 631292.67 | 153073.00 3.47 153078.40 | 48995.87 200 49002.73 | 16770.53 153 16777.87 | 225.40 0.00 23427
fmmmmmmmmmmmmmm—m——a N Table 6: Results of “Backdoor Download” attacks
1 - 1
T~ ! Critical edges Firefox Tabs | 0 Tabs 1Tab 5Tabs 10 Tabs
- <1 FPR 0.15 016 0.19 0.21
-
______ s : fluxbox dev/glx_alsa_67 FNR 0.00 0.00 0.00 0.00
I
:
1
1

xxx/cookies.sqlite-well 0
Vi l/,-I firefox |-—/ IP-1 —>IP—2/
\ v

—— home/admin/clean™> POI
xxx/cookies.sqlite
e e e e e == El

Figure 3: Critical component generated by DEPIMPACT
for the “Theia Case 1 attack

explain the comparison with each technique.

CPR merges only the edges between pairs of nodes, and
thus lack the capabilities to prune irrelevant edges originated
from irrelevant system activities. Removing read-only files
is heuristics-based and cannot robustly achieve good perfor-
mance for different attacks as illustrated by the results (e.g., 58
for the “Wget executable” attack v.s. 600,000+ for the “Hide
File” attack). The comparison with PrioTracker shows the su-
periority of our discriminative feature projection scheme over
the fanout feature in PrioTracker. From the results, we can
observe that NoDoze performs generally well but poorly for
certain attacks (e.g., producing graphs with > 10,000 edges
for 5 attacks) The major reason is that there are many rare
benign events in these dependency graphs that do not appear
in the execution profiles. In other words, the effectiveness
of NoDoze heavily relies on whether the execution profile
can capture all the benign events, which is generally difficult
since the runtime environment of most organizations are dy-
namic and versatile. On the other hand, compared to NoDoze,
DEPIMPACT achieves better reduction results without sharing
its two major limitations: (1) DEPIMPACT does not rely on
third-party services to assign reputations to malicious files or
IP addresses; (2) DEPIMPACT does not require the execution
profile of the deployed system for training. These characteris-
tics greatly reduce the difficulty of deploying DEPIMPACT in
a new system, enabling DEPIMPACT to achieve better gener-
alization than NoDoze.

Impacts of Background Behaviors. To better evaluate DE-
PIMPACT’s performance when substantial background benign
behaviors are mixed with attack behaviors for some applica-
tions, we launched Firefox browsers with different number
of open tabs and performed the “Backdoor Download” attack
on the Firefox browsers. The open tabs perform different
types of benign behaviors, such as loading/update pages and
JavaScript running, simulating the commonly seen benign
behaviors. We then applied DEPIMPACT to investigate these
attacks and the results are shown in Table 6. We can see that
when the open tabs increase from 0 to 10, the false positive
rates have a slight increase (from 0.15 to 0.21) and the false
negatives rates remain 0.0. Such results show the performance
of DEPIMPACT is not significantly affected by the workloads
of complex software.

Case Study. Figures 3 and 4 show the critical components of
two attacks. We use solid lines to represent critical edges, dash
lines to represent non-critical edges. POI events are clearly
marked with text descriptions.

Figure 3 shows the critical component generated by DE-
PIMPACT for the “Theia Case 1" attack in the DARPA TC
dataset. We can observe that the Firefox browser is started to
download the file /home/admin/clean from a malicious IP ad-
dress. Here, the IP addresses (i.e., the source of the backdoor)
are correctly identified as attack entries, and all the critical
edges are preserved.

Figure 4 shows the 3 critical components generated by DE-
PIMPACT for the “Shellshock™ attack. The critical component
of POI I (step @) shows that Host 1 first downloads a mali-
cious script from the C2 server, and then sends a malicious
SCript /tmp/crack_password.sh to Host 2 through the process
scp. Then, this malware collects user sensitive data in Host
2 and sends this data back to Host 1 through the process scp
(step @). After this step, the sensitive data is compressed in
Host 1 and sent back to the C2 server (®). For this graph, the

USENIX Association

31st USENIX Security Symposium 2471

| &

Host 1: POI 3

(@ Download malware
& Transfer to Host Il

Host 1: POI 1

(2)Collect data &
Transfer to Host |

-/hosti->host2}

/nosti->host2}—|sshd|

!
x> fpash]
tar bash|

= /® Compress data & Transfer
to C2 Server host2->host1

‘tmp/crack_password.s|

mp/johty

bash

tmp/libfoo.sO

Figure 4: Critical components generated by DEPIMPACT for the “Shellshock” attack (non-critical edges are omitted).
DEPIMPACT generates critical components for the three POI events and takes the union of the generated critical com-
ponents, which covers all the attack steps as described in Section 5.1.2.

