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Abstract
We provide new gradient-based methods for efficiently solving a broad class of ill-conditioned
optimization problems. We consider the problem of minimizing a function f : Rd → R which
is implicitly decomposable as the sum of m unknown non-interacting smooth, strongly convex
functions and provide a method which solves this problem with a number of gradient evaluations
that scales (up to logarithmic factors) as the product of the square-root of the condition numbers of
the components. This complexity bound (which we prove is nearly optimal) can improve almost
exponentially on that of accelerated gradient methods, which grow as the square root of the condition
number of f . Additionally, we provide efficient methods for solving stochastic, quadratic variants of
this multiscale optimization problem. Rather than learn the decomposition of f (which would be
prohibitively expensive), our methods apply a clean recursive “Big-Step-Little-Step” interleaving
of standard methods. The resulting algorithms use Õ(dm) space, are numerically stable, and open
the door to a more fine-grained understanding of the complexity of convex optimization beyond
condition number.
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1. Introduction

Smooth, strongly-convex function minimization is a fundamental and canonical problem in optimiza-
tion theory and machine learning. Given an L-smooth, µ-strongly convex f : Rd → R it is well
known that gradient descent and accelerated gradient descent minimize f with Õ(κ) and Õ(

√
κ)

gradient queries respectively for κ := L/µ.1 Further, any first-order method, i.e. one restricted to
accessing f through an oracle which returns the value and gradient of f at a queried point, must make
Ω(
√
κ) queries (Nemirovski and Yudin, 1983) in the (dimension-independent) worst case (even if

randomized (Woodworth and Srebro, 2017)). Consequently κ, the condition number, nearly captures
the worst-case complexity of the problem.

In this paper, we seek to move beyond this traditional measure of problem complexity and
obtain a more fine-grained understanding of the complexity of smooth, strongly convex function
minimization. In the special case of quadratic function minimization where∇2f has a small number
of distinct eigenvalue clusters, it has long been known that methods like conjugate gradient can
efficiently solve the problem with far fewer gradient queries than would be indicated by the condition
number of the problem (Trefethen and Bau, 1997). This fact has been leveraged in a variety of
contexts for improved methods (Polyak, 1969; Nocedal, 1996; Saad, 2003; Nocedal and Wright,
2006b).

The central question we ask in this paper is whether there is an analog of this phenomenon for
non-quadratic and stochastic optimization problems. Although methods like non-linear conjugate
gradient (Fletcher and Reeves, 1964; Hager and Zhang, 2006) and limited-memory Quasi-Newton
methods (Nocedal, 1980; Liu and Nocedal, 1989) are prevalent and effective in practice, we currently
lack a complete theoretical understanding of when they are (provably) effective. In this work, we
answer this question in the affirmative and give efficient first-order methods for solving natural
classes of non-quadratic and stochastic multi-scale optimization problems.

We focus on the problem of minimizing a function f which is decomposable as the sum of
m non-interacting smooth, strongly convex functions fi each with condition number κi. When
each κi is small and the smoothness of each component, Li, is similar, the overall function is well-
conditioned and can be solved efficiently. However, when the components are at different scales,
i.e. the Li vary, the overall function can be ill-conditioned. We provide methods that depend only
poly-logarithmically on the overall condition number and polynomially on the κi, improving almost
exponentially on the complexity of AGD in certain cases. We complement this result with novel and
nearly matching lower bounds which show that our methods are close to optimal for the class of
first-order methods.

The motivation for considering the specific setting of a sum of non-interacting functions that are at
different scales is largely theoretical. This model serves as a natural starting place when considering
what types of structure can be algorithmically leveraged to go beyond guarantees in terms of the
(global) condition number. Still, the setting we focus on is not too removed from the types of
structure one might encounter in practice. Indeed, many optimization problems possess structure
at unknown and widely varying scales, and optimization approaches designed to gracefully handle
such scaling, such as AdaGrad (Duchi et al., 2011), have proved to be extremely useful in practice.
Our assumption that the components of the objective function are completely non-interacting may be
unrealistic, but we are hopeful that our techniques might extend to more general classes of structured,
poorly conditioned, optimization settings.

1. Õ(·) hides factors poly-logarithmic in the function error of the initial point, desired accuracy, and condition numbers.
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1.1. Setup and overview

Definition 1 The multiscale (convex) optimization problem asks to approximately solve the prob-
lem that can be implicitly decomposed as follows:

min
x∈Rd

f(x) :=
∑
i∈[m]

fi(Pix) where Pi ∈ Rdi×d with PiP
>
j =

{
Idi×di if i = j,
0di×dj otherwise,

the projections Pi and functions fi are unknown, each fi : Rdi → R has condition number
κi := Li/µi where fi is Li-smooth and µi-strongly convex with Li < µi+1 for all i < m.2

We focus on optimizing such objectives given only a gradient oracle for f . We also note that though
the above problem (and our yet to be introduced algorithms) are well-defined for any m ∈ [d], we
will treat m as a constant when stating the asymptotic bounds of our algorithms for simplicity.

For intuition, one simple case of Theorem 1 is the quadratic minimization problem f(x) =
1
2x

>Ax− b>x where A is positive-definite and its eigenvalues are all located in
⋃
i∈[m][µi, Li]. To

see this, note that the spectral decomposition of A can be written as A =
∑

i∈[m]P
>
i ΛiPi such

that Λi is a diagonal matrix with diagonal entries within [µi, Li], and that the matrices {Pi}mi=1 are
pairwise orthogonal. By setting fi(y) := 1

2y
>Λiy − b>P>

i y one can cast the problem in the form
of Theorem 1.

Since any objective f satisfying Theorem 1 must be µ1-strongly-convex and Lm-smooth, one
may directly apply gradient descent or accelerated gradient descent to minimize f within Õ(κglob)
or Õ(√κglob) gradient queries, where κglob is the global condition number Lm/µ1. However, as
we show in Appendix F.4, gradient descent with constant step-size or line-search does not take
full advantage of the additional structure beyond the µ1-strong-convexity and Lm-smoothness from
Theorem 1. In this work, we aim to leverage the structure of Theorem 1 to develop faster algorithms.

Our first contribution is to develop a new algorithm “Big-Step-Little-Step” or BSLS (Algorithm
1) which takes advantage of the structure of Theorem 1 and as a result solves the problem within
Õ(
∏
i∈[m] κi) gradient queries of f (see Theorem 6). Since µ1 ≤ L1 < µ2 ≤ L2 < · · · < µm ≤ Lm

by Theorem 1, it is always the case that
∏
i∈[m] κi ≤ κglob. Therefore, BSLS asymptotically out-

performs gradient descent (which has complexity Õ(κglob)). Moreover, if the clusters [µi, Li] are
well-separated, i.e.

∏
i∈[m] κi � κglob, the complexity of BSLS can significantly outperform ac-

celerated gradient descent. Indeed, in the case where m and each κi are constant, the asymptotic
performance (with respect to κglob) of BSLS is almost an exponential improvement on the per-
formance of accelerated gradient method; see Fig. 1 for a small experimental comparison in the
quadratic minimization setting . We also show in Theorem 14 that BSLS is numerically stable under
finite-precision arithmetic.

The BSLS algorithm consists of a natural interleaving of steps at different sizes. Intuitively,
BSLS alternates between taking a bigger step-size to make progress on an objective fi which has
a smaller scale (i.e. a small value of Li), followed by a sequence of smaller steps to fix the errors
caused due to this large step in the objectives fj which have a larger scale (i.e. all j > i). The entire
framework is recursive – the sequence of smaller steps for j > i are themselves defined recursively,
see Section 3 for further intuition.

2. This is without loss of generality (up to logarithmic factors in our claimed bounds) by re-defining any fi, fj pair with
[µi, Li] ∩ [µj , Lj ] 6= ∅ as a single fi, sorting the Li, and noting that µi ≤ Li (by known properties of smoothness
and convexity).
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Next, we develop an accelerated version of BSLS, namely AcBSLS (Algorithm 2), that solves the
problem within Õ(

∏
i∈[m]

√
κi) gradient queries of f (see Theorem 15). Again, as

∏
i∈[m] κi ≤ κglob,

AcBSLS complexity is never worse than the Õ(
√
κglob) complexity of AGD and can significantly

improve when the clusters are well separated. We also show in Theorem 21 that AcBSLS is
numerically stable under finite-precision arithmetic.

We conclude the study of the multiscale optimization problem (Theorem 1) by developing a
lower bound of Ω̃(

∏
i∈[m]

√
κi) across first-order deterministic methods (see Theorem 10). This

shows that AcBSLS is asymptotically optimal up to poly-logarithmic factors. Our proof framework
consists of 1) a novel reduction of a first-order lower bound to discrete `2 polynomial approximations
on multiple intervals and a further reduction to a uniform approximation, 2) a standard reduction to
Green’s function based on potential theory Driscoll et al. (1998), and 3) a novel estimate of Green’s
function associated with multiple intervals.

We summarize the main results in the following theorem.

Theorem 2 (Informal version of Theorems 6, 10, 14, 15 and 21) BSLS solves the multiscale op-
timization problem to ε-optimality with Õ(

∏
i∈[m] κi) gradient evaluations. The accelerated version

AcBSLS solves to ε-optimality with Õ(
∏
i∈[m]

√
κi) gradient evaluations. Both BSLS and AcBSLS

only require logarithmic bits of precision and use Õ(d) and Õ(md) space, respectively. Further,
AcBSLS is worst-case optimal across first-order deterministic algorithms up to poly-logarithmic
factors.

In the case where the objective in Theorem 1 is quadratic, we show that the conjugate gradient
method (CG) (Hestenes and Stiefel, 1952) also solves the problem with Õ(

∏
i∈[m]

√
κi) gradient

queries and is numerically stable (see Appendix F.6). AcBSLS matches this performance in the
quadratic setting and further extends the guarantee to a much broader class of non-quadratic problems.
We discuss this implication further in Section 4.

Remark 3 We provide several remarks on the setup of the multiscale optimization and our results.

(a) Theorem 1 does not assume knowledge of the decomposition. If in addition one assumes that the
decompositions (i.e., fi and Pi) are individually accessible, the problem can be solved much
more efficiently (and more trivially), using Õ(

∑
i∈[m]

√
κi) sub-objective gradient queries (see

Appendix F.2), in contrast to Õ(
∏
i∈[m]

√
κi).

(b) Given the existence of efficient algorithms if the decomposition is known, one may be tempted to
first recover the decomposition (fi and Pi) before solving. However, we show in Appendix F.3
that recovering the Pi with access to a gradient oracle is costly, in that it takes Ω(d) queries in
the worst case.

(c) Theorem 1 assumes orthogonality conditions on {Pi}i∈[m]. We remark that some amount of
disjointness is critical to obtaining these upper bounds. In Appendix F.5 we show a Ω(

√
κglob)

lower bound on the complexity of the problem without such an orthogonality assumption.

(d) Our algorithms do not necessarily require the knowledge of all the µi and Li’s. In fact, due to
a simple grid-search, our theorems only require that m,µ1, Lm and

∏
i∈[m] κi are known to

obtain the claimed asymptotic query complexity (see Appendix F.1).
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Figure 1: A numerical example demonstrating the effi-
ciency of BSLS and AcBSLS. Our objective is f(x) =
1
2x

>Ax−b>x, where A has eigenvalues in [0.0001, 0.0002]∪
[1, 10]. This objective satisfies Theorem 1 with κ1 = 2,
κ2 = 10 and κglob = 105. We compare BSLS and AcBSLS
with Gradient Descent (GD) with constant step-size, Gradi-
ent Descent with exact line search, and Accelerated Gradient
Descent (AGD). Observe that AcBSLS and BSLS clearly out-
perform the other algorithms.

Next, we consider the following stochastic, quadratic variant of the multiscale optimization.

Definition 4 (Stochastic Quadratic Multiscale Optimization Problem) The stochastic
quadratic multiscale optimization problem asks to approximately solve the following prob-
lem minx∈Rd E(a,b)∼D

[
1
2(a

>x− b)2
]
, where b = a>x? for some fixed, unknown x? and the

eigenvalues of the covariance matrix ED[aa
>] can be partitioned into m “bands” such that for

i = 1, . . . ,m and j = 1, . . . , di, each eigenvalue λij satisfies λij ∈ [µi, Li] with Li < µi+1 ∀i < m.

This objective is a special case of the multiscale optimization problem in Definition 1 where
each fi is a quadratic function of x (we make the connection explicit in Section E). Therefore, in
the non-stochastic case where we have access to noiseless gradients of f(x), our guarantees for
AcBSLS imply that the problem can be solved with Õ(

∏
i∈[m]

√
κi) gradient evaluations. In the

next theorem we show that StochBSLS provides similar performance guarantees which are robust
to stochasticity.

Theorem 5 (Informal version of Theorem 11) Under certain second-order independence and fourth
moment assumptions on D, StochBSLS solves the stochastic quadratic multiscale optimization
problem in expectation with ε-optimality using d ·

∏
i∈[m] Õ(κ2i ) stochastic gradient queries and

Õ(d) space.

2. Prior work

There is a vast literature on designing and analyzing first-order methods. Here, we survey several
lines of research that are most closely related to our contributions.

