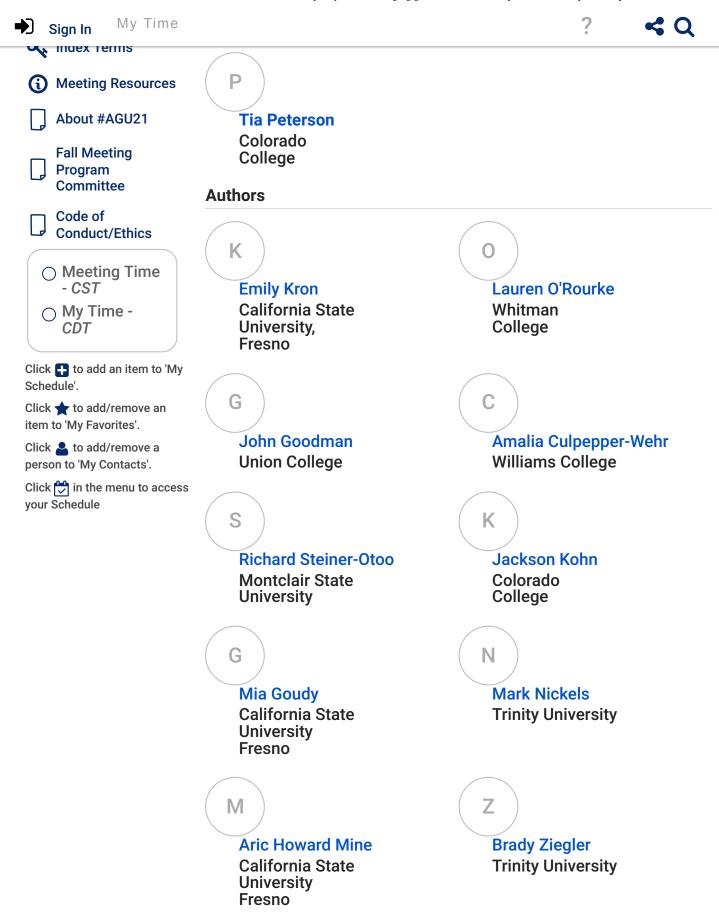


Sign In

My Time

This year's Fall Meeting is in a whole new environment. Learn to navigate the meeting, build your schedule, and see what sessions, events, activities, and resources are available to online and in-person attendees here.


- ? Help / FAQ
- A Home
- Sign In
- Search
- Browse by Day
- Browse by Sections
- K Keynote and Plenary
- N Named Lectures
- Innovations
- **U** Union
- e eLightning Sessions
- Online eLightning Sessions
- Poster Sessions
- Online Only Sessions
- T Town Halls
- S Scientific Workshops
- A AGU Events
- Pod Reservation System
- Online Summary Sessions

H550-0902 - Microbial community response to changing groundwater chemistry in the San Joaquin Valley

- Friday, 17 December 2021
- 16:00 18:00
- Onvention Center Poster Hall, D-F

Abstract

The Central Valley of California is one of the most agriculturally productive regions of the world, relying on groundwater to support its domestic, municipal, and agricultural water needs. Groundwater contamination is a pervasive concern in the San Joaquin Valley as a result of anthropogenic, abiotic, and biotic processes. Elevated concentrations of trace elements in groundwater such as As, U, and Cr are likely related to anthropogenic forcing, but are naturally occurring within Central Valley sediments. Here we study the microbiological processes underpinning contaminant release and how they inform approaches to improving water quality and reducing municipal water treatment costs. This research explores how microbial communities shift and are altered by geogenic and anthropogenic contaminants, as well as the use of indicator microbes to diagnose and mitigate fouled wells. We sampled both monitoring and production wells in the City of Fresno with documented contamination by H2S, As, Mn, Fe, and/or NO3-. We hypothesize that contaminant release is linked to the microbial community as well as aguifer chemistry. To assess microbial community composition, 16s rDNA was extracted from groundwater samples and sequenced to document community composition. Community structure was measured alongside water chemistry, and groundwater level. Microbiological community and water chemistry comparisons between production and monitoring wells suggest that there is a disconnect between sites presumed to access the same aguifer, highlighting the complexity of subsurface environments. Redox chemistry and pH also varied across the wells tested concomitant with microbial community structure. Evaluating microbial community change in response to agricultural and anthropogenic water demand supports prediction and mitigation of contaminated wells. We propose microbial community structure and biogeochemical mechanisms directly impact groundwater quality via mobilization and manipulation of natural and anthropogenic contaminants. The ability to more accurately and immediately connect the microbiological community of the aquifer to water chemistry has potential to improve human and ecological health and reduce municipal water treatment costs.

View Related

Lauren Lownian, wake Forest Oniversity, Engineering, winston-salem, Oniteu states, Amy

Hansen, University of Kansas, Civil, Environmental, and Architectural Engineering, Lawrence, United States, Khandker S. Ishtiaq, Florida International University, Miami, FL, United States, John T Van Stan II, Georgia Southern University, Statesboro, GA, United States and Salli Dymond, Northern Arizona University, School of Forestry, Flagstaff, United States

Friday, 17 December 2021

16:00 - 18:00

Convention Center - Poster Hall, D-F

Hydrology

Similar

Geospatial and Statistical Analyses of Groundwater Contaminants in the San Joaquin River Valley During Drought and Non-Drought Periods

Mark Nickels¹, Mia Goudy², John Goodman³, Jackson Kohn⁴, Lauren O'Rourke⁵, Tia Peterson⁴, Richard Steiner-Otoo⁶, Amalia Culpepper-Wehr⁷, Brady Ziegler¹ and Aric Howard Mine⁸, (1)Trinity University, San Antonio, TX, United States, (2)California State University Fresno, Fresno, United States, (3)Union College, Schenectady, NY, United States, (4)Colorado College, Colorado Springs, CO, United States, (5)Whitman College, Walla Walla, WA, United States, (6)Montclair State University, Montclair, NJ, United States, (7)Williams College, Williamstown, MA, United States, (8)California State University Fresno, Earth & Environmental Sciences Dept., Fresno, CA, United States

Assessment of GPS-enhanced InSAR and *in-situ* data for groundwater and aquifer structure characterization in California's San Joaquin Vallev

Wesley Neely, Scripps Institution of Oceanography, La Jolla, CA, United States; Stanford University, Geophysics, Stanford, United States and Adrian A Borsa, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States

Using Random Forest to Predict 1,2,3-Trichloropropane Contamination from Legacy Non-Point Source Pollution of Groundwater in California's San Joaquin Valley

Hope Hauptman, University of California Merced, Environmental Systems, Merced, CA, United States and Colleen Naughton, University of California Merced, Environmental Engineering, Merced, CA, United States

Investigating Aquifer Recharge with InSAR and Groundwater Modeling in the Central Valley

Zel Hurewitz, Scripps Institution of Oceanography, La Jolla, CA, United States and Adrian A Borsa, Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States

Characterizing Temporal Dynamics of Isotope and Ion Chemistry in Groundwater Across a Barrier Island as Influenced by Rainfall and Tidal Cycles.

My Time

REGISTER HOUSING ATTEND

COVID-19 PROTOCOLS

AGU supports 130,000 enthusiasts to experts worldwide in Earth and space sciences.

© 2022 American Geophysical Union. All Rights Reserved.