1.0

Dataleak

Five Dir. Casel
Five Dir. Case3
Wget Executable
llegal Storage
llegal Storage2
Hide File

Steal information
Backdoor Download
Annoying Sever User
Shellshock

Theia Casel

—— Theia Case3

—l- Trace Case5

—— VPN Filter

tThted

)
o

—_—
_—

o
IS

False Negative Rate

o
N

0.0 - - - o
0 5 6 7 8

Number of Top Entry Points
Figure 5: False negative using different number of top-
ranked entry nodes

©

union of the 3 critical components in 2 hosts covers all the
critical edges. In particular, the two special network connec-
tion edges in steps @ and @ enable the cross-host dependency
tracking for revealing attack sequences.

5.3 RQ2: Selection of Entry Nodes

Intuitively, the more entry nodes DEPIMPACT uses to perform
forward causality analysis, the less likely DEPIMPACT will in-
correctly filter out critical edges. But using more entry nodes
is likely to produce more false positives in the output graph.
To demonstrate the effectiveness of selecting the top-ranked
entry nodes in revealing attack sequences, we show how the
increase of the selected entry nodes impacts the effective-
ness of DEPIMPACT in terms of /PR and FNR. DEPIMPACT
chooses the top-ranked entry nodes in each of three system-
entity categories and perform forward causality analysis from
the nodes in the order of decreasing dependency impacts.

Impacts on FPRs and FNRs. Figure 5 and Figure 6 show the
impacts of top entry nodes on F PRs and FNRs. As expected,
when more entry nodes are used, the F NR decreases while the
F PR increases. We can notice that when the FNR becomes
zero (using 2 — 6 nodes in different attacks), if DEPIMPACT
continues to utilize more entry nodes to do the forward analy-

1.0
—— Dataleak Backdoor Download
Five Dir. Casel —r— Annoying Sever User
—e— Five Dir. Case3 == Shellshock
o 0.8 —@— Wget Executable Theia Casel
E —#— lllegal Storage —— Theia Case3
4 —4- lllegal Storage2 —ll- Trace Case5
© Hide File —4— VPN Filter
> —A— Steal information
=
(%]
@)
0 o4
[}
0
©
LL
0.2
> 4 ~———90
&
y N 4) 4) ¢ 'y
A A \ v
0.0- —~ —

o

Number of Top Entry Points
Figure 6: False positive using different number of top-
ranked entry nodes

sis, F PR will increase significantly. Based on this observation,
we suggest that DEPIMPACT stops choosing more entry nodes
when including one more entry node for forward analysis will
result in a significant increase of the critical component.

5.4 RQ3: Revealing Attack Entries

In this RQ, we aim to measure the effectiveness of DEPIM-
PACT in revealing attack entries (i.e., whether the attack en-
tries are among the top-ranked entry nodes). Specifically, we
compare DEPIMPACT with 4 baseline approaches: the uni-
form random approach, 2 simplified versions of DEPIMPACT:
DEPIMPACT-, DEPIMPACT--, and the average-projection ap-
proach. The uniform random approach ranks all the entry
nodes randomly. DEPIMPACT- uses the temporal relevance
and the data flow relevance to compute the dependency
weight, but not the concentration ratio. DEPIMPACT-- uses
only the temporal relevance to compute dependency weights.
The average-projection approach uses a fixed parameter vec-
tor (0.334,0.333,0.333) to compute dependency weights.
Table 8 shows the average ranks of all the attack entries
computed by DEPIMPACT and the baseline approaches. We
observe that DEPIMPACT consistently ranks the attack en-
tries at the top (average rank 2.41) and achieves the best

2472 31st USENIX Security Symposium

USENIX Association

Table 7: Runtime performance of DEPIMPACT and baseline approach

Dependency Weight Computation (s)

Dependency Impact Propagation (s)

Attack Causality Ana.(s) Edge Merge(s) . , NoDoze(s)
DEPIMPACT Avg. Proj. DEPIMPACT Avg. Proj.
Wget Executable 120.97 0.05 0.26 0.02 0.06 0.06 1.55
Illegal Storage 92.86 0.38 7.43 0.39 19.48 47.71 173.65
Illegal Storage2 95.13 3.02 52.68 33.79 160.08 1,038.55 329.31
Hide File 223.63 42.16 463.68 16.14 1,150.35 8,486.32 899.29
Steal Information 129.82 39.51 479.02 15.98 1,157.45 8,128.28 620.87
Backdoor Download 19.74 0.44 13.87 0.32 12.75 24.05 0.71
Annoying Server User_user 17.23 0.01 0.18 0.01 0.03 0.03 0.44
Shellshcok 0.05 0.03 0.07 0.01 0.02 0.06 0.08
Dataleak 0.09 0.01 0.28 0.02 0.14 0.16 0.01
VPN Filter 0.28 0.04 0.35 0.03 0.11 0.14 0.07
Five Dir. Casel 0.81 0.01 0.10 0.01 0.04 0.02 0.02
Five Dir. Case3 2.38 0.29 9.68 0.12 1.93 221 39.50
Theia Casel 73.28 8.75 276.80 1.88 289.77 191.85 30.36
Theia Case3 106.17 8.34 498.81 3.06 561.95 391.96 65.88
Trace Case5 1.92 0.01 0.14 0.01 0.11 0.01 0.54
AVG 58.96 6.87 120.22 4.78 223.62 1,220.77 144.15