Complexity measures for first-order methods. There are many results which consider notions
other than smoothness and strong convexity for first-order methods. Some examples of this is work on
star-convexity (Guminov and Gasnikov, 2017; Nesterov et al., 2018; Hinder et al., 2020), quasi-strong
convexity (Necoara et al., 2019), semi-convexity (Van Ngai and Penot, 2007), the quadratic growth
condition (Pang, 1997; Anitescu, 2000), the error bound property (Luo and Tseng, 1993; Fabian
et al., 2010), restricted strong convexity (Zhang and Yin, 2013; Zhang and Cheng, 2015) and Hölder
continuity (Zhang and Yin, 2013; Devolder et al., 2014; Yashtini, 2016; Grimmer, 2019). However,
we are unaware of notions of fine-grained condition numbers for non-linear or stochastic problems
appearing previously in the literature.
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Structured linear systems. As mentioned before, the conjugate gradient method also solves the
quadratic, noiseless version of the multiscale optimization problem. We refer the reader to some of
the surveys for more discussion, including various preconditioning procedures (Greenbaum, 1997;
Saad, 2003; Nocedal and Wright, 2006b). There is also work on improving the condition number
dependence of first-order methods to an average condition number (ratio of the average of the
eigenvalues of the Hessian and the smallest eigenvalue), which can be smaller than the condition
number (Johnson and Zhang, 2013; Shalev-Shwartz and Zhang, 2013; Musco et al., 2018b). There
is also work on preconditioning the matrix by deflating large eigenvalues and hence reducing the
average condition number in cases with a few very large eigenvalues (Gonen et al., 2016; Musco
et al., 2018b).

Nonlinear CG. Various nonlinear versions of CG have also been proposed such as Fletcher-Reeves
(FR) method (Fletcher and Reeves, 1964) and Polak-Ribière (PR) method (Polak and Ribiere, 1969).
These methods are effective in practice and have been widely applied by the numerical optimization
community (Nocedal and Wright, 2006a; Hager and Zhang, 2006; Dai, 2011). However, for nonlinear
CG, there is still a substantial gap between its practical performance and our theoretical understanding.
On the negative side, it is known from Chap. 7 of Nemirovski and Yudin (1983) that the FR and PR
method do not match the accelerated GD rate Õ(√κglob).

Adaptive step sizes for gradient descent. Similar to BSLS and its variants, previous works have
also explored the use of an adaptive step size sequence. For example, the Barzilai-Borwein method
(Barzilai and Borwein, 1988) is a chaotic method which makes progress by making large step sizes
and then correcting errors. Malitsky and Mishchenko (2019) provide a gradient descent method
with step sizes that adapt to local geometry, without the use of a line search. Agarwal et al. (2021)
show that for quadratic objectives, vanilla gradient descent with interlaced small and large step sizes
achieves acceleration without the use of momentum. However, these papers do not consider our
multiscale optimization problem setup and as far as we are aware these algorithms cannot recover the
same complexity results. We also note that cyclical learning rate schedules such as those employed
by BSLS have also been applied in deep learning (Loshchilov and Hutter, 2016; Smith, 2017; Fu
et al., 2019) and it could be interesting to extend the present work to provide a theoretical grounding
to these methods.

Leveraging second-order structure via first-order methods. There is a large body of work on
methods to approximate second-order information including quasi-Newton methods such as DFP
(Davidon, 1991), BFGS (Broyden, 1970), L-BFGS (Nocedal, 1980; Liu and Nocedal, 1989), methods
based on subsampling and sketching the Hessian (Pilanci and Wainwright, 2017; Xu et al., 2020;
Roosta-Khorasani and Mahoney, 2019), methods which learn diagonal preconditioners such as
AdaGrad (Duchi et al., 2011) and Adam (Kingma and Ba, 2014), stochastic second order methods
(Agarwal et al., 2017) and Newton-CG (Royer et al., 2019; Curtis et al., 2021). Carmon and Duchi
(2018) also provide accelerated methods that only use gradient and Hessian-vector queries and
improve on the complexity of gradient descent for finding stationary points for certain non-convex
problems. However, it is not known whether any of these algorithms achieves a worst-case complexity
that does not depend polynomially on the overall condition number.

Stochastic methods. Stochastic gradient methods are the workhorse for large scale optimization
and machine learning problems (Bottou and Bousquet, 2008) and there is extensive work on stochastic
gradient algorithms for solving linear systems, including randomized Kaczmarz (Strohmer and
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Vershynin, 2006; Needell et al., 2016), variance reduction techniques (Johnson and Zhang, 2013;
Zhang et al., 2013; Schmidt et al., 2017) and accelerated methods (Liu and Wright, 2016; Allen-Zhu,
2017; Jain et al., 2018). However, the complexity of all these methods depends polynomially on
some measure of eigenvalue range or conditioning of the underlying matrix.

Lower bounds. Starting with the seminal work of Nemirovski and Yudin (1983), there is a rich
body of work on lower bounds for first-order methods. More recently, several works have extended
these results to randomized algorithms (Woodworth and Srebro, 2017; Simchowitz, 2018; Braverman
et al., 2020; Woodworth, 2021), and we use these results to show necessity of the orthogonality
assumption in the multiscale optimization problem. To show query-complexity lower bounds for
first-order methods for the multiscale optimization problem, we show a reduction from a first-order
lower bound to a polynomial approximation problem on multiple intervals. There is extensive
literature on polynomial approximations we leverage here, especially the work of Widom (1969)
(more references appear in Section D). We also note that there is a long history of relating the
convergence rates of optimization algorithms to polynomial approximation problems, including the
work of Greenbaum (1989a); Musco et al. (2018a) on convergence of Lanczos and CG.

3. Approach and results

In this section we give an overview of our algorithms and results.

3.1. Big-Step-Little-Step Algorithm (BSLS)

We begin by introducing our main algorithm “Big-Step-Little-Step” (BSLS) for the multiscale
optimization problem (Theorem 1). As the name suggests, BSLS adopts the idea of running a series
of gradient descent steps with alternating step-sizes ranging from L−1

m to L−1
1 . To see the rationale

behind alternating step-sizes consider the simple case of m = 2 sub-objectives. If we were to run
one step of GD on f , the smoother sub-objective f1 would favor a “big step” of size L−1

1 , while
the less smooth f2 would favor a “little step” of size L−1

2 . In fact, the “big-step” will decrease f1
considerably (by a factor of 1− κ−1

1 ), but it may also increase f2 (by no more than a factor of κ2glob).
On the other hand, the “little-step” will decrease f2 considerably (by a factor of 1− κ−1

2 ), but will
not decrease f1 substantially (though it will not increase f1 either). Thus, in order to make progress
on both f1 and f2 efficiently, one could run one big step, followed by multiple little steps to fix the
increase in f2 from the previous large step-size. The BSLS algorithm is a careful interleaving of
these big and little steps. This intuition extends readily to the case of m > 2 sub-objectives with a
recursive framework (see Algorithm 1). We begin by executing BSLS1(x(0)) on the initialization
x(0). We explain the recursive procedure via an illustrative example in Fig. 2.

The following theorem characterizes the convergence rate of BSLS. The proof appears in
Appendix B.1.

Theorem 6 In the multiscale optimization (Def. 1), for any x(0) and ε > 0, BSLS1(x(0)) returns

an ε-optimal solution with O
((∏

i∈[m] κi

)
·
(
logm−1 κglob

)
· log

(
f(x(0))−f?

ε

))
gradient queries

when {(µi, Li), i ∈ [m]} are known. Moreover in the case where {(µi, Li), i ∈ [m]} are unknown
and only m, µ1, Lm and πκ =

∏
i∈[m] κi are known, we can achieve the same asymptotic sample

complexity (up to constant factors suppressed in the O(·)).
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Algorithm 1 Big-Step-Little-Step Algorithm

Procedure GD(x;L)
1: return x− 1

L · ∇f(x)
Procedure BSLSi (x(0))

1: Ti ←

{⌈
κ1 log

(
f(x(0))−f?

ε

)⌉
if i = 1,

dκi · (2 log κglob + 1)e otherwise.
2: for t = 0, 1, . . . , Ti − 1 do
3: x̃(t) ← BSLSi+1(x

(t)) if i < m, or x(t) otherwise.
4: x(t+1) ← GD(x̃(t);Li)
5: return BSLSi+1(x

(Ti)) if i < m, or x(Ti) otherwise.

Figure 2: An illustrative example of BSLS (Algorithm 1)
with m = 3, T1 = 2, T2 = 1, T3 = 3. The algorithm starts
by executing BSLS1(x

(0)) at initialization x(0). BSLS1 will
invoke BSLS2 for T1 + 1 = 3 times, with two “big” steps
(GD of step-size 1/L1) in between. Within each invocation of
BSLS2, it will invoke BSLS3 for T2 + 1 = 2 times, with one
“medium” step (GD of step-size 1/L2) in between. BSLS3 only
consists of T3 = 3 little steps (GD of step-size 1/L3) since
m = 3 is the final layer. Therefore, BSLS1 effectively consists
of 3 types of gradient steps structured in an interlacing order.

iterations

1/L3

1/L2

1/L1

st
ep

 si
ze

BSLS1 BSLS2 BSLS3

Given the rationale behind BSLS, it is natural to ask whether such a careful step-size sequence is
necessary to obtain fast convergence. Perhaps by simply performing line-searches in the direction
of the gradient we can obtain a method which automatically finds the appropriate scale to make
progress? As we also mentioned earlier in Section 1.1, Appendix F.4 shows that this is not the
case; indeed, we show instances where gradient descent with exact line search or constant step-sizes
require Ω(κglob) gradient evaluations to solve the problem while BSLS only requires O(log(κglob))
gradient evaluations. This illustrates that it can be difficult to directly guess the right step-size and
suggests the need for a step-size schedule such as that employed by BSLS.

3.2. Stability of BSLS and why interlacing order matters

For methods like conjugate gradient, there are known gaps between the best-known theoretical
performance with infinite precision and finite-precision arithmetic (Paige, 1971; Greenbaum, 1989a),
and there are related robustness issues in the face of statistical errors (Polyak, 1987). Consequently,
when designing methods for the multiscale problems we consider, care is needed to ensure methods
perform efficiently even without infinite precision arithmetic. Here, we discuss the stability properties
of BSLS. We first note that under exact arithmetic any reordering of the GD steps in BSLS1 attains
the same convergence rate:

Proposition 7 In the multiscale optimization (Theorem 1), assume all operations are performed
under exact arithmetic. Then any reshuffling of GD steps in BSLS1 (Algorithm 1) attains ε-optimality.
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In contrast, we show that under finite-precision, the interlacing order defined by recursive BSLS
(Algorithm 1) is essential to guarantee the stability. Specifically, we show that our recursive BSLS1
only requires roughly logarithmic bits of precision (per floating-point number) to match the rate of
convergence achieved under exact arithmetic, in contrast to potentially (at least) polynomial bits of
precision for problematic orderings.

To understand why order matters in finite-precision, let us again consider simply m = 2 sub-
objectives. Theorem 7 suggests a total of Θ̃(κ1) big steps and Θ̃(κ1κ2) little steps are needed to
attain ε-optimality under exact arithmetic. Consider a problematic ordering: begin with Θ̃(κ1) big
steps altogether and end with little steps altogether. With this ordering, the initial Θ̃(κ1) big steps

will amplify the error of f2 by κΘ̃(κ1)
glob . Under finite-precision, one needs Θ̃(κ1) bits of precision to

keep track of this growth, which is polynomial in the condition numbers. The same arguments apply
if one runs all the Θ̃(κ1κ2) little steps first — polynomial bits of precision are needed to secure
the progress made by the little steps in f1 before the big steps bring the error up. In contrast, our
recursive BSLS (Algorithm 1) overcomes this issue because the progress of all sub-objectives is
balanced thanks to the interlacing step-sizes. We demonstrate this phenomenon in Fig. 3 with a
numerical example. We formally prove the stability of (recursive) BSLS in Appendix B.2.
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Figure 3: Importance of interlacing order in BSLS un-
der finite-precision arithmetic. Our objective is f(x) =
1
2x

>Ax−b>x, where A has eigenvalues in [0.001, 0.002]∪
[0.5, 1]. We consider three different step-size orderings, each
running 20 big steps and 240 little steps in total. The first
(solid) line runs BSLS1 (Algorithm 1), namely every big step
is followed by 12 little steps. The second (dotted) line runs all
little steps before the big steps. The third (dashed) line runs all
big steps before the little steps. Observe that only the princi-
pled BSLS converges under finite arithmetic (double-precision
floating point format).

3.3. Accelerated Big-Step-Little-Step algorithm (AcBSLS)

We provide an accelerated version of BSLS algorithm, namely Accelerated BSLS (AcBSLS), which
with O

((∏
i∈[m]

√
κi

)
· logm−1 κglob · log

(
f(x(0))−f?

ε

))
gradient queries solves the multiscale

optimization problem (Theorem 1) up-to ε-optimality. As we will see below, AcBSLS is optimal
across first-order deterministic methods up-to poly-logarithmic factors.

AcBSLS shares the similar motivations of adopting alternating step-sizes as in BSLS. Instead of
running GD, AcBSLS runs Accelerated Gradient Descent (AGD) with various “step-sizes”. Formally,
we use AGD(x,v;L, µ) to denote one-step of AGD with smooth estimate L and convexity estimate
µ (see the first block of Algorithm 2 for definitions). The AcBSLS algorithm (the second block of
Algorithm 2) then follows a similar recursive structure as in BSLS defined in Algorithm 1.

The major difference between AcBSLS and the (un-accelerated) BSLS lies in the difficulties of
fixing the larger (less-smooth) sub-objectives after executing the big step-sizes. To understand this
challenge, let us consider the simple case with only m = 2 sub-objectives. Recall that in BSLS, after
executing one big GD step, we run T2 little GD steps to fix the surge in f2. This is backed by the
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fact that little GD steps will not increase the smaller (smoother) sub-objective f1, as suggested by
Theorem 12. Unfortunately, this relation does not trivially extend to the accelerated setting, because
AGD(x,v;L2, µ2) may not keep the joint progress of x,v in f1. Consequently, we adopt a more
sophisticated branching strategy that fixes x and v separately, see Line 5 of AcBSLSi in Algorithm 2.
We refer readers to Appendix C.3 for a numerical example on the non-convergence of naive AcBSLS
without branching.

