

Sign In

My Time

- 7

This year's Fall Meeting is in a whole new environment. Learn to navigate the meeting, build your schedule, and see what sessions, events, activities, and resources are available to online and in-person attendees here.

- ? Help / FAQ
- A Home
- Sign In
- Search
- Browse by Day
- Browse by Sections
- K Keynote and Plenary
- N Named Lectures
- **Innovations**
- **U** Union
- e eLightning Sessions
- Online eLightning Sessions
- Poster Sessions
- Online Only Sessions
- T Town Halls
- S Scientific Workshops
- A AGU Events
- Pod Reservation System
- Online Summary Sessions

Suggested

H45F-1231 - Mobilization of Trace Elements from Sediments into Groundwater in California's Central Valley

- Thursday, 16 December 2021
- 16:00 18:00
- Convention Center Poster Hall, D-F

Abstract

Persistent and more regular droughts in the Central Valley of California put increasing pressure on groundwater for domestic, industrial, and agricultural uses. This increased demand has led to higher scrutiny of groundwater quality. U, As, Fe, Mn are present in drinking water wells and sediments throughout the Central Valley, originating in the Sierra Nevadas. These elements can be mobilized from sediment into groundwater as a result of multiple geochemical mechanisms that have not been fully explored. Our study used sediment samples from the saturated and unsaturated zones to determine bulk trace element concentrations as well as their chemical reactivity to evaluate mobility. Our analyses included 1) bulk chemistry using X-ray fluorescence, 2) sequential extractions to isolate trace elements in the exchangeable, carbonate-bound, Fe-Mn oxide bound, and organic/sulfide bound phases, 3) X-ray diffraction to characterize mineralogy, 4) Fe2+and Fe3+ speciation to inform redox, and 5) grain size distributions of sediments to estimate hydraulic conductivity (K).

Results show that U, which originates in mafic minerals, has been depleted from near-surface sediments of the unsaturated zone (< 1 mg/kg). However, there is an increase in U (> 5 mg/kg) at a depth of ~25 feet, coincident with a 10x increase in Fe3+ concentrations and a 104 decrease in hydraulic conductivity (10-8 m/s). This zone also contains elevated concentrations of Mn and As. Below this depth in both unsaturated and saturated zones, Fe, Mn, As, and U trend together in high concentrations when K is low and in comparatively lower concentrations when K is high. We propose the following conceptual model of U, As, Fe, and Mn cycling: U is oxidatively dissolved in the near-surface sediments and transported downward through the unsaturated zone, where it then sorbs to the abundant Fe and/or Mn oxides in low K sediments, which also sorb As. U- and As-bearing Fe and Mn oxides can then be reductively dissolved during microbial oxidation of organic carbon, releasing Fe, Mn, As, and U to groundwater. (Bi)carbonate produced by microbial oxidation of organic C then forms aqueous U complexes that allow it to

Click in the menu to access your Schedule

conditions.

First Author

Amalia Culpepper-Wehr Williams College

Authors

Richard Steiner-Otoo Montclair State University

Jackson Kohn Colorado College

Mia Goudy California State University Fresno

Ν

Mark Nickels Trinity University

Tia Peterson Colorado College

John Goodman **Union College**

My Time

Whitman College

Brady Ziegler Trinity University

Aric Howard Mine

California State University Fresno

View Related

H45F - Advancing Science Through Observations, Monitoring, and **Experimentation in Catchment, Critical Zone, and Ecosystem Studies III Poster**

Stephen D Sebestyen, USDA Forest Service, Northern Research Station, Vallejo, CA, United States and James B Shanley, USGS, Montpelier, VT, United States

É		À	-	1

「hursday, 16 December 2021

16:00 - 18:00

Convention Center - Poster Hall, D-F

Hydrology

Similar

Geospatial and Statistical Analyses of Groundwater Contaminants in the San Joaquin River Valley During Drought and Non-Drought Periods

Mark Nickels¹, Mia Goudy², John Goodman³, Jackson Kohn⁴, Lauren O'Rourke⁵, Tia Peterson⁴, Richard Steiner-Otoo⁶, Amalia Culpepper-Wehr⁷, Brady Ziegler¹ and Aric Howard Mine⁸, (1)Trinity University, San Antonio, TX, United States, (2)California State University Fresno, Fresno, United States, (3)Union College, Schenectady, NY, United States, (4)Colorado College, Colorado Springs, CO, United States, (5)Whitman College, Walla Walla, WA, United States, (6) Montclair State University, Montclair, NJ, United States, (7) Williams College, Williamstown, MA, United States, (8) California State University Fresno, Earth & Environmental Sciences Dept., Fresno, CA, United States

Trace Elements Contamination in Water of Alkaline-Hyposaline Lake from Valley of the Gobi Lakes, Mongolia: Field Evidence of Elevated Level of As and U accumulated by evaporation

My Time

MOLINO HASCHE , (T)NAHAZAWA OHIYEISILY, NAHAZAWA, SAPAH, (Z)MAHOHAL OHIYEIS Mongolia, Ulaanbaatar, Mongolia, (3) Earth-Life Science Institute, Meguro, Tokyo, Japan, (4)University of Tokyo, Bunkyo-ku, Japan, (5)Kanazawa Univ, Kanazawa, Japan

Trace Metal Concentrations and Hydrochemical Indicators in the **Elkhorn Slough Estuary**

Susan M Pit1, Xinyun Cui1, Adina Paytan2, Rikke Jeppesen3 and John Haskins3, (1)University of California Santa Cruz, Santa Cruz, CA, United States, (2)University of California Santa Cruz, Institute of Marine Sciences, Santa Cruz, United States, (3)Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, United States

Microbial community response to changing groundwater chemistry in the San Joaquin Valley

Tia Peterson¹, Emily Kron², Lauren O'Rourke³, John Goodman⁴, Amalia Culpepper-Wehr⁵, Richard Steiner-Otoo⁶, Jackson Kohn¹, Mia Goudy⁷, Mark Nickels⁸, Aric Howard Mine⁹ and Brady Ziegler⁸, (1)Colorado College, Colorado Springs, CO, United States, (2) California State University, Fresno, Fresno, United States, (3) Whitman College, Walla Walla, WA, United States, (4)Union College, Schenectady, NY, United States, (5) Williams College, Williamstown, MA, United States, (6) Montclair State University, Montclair, NJ, United States, (7) California State University Fresno, Fresno, United States, (8) Trinity University, San Antonio, TX, United States, (9) California State University Fresno, Earth & Environmental Sciences Dept., Fresno, CA, United States

in

REGISTER HOUSING ATTEND

COVID-19 PROTOCOLS

AGU supports 130,000 enthusiasts to experts worldwide in Earth and space sciences.

© 2022 American Geophysical Union. All Rights Reserved.