Table 8: Average rank of attack entries

Attack Temp. Relv. Temp & Data Size Fiexd Proj. Uni. Random DEPIMPACT
Weet Executable 5.50 12.25 20 2345 2
Illegal Storage 25 13 18 475.99 5
Illegal Storage2 1 1 1 1,893.66 2.50
Hide File 22 10.50 13.50 17,284.72 4
Steal Information 11 3.50 7 17,304.32 2
Backdoor Download 3.50 3.50 7.50 76.57 2
Annoying Server User 5 5 13 15.82 2
Shellshcok 11 19 13 22.63 2.30
Dataleak 35 9 9 48.34 4.30
VPN Filter 46 34 8 236.77 2.50
Five Dir. Casel 5 5 5 115.50 2
Five Dir. Case3 1 1 1 327.10 2
Theia Casel 1.5 1.5 1.5 88,956.70 1
Theia Case3 1 2 1 70,610.50 1.50
Trace Case5 2 2 2 10.10 1
AVG 11.67 8.12 8 13,160.14 241

performance. Compared with DEPIMPACT--, DEPIMPACT-
, the average-projection approach (shown in Column “Avg.
Proj.”), and the uniform random approach (shown in Column
“Rand.”), DEPIMPACT achieves 79.14%, 70.06%, 69.62% and
99.98% improvement in ranking the attack entries. These re-
sults demonstrate the necessity for DEPIMPACT to include all
three features, and the comparison with the average-projection
approach demonstrates the superiority of our discriminative
feature projection scheme over a fixed parameter vector.

5.5 RQ4: System Performance

To understand the performance of DEPIMPACT, we measure
the execution time of each step in DEPIMPACT, as shown in
Table 7. On average, DEPIMPACT takes 343.84s to finish ana-
lyzing an attack (i.e., weight computation and impact propaga-
tion) and dependency graph construction requires 65.83s (i.e.,
causality analysis and edge merge). We next compare DE-
PIMPACT with the average-projection approach and NoDoze.
We exclude the comparison of the execution times for the
common steps (causality analysis and edge merge).

From the comparison results of DEPIMPACT and the
average-projection approach in Table 7, we observe that (1)
DEPIMPACT takes more time for dependency weight computa-

tion (~ 120s) because DEPIMPACT uses the Multi-KMeans++
clustering and LDA to find the optimal projection vector; (2)
DEPIMPACT takes less time for dependency impact propaga-
tion. The reason is because the dependency weights computed
by DEPIMPACT are much more discriminative, and hence the
score propagation can converge faster. As a result, DEPIM-
PACT reduces the execution time by 71.94% when compared
with the average-projection approach.

From the comparison results of DEPIMPACT and Nodoze
in Table 7, we can see DEPIMPACT need 343.84s to finish the
weight computation and impact propagation, NoDoze need
144.15s to finish the s anomaly score computation. In partic-
ular, while DEPIMPACT requires more time for processing
the 2 attacks whose dependency graphs have more than 3
million edges (i.e., the “Hide File” attack and the “Steal infor-
mation” attack), DEPIMPACT produces much smaller graphs
(~ 800 edges) than NoDoze (> 20,000 edges). On average,
DEPIMPACT needs 343.84s to finish the dependency weight
computation and the dependency impact propagation, and
NoDoze needs 144.15s to finish the anomaly score compu-
tation (409.67s v.s. 209.98s for the whole analysis). Thus,
DEPIMPACT and NoDoze have similar runtime performance
for most of the attacks, and NoDoze is more efficient for
certain attacks but achieves much lower graph reduction.

6 Discussion

Evasion Attacks. Existing causality analysis techniques,
such as NoDoze [38], leverage execution profiles and rep-
utations of entities (e.g., IP and file reputations) to identify
anomaly edges. As shown in Section 5.2, attackers may hide
their attack steps in benign events or try to abuse the repu-
tation system to conceal their attack steps. Unlike existing
techniques, DEPIMPACT will not suffer from this type of
attacks since DEPIMPACT does not rely on execution pro-
files and reputations of system entities. To abuse our weight

USENIX Association

31st USENIX Security Symposium 2473

computation and back-propagation techniques, attackers may
perform multiple writes to inject the complete payload into a
file, with most of the writes behaving like normal behaviors.
To mitigate such attacks, we may treat each of the write event
as a POI event, apply DEPIMPACT on all the write events to
the malicious file that contains the payload, and investigates
all the generated graphs. We may also adopt process-based
anomaly detection techniques [70, 77] to help distinguish
these malicious writes.