Algorithm 2 Accelerated Big-Step-Little-Step Algorithm

Procedure AGD(x,v;L, µ)

1: κ← L/µ; α←
√
κ√
κ+1

; β ← 1− 1√
κ

2: y← αx+ (1− α)v; v+ ← βv + (1− β)(y − 1
µ∇f(y)); x+ ← y − 1

L∇f(y).
3: return (x+,v+)

Procedure AcBSLSi (x(0),v(0))
1: for t = 0, 1, . . . , Ti − 1 do

2: Ti ←


⌈√

κ1 log
(
2(f(x(0))−f?)

ε

)⌉
if i = 1,⌈√

κi(log(4κ
4
glob) + 1)

⌉
otherwise.

3: (x̃(t), ṽ(t))← AGD(x(t),v(t);Li, µi)
4: if i < m then
5: (x(t+1), )← AcBSLSi+1(x̃

(t), x̃(t)); ( ,v(t+1))← AcBSLSi+1(ṽ
(t), ṽ(t))

6: else
7: (x(t+1),v(t+1))← (x̃(t), ṽ(t))
8: return (x(Ti),v(Ti))

We specialize the initialization x(0) and v(0) to be the same to simplify the exposition of
the theorem. We present and prove a general version of Theorem 8 with arbitrary x(0),v(0) in
Appendix C.

Theorem 8 (Simplified from Theorem 15) In the multiscale optimization (Theorem 1),
for any x(0) and ε > 0, AcBSLS(x(0),x(0)) returns an ε-optimal solution with

O
((∏

i∈[m]

√
κi

)
·
(
logm−1 κglob

)
· log

(
f(x(0))−f?

ε

))
gradient queries when {(µi, Li), i ∈ [m]}

are known. Moreover in the case where {(µi, Li), i ∈ [m]} are unknown and only m, µ1, Lm and
πκ =

∏
i∈[m] κi are known, we can achieve the same asymptotic sample complexity (up to constant

factors suppressed in the O(·)).

Similar to (un-accelerated) BSLS, under finite-precision arithmetic, AcBSLS can also attain the
same rate of convergence with only logarithmic bits of precision. We defer the formal discussion to
Appendix C.2.

3.4. Lower bound for the multi-scale optimization problem

We demonstrate the optimality of AcBSLS (up to poly-logarithmic factors) by establishing the mini-
max complexity lower bound of the multiscale optimization problem (Theorem 1) across first-order
deterministic algorithm. We start by introducing the formal definition of a first-order deterministic
algorithm from Carmon et al. (2021).

10
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Definition 9 (Definition of first-order deterministic algorithms from Carmon et al. (2021)) An
algorithm A operating on f : Rd → R is a first-order deterministic algorithm if it produces it-
erates {x(t)}∞t=1 of the form x(t) = A(t)(f(x(1)),∇f(x(1)), . . . , f(x(t−1)),∇f(x(t−1))), where
A(t) : R(d+1)(t−1) → Rd is measurable (the dependency on d is implicit).

Note that the algorithm class considered in Theorem 9 is fairly general. For example, the definition
does not require the algorithm to query points in the span of the previous gradients as in the some
classic literature (Nemirovsky, 1991, 1992; Nesterov, 2018) (we refer readers to Carmon et al. (2020)
for more detailed discussions on the generality of this function class). The formal statement of our
lower bound is as follows and the proof is relegated to Appendix D.

Theorem 10 (Lower bound of first-order deterministic algorithms for multiscale optimization)
For any µj , Lj such that minj∈[m] κj ≥ 2, for any deterministic first-order algorithm A defined in

Theorem 9, for any t ∈ N, there exists an objective f satisfying Theorem 1 with ‖∇f(0)‖2 ≤ ∆grad

such that

min
τ∈[t]
‖∇f(x(τ))‖2 ≥ exp

− 8t√∏
i∈[m] κi ·

∏
i∈[m−1]

(
0.03 · log(16µi+1

Li
)
)
∆grad.

Theorem 10 shows that our proposed AcBSLS is optimal up-to a poly-log factor due to the
shared polynomial dependency Θ(

∏
i∈[m]

√
κi). Theorem 10 also reveals the necessity of the poly-

logarithmic dependence on κglob. For example, when the spectrum bands are evenly spaced such that
µi+1

Li
≡ κgap and κi � κgap, then

∏m−1
i=1 log µi+1

Li
≈ logm−1(κ

1
m−1

glob ) =
logm−1(κglob)

(m−1)m−1 , which yields
the same asymptotic dependency on κglob as in the upper bound of AcBSLS (Theorem 15).

3.5. Stochastic BSLS

Recall the stochastic version of a quadratic multiscale optimization problem from Theorem 4. We
find that a variant of the BSLS algorithm efficiently solves this problem. We define the stochastic
analog of BSLS in Algorithm 3, which we call StochBSLS.

Our proofs require that the distribution D generating samples (a, b) must satisfy a kind of
“second-order independence” in the projected space Pa; for any triple of distinct i, j, k we must
have that E[(Pa)i(Pa)2k(Pa)j ] = 0. Note that this assumption is satisfied for natural distributions
such as a ∼ N(0,Σ) whenever P diagonalizes the covariance Σ. For a few more non-trivial
examples of distributions which satisfy this assumption see Theorem 95. We define Kurt(D) as the
kurtosis of the distribution, which is the smallest constant such that for any w ∈ Rd, E[(w>a)4] ≤
Kurt(D)E[(w>a)2]2. In the case where a ∼ N(0,Σ) we have Kurt(D) = 3. The kurtosis of
the distribution will play a role in the necessary number of stochastic gradient queries taken by
StochBSLS. We establish the following theorem, the proof of which is relegated to Appendix E.

Theorem 11 Consider the stochastic quadratic multiscale optimization problem from Definition 4.
Suppose D is such that for any i, j, k ∈ [d], E[(Pa)i(Pa)2k(Pa)j ] = 0, unless i = j and for any
w ∈ Rd, E[(w>a)4] ≤ Kurt(D)E[(w>a)2]2. If m ≤ log(κglob)/3 and {µi, Li}i∈m are known,

then given any x(0) let T1 =
⌈
κ1 log(9

∥∥x(0) − x?
∥∥2
2
/ε)
⌉
, Ti = 8 dκi log(κglob)e , for i =

2, . . .m, and navg ≥ Kurt(D)dm2
(∏

i∈[m] Ti

) (
maxi∈[m] Ti

)
. Then StochBSLS1

(
x(0)

)
returns

11
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Algorithm 3 Stochastic Variant of BSLS Algorithm

Procedure SGD(x;L)
1: g← 0
2: for i = 1, . . . , navg do
3: Receive (a(i), b(i)) and update g← g + 1

navg

(
(a(i)>x)− b(i)

)
a(i)

4: return x− 1
L · g

Procedure StochBSLSi (x(0))

1: Ti ←

{⌈
κ1 log(9

∥∥x(0) − x?
∥∥2
2
/ε)
⌉

if i = 1

8 dκi log(κglob)e otherwise
2: for t = 0, 1, . . . , Ti − 1 do
3: x̃(t) ← StochBSLSi+1(x

(t)) if i < m, or xt otherwise
4: x(t+1) ← SGD(x̃(t);Li)
5: return StochBSLSi+1(x

(Ti)) if i < m, or x(Ti) otherwise

an ε-optimal solution in expectation using Õ(d) space , with a total of O
(
navg · 2m ·

∏
i∈[m] Ti

)
queries of (a, b) ∼ D. If only µ1, Lm, and

∏
i∈m κi are known and there exists some K such that

∥∥∥Σ−1/2a
∥∥∥
2
≤ K

(
Ea∼D

∥∥∥Σ−1/2a
∥∥∥2
2

)1/2

, (3.1)

then we can solve the stochastic quadratic multiscale optimization problem with an extra multiplica-
tive factor of O

(
K2d log 4d

δ

(
1 +

√
ε
δ

))
more queries of (a, b) ∼ D.

4. Implications and future directions

We view the multiscale optimization problem and our algorithmic results as promising first steps
towards obtaining a more fine-grained complexity of convex optimization which goes beyond
condition number. Though we give near-optimal rates for solving a class of smooth strongly-convex
optimization problems, our work still leaves a number of open directions. Key among them are
whether we can design methods with the full practical flexibility and applicability of methods like
non-linear CG and limited-memory Quasi-Newton methods that have theoretical grounding as well,
in the sense that they solve the types of problems that this work proposes. For instance, is there
a variant of non-linear CG or limited-memory Quasi-Newton methods that provably solves our
multiscale optimization problem, or a stochastic version of CG which solves the stochastic quadratic
problem? More broadly, our work raises several intriguing questions regarding the role of memory in
optimization, and when it is possible to achieve the convergence rates of second-order methods with
only linear memory. Further, though we have established lower bounds on multiple modifications
of our multiscale optimization problem, there are several natural related problems for which it
remains open to develop fast methods—for example, problems for which the Hessian has some sort
of consistent multi-scale structure and cases where the problems at different scales interact instead of
being completely orthogonal.

We now further elaborate on some of these implications and directions.

12
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Space limited optimization. Recall that both BSLS and StochBSLS work in Õ(d) space, and
AcBSLS uses Õ(dm) space. Despite using linear memory, our algorithms only suffer a polyloga-
rithmic dependence on the overall condition number κglob. In this context, they serve as a bridge
between quadratic-memory second-order methods which achieve a logarithmic dependence on the
condition number, and previous linear-memory first-order methods which usually have a worse
polynomial dependence on the condition number. For the stochastic case, we are unaware of any
previous algorithm which only uses linear memory but still has a polylogarithmic dependence on
κglob. In fact, some recent work (Sharan et al., 2019; Woodworth and Srebro, 2019) conjectures that
a polynomial dependence on κglob is in general unavoidable for sub-quadratic memory algorithms.
Our work shows that, at least for the structured problems we consider, it is possible to match the
polylogarithmic dependence on κglob of second-order methods, while only using linear memory, and
raises the question of whether this is possible for a larger class of problems.

History and structure in accelerated methods. Our near-optimal accelerated method stores up
to 2m points at a time; this is in contrast to CG, non-linear CG, and standard accelerated methods
(Nesterov, 1983) which store at most two points. It is an interesting open problem as to whether our
space bound for accelerated methods could be improved. If not this raises several questions about
the power of using additional history and memory in first-order methods.

Stochastic CG. We note that the StochBSLS algorithm for the stochastic quadratic version of the
multiscale optimization problem does not obtain an accelerated convergence rate. We suspect that the
natural stochastic analog of CG where we approximate any matrix-vector products over a sufficiently
large set of samples does obtain an accelerated convergence rate for the stochastic quadratic problem,
and showing this is an interesting direction for future work. This algorithm would additionally have
the desirable property of not needing to guess the eigenvalues of the quadratic problem nor requiring
a step size schedule.

Optimization problems with diagonal scaling. Another interesting direction is to consider non-
linear, convex optimization problems which are diagonally scaled (x→ Dx for a diagonal matrix
D). This does not directly fit within our framework of Theorem 1 because the different scales could
interact, but we believe the ideas in this paper may extend to this setting. We remark that our results
do apply to the quadratic version of this problem and believe that methods like Newton-CG may be
applicable in the non-quadratic case. Further understanding and extending this setting could pave the
way for developing algorithms beyond AdaGrad for handling scaling in optimization problems.
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Appendix A. General notation

Let [n] denote the set {1, 2, . . . , n}. We use bold lower-case letter (e.g., x) to denote vectors, bold
upper-case letter (e.g., A) to denote matrices. We use I to denote identity matrix, 1 to denote all-1
vector, 0 to denote all-zero vectors or matrices, ei to denote i-th unit vector (i-th column of I).
When comparing two vectors or matrices, the ordinary inequality signs (≤,≥) denote element-wise
inequality. For example, A ≥ 0 means A is a non-negative matrix. When comparing two matrices,
(�,�) denote spectrum inequality. For example, A � 0 means A is a positive semi-definite matrix.
We use ‖ · ‖1 to denote vector `1 or matrix `1-operator (row-sum) norm, ‖ · ‖2 to denote vector `2
norm or matrix `2-operator (spectrum) norm. For any function f we use f? to denote the optimum
(minimum) value of f .

Appendix B. BSLS algorithm for multiscale optimization

In this section, we provide the formal proof of Theorem 6 in Appendix B.1, and then formally
establish the stability of BSLS in Appendix B.2.

B.1. Proof of Theorem 6 and Theorem 7: BSLS under exact arithmetic

Here we formalize the aforementioned intuition and prove Theorem 6. To begin, we first study the
effect of GD(x;Li) on various subspaces j ∈ [m].

Lemma 12 In the setting of Theorem 6, for any x and i, j ∈ [m],

fj(PjGD(x;Li))− f?j ≤
(
fj(Pjx)− f?j

)
·


1 j < i

1− κ−1
i j = i

κ2glob j ≥ i.

Proof [Proof of Lemma 12] Let x+ denote the result of GD(x;Li). By Lj-smoothness of fj , we
have

fj(Pjx+)− f?j ≤ fj(Pjx)− f?j +

(
− 1

Li
+

Lj
2L2

i

)
‖∇fj(Pjx)‖22 . (B.1)

Now we consider the three possible cases j = i, j < i and j > i separately.

(a) For j = i, the inequality Eq. (B.1) becomes

fj(Pjx+)− f?j ≤ fj(Pjx)− f?j −
1

2Lj
‖∇fj(Pjx)‖22 .

By µj-strong-convexity of fj we have ‖∇fj(Pjx)‖22 ≥ 2µj(fj(Pjx)−f?j ). Thus fj(Pjx+)−
f?j ≤ (1− κ−1

j )(fj(Pjx)− f?j ).

(b) For j < i, the coefficient of the second term of Eq. (B.1) is non-positive since Lj ≤ Li. Hence
fj(Pjx+)− f?j ≤ fj(Pjx)− f?j .
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(c) For j > i, first observe that by µj-strong convexity and Lj-smoothness of fj , one has
2Lj(fj(Pjx) − f?j ) ≥ ‖∇fj(Pjx)‖22 ≥ 2µj(fj(Pjx) − f?j ). Therefore by Eq. (B.1), we
have

fj(Pjx+)− f?j ≤

(
1− 2µj

Li
+
L2
j

L2
i

)
(fj(Pjx)− f?j ) ≤

(
−1 + κ2glob

)
(fj(Pjx)− f?j ),

where the last inequality is due to µj ≥ Li and Lj

Li
≤ κglob by definition of κglob.

Summarizing the above cases completes the proof of Theorem 12.

With Lemma 12 at hand we are ready to prove Theorem 6.
Proof [Proof of Theorem 6] By expanding the BSLS procedure, we observe that BSLS1(·) consists
of Tj ·

∏j−1
k=1(Tk + 1) steps of GD(·;Lj) in total, for j ∈ [m]. Therefore, by Theorem 12, for any

i ∈ [m], the following inequality holds

fi(PiBSLS1(x
(0)))− f?i ≤ κ

2
∑i−1

j=1 Tj
∏j−1

k=1(Tk+1)

glob ·
(
1− κ−1

i

)Ti∏i−1
j=1(Tj+1)

(fi(Pix
(0))− f?i )

≤ exp

2 log κglob ·
i−1∑
j=1

Tj

j−1∏
k=1

(Tk + 1)− κ−1
i Ti

i−1∏
j=1

(Tj + 1)︸ ︷︷ ︸
denoted as γi

 (fi(Pix
(0))− f?i ).

(since 1− x ≤ e−x)

It remains to upper bound γi. For i = 1, by definition, we have γi := −κ−1
1 T1 ≤ log

(
ε

f(x(0))−f?

)
due to the choice of T1. For i > 1, we observe that

γi − γi−1 = 2 log κglob · Ti−1 ·
i−2∏
j=1

(Tj + 1)− κ−1
i Ti

i−1∏
j=1

(Tj + 1) + κ−1
i−1Ti−1

i−2∏
j=1

(Tj + 1)

≤

Ti−1

i−2∏
j=1

(Tj + 1)

 · (−κ−1
i Ti + κ−1

i−1 + 2 log κglob
)
.

Since Ti ≥ κi(2 log κglob + 1) (due to the choice of Ti) we obtain γi − γi−1 ≤
(∏i−1

j=1 Tj

)
·(

−1 + κ−1
i−1

)
≤ 0. Consequently, γm ≤ γm−1 ≤ · · · ≤ γ1 ≤ log

(
ε

f(x(0))−f?

)
. Therefore for all

i ∈ [m], fi(PiBSLS1(x(0))) − f?i ≤ exp(γi)
(
fi(Pix

(0))− f?i
)
≤ ε

f(x(0))−f?
(
fi(Pix

(0))− f?i
)
.

Summing over all i ∈ [m] gives f(BSLS1(x(0)))− f? ≤ ε.
To show the last part of Theorem 6 regarding the setting where the parameters {(µi, Li), i ∈ [m]}

are unknown, we do a black-box reduction from the case where the parameters are known to when
only m,µ1, Lm and πκ are known.

Proposition 13 Let πκ =
∏
i∈[m] κi. An algorithm A which solves the multiscale optimization

problem in Definition 1 to sub-optimality ε with T (πκ, κglob,m, ε) gradient queries when the
parameters (µi, Li) are known, can be used to solve the multiscale optimization problem with
T (πκ2

5m, κglob,m, ε) ·O(logm(κglob)) gradient queries when only m, µ1, Lm and πκ are known.
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The proof Proposition 13 works by simply doing a brute force search over all the parameters over
a suitable grid and appears in Appendix F.1. The last part of Theorem 6 now follows.

The re-ordering Theorem 7 holds because Theorem 6 only leverages the fact that BSLS1(·)
consists of Θ(

∏j
k=1 Tk) steps of GD(·;Lj) in total, for j ∈ [m].

B.2. Theory on the stability of BSLS: why interlacing order matters

Now we verify the intuition above and theoretically justify the stability of BSLS (Algorithm 1).
For clarity, let ĜD be the finite-precision implementation of GD, and B̂SLSi be the finite-precision
implementation of BSLSi by replacing GD with ĜD. To understand finite-precision behavior without
going into excessive details of low-level implementation, we impose the following Requirement 1
that ĜD returns a δ-multiplicative approximation of the exact GD. Requirement 1 is reminiscent of
the “correct rounding” requirement on basic operations in IEEE standard (c.f. Chap. 6 of Overton
(2001)). Technically, if GD operator is well-conditioned (and no overflow or underflow occurs), then
Req. 1 can be satisfied by a floating-point system with O(log(1/δ)) bits (c.f. Chap. 12 of Overton
(2001)).

Requirement 1 There exists a δ < 1 such that for any x and i, for x+ ← GD(x;Li) and x̂+ ←
ĜD(x;Li), it is the case that |x̂+ − x+| ≤ δ|x+|, where | · | denotes element-wise absolute value.

In the following Theorem 14, we prove that finite-precision B̂SLS1 can match the exact arithmetic
rate under only logarithmic bits of precision in that δ only has to be polynomially small. As
a conclusion, BSLS can be implemented stably with Õ(d) bits of memory. We specialize the
initialization x(0) to 0 to simplify the exposition of the theorem. In Appendix G, we provide and
prove the general version with arbitrary x(0).

Theorem 14 (BSLS under finite-precision arithmetic) Consider multiscale optimization problem
(Theorem 1), for any ε > 0, assuming Requirement 1 with

δ−1 ≥ m · (10κglob)2m−1 · (f(0)− f
?)

ε
·

∏
i∈[m]

Ti

 ,

then min{f(0), f(B̂SLS1(0))} − f? ≤ 3ε provided that T1, . . . , Tm satisfy

T1 ≥ κ1 log
(
f(0)− f?

ε

)
; Ti ≥ κi(2 log(κglob) + 1), for i = 2, . . . ,m,

when {(µi, Li), i ∈ [m]} are known. We can also achieve the same asympototic sample complexity
(up to constant factors suppressed in the O(·)) when {(µi, Li), i ∈ [m]} are unknown and only m,
µ1, Lm and πκ =

∏m
i=1 κi are known.

The proof of Theorem 14 is relegated to Appendix G.
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Appendix C. Accelerated BSLS algorithm for multiscale optimization

In this section, we first state and prove the extended version of Theorem 8 on the complexity of
AcBSLS with general (x(0),v(0)). Then we establish the stability result of AcBSLS in Appendix C.2.
Finally, we discuss in Appendix C.3 on the necessity of branching procedure in AcBSLS.

We will use standard potentials from accelerated GD to monitor the progress of AcBSLS. For
any i ∈ [m] and x, define

∆i(x) := fi(Pix)− f?i , ri(x) :=
µi
2
‖Pi(x− x?)‖22.

For any x,v pair, define

ψi(x,v) := ∆i(x) + ri(v), ψ(x,v) :=
∑
i∈[m]

ψi(x,v).

We establish the following theorem.

Theorem 15 (AcBSLS with exact arithmetic) Consider multiscale optimization problem defined
in Theorem 1, for any initialization (x(0),v(0)) and ε > 0, then ψ(AcBSLS1(x(0),v(0))) ≤ ε
provided that T1, . . . , Tm satisfy

T1 ≥
√
κ1 log

(
ψ(x(0),v(0))

ε

)
, Ti ≥

√
κi(log(4κ

4
glob) + 1), for i = 2, . . . ,m, (C.1)

when {(µi, Li), i ∈ [m]} are known, and the total number of gradient queries which AcBSLS makes
is O(

∏
i∈[m] Ti). We can also achieve the same asymptotic query complexity for finding an ε-optimal

solution (up to constant factors suppressed in the O(·)) when {(µi, Li), i ∈ [m]} are unknown and
only m, µ1, Lm and πκ =

∏m
i=1 κi are known.

C.1. Proof of Theorem 15: AcBSLS under exact arithmetic

The proof plan is as follows. We first study the effect of one AGD step with various “step-sizes”
on each sub-objective in Appendix C.1.1. Then we inductively bound the progress of AcBSLSi
for all i from m down to 1, with i = 1 being the ultimate goal (see Appendix C.1.2). Then we
finish the proof of Theorem 15 in Appendix C.1.3. Note that the last part regarding the case where
{(µi, Li), i ∈ [m]} are unknown follows from our black-box reduction in Proposition 13 (in the
same way as in the proof of Theorem 6).

C.1.1. EFFECT OF ONE AGD STEP WITH VARIOUS “STEP-SIZES”

In this subsection, we study the effect of AGD on all sub-objectives fi’s. The main goal is to establish
the following Lemma 16.

Lemma 16 (Effect of one AGD step with various “step-sizes”) Consider multiscale optimization
(Def. 1), for any x,v and i ∈ [m], consider (x+,v+) = AGD(x,v;Li, µi), then

(a) (apply the right step-size) ψi (x+,v+) ≤
(
1− 1√

κi

)
ψi (x,v).

(b) (apply small step-size) For any j < i, the following two inequalities hold
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(i) max {∆j(x+),∆j(v+)} ≤ max {∆j(x),∆j(v)};

(ii) max {rj(x+), rj(v+)} ≤ max {rj(x), rj(v)}.

(c) (apply large step-size) For any j > i, the following three inequalities hold

(i) max {rj(v+), rj(x+)} ≤ κ2globmax {rj(v), rj(x)};

(ii) max {∆j(v+),∆j(x+)} ≤ κ2globmax {∆j(v),∆j(x)};

(iii) ψj(x+,v+) ≤ 2κjκ
2
glob(x,v).

Remark 17 Lemma 16 is supposed to be the counterpart of Lemma 12 (the progress of one-step
GD in (un-accelerated) BSLS). One may be tempted to establish the following (stronger) version of
Lemma 16(b)

ψj(x+,v+) ≤ ψj(x,v), if j < i. (C.2)

If this claim Eq. (C.2) were true, we would be able to guarantee the convergence of naive AcBSLS
(akin to BSLS) without using the branching procedure. Unfortunately, we can show that Eq. (C.2)
is not always true, even for quadratic objective f . That is to say, the potential ψj may not be
conservative under AGD(·, ·;Li, µi) with i > j (a.k.a. AGD with “smaller step-sizes”). We provide
more details on this topic in Appendix C.3, including a numerical experiment against naive AcBSLS.

In Lemma 16, we instead show that max{∆(x+),∆(v+)}, max{r(x+), r(v+)} are non-increasing
under AGD with smaller step-sizes. Since Lemma 16 (a) and (b) keep track of different quantities, we
end up requiring the recursive branching procedure defined in AcBSLS (Algorithm 2).

We now prove Lemma 16.
Proof [Proof of Lemma 16]

(a) The proof of (a) follows by standard accelerated gradient descent analysis Nesterov (2018),
which we state here for completeness. For clarity, let κi = Li

µi
, αi =

√
κi√
κi+1 , βi = 1 − 1√

κi
be

the corresponding κ, α, β in applying AGD(·, ·;Li, µi). Let us restate the recursion for clarity (we
introduce an auxiliary variable z for ease of exposition).

y = αi · x+ (1− αi) · v, z = βi · v + (1− βi) · y,

v+ = z− 1− βi
µi

· ∇f(y), x+ = y − 1

Li
· ∇f(y).

By definition of z, one has

‖Pi(z− x?)‖22 ≤ βi‖Pi(v − x?)‖22 + (1− βi)‖Pi(y − x?)‖22 (by convexity)

≤βi‖Pi(v − x?)‖22 +
2(1− βi)

µi
[f?i − fi(Piy) + 〈Pi∇f(y),Pi(y − x?)〉] .

(by µi-strong-convexity of fi)
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By definition of v+, one has

‖Pi (v+ − x?)‖22 =
∥∥∥∥Pi

(
z− x? − 1− βi

µi
∇f(y)

)∥∥∥∥2
2

=‖Pi(z− x?)‖22 −
2(1− βi)
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(C.3)

Next we bound ¬ and  in (C.3). First note that by definition y− z = βi(y− v) = βi(αi(x− v)),
and x− y = (1− αi)(x− v), we have y − z = βiαi

1−αi
(x− y). Therefore ¬ is bounded as

〈Pi∇f(y),Pi(y − z)〉 = βiαi
(1− αi)

〈Pi∇f(y),Pi(x− y)〉 ≤ βiαi
(1− αi)

(fi(Pix)− fi(Piy)) ,

(C.4)
where the last inequality is by convexity of fi.

To bound , we note that x+ = y − 1
Li
∇f(y), which implies (by Li-smoothness of fi)

fi(Pix+) ≤ fi(Piy)−
〈
∇fi(Piy),

1

Li
Pi∇f(y)

〉
+
Li
2

∥∥∥∥ 1

Li
Pi∇f(y)

∥∥∥∥2
2

= fi(Piy)−
1

2Li
‖Pi∇f(y)‖22 .

Thus  is upper bounded as

‖Pi∇f(y)‖22 ≤ 2Li (fi(Piy)− fi(Pix+)) . (C.5)

Plugging the upper bound (C.4), (C.5) down to (C.3) yields

‖Pi(v+ − x?)‖22 ≤ βi‖Pi(v − x?)‖22 +
2(1− βi)

µi
(f?i − fi(Piy))

+
2(1− βi)

µi

βiαi
(1− αi)

(fi(Pix)− fi(Piy)) +
2Li(1− βi)2

µ2i
(fi(Piy)− fi(Pix+)) .

Substituting αi =
√
κi√
κi+1 and βi = 1− 1√

κi
gives

‖Pi(v+ − x?)‖22+
2

µi
(fi(Pix+)− f?i ) ≤

(
1− 1
√
κi

)(
‖Pi(v − x?)‖22 +

2

µi
(fi(Pix)− f?i )

)
,

which implies ψi(x+,v+) ≤
(
1− 1√

κi

)
ψ(x,v), completing the proof of (a).
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(b) Let κi = Li
µi

, αi =
√
κi√
κi+1 , βi = 1− 1√

κi
be the corresponding κ, α, β in applying AGD(·, ·;Li, µi).