Forensics of Real-World Attacks. Advanced Persistent
Threat (APT) and other real-world attacks are sophisticated
(multi-step attacks that exploit various vulnerabilities) and
stealthy (staying dormant for long period). Due to the ad-
vances of log compression techniques [41, 58, 74, 78] and
continuing decreases of storage costs, storing system audit
logs for months even years becomes affordable. Furthermore,
recent distributed database solutions [9, 10] show promising
results to improve the analysis performance of the logs. By
operating together with these solutions, DEPIMPACT can be
efficiently applied to long-period log data to investigate the
potential attacks. DEPIMPACT can be seamlessly integrated
with threat detection techniques [13,37,51, 64] to automati-
cally generate critical components for the reported alerts (i.e.,
the POI events), and security analysts can inspect the small
graphs (i.e., critical components) to obtain the contextual
information for handling the alerts.

Design Alternatives. DEPIMPACT is a general framework
that can use different combinations of features to investigate
different types of attacks. Our evaluations on a wide range of
attack scenarios (Section 5.1) demonstrate the effectiveness
and robustness of the chosen features. Besides the proposed
features, DEPIMPACT supports easy incorporation of other
features according to specific forensic investigation needs.
For edge weight computation, one alternative is to train a
binary classifier using the features and output a probability
score as the edge weight. However, such supervised learning-
based approach faces significant limitations in our problem
context: (1) as some of our features are computed with respect
to the specific POI, the classification model learned for one
type of attack can hardly generalize to other types of attacks
with different POIs; (2) such approach typically requires large
amount of training data, while our problem context is highly
imbalanced in which critical edges are limited. Among un-
supervised learning-based approaches, approaches based on
anomaly detection [20] could be a substitution for KMeans
clustering, and there could be alternatives for LDA to achieve
discriminative dimensionality reduction [60, 72].

Runtime Performance Improvement. The performance of
DEPIMPACT may benefit from database optimization and par-
allelization. Causality analyses can be improved by adopting
the database optimization and parallelization techniques to
speed up the search [30, 31]. Feature extraction for differ-
ent edges is independent and can also be parallelized. Back-
propagation (Equation (7)) can be converted into a matrix-

vector product form to save CPU cycles. Further paralleliza-
tion is possible by leveraging ideas similar to parallelizing
PageRank [32,50].

Limitations. To investigate attacks, DEPIMPACT depends on
the underlying detection systems to identify the POI events
that are related to the attacks. If the underlying detection sys-
tems fail to do so, DEPIMPACT will not be able to investigate
the attacks. Recent approaches [37,77] have proposed solu-
tions to improve the detection of abnormal system activities
and DEPIMPACT can work with these approaches to provide
better defenses. Moreover, the critical components produced
by DEPIMPACT still have 200+ edges on average (i.e., Ta-
ble 5) due to the irrelevant system activities performed by the
processes that produce critical edges. We plan to explore how
to incorporate expert knowledge [34] and cyber threat intelli-
gence (CTI) [27] to filter out these non-critical edges. Finally,
DEPIMPACT cannot be used for real-time analysis as depen-
dency graph generation is costly under some scenarios even
when advanced data compression and parallel computation
are applied [41,74,78]. We plan to explore options that can
provide quicker feedback such as progressive updates [34,35].

7 Related Work

Forensic Analysis via System Audit Logs. Causality anal-
ysis based on system auditing data plays a critical role for
forensic analysis. King et al. [48,49] proposed a backward
causality analysis technique by automatically reconstructing
a series of events that are dependent on a user-specified POI
event. Goel et al. [33] proposed a technique that recovers from
an intrusion based on forensic analysis. Recent efforts have
been made to mitigate the dependency explosion problem by
performing fine-grained causality analysis [42,43,45,53,57],
prioritizing dependencies [38, 55], customized kernel [16],
and optimizing storage [41, 54,74,78]. However, these tech-
niques suffer from adoption limitations as they mainly rely
on heuristic rules that cause loss of information [48], intru-
sive system changes such as binary instrumentation [45,57]
and kernel customization [16], or execution profiles that have
limited generalizations [38]. DEPIMPACT proposes to com-
pute discriminative dependency weights based on multiple
features and perform back-propagation from the POI event to
compute dependency impacts for identifying attack entries,
which do not share the same adoption limitations with the ex-
isting techniques. Our evaluation results further demonstrate
the effectiveness of DEPIMPACT over the existing techniques.