For clarity we restate the algorithm AGD with an auxiliary state w

y = αi · x+ (1− αi) · v, w = y − 1

µi
∇f(y),

v+ = βiv + (1− βi)w, x+ = y − 1

Li
· ∇f(y).

(C.6)

Since α ∈ [0, 1] we have (by convexity)

∆j(y) = fj(Pjy)− f?j ≤ max {fj(Pjx), fj(Pjv)} − f?j = max {∆j(x),∆j(v)} .

Since the step-size of the w-step satisfies 1
µi
≤ 1

Lj
by assumption j < i, we obtain

fj(Pjw) ≤ fj(Pjy)−
1

µi
〈∇fj(Pjy),Pj∇fj(y)〉+

Lj
2

∥∥∥∥ 1

µi
Pj∇fj(y)

∥∥∥∥2
2

≤ fj(Pjy).

For the same reason we have fj(Pjx+) ≤ fj(Pjy) since the x+-step takes an even smaller
step-size. These imply ∆j(w) ≤ ∆j(y) ≤ max {∆j(x),∆j(v)} and ∆j(x+) ≤ ∆j(y) ≤
max {∆j(x),∆j(v)}. By convexity we have ∆j(v+) ≤ max {∆j(v),∆j(w)} ≤ max {∆j(x),∆j(v)},
which completes the proof of the first inequality. The second inequality holds for the same reason.

(c) Let κi = Li
µi

, αi =
√
κi√
κi+1 , βi = 1− 1√

κi
be the corresponding κ, α, β in applying AGD(·, ·;Li, µi).

For clarity we restate the algorithm AGD with an auxiliary state w, as in (C.6).

First note that rj(y) ≤ max {rj(x), rj(v)} since y is a convex combination of x and v. Now we
analyze rj(w)

2
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Since v+ is a convex combination of w and v, we obtain

rj(v+) ≤ max {rj(w), rj(v)} ≤ max

{
L2
j

µ2i
rj(y), rj(v)

}
≤
L2
j

µ2i
max {rj(x), rj(v)} .

Similarly we have

rj(x+) ≤
L2
j

L2
i

rj(y) ≤
L2
j

L2
i

max {rj(x), rj(v)} ,
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which yields the first inequality of (c). The second inequality of (c) holds for the same reason. The
third inequality holds because

ψj(x+,v+) = ∆j(x+) + rj(v+) ≤ max{∆j(x+),∆j(v+)}+max{rj(x+), rj(v+)}
≤κ2glob (max{∆j(x),∆j(v)}+max{rj(x), rj(v)}) (by the first two inequalities)

≤κ2glob (∆j(x) + ∆j(v) + rj(x) + rj(v))

≤κ2glob(κj + 1)(∆j(x) + rj(v)) ≤ 2κ2globκjψj(x,v).

C.1.2. ESTIMATING THE PROGRESS OF AcBSLS

Lemma 18 Under the same settings of Theorem 15, for any (x,v) and i ∈ [m], let (x+,v+) ←
AcBSLSi(x,v), then for any j < i, it is the case that

(a) max{∆j(x+),∆j(v+)} ≤ max{∆j(x),∆j(v)}.

(b) max{rj(x+), rj(v+)} ≤ max{rj(x), rj(v)}.

Proof [Proof of Lemma 18] We will fix j and prove both statements by induction on i in descent
order (from m to j + 1). Throughout the proof we denote (x(0),v(0), x̃(0), ṽ(0), · · · ,x(Ti),v(Ti))
the sequence generated by running AcBSLSi(x,v).

Induction base: for i = m, note that AcBSLSm(·, ·) is equivalent to AGDTm(·, ·;Lm, µm).
Since j < m, Lemma 16(b) suggests max{∆j(x̃

(t)),∆j(ṽ
(t))} ≤ max{∆j(x

(t)),∆j(v
(t))}. Since

i = mwe have x(t+1) = x̃(t) and v(t+1) = ṽ(t), and consequently max{∆j(x
(t+1)),∆j(v

(t+1))} ≤
max{∆j(x

(t)),∆j(v
(t))}. Telescoping t from 0 to Ti yields max{∆j(x+),∆j(v+)} ≤ max{∆j(x),∆j(v)}.

The same arguments hold for (b) as well.
Now suppose the statements hold for i + 1 ≤ m and we study i. Since j < i we can ap-

ply Lemma 16(b) to show that max{∆j(x̃
(t)),∆j(ṽ

(t))} ≤ max{∆j(x
(t)),∆j(v

(t))}. By in-
duction hypothesis we have ∆j(x

(t+1)) ≤ ∆j(x̃
(t)) and ∆j(v

(t+1)) ≤ ∆j(ṽ
(t)). Consequently

max{∆j(x
(t+1)),∆j(v

(t+1))} ≤ max{∆j(x
(t)),∆j(v

(t))}. Telescoping t from 0 to Ti yields
max{∆j(x+),∆j(v+)} ≤ max{∆j(x),∆j(v)}. The same arguments hold for (b) as well.

Lemma 19 Under the same settings of Theorem 15, for any (x,v) and i ∈ [m], let (x+,v+) ←
AcBSLSi(x,v), then ψi(x+,v+) ≤

(
1− 1√

κi

)Ti
ψi(x,v).

Proof [Proof of Lemma 19] Let (x(0),v(0), x̃(0), ṽ(0), · · · ,x(Ti),v(Ti)) be the trajectory generated
by running AcBSLSi(x,v). For i = m, AcBSLSm(·, ·) is equivalent to AGDTm(·, ·;Lm, µm).
Lemma 16(a) suggests that ψi(x(t+1),v(t+1)) ≤ (1− 1√

κm
)ψi(x

(t),v(t)). Telescoping t from 0 to

Tm shows ψi(x+,v+) ≤ (1− 1√
κm

)Tmψi(x,v).

For i < m, we first note that Lemma 16(a) suggests ψi(x̃(t), ṽ(t)) ≤ (1 − 1√
κm

)ψi(x
(t),v(t)).

Since (x(t+1), ) = AcBSLSi+1(x̃
(t), x̃(t)), Lemma 18 suggests that ∆i(x

(t+1)) ≤ ∆i(x̃
(t)). For
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the same reason we have ri(v(t+1)) ≤ ri(ṽ(t)). Consequently ψi(x(t+1),v(t+1)) ≤ ψi(x̃(t), ṽ(t)) ≤
(1− 1√

κm
)ψi(x

(t),v(t)). Telescoping t from 0 to Ti completes the proof.

Lemma 20 Under the same settings of Theorem 15, for any (x,v) and i ∈ [m], let (x+,v+) ←
AcBSLSi(x,v), then for any j ≥ i, the following inequality holds

ψj(x+,v+) ≤ exp

(
− 1
√
κj

j∏
k=i

Tk +

(
j−1∑
k=i

k∏
l=i

Tl

)
log
(
4κ2jκ

2
glob

))
ψj(x,v).

Proof [Proof of Lemma 20] We will fix j and prove by induction on i in descent order (from j to 1).
Induction base: for i = j, the statement (b) follows by Lemma 19

ψj(x+,v+) ≤
(
1− 1
√
κj

)Tj
≤ exp

(
− Tj√

κj

)
ψj(x,v).

Now assume the claim holds for i + 1 ≤ j, and we study the case of i. Denote
(x(0),v(0), x̃(0), ṽ(0), · · · ,x(Ti),v(Ti)) the sequence generated by running AcBSLSi(x,v). Since
(x̃(t), ṽ(t))← AGD(x(t),v(t);Li, µi) and i < j, Lemma 16(c) suggests that

max
{
rj(x̃

(t)), rj(ṽ
(t))
}
≤ κ2globmax

{
rj(x

(t)), rj(v
(t))
}
.

Since fj is κj-conditioned we have rj ≤ ∆j ≤ κjrj , which implies

ψj(x̃
(t), ṽ(t)) = ∆j(x̃

(t)) + rj(ṽ
(t)) ≤ κjrj(x̃(t)) + rj(ṽ

(t)) ≤ 2κj max
{
rj(x

(t)), rj(v
(t))
}
,

and

max
{
rj(x

(t)), rj(v
(t))
}
≤ rj(x(t)) + rj(v

(t)) ≤ ∆j(x
(t)) + rj(v

(t)) = ψj(x
(t),v(t)).

In summary we have
ψj(x̃

(t), ṽ(t)) ≤ 2κjκ
2
globψj(x

(t),v(t)) (C.7)

Since (x(t+1), )← AcBSLSi+1(x̃
(t), x̃(t)), by induction hypothesis of (a) we have

∆j(x
(t+1)) ≤ ψj(x(t+1), ) ≤ exp

(
− 1
√
κj

j∏
k=i+1

Tk +

(
j−1∑
k=i+1

k∏
l=i+1

Tl

)
log(4κ2jκ

2
glob)

)
ψj(x̃

(t), x̃(t)).

(C.8)
For the same reason we have

rj(v
(t+1)) ≤ ψj( ,v(t+1)) ≤ exp

(
− 1
√
κj

j∏
k=i+1

Tk +

(
j−1∑
k=i+1

k∏
l=i+1

Tl

)
log(4κ2jκ

2
glob)

)
ψj(ṽ

(t), ṽ(t)).

(C.9)
Since ψj(x̃(t), x̃(t)) = ∆j(x̃

(t))+rj(x̃
(t)) ≤ 2∆j(x̃

(t)) and ψj(ṽ(t), ṽ(t)) = ∆j(ṽ
(t))+rj(ṽ

(t)) ≤
(κj + 1)rj(ṽ

(t)) we have

ψj(x̃
(t), x̃(t)) + ψj(ṽ

(t), ṽ(t)) ≤ 2κjψj(x̃
(t), ṽ(t)) (C.10)

31



KELNER MARSDEN SHARAN SIDFORD VALIANT YUAN

Combining (C.8) (C.9) and (C.10) gives

ψj(x
(t+1),v(t+1)) = ∆j(x

(t+1)) + rj(v
(t+1))

≤2κj · exp

(
− 1
√
κj

j∏
k=i+1

Tk +

(
j−1∑
k=i+1

k∏
l=i+1

Tl

)
log(4κ2jκ

2
glob)

)
ψj(x̃

(t), ṽ(t)). (C.11)

By (C.7) and (C.11) we arrive at

ψj(x
(t+1),v(t+1)) ≤ 4κ2jκ

2
glob·exp

(
− 1
√
κj

j∏
k=i+1

Tk +

(
j−1∑
k=i+1

k∏
l=i+1

Tl

)
log(4κ2jκ

2
glob)

)
ψj(x

(t),v(t)).

Telescoping t from 0 to Ti yields

ψj(x
(Ti),v(Ti)) ≤ exp

(
− 1
√
κj

j∏
k=i

Tk +

(
j−1∑
k=i

k∏
l=i

Tl

)
log(4κ2jκ

2
glob)

)
ψj(x

(0),v(0)),

completing the induction proof of Lemma 20.

C.1.3. FINISHING THE PROOF OF THEOREM 15

With Lemma 20 at hands we are ready to finish the proof of Theorem 15. This part of proof is almost
identical to the proof of Theorem 6 presented in Appendix B.1.
Proof [Proof of Theorem 15] Applying Lemma 20 yields (for any i ∈ [m])

ψi(AcBSLS1(x
(0),v(0))) ≤ exp

− 1
√
κi

i∏
k=1

Tk +

(
i−1∑
k=1

k∏
l=1

Tl

)
log
(
4κ4glob

)
︸ ︷︷ ︸

denoted as γi

ψi(x
(0),v(0)),

Observe that for any i = 2, . . . ,m,

γi − γi−1 = log(4κ4glob) ·
i−1∏
j=1

Tj − κ
− 1

2
i

i∏
j=1

Tj + κ
− 1

2
i−1

i−1∏
j=1

Tj

=

i−1∏
j=1

Tj ·
(
−κ−

1
2

i Ti + κ
− 1

2
i−1 + log(4κ4glob)

)
.

Since Ti ≥
√
κi(log(4κ

4
glob) + 1) we have

γi − γi−1 ≤
i−1∏
j=1

Tj ·
(
−1 + κ

− 1
2

i−1

)
≤ 0.

For γ1 we observe that γ1 = − 1√
κi
T1 ≤ log ε

ψ(x(0),v(0))
. Hence γm ≤ γm−1 ≤ · · · ≤ γ1 ≤

log ε
ψ(x(0),v(0))

. Therefore for all i ∈ [m] it is the case that

ψi(x,v) ≤ exp(γi) · ψi(x(0),v(0)) ≤ ε

ψ(x(0),v(0))
ψi(x

(0),v(0))
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Taking summation over i gives

ψ(AcBSLS1(x
(0),v(0))) ≤

∑
i∈[m]

ε

ψ(x(0),v(0))
ψi(x

(0),v(0)) = ε,

completing the proof of Theorem 15.

C.2. Stability of AcBSLS

Similar to (un-accelerated) BSLS, under finite-precision arithmetic, AcBSLS can also attain the
same rate of convergence with only logarithmic bits of precision.

Formally, let ÂGD be the finite-precision implementation of AGD, and ̂AcBSLSi be the finite-
precision implementation of AcBSLS by replacing AGD with ÂGD. We impose the following
requirement such that ÂGD can return a δ-multiplicative approximation of AGD in both x and v:

Requirement 2 There exists a δ < 1 such that for any x, v, and i, considering (x+,v+) ←
AGD(x,v;Li, µi) and (x̂+, v̂+) ← ÂGD(x,v;Li, µi), it is the case that |x̂+ − x+| ≤ δ |x+| and
|v̂+ − v+| ≤ δ |v+|. (We use | · | to denote element-wise absolute values).

We specialized the initializations to 0 to simplify the exposition of the theorem. In Appendix H,
we provide and prove the general version with arbitrary x(0),v(0).

Theorem 21 (AcBSLS under finite-precision arithmetic) Consider multiscale optimization prob-
lem defined in Theorem 1, for any ε > 0, assuming Requirement 2 with

δ−1 ≥ 4m

∏
i∈[m]

Ti

 · (10κ2glob)2m−1 · ψ(0,0)
ε

,

then min{ψ(0,0), ψ( ̂AcBSLS1(0,0))} ≤ 3ε provided that T1, . . . , Tm satisfy Eq. (C.1) (with
x(0) = v(0) = 0), when {(µi, Li), i ∈ [m]} are known. We can also achieve the same asymptotic
sample complexity (up to constant factors suppressed in the O(·)) when {(µi, Li), i ∈ [m]} are
unknown and only m, µ1, Lm and πκ =

∏m
i=1 κi are known.

The proof of Theorem 21 is deferred to Appendix H.

C.3. Why do we need branching for AcBSLS

In this subsection we demonstrate why naive AcBSLS may not converge. Specifically, we consider
the following Algorithm 4. The only difference compared with the principled AcBSLS (defined in
Algorithm 2) is the replacement of the branching procedure with a naive recursion.

C.3.1. THEORETICAL EVIDENCE

Following the discussion after Lemma 16, we provide a simple result suggesting the potential for
AGD may not be “backward compatible” (specifically, the potential governing small [µi, Li] may not
be conservative under AGD with larger [µ,L], although the latter takes smaller step.) Therefore one
cannot replace Lemma 16 with Eq. (C.2). Formally, we prove the following proposition.
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Algorithm 4 Naive Accelerated Big-Step Little-Step Algorithm (may not converge)

Procedure NaiveAcBSLSi (x(0),v(0))
1: for t = 0, 1, . . . , Ti − 1 do
2: (x̃(t), ṽ(t))← AGD(xt,vt;Li, µi) B AGD is the same as the original one (Algorithm 2)
3: if i < m then
4: (x(t+1),v(t+1))← AcBSLSi+1(x̃

(t), ṽ(t)) B Naively recurse instead of branching
5: else
6: (x(t+1),v(t+1))← (x̃(t), ṽ(t))
7: return (x(Ti),v(Ti))

Proposition 22 There exists a function f : Rd → R that is µ1-strongly-convex and L1-smooth, but
for certain (x(0),v(0)) it is the case that

ψ1(AGD(x
(0),v(0);L2, µ2)) > ψ1(x

(0),v(0)).

for some µ2, L2 such that L2 > µ2 > L1. Here ψ1(x,v) is the potential associated with f , namely

ψ1(x,v) := f(x)− f? + µ1
2
‖v − x?‖22

Remark 23 Although Proposition 22 does not rule out the possibility of other conservative potentials,
we conjecture that such a potential may not exist given the inherent instability of accelerated GD
(c.f., Section F of Yuan and Ma (2020)).

Proof [Proof of Proposition 22] Consider the following objective f : R2 → R: f(x) = 0.5x21 + 5x22.
Apparently f is 1-strongly-convex, 10-smooth. Consider initialization x(0) = (0, 0)>,v(0) =
(1, 1)>. Then one can verify that ψ1(x

(0),v(0)) = 1 but ψ1(AGD(x(0),v(0);L2, µ2)) > 1.18 for
L2 = 200 and µ2 = 100.

C.3.2. NUMERICAL EVIDENCE

Next, we provide numerical evidence against the convergence of naive AcBSLS, see Fig. 4. We
synthesize a quadratic objective with eigenvalues belonging to [10−4, 10−3]∪ [0.5, 1]. We implement
both the principled AcBSLS (with branching, see Algorithm 2) and naive AcBSLS (Algorithm 4)
with the corresponding µ1, µ2, L1, L2. We observe that the principled AcBSLS (with branching)
converge with T2 = 8, as expected. On the other hand, the naive AcBSLS fails to converge for any
T2 ∈ {8, 16, 32, 64}. The implementation details can be found in the accompanying notebook in
supplementary materials.

Appendix D. Lower bound for multiscale optimization

In this section, we prove our lower bound results (Theorem 10) of the multi-scale optimization
problem.

D.1. Proof structure of Theorem 10

We will separate the proof of Theorem 10 into three parts.
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Figure 4: Numerical evidence that Naive AcBSLS (Algorithm 4) may not converge. Observe
that the principled AcBSLS (with branching) converge with T2 = 8, but the naive AcBSLS fails to
converge for any T2 ∈ {8, 16, 32, 64}.

Part I: Reduction to uniform polynomial approximation. In the first part, we reduce the prob-
lem of a lower bound over arbitrary first-order deterministic algorithms to a constrained polynomial
uniform approximation problem on S =

⋃
i∈[m][µi, Li] across P0

k , where (throughout this section)

P0
k = {p : p is a polynomial of degree at most k and p(0) = 1}. (D.1)

The result is as follows.

Lemma 24 (Reduction to a uniform polynomial approximation problem) For any first-order
deterministic algorithm A, for any k ∈ N and ∆grad > 0, there exists an objective f satisfying
Theorem 1 with ‖∇f(0)‖2 ≤ ∆grad such that

min
τ∈[k]
‖∇f(x(τ))‖2 ≥

(
min
p∈P0

k

max
λ∈S
|p(λ)|

)
·∆grad.

The rough proof idea of Lemma 24 is to 1) first reduce the general first-order deterministic algorithm
class to the construction of a tri-diagonal objective for which zero-respecting algorithm (see Carmon
et al. (2021) for definition) is hard , then 2) reduce to the problem of discrete weighted `2 polynomial
approximation over S, and finally 3) reduce to uniform polynomial approximation over S. The
detailed proof of Lemma 24 is relegated to Appendix D.2.

Part II: Reduction to Green’s function. In the second part, we cite classic results from potential
theory literature to reduce the uniform polynomial approximation problem raised in Lemma 24 to
the estimation of Green’s function. The results are as follows.

Lemma 25 (Reduction to Green’s function) Let S =
⋃
i∈[m][µi, Li], then for any k ∈ N, the

following inequality holds
min
p∈P0

k

max
λ∈S
|p(λ)| ≥ exp(−kgS(0))

where gS(0) is the Green’s function associated with S (with pole at ∞), see Theorem 37 in Ap-
pendix D.3 for formal definition.

The detailed reference of Lemma 25 is relegated to Appendix D.3.
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Part III: Estimating (upper bound) the Green’s function. In the last part, we provide a bound
of gS(0) as follows. We identify that this estimate may be of independent interest.

Lemma 26 (Estimating the Green’s function) Let S =
⋃m
j=1[µj , Lj ], and assume Lj

µj
≥ 2 for

j ∈ [m]. Then the Green’s function associated with S satisfies

gS(0) ≤
8√∏

i∈[m]
Li
µi
·
∏
i∈[m−1]

(
0.03 · log(16µi+1

Li
)
) .

The proof of Lemma 26 is relegated to Appendix D.4.
The Theorem 10 then follows immediately from Lemmas 24, 25 and 26.

D.2. Proof of Lemma 24: Reduction to uniform polynomial approximation

In this subsection we will prove Lemma 24 on the reduction from the lower bound of arbitrary
first-order deterministic algorithms to the uniform polynomial approximation problem.

We will prove Lemma 24 in three steps.

Step 1: Reduction to a first-order zero chain (or hard tri-diagonal quadratic objective). Fol-
lowing the techniques of Carmon et al. (2021), we first reduce the lower bound across all first-order
deterministic algorithms to the construction of a “first-order zero chain” Carmon et al. (2021). Specif-
ically, we reduce to the existence of tri-diagonal quadratic objectives with “large” gradients under
limited supports.

Lemma 27 (Reduction from arbitrary first-order deterministic algorithms to first-order zero-chains)
Let S =

⋃
i∈[m][µi, Li], suppose for some ∆grad > 0, ε > 0 and k ∈ N, there exists a symmetric tri-

diagonal matrix T ∈ R(k+m)×(k+m) with eigenvalues all belonging to S, and suppose the objective
f(x) := 1

2x
>Tx+∆grad · e>1 x satisfies

min
x:xk+1=xk+2=···=xk+m=0

‖∇f(x)‖2 ≥ ε.

Then for any first-order deterministic algorithm A, there exists a function f̃ satisfying Theorem 1
with ‖∇f(0)‖2 ≤ ∆grad such that the trajectory {x(t)}∞t=1 generated by A on f̃ satisfies

min
τ∈[k+1]

‖∇f̃(x(τ))‖2 ≥ ε.

The proof of Lemma 27 is similar to the original proof of lower bounds in Carmon et al. (2021). We
first reduce the range of arbitrary deterministic first-order algorithms to zero-respecting algorithms
via the equivalency result in Carmon et al. (2021), and then show that any zero-respecting algorithm
can only reveal one dimension per step for the tri-diagonal quadratic objective. The detailed proof of
Lemma 27 is relegated to Appendix D.2.1.

Step 2: Reduction to discrete weighted `2 polynomial approximation. Next, we reduce the
problem raised in Lemma 27 to the following constrained weighted discrete `2 polynomial approxi-
mation problem.

36



BIG-STEP-LITTLE-STEP: EFFICIENT GRADIENT METHODS FOR OBJECTIVES WITH MULTIPLE SCALE

Lemma 28 (Reduction to discrete weighted `2 polynomial approximation) Let S =
⋃
i∈[m][µi, Li],

then for any k ∈ N, for any ∆grad > 0, there exists a symmetric tri-diagonal matrix T ∈
R(k+m)×(k+m) with eigenvalues all belonging to S such that the objective f(x) = 1

2x
>Tx +

∆grad · e>1 x satisfies

min
x:xk+1=···=xk+m=0

‖∇f(x)‖2 ≥ ∆grad · max
λ1,...,λk+m∈S

max∑
i∈[k+m] v

2
i =1

min
p∈P0

k

√ ∑
i∈[k+m]

(p(λi)vi)2.

Recall P0
k is defined in Eq. (D.1) as the set of polynomials p of degree at most k with p(0) = 1.

The proof of Lemma 28 is constructive, where we explicitly construct a symmetric tri-diagonal matrix
T with large minx:xk+1=···=xk+m=0 ‖∇f(x)‖2. The detailed proof is relegated to Appendix D.2.2.

Step 3: Reduction to uniform polynomial approximation on S. Finally, we reduce the discrete
weighted `2-approximation problem raised in Lemma 28 to a uniform polynomial approximation
over S across P0

k .

Lemma 29 (Reduction to uniform polynomial approximation on S) Let S =
⋃
i∈[m][µi, Li],

then for any k ∈ N, the following inequality holds

max
λ1,...,λk+m∈S

max∑
i∈[k+m] v

2
i =1

min
p∈P0

k

√ ∑
i∈[k+m]

(p(λi)vi)2 ≥ min
p∈P0

k

max
λ∈S
|p(λ)|.

Recall P0
k is defined in Eq. (D.1) as the set of polynomials p of degree at most k with p(0) = 1.

The proof of Lemma 29 is based on the fact that the best uniform approximation over S, denoted as
p?k, is also the best discrete weighted `2 approximation over the extreme points on p?k with appropriate
weights. To this end, we will show that p?k is orthogonal to low-degree polynomials under these
weights. The detailed proof of Lemma 29 is relegated to Appendix D.2.3.

The proof of Lemma 24 then follows immediately from Lemmas 27, 28 and 29.

D.2.1. DEFERRED PROOF OF LEMMA 27

Proof [Proof of Lemma 27] Since T has all its eigenvalues within S =
⋃
i∈[m][µi, Li], the objective

f(x) satisfies Theorem 1. Since T is tri-diagonal, for any zero-respecting first-order algorithm Azr

(see Carmon et al. (2021) for definition) initialization at 0, the first k + 1 iterates x(1), . . . ,x(k+1)

are all supported in the first k coordinates. Hence

min
τ∈[k+1]

‖∇f(x(τ))‖2 ≥ min
x:xk+1=xk+2=···=xk+m=0

‖∇f(x)‖2 ≥ ε.

Let F(∆grad) denote the union, over d ∈ N, of the collections of C∞ convex functions f : Rd → R
satisfying Theorem 1 and ‖∇f(0)‖2 ≤ ∆grad. Since F(∆grad) is orthogonally invariant, by
Proposition 1 of Carmon et al. (2021), the time complexities over all first-order deterministic
algorithms are lower bounded by the zero respecting first-order algorithms, completing the proof.
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D.2.2. DEFERRED PROOF OF LEMMA 28

We introduce the following definition for ease of exposition.

Definition 30 A symmetric tri-diagonal matrix is non-degenerate if none of its sub-diagonal entries
are zero.

We first show that for any distinct {λi}i∈[k+m] and positive {vi}i∈[k+m], one can construct a desired
tri-diagonal matrix.

Lemma 31 Let λ1, λ2, . . . , λk+m be a set of distinct positive numbers, and v1, v2, . . . , vk+m be
another set of positive numbers with

∑
i∈[k+m] v

2
i = 1. Then there exists an orthogonal matrix

Q ∈ R(k+m)×(k+m) such that

1. Qe1 = v, where v := [v1, v2, . . . , vk+m]
>.

2. Q>ΛQ is non-degenerate tri-diagonal, where Λ = diag (λ1, λ2, . . . , λk+m).

Proof [Proof of Lemma 31] We construct Q = [q1,q2, . . . ,qk+m] column by column as follows:

(a) q1 = v.

(b) For any j = 2, . . . , k +m, let q̃j = (I−
∑

i∈[j−1] qiq
>
i )Λqj−1, qj =

q̃j

‖q̃j‖2 .

One can verify that

(i) For any i ∈ [k +m], ‖qi‖2 = 1.

(ii) For any i < j, q>
i q̃j = 0 and thus q>

i qj = 0.