Behavior querying leverages domain-specific languages
(DSLs) to search for patterns of system call events. Gao et
al. [30,31] proposed domain-specific languages that enable
efficient attack investigation and attack detection by querying
the historical and real-time stream of system call events. A
major limitation of these DSLs is that they require manual
efforts to construct the queries, which is labor-intensive and
error-prone. Gao et al. [28] further proposed an automated

2474 31st USENIX Security Symposium

USENIX Association

threat hunting approach via extracting knowledge from cyber
threat intelligence (CTI) reports using NLP and synthesizing
threat hunting queries from the extracted knowledge. Mila-
jerdi et al. [62] proposed to rely on the correlation of suspi-
cious information flows to detect ongoing attack campaigns.
They further proposed to leverage the knowledge from CTI
reports to align attack behaviors recorded in system auditing
data via graph pattern matching [61]. Pasquier et al. [66] pro-
posed a runtime analysis of provenance by combining runtime
kernel-layer reference monitor with a query module. Hossain
et al. [40] proposed a tag-based technique to perform real-
time attack detection and reconstruction for system auditing
data. DEPIMPACT can be interoperated with these techniques
to achieve a better defense.

Score Propagation. Our relevance score propagation scheme
was inspired by the TrustRank algorithm [36], which was orig-
inally designed to separate spam and reputable web pages:
it first selects a small set of reputable seed pages, then prop-
agates the trust scores following the link structures using
the PageRank algorithm [65], and identifies spam pages as
those with low scores. Similar ideas have been applied in
security and privacy application scenarios including Sybil de-
tection [18,29] and fake review detection [68]. DEPIMPACT is
the first work that applies the score propagation idea in system
audit logging domain that propagates dependency impacts to
identify attack entries for filtering irrelevant dependencies.

Edge Weight Computation. Several components of DEPIM-
PACT are built up on a set of existing techniques. Our edge
clustering step is based on Multi-KMeans++ [15], which op-
timizes the seed initialization for better clustering quality,
compared with the standard KMeans. Our discriminative fea-
ture projection step is based on Linear Discriminant Analysis
(LDA) [60], which finds a linear combination of features that
characterizes or separates multiple classes of objects.

8 Conclusion

We propose DEPIMPACT, a framework that identifies the crit-
ical component of a dependency graph of a POI event gener-
ated by causality analysis, which preserves attack information
and filter out irrelevant dependencies. Specifically, DEPIM-
PACT assigns discriminative dependency weights to edges
for revealing critical edges, and computes and propagates de-
pendency impacts to entry nodes for revealing attack entries.
By further performing forward causality analysis from the
top-ranked entry nodes and taking the graph overlap, DEPIM-
PACT preserves only dependencies that are highly relevant
to the POI event and attack entries. Our evaluations on real
attacks demonstrate the effectiveness of DEPIMPACT in filter-
ing out irrelevant dependencies (producing ~ 6,250 smaller
graphs) while preserving the attack-relevant dependencies.

Acknowledgments

We would like to thank the anonymous reviewers for the
constructive comments and suggestions to improve the
manuscript. Pengcheng Fang, Changlin Liu, and Xusheng
Xiao’s work is partially supported by the National Sci-
ence Foundation under the grants CNS-2028748 and CCF-
2046953.

References
[1] Home Depot Confirms Data Breach
At u.S., Canadian Stores, 2014.

http://www.npr.org/2014/09/09/347007380/home-
depot-confirms-data-breach-at-u-s-canadian-stores.

[2] OPM government data breach impacted 21.5 million,
2015. http://www.cnn.com/2015/07/09/politics/office-
of-personnel-management-data-breach-20-million.

[3] Yahoo discloses hack of 1 billion accounts, 2016.
https://techcrunch.com/2016/12/14/yahoo-discloses-
hack-of-1-billion-accounts/.

[4] CVE-2017-6334: WEB Netgear NETGEAR DGN2200
dnslookup.cgi Remote Command Injection, 2017.
https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-
2017-6334.

[5] CVE-2018-7445: NETBIOS MikroTik RouterOS SMB
Buffer Overflow, 2018. https://cve.mitre.org/cgi-
bin/cvename.cgi’name=CVE-2018-7445.

[6] The Marriott data breach, 2018.
https://www.consumer.ftc.gov/blog/2018/12/marriott-
data-breach.

[7]1 Schneier on Security: Router Vulnera-
bility and the VPNFilter Botnet, 2018.
https://www.schneier.com/blog/archives/2018/06/router_-
vulnerab.html.

[8] The Equifax data breach, 2020.
https://www.ftc.gov/equifax-data-breach.

[9] Apache Cassandra, 2021. https://cassandra.apache.org/.
[10] Apache HBase, 2021. http://hbase.apache.org/.

[11] Cyber kill chain, 2021.
https://www.lockheedmartin.com/en-
us/capabilities/cyber/cyber-kill-chain.html.

[12] DepImpact Project Website, 2021.
https://github.com/usenixsub/Deplmpact.