(iii) For any i < j − 1, q>
i Λqj = 0 (To see this, first observe that span 〈q1,q2, . . . ,qj〉 =

span
〈
v,Λv, . . . ,Λj−1v

〉
for any j. Thus Λqi ∈ span 〈q1, . . . ,qi+1〉. Consequently we

have q>
i Λqj = 0 by point (ii) above for any i < j − 1).

By (i) and (ii) we know Q is orthogonal. By (iii) we know Q>ΛQ is tri-diagonal. The non-
degeneracy of T follows by the linear independence of {v,Λv, . . . ,Λk+m−1} since v > 0, Λ > 0
and the distinctness of {λi}i∈[k+m].

Next, following Lemma 31, we show that the tri-diagonal objective has large ‖∇f(x)‖2 when the
last m coordinates of x are zero.

Lemma 32 Under the same settings and notation of Lemma 31, let T = Q>ΛQ, and consider
objective f(x) = 1

2x
>Tx+∆grad · e>1 x. Then

min
x:xk+1=···=xk+m=0

‖∇f(x)‖2 = ∆grad · min
p∈P0

k

‖p(Λ)Qe1‖2 = ∆grad · min
p∈P0

k

√ ∑
i∈[k+m]

(p(λi)vi)2.

Proof [Proof of Lemma 32] By non-degeneracy of T we have

{x : xk+1 = · · · = xk+m = 0} = {p(T)e1 : deg p ≤ k − 1}.
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Thus the following sets are identical

{∇f(x) : xk+1 = · · · = xk+m = 0} = {Tx+∆grad · e1 : xk+1 = · · · = xk+m = 0}
={∆grad · p(T)e1 : p ∈ P0

k}.

It follows that

min
x:xk+1=···=xk+m=0

‖∇f(x)‖2 = ∆grad · min
p∈P0

k

‖p(T)e1‖2 = ∆grad · min
p∈P0

k

‖p(Λ)Qe1‖2.

The last equality is due to Qe1 = v.

Now we finish the proof of Lemma 28.
Proof [Proof of Lemma 28] By Lemmas 31,32, for any distinct λ1, . . . , λk+m ∈ S and v1, . . . , vk+m >
0 such that

∑
i∈[k] v

2
i = 1, we have

min
x:xk+1=···=xk+m=0

‖∇f(x)‖2 ≥ ∆grad · min
p∈P0

k

√ ∑
i∈[k+m]

(p(λi)vi)2.

If λ1, . . . , λk+m are not distinct, then one can find another set of distinct λi’s such that the RHS is
not smaller. The same arguments hold if one of the vi is zero. Hence

min
x:xk+1=···=xk+m=0

‖∇f(x)‖2 ≥ ∆grad · max
λ1,...,λk+m∈S

max∑
i∈[k+m] v

2
i =1

min
p∈P0

k

√ ∑
i∈[k+m]

(p(λi)vi)2.

D.2.3. DEFERRED PROOF OF LEMMA 29

We first cite the following Lemma 33 that characterizes the uniform approximation on S within P0
k .

Recall P0
k is defined as the set of polynomials p of degree at most k with p(0) = 1.

Lemma 33 (Characterization of uniform approximation on S, adapted from Schiefermayr and Peherstorfer (1999); Schiefermayr (2011a))
Let S =

⋃
i∈[m][µi, Li], denote Ii = [µi, Li] then for any k ∈ N,

(a) The best uniform approximation minp∈P0
k
maxx∈S |p(x)| is attained, denoted as p?k. Denote

‖p?k‖S := maxλ∈S |p?k(λ)| hereinafter.

(b) |p?k| attains ‖p?k‖S in S for s ∈ {k + 1, . . . , k +m} times, denoted as λ1 < λ2 < . . . < λs.
(That is to say |p?k(λ1)| = |p?k(λ2)| = · · · = |p?k(λs)| and λi ∈ S for i ∈ [s]). The λi’s are
called “e-points” in the literature.

(c) p?k(λ1), . . . , p
?
k(λs) change signs for exactly k times, namely

|{j : sgn(p?k(λj)) 6= sgn(p?k(λj+1))}| = k

(d) If λj and λj+1 belong to the same interval Ii, then sgn(p?k(λj)) · sgn(p?k(λj+1)) < 0.
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(e) If λj and λj+1 belong to two different intervals Ii1 , Ii2 , and sgn(p?k(λj)) · sgn(p?k(λj+1)) > 0,
then λj = Li1 , λj+1 = µi2 .

(f) If λj and λj+1 belong to two different intervals Ii1 , Ii2 , and sgn(p?k(λj)) · sgn(p?k(λj+1)) < 0,
then maxλj≤λ≤λj+1

|p?k(λ)| = ‖p?k‖S . Therefore p?k is also the best unifrom approximation
within P0

k for I1 ∪ · · · ∪ Ii1−1 ∪ [µi1 , Li2 ] ∪ Ii2+1 · · · ∪ Im.

(a-c) extends the well-known Chebyshev equioscillation theorem to the union of multiple intervals.
These results were originally developed by Achieser (Achieser, 1928, 1932, 1933a,b, 1934) for the
union of two intervals and later generalized by Grcar (1981). We adapt the statements from Schiefer-
mayr (2011a). (d-f) is adapted from Schiefermayr and Peherstorfer (1999). Similar characterizations
can also be found in Widom (1969); Nevai (1986); Lubinsky (1987); Fischer (1992); Peherstorfer
(1993); Fischer (2011).

Next, we show that the best uniform approximation p?k ∈ P0
k is also the best discrete `2 approxi-

mation on the e-points λ1, . . . , λs with a specific set of weights vi’s.

Lemma 34 Under the same setting and notation of Lemma 33, define

cj =

{
1
2 if sgn(p?k(λj)) · sgn(p?k(λj+1)) > 0 or j = 1 or j = s

1 otherwise
, vj =

√
cj/λj∑
i∈[s] ci/λi

Then for any p ∈ P0
k , the following inequality holds∑

j∈[s]

(vjp(λj))
2 ≥ ‖p?k‖2S .

Proof [Proof of Lemma 34] Repeat the interval-merging procedure in Lemma 33(f) until there isn’t
any consecutive pair λj , λj+1 that belongs to two different intervals but sgn(p?k(λj))·sgn(p?k(λj+1)) <
0. After merging, there are exactly s− k intervals left, denoted as S′ =

⋃
i∈[s−k] Ji.

By definition, p?k is a (un-normalized) T-polynomial on S′ (see Schiefermayr and Peherstorfer
(1999) for definition). By Theorem 2.3 of Schiefermayr and Peherstorfer (1999), for any polynomial
q with deg q < k, it is the case that

∑
j∈[s] cjp

?
k(λj)q(λj) = 0. Since both p, p?k ∈ P0

k , we know that
p(λ)−p?k(λ)

λ is a polynomial with degree < k (since p(0) = p?k(0) = 1). Hence

∑
j∈[s]

v2j p
?
k(λj)(p(λj)− p?k(λj)) =

1∑
j∈[s]

cj
λj

∑
j∈[s]

cjp
?
k(λj)

p(λj)− p?k(λj)
λj

= 0.

Therefore (by orthogonality)∑
j∈[s]

(vjp(λj))
2 ≥ 2

∑
j∈[s]

v2j p
?
k(λj)(p(λj)−p?k(λj))+

∑
j∈[s]

(vjp
?
k(λj))

2 =
∑
j∈[s]

(vjp
?
k(λj))

2 = ‖p?k‖2S .

The proof of Lemma 29 is immediate once we have Lemma 33 and Lemma 34.
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Proof [Proof of Lemma 29] Apply Lemma 33 and Lemma 34, one has for some s ∈ {k+ 1, . . . , k +
m}.

max
v1,...,vs,

∑
i∈[s] v

2
i =1

max
λ1,...,λs∈S

min
p∈P0

k

√∑
j∈[s]

(vjp(λj))2 ≥ min
p∈P0

k

max
λ∈S
|p(λ)|.

Since s ≤ k +m, we have therefore

max
v1,...,vk+m,

∑
i∈[k+m] v

2
i =1

max
λ1,...,λk+m∈S

min
p∈P0

k

√ ∑
j∈[k+m]

(vjp(λj))2 ≥ min
p∈P0

k

max
λ∈S
|p(λ)|.

D.3. Reference of Lemma 25: Reduction to the estimation of Green’s function

In this section, we will cite literature from potential theory to reduce the uniform approximation
problem raised in Lemma 24 to estimating Green’s function, as stated in Lemma 25. Most of the
results in this subsection are classic (c.f., Widom (1969); Grcar (1981); Aptekarev (1986); Nevai
(1986); Lubinsky (1987); Driscoll et al. (1998); Embree and Trefethen (1999); Shen et al. (2001);
Andrievskii (2004); Kuijlaars (2006); Saff (2010); Fischer (2011)). We follow the statements from
Driscoll et al. (1998).

The following lemma gives the lower bound of uniform approximation by asymptotic convergence
factor ρS .

Lemma 35 (Asymptotic convergence factor as non-asymptotic lower bound, slightly adapted from Driscoll et al. (1998))
Let S be a compact (possibly not connected) subset of complex planes C. Then the following limit
exists

lim
k→∞

(
min
p∈P0

k

max
λ∈S
|p(λ)|

) 1
k

= ρS ≤ 1,

where the limiting value ρS is called the asymptotic convergence factor of S. Moreover, for any
k ∈ N, the following inequality holds

min
p∈P0

k

max
λ∈S
|p(λ)| ≥ ρkS . (D.2)

Recall P0
k is defined in Eq. (D.1) as the set of polynomials p with degree at most k and p(0) = 1.

Remark 36 Schiefermayr (2011a) shows that the RHS of inequality (D.2) can be improved to 2ρkS
1+ρ2kS

in the case that S is the union of a finite number of real intervals. We will still use the loose bound
(D.2) for simplicity since they gave the same order of bound asymptotically.

The asymptotic convergence factor of S can be analytically represented by the Green’s function
of S. We formally define the Green’s function as follows.

Definition 37 (Definition of Green’s function, borrowed from Driscoll et al. (1998)) Let S be a
compact (possibly not-connected) subset of C with no isolated points. Then the Green’s function
associated with S (with pole at∞) is the unique R-valued function defined on C\S such that
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(a) gS is harmonic at C\S.

(b) gS(z)→ 0 as z → ∂S.

(c) gS(z)− log |z| → C as |z| → ∞ for some constant C.

The following result establishes the fundamental connection between Green’s function of S and the
asymptotic convergence factor of S. This result is classic and we cite the statement from Driscoll
et al. (1998).

Lemma 38 (Representation of asymptotic convergence factor via Green’s function, slightly adapted from Driscoll et al. (1998))
Let S be a compact (possibly not-connected) subset of C with no isolated points. Let gS(z) be the
Green’s function associated with S. Then the asymptotic convergence factor of S is given by
ρS = exp(−gS(0)).

The proof of Lemma 25 then follows immediately from the above two lemmas.

D.4. Proof of Lemma 26: Estimating the Green’s function

In this subsection, we will establish Lemma 26 on the upper bound of gS(0) for S =
⋃
i∈[m][µi, Li].

Our startpoint is the following classic results due to (Widom, 1969) on the explicit formula of gS .

Lemma 39 (Green’s function with respect to the union of real intervals, adapted from Section 14 of Widom (1969))
Let S =

⋃m
j=1[µj , Lj ] ⊂ R for some 0 < µ1 < L1 < · · · < µm < Lm. Let q(z) be the polynomial

q(z) :=
∏
j∈[m]

(z − µj)(z − Lj).

Let h(z) be the unique (m− 1)-degree monic polynomials satisfying∫ µk+1

Lk

h(ζ)dζ√
q(ζ)

= 0, k = 1, . . . ,m− 1.

Then the Green’s function for S (with pole at∞) at 0 is given by

gS(0) = (−1)m+1

∫ µ1

0

h(ζ)dζ√
q(ζ)

.

Remark 40 Although Lemma 39 by Widom (1969) gives an exact formula to compute gS(0) (up to
integration), it is hard to read off the dependency of gS(0) with respect to the condition numbers of
the problem (local condition number κi and global condition number κglob). Numerous follow-up
works have attempted to establish more concrete estimates of the Green’s function when S has two
or more intervals (Grcar, 1981; Lubinsky, 1987; Fischer, 1992; Peherstorfer, 1993; Shen et al.,
2001; Andrievskii, 2004; Schiefermayr, 2008, 2011a,b; Alpan et al., 2016; Schiefermayr, 2017).
Unfortunately, to the best of our knowledge, the existing estimate is either not sharp or not explicit
for our purpose.

We will give an explicit upper bound of gS(0). This estimate is novel to the best of our knowledge.
Starting from Lemma 39, the proof of Lemma 26 relies on the following three technical lemmas. The
first lemma upper bounds gS(0) with the product of the roots of h determined in Lemma 39.
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Lemma 41 Let S =
⋃m
j=1[µj , Lj ] ⊂ R, and assume Lj

µj
≥ 2 for j ∈ [m]. Let h(z) be the unique

polynomial determined in Lemma 39, then h(z) has m − 1 real roots r1, r2, . . . , rm−1 such that
rk ∈ [Lk, µk+1], and the following inequality holds

gS(0) ≤
7
∏
k∈[m−1]

rk
µk+1√∏

k∈[m]
Lk
µk

.

Remark 42 Note that Lemma 41 immediately implies a coarse bound of gS(0) ≤ 7√∏
k∈[m]

Lk
µk

since

rk ≤ µk+1.

The second lemma establishes the following upper bound of rk by the ratio of two integrals.

Lemma 43 Under the same settings of Lemma 41, the k-th root of polynomial h satisfies the
following inequality.

rk ≤ 4 ·

∫ µk+1

Lk

ζdζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)∫ µk+1

Lk

dζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)

.