[13] Endpoint monitoring & security, 2021.
https://logrhythm.com/solutions/security/endpoint-
threat-detection/.

USENIX Association

31st USENIX Security Symposium 2475

[14] VPNFilter: New Router Malware with Destructive Ca-
pabilities, 2018. https://symc.ly/2IPGGVE.

[15] David Arthur and Sergei Vassilvitskii. K-means++: The
advantages of careful seeding. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1027-1035,
2007.

[16] Adam M. Bates, Dave Tian, Kevin R. B. Butler, and
Thomas Moyer. Trustworthy whole-system provenance
for the linux kernel. In USENIX Security Symposium,
pages 319-334, 2015.

[17] Matt Bishop. Introduction to Computer Security.
Addison-Wesley Professional, 2004.

[18] Qiang C., Michael S., Xiaowei Y., and Tiago P. Aid-
ing the detection of fake accounts in large scale social
online services. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 197—
210, 2012.

[19] Bryan Cantrill, Adam Leventhal, and Brendan Gregg.
DTrace, 2017. http://dtrace.org/.

[20] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15:1-15:58, July 2009.

[21] Scott A. Crosby and Dan S. Wallach. Efficient data
structures for tamper-evident logging. In USENIX Secu-
rity Symposium, page 317-334, 2009.

[22] DARPA. Transparent Computing, Defense
Advanced Research Projects Agency, 2014.
http://www.darpa.mil/program/transparent-computing.

[23] Exploit Database. Exploit Database, 2017.
https://www.exploit-db.com/.

[24] Ebay. Ebay Inc. to ask Ebay users to change pass-
words, 2014. http://blog.ebay.com/ebay-inc-ask-ebay-
users-change-passwords/.

[25] FireEye Inc. HammerToss: Stealthy Tactics Define a
Russian Cyber Threat Group. Technical report, FireEye
Inc., 2015.

[26] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
The elements of statistical learning, volume 1. Springer,
2001.

[27] Peng Gao, Xiaoyuan Liu, Edward Choi, Bhavna Soman,
Chinmaya Mishra, Kate Farris, and Dawn Song. A
system for automated open-source threat intelligence
gathering and management. In International Conference
on Management of Data (SIGMOD), Demonstrations
Track, pages 2716-2720, 2021.

[28] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao,
Zheng Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R
Kulkarni, and Dawn Song. Enabling efficient cyber
threat hunting with cyber threat intelligence. In I[EEE
International Conference on Data Engineering (ICDE),
pages 193-204, 2021.

[29] Peng Gao, Binghui Wang, Neil Zhengiang Gong, San-
jeev R. Kulkarni, Kurt Thomas, and Prateek Mittal.
Sybilfuse: Combining local attributes with global struc-
ture to perform robust sybil detection. In IEEE Confer-
ence on Communications and Network Security (CNS),
pages 1-9, 2018.

[30] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li,
Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, San-
jeev R. Kulkarni, and Prateek Mittal. SAQL: A stream-
based query system for real-time abnormal system be-
havior detection. In USENIX Security Symposium, pages
639-656, 2018.

[31] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu,
Sanjeev R. Kulkarni, and Prateek Mittal. AIQL: En-
abling efficient attack investigation from system moni-
toring data. In USENIX Annual Technical Conference
(ATC), pages 113-126, 2018.

[32] David Gleich, Leonid Zhukov, and Pavel Berkhin. Fast
parallel pagerank: A linear system approach. Yahoo!
Research Technical Report YRL-2004-038, available via
http://research. yahoo. com/publication/YRL-2004-038.
pdf, 13:22,2004.

[33] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li,
and Eyal de Lara. The taser intrusion recovery system.
In ACM Symposium on Operating systems principles
(SOSP), pages 163—-176, 2005.

[34] Jiaping Gui, Ding Li, Zhengzhang Chen, Junghwan
Rhee, Xusheng Xiao, Mu Zhang, Kangkook Jee,
Zhichun Li, and Haifeng Chen. APTrace: A respon-
sive system for agile enterprise level causality analysis.
In IEEE International Conference on Data Engineering
(ICDE), Industry and Application Track, pages 1701—
1712, 2020.

[35] Jiaping Gui, Xusheng Xiao, Ding Li, Chung Hwan Kim,
and Haifeng Chen. Progressive processing of system
behavioral query. In Annual Computer Security Appli-
cations Conference (ACSAC), pages 378-389, 2019.

[36] Zoltan Gyongyi, Hector Garcia-Molina, and Jan Peder-
sen. Combating Web Spam with Trustrank. In Interna-
tional Conference on Very Large Data Bases (VLDB),
pages 576-587, 2004.

[37] Xueyuan Han, Thomas Pasquier, Adam Bates, James
Mickens, and Margo Seltzer. Unicorn: Runtime

2476 31st USENIX Security Symposium

USENIX Association

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

provenance-based detector for advanced persistent
threats. In Network and Distributed System Security
Symposium (NDSS), 2020.

Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang
Chen, Kangkook Jee, Zhichun Li, and Adam Bates.
Nodoze: Combatting threat alert fatigue with automated
provenance triage. In Network and Distributed System
Security Symposium (NDSS), 2019.

Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam
Bates, and Thomas Moyer. Towards scalable cluster
auditing through grammatical inference over provenance
graphs. In Network and Distributed System Security
Symposium (NDSS), 2018.

Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang,
Birhanu Eshete, Rigel Gjomemo, R. Sekar, Scott D.
Stoller, and V. N. Venkatakrishnan. SLEUTH: real-
time attack scenario reconstruction from COTS audit
data. In USENIX Security Symposium, pages 487-504,
2017.

Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D.
Stoller. Dependence-preserving data compaction for
scalable forensic analysis. In USENIX Security Sympo-
sium, pages 1723-1740, 2018.

Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mat-
tia Fazzini, Taesoo Kim, Alessandro Orso, and Wenke
Lee. Rain: Refinable attack investigation with on-
demand inter-process information flow tracking. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 377-390, 2017.

Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan
Downing, Taesoo Kim, Alessandro Orso, and Wenke
Lee. Enabling refinable cross-host attack investigation
with efficient data flow tagging and tracking. In Pro-
ceedings of the USENIX Security Symposium, pages
1705-1722, 2018.

Xuxian Jiang, AAron Walters, Dongyan Xu, Eu-
gene H. Spafford, Florian Buchholz, and Yi-Min Wang.
Provenance-aware tracing of worm break-in and contam-
inations: A process coloring approach. In IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), pages 38-38. IEEE, 2006.

Yonghwi K., Fei W., Weihang W., Kyu H. L., Wen-C.
L., Shiging M., Xiangyu Z., Dongyan X., Somesh J.,
Gabriela F. C., Ashish G., and Vinod Y. MCI : Modeling-
based causality inference in audit logging for attack in-
vestigation. In Network and Distributed System Security
Symposium (NDSS), 2018.

Amin Kharraz, Sajjad Arshad, Collin Mulliner,
William K. Robertson, and Engin Kirda. UNVEIL:

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

A large-scale, automated approach to detecting ran-
somware. In USENIX Security Symposium, pages
757-772, 2016.

Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. Intrusion recovery using selective re-
execution. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 89—104,
2010.

Samuel T. King and Peter M. Chen. Backtracking in-
trusions. In ACM Symposium on Operating systems
principles (SOSP), pages 223-236. ACM, 2003.

Samuel T. King, Zhuoqing Morley Mao, Dominic G.
Lucchetti, and Peter M. Chen. Enriching intrusion
alerts through multi-host causality. In Network and
Distributed System Security Symposium (NDSS), 2005.

Christian Kohlschiitter, Paul-Alexandru Chirita, and
Wolfgang Nejdl. Efficient parallel computation of pager-
ank. In European Conference on Information Retrieval
(ECIR), pages 241-252. Springer, 2006.

Christopher Kruegel, Fredrik Valeur, and Giovanni Vi-
gna. Intrusion Detection and Correlation - Challenges
and Solutions, volume 14 of Advances in Information
Security. Springer, 2005.

Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung
Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang,
Dongyan Xu, Somesh Jha, Gabriela F Ciocarlie, et al.
Mci: Modeling-based causality inference in audit log-
ging for attack investigation. In Network and Distributed
System Security Symposium (NDSS), 2018.

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
High accuracy attack provenance via binary-based ex-
ecution partition. In Network and Distributed System
Security Symposium (NDSS), 2013.

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu.
Loggc: garbage collecting audit log. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 1005-1016, 2013.

Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun
Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. To-
wards a timely causality analysis for enterprise security.
In Network and Distributed System Security Symposium
(NDSS), 2018.

Shiging Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung
Lee, Xiangyu Zhang, Gabriela F. Ciocarlie, Ashish
Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh
Jha. Kernel-supported cost-effective audit logging for
causality tracking. In USENIX Annual Technical Con-
ference (ATC), pages 241-254, 2018.

USENIX Association

31st USENIX Security Symposium 2477

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Pro-
tracer: towards practical provenance tracing by alter-
nating between logging and tainting. In Network and
Distributed System Security Symposium (NDSS), 2016.

Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wa-
jih Ul Hassan, and Adam Bates. On the forensic validity
of approximated audit logs. In Annual Computer Secu-
rity Applications Conference (ACSAC), pages 189-202,
2020.

Microsoft. ETW events in the common lan-
guage runtime, 2017. https://msdn.microsoft.com/en-
us/library/ff357719(v=vs.110).aspx.

Sebastian Mika, Gunnar Ratsch, Jason Weston, Bern-
hard Scholkopf, and Klaus-Robert Muller. Fisher dis-
criminant analysis with kernels. In IEEE Signal Pro-
cessing Society Workshop, pages 41-48, 1999.

Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo,
and V.N. Venkatakrishnan. Poirot: Aligning attack be-
havior with kernel audit records for cyber threat hunting.
In ACM Conference on Computer and Communications
Security (CCS), page 1795-1812, 2019.

Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete,
R Sekar, and VN Venkatakrishnan. HOLMES: real-
time APT detection through correlation of suspicious
information flows. In IEEE Symposium on Security and
Privacy (IEEE S&P), pages 1137-1152, 2019.

MITRE. Common Vulnerabilities and Exposures (CVE),
2020. https://cve.mitre.org/.

netwrix. Insider threat detection, 2020.
https://www.netwrix.com/insider threat detection.html.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999.

Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam
Bates, Olivier Hermant, David Eyers, Jean Bacon, and
Margo Seltzer. Runtime Analysis of Whole-system
Provenance. In ACM Conference on Computer and Com-
munications Security (CCS), pages 1601-1616, 2018.

Tadeusz Pietraszek. Using adaptive alert classification
to reduce false positives in intrusion detection. In Recent
Advances in Intrusion Detection (RAID), pages 102—124,
2004.

Shebuti Rayana and Leman Akoglu. Collective opinion
spam detection: Bridging review networks and meta-
data. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages
985-994, 2015.

[69]

[70]

(71]

[72]

(73]
[74]

[75]

[76]

[77]

(78]

Redhat. The linux audit framework, 2017.
https://github.com/linux-audit/.

Suphannee Sivakorn, Kangkook Jee, Yixin Sun, Lauri
Kort-Parn, Zhichun Li, Cristian Lumezanu, Zhenyu Wu,
Lu-An Tang, and Ding Li. Countering malicious pro-
cesses with process-dns association. In Network and
Distributed System Security Symposium (NDSS). The
Internet Society, 2019.

Georgios P. Spathoulas and Sokratis K. Katsikas. Re-
ducing false positives in intrusion detection systems.
Computers & Security, 29(1):35-44, 2010.

Masashi Sugiyama. Local fisher discriminant analysis
for supervised dimensionality reduction. In Interna-
tional conference on Machine learning (ICML), pages
905-912, 2006.

Sysdig. Sysdig, 2017. https://sysdig.com/.

Yu Tao Tang, Ding Li, Zhi Chun Li, Mu Zhang,
Kangkook Jee, Xu Sheng Xiao, Zhen Yu Wu, Junghwan
Rhee, Feng Yuan Xu, and Qun Li. Nodemerge: Tem-
plate based efficient data reduction for big-data causality
analysis. In ACM Conference on Computer and Com-
munications Security (CCS), pages 1324-1337, 2018.

New York Times. Target data breach incident, 2014.
http://www.nytimes.com/2014/02/27/business/target-
reports-on-fourth-quarter-earnings.html?_r=1.

David A. Wagner and Paolo Soto. Mimicry attacks
on host-based intrusion detection systems. In ACM
Conference on Computer and Communications Security
(CCS), pages 255-264, 2002.

Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li,
Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li,
Haifeng Chen, and Philip S. Yu. Heterogeneous graph
matching networks for unknown malware detection. In
International Joint Conference on Artificial Intelligence
(IJCAI), pages 3762-3770, 2019.

Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee,
Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Haining
Wang, and Guofei Jiang. High fidelity data reduction for
big data security dependency analyses. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 504-516, 2016.

2478 31st USENIX Security Symposium

USENIX Association

	1 Introduction
	2 Background and Motivation
	2.1 System Monitoring
	2.2 Causality Analysis
	2.3 Motivating Example

	3 Overview
	4 Design of DepImpact
	4.1 Dependency Graph Generation
	4.1.1 System Auditing
	4.1.2 Backward Causality Analysis

	4.2 Dependency Weight Computation
	4.2.1 Edge Merge
	4.2.2 Feature Extraction
	4.2.3 Dependency Weight Computation

	4.3 Critical Component Identification
	4.3.1 Dependency Impact Back-Propagation
	4.3.2 Entry Node Ranking
	4.3.3 Critical Component Identification

	5 Evaluation
	5.1 Evaluation Setup
	5.1.1 Attacks Based on Commonly Used Exploits
	5.1.2 Multi-host Intrusive Attacks
	5.1.3 DARPA TC Attack Cases
	5.1.4 Obtaining Ground Truth for the Attacks

	5.2 RQ1: Revealing Attack Sequences
	5.3 RQ2: Selection of Entry Nodes
	5.4 RQ3: Revealing Attack Entries
	5.5 RQ4: System Performance

	6 Discussion
	7 Related Work
	8 Conclusion