The third lemma upper bounds the ratio encountered in Lemma 43.

Lemma 44 Assume Lj

µj
≥ 2 (for any j ∈ [m]), then the following inequality holds for any k ∈

[m− 1], ∫ µk+1

Lk

ζdζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)∫ µk+1

Lk

dζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)

≤ 7µk+1

log
(
16

µk+1

Lk

) .
The proof of Lemmas 41, 43 and 44 are standard yet tedious estimation of definite integrals,

which we defer to Appendix I.
The proof of Lemma 26 then follows immediately from Lemmas 41, 43 and 44.

Proof [Proof of Lemma 26] By Lemmas 41, 43 and 44,

gS(0) ≤
7
∏
k∈[m−1]

rk
µk+1√∏

k∈[m]
Lk
µk

. ≤
7
∏
k∈[m−1]

28

log(16
µk+1
Lk

)√∏
k∈[m]

Lk
µk

≤ 7√∏
k∈[m]

Lk
µk
·
∏
k∈[m−1]

(
0.03 log(16

µk+1

Lk
)
) .

Appendix E. Stochastic BSLS algorithm for quadratic multiscale optimization

In this section we prove Theorem 11, showing that a variant of BSLS, which we call StochBSLS, ef-
ficiently solves the stochastic version of a quadratic multiscale optimization problem from Theorem 4,
restated below for convenience.
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Definition [Restated Theorem 4]The stochastic quadratic multiscale optimization problem asks to
approximately solve the following problem

min
x∈Rd

E(a,b)∼D

[
1

2
(a>x− b)2

]
,

where b = a>x? for some fixed, unknown x? and the eigenvalues of the covariance matrix ED[aa
>]

can be partitioned into m “bands” such that for i = 1, . . . ,m and j = 1, . . . , di, each eigenvalue
λij satisfies λij ∈ [µi, Li] with Li < µi+1 for all i < m.

We introduce some additional notation. Let nmax = maxi∈[m] di. We let Hi := diag(λi1 , λi2 , . . . , λidi )
be the diagonal matrix with eigenvalues that lie in the band [µi, Li] and Pi be an orthonormal matrix
such that PiΣP>

i = Hi. Let P =
(
P>

1 , . . . ,P
>
m

)> and H = diag (H1, . . . ,Hm). We will use the
notation that for matrices and vectors, M(t) or x(t) refers to the tth element of a sequence, while Mij

or xi refers to the index of that matrix or vector. We note that this problem can be translated to the
multiscale optimization problem formulation as per Def. 1. Indeed,

E
[
1

2
(a>x− b)2

]
=

1

2
x>Σx− (Σx?)> x+ ‖Σx?‖22

=
∑
i∈[m]

(
1

2
(Pix)

>Hi (Pix)− (HiPix
?)> (Pix) +

1

m
‖Σx?‖22

)
=
∑
i∈[m]

fi(Pix), for fi(v) :=
1

2
v>Hiv − (HiPix

?)> v +
1

m
‖Σx?‖22 ,

where each fi : Rdi → R satisfies the constraints of Def. 1. Therefore the problem from Def. 4 can
be thought of as a stochastic version of the general problem from Section B.

E.1. Proof overview of Theorem 11

In what follows we prove Theorem 11, guaranteeing the convergence rate of StochBSLS in expec-
tation for the stochastic quadratic multiscale optimization problem (Theorem 4). First, Section E.2
uses our distributional assumptions to establish that if StochBSLS1 takes N1 steps then

E
[∥∥∥StochBSLS(x(0))− x?

∥∥∥2
2

]
= (x(0) − x?)>D(N1)(x(0) − x?),

where
{
D(t)

}N1

t=0
is a sequence of matrices with a clean recurrence relation. Next, Section E.3 uses

this recurrence relation to bound the spectral norm of each D(t). This is where the band structure
of the eigenvalues plays a role and the stochasticity poses an obstacle. Finally in Theorem 54 we
use the previous work to prove Theorem 11 without too much effort since Section E.3 guarantees
that D(N1) has sufficiently small spectral norm. Finally in Section E.4 we extend our analysis to the
setting where only m, µ1, Lm, and

∏
i∈m κi are known.

To this end, we introduce some notation in addition to the notation from the beginning of
Appendix E. We let A := 1

navg

∑
i∈navg

a(i)a(i)> denote the empirical covariance matrix and b :=
1
navg

∑
i∈navg

b(i)a(i) be the empirical approximation to Σx?. For convenience we introduce δ :=

Kurt(D)nmax/navg, which (very roughly) corresponds to the noise induced by stochasticity.
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Assumption 45 (Distribution assumptions) For a ∼ D we assume

(a) For any i, j, k ∈ [d] with i 6= j it is the case that E[(Pa)i(Pa)2k(Pa)j ] = 0. (Recall that in this
section, xi refers to the ith index of vector x.)

(b) There exists a constant Kurt(D) such that for any w ∈ Rd, E[(w>a)4] ≤ Kurt(D)E[(w>a)2]2.

E.2. Simplifying the stochasticity

With the notation and assumptions in place, we begin with Lemma 46 which bounds the degree to
which stochasticity poses an obstacle. For motivation, first suppose that we had no stochasticity in
that instead of approximating Σ by A = 1

n

∑
i∈n aia

>
i , we had access to Σ itself. Then in SGD(x;L)

we would have instead
g = Σ(x− x?),

and

SGD(x;L)− x? = x− 1

L
Σ(x− x?)− x? =

(
I− 1

L
Σ

)
(x− x?).

Therefore if t denotes the total number of calls to SGD and η(t) is the stepsize taken at step t we have

x(t) − x? =
(
I− η(t)Σ

)(
x(t−1) − x?

)
=
(
I− η(t)Σ

)
· · ·
(
I− η(1)Σ

)(
x(0) − x?

)
.

Critically, since Σ commutes with itself we can simplify the above to

x(t) − x? =

(
m∏
i=1

(
I− 1

Li
Σ

)Ni
)
(x(0) − x?).

Therefore ∥∥∥x(t) − x?
∥∥∥2
2
=
(
P(x(0) − x?)

)>( m∏
i=1

(
I− 1

Li
H

)Ni
)2

P(x(0) − x?).

Then using the fact that for each eigenvalue of Σ we have λij ∈ [µi, Li] we have,∥∥∥x(N1) − x?
∥∥∥2
2
≤

m∑
j=1

∥∥∥P>
j

(
x(0) − x?

)∥∥∥2
2
·
m∏
i=1

(
1− µj

Li

)2Ni

≤
m∑
j=1

∥∥∥P>
j

(
x(0) − x?

)∥∥∥2
2
·
(
1− 1

κj

)Nj

κ
2
∑m

i=j+1Ni

glob .

Written this way we see that for some constant C we can bound by
∥∥x(N1) − x?

∥∥2
2

by ε if Nj ≥
Cκj log(κglob)

∑m
i=j+1Ni and N1 ≥ C log(

∥∥x(0) − x?
∥∥
2
/ε)κ1 log(κglob)

∑m
i=2Ni. This would

give an overall query complexity of O
((∏

i∈m κi
)
logm(κglob) log

(∥∥x(0) − x?
∥∥
2
/ε
))

. Instead, in
the stochastic case we have∥∥∥x(t) − x?

∥∥∥2
2
=
(
x(0) − x?

)>( t∏
s=1

(
I− η(s)A(s)

))( t∏
s=1

(
I− η(t−s)A(t−s)

))(
x(0) − x?

)
.

(E.1)

The random instances A(t) do not necessarily commute with each other and so simplifying their
product is not as simple as the non-stochastic case. The following lemma roughly shows we can
replace the above A(t) with a perturbation of Σ.
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Lemma 46 (Understanding Second Moments) Recall a iid∼ D and A. Suppose some matrix D
commutes with the covariance matrix Σ. Then E[ADA] also commutes with Σ and

E[ADA] �
navg − 1

navg
ΣDΣ+

Kurt(D)
navg

tr (DΣ)Σ.

Next we can simplify Eq. E.1 by sequentially conditioning on A(1), . . . ,A(t−1) and then invoking
Lemma 46 for A(t). Lemma 47 does this explicitly and in doing so constructs the aforementioned
sequence

{
D(t)

}N1

t=0
. After Lemma 47 the purpose of the remainder of the proof is only to bound the

spectral norm of D(N1).

Lemma 47 Recall a ∼ D and the definitions of A and b. Recall we use g = Ax − b in the
subroutine SGD(x;L). Define

D(t) := E[(I− η(N−t+1)A(N−t+1))D(t−1)(I− η(N−t+1)A(N−t+1))], D(0) := I.

Then if N denotes the total number of calls to SGD(x;L) we have

E
[∥∥∥StochBSLS1(x(0))− x?

∥∥∥2
2

]
= (x(0) − x?)>D(N)(x(0) − x?).

Proof [Proof of Lemma 47] We begin our proof by noting that for g as defined in SGD(x;L) we
have

g =
1

navg

∑
i∈navg

a(i)a(i)>(x− x?).

Thus we have

SGD(x;L)− x? = x− 1

L
A(x− x?)− x? =

(
I− 1

L
A

)
(x− x?).

Therefore if t denotes the total number of calls to SGD, A(t) denotes the random matrix generated in
the tth call to SGD, and η(t) is the stepsize taken at step t we have

x(t) − x? =
(
I− η(t)A(t)

)(
x(t−1) − x?

)
=
(
I− η(t)A(t)

)
· · ·
(
I− η(1)A(1)

)(
x(0) − x?

)
.

Therefore,∥∥∥x(N) − x?
∥∥∥2
2
= (x(N) − x?)>(x(N) − x?) (E.2)

=(x(0) − x?)>
(
I− η(1)A(1)

)>
. . .
(
I− η(N)A(N)

)> (
I− η(N)A(N)

)
. . .
(
I− η(1)A(1)

)
(x(0) − x?).

Let D(0) := I and D(t) := E
[
(I− η(t)A(N−t+1))D(t−1)(I− η(t)A(N−t+1))

]
. For short let

M(t) :=
(
I− η(1)A(1)

)
. . .
(
I− η(t)A(t)

)
and M

(t)
rev :=

(
I− η(t)A(t)

)
. . .
(
I− η(1)A(1)

)
. Using

this notation and using the independence of A(1), . . . ,A(N) we have for any k ≥ 1,

E
[
(x(0) − x?)>M(N−k+1)D(k−1)M(N−k+1)

rev (x(0) − x?)
]

=E
[
E
[
(x(0) − x?)>M(N−k+1)D(k−1)M(N−k+1)

rev (x(0) − x?) | A(1), . . . ,A(N−k)
]]

=E
[
(x(0) − x?)>MN−kE

[(
I− η(t)A(N−k+1)

)
D(k−1)

(
I− η(t)A(N−k+1)

)]
MN−k

rev (x(0) − x?)
]

=E
[
(x(0) − x?)>MN−kD(k)MN−k

rev (x(0) − x?)
]
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Therefore using Eq. E.2 in the first equality and the above recursion in the second equality we have

E
[∥∥xN − x?

∥∥2
2

]
= E

[
(x(0) − x?)>MND(0)MN

rev(x
(0) − x?)>

]
= (x(0) − x?)>D(N)(x(0) − x?).

E.3. Bounding the spectral norm of D(t)

This section is where we address the difficulty posed by stochasticity. From Lemma 47 we see that
it suffices to bound the spectral norm of DN1 . To that end, in the following lemma we construct a
clean recursive form to analyze the sequence

{
D(t)

}
.

Lemma 48 For D(t) as defined in Lemma 47 we have that D(t) commutes with Σ. Moreover we
have the following spectral upperbound,

D(t) � (I− η(t)Σ)2D(t−1) +
Kurt(D)η(t)2

navg
tr(D(t−1)Σ)Σ.

Proof [Proof of Lemma 48] Recalling the definition of D(t) from Lemma 47,

D(t) := E[(I− η(t)A(t))D(t−1)(I− η(t)A(t))] D(0) := I.

we have

D(t) =
(
(I− η(t)Σ)D(t−1)(I− η(t)Σ)

)
+ η(t)2

(
E[A(t)D(t−1)A(t)]−ΣD(t−1)Σ

)
.

Lemma 46 allows us to bound E[A(t)D(t−1)A(t)] from above. Using this we have,

D(t) �
(
(I− η(t)Σ)D(t−1)(I− η(t)Σ)

)
+
η(t)2

navg

(
Kurt(D) tr(D(t−1)Σ)Σ−ΣD(t−1)Σ

)
.

By Lemma 46 Σ and D(t−1) commute and thus we have more simply,

D(t) � (I− η(t)Σ)2D(t−1) +
η(t)2

navg

(
Kurt(D) tr(D(t−1)Σ)Σ−D(t−1)Σ2

)
� (I− η(t)Σ)2D(t−1) +

Kurt(D)η(t)2

navg
tr(D(t−1)Σ)Σ. ( D(t−1)Σ2 is PSD)

Remark 49 Recall that PΣP> = H and H = diag(H1, . . . ,Hm), where Hi := diag(λi,1, . . . , λi,di)
represents the ith eigenvalue band. By Lemma 48 each D(t) commutes with Σ. Therefore if
D̃(t) = PDP> then D̃(t) is diagonal and

D̃(t) ≤ (I− η(t)H)2D̃(t−1) +
Kurt(D)η(t)2

navg
tr(D̃(t−1)H)H. (E.3)

Thus the structure on H induces structure on matrix D̃(t),

D̃(t) = diag(D̃
(t)
1 , . . . , D̃(t)

m ).
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Lemma 50 Let gi(η) := max
{
(1− ηµi)2, (1− ηLi)2

}
. Define the “update” matrix from stepsize

η(t) as (
Uη(t)

)
ij
:=

{
gi(η) if i = j,

δη2LiLj else.
(E.4)

Define the following vector to represent the maximum entry of each D̃
(t)
i ,

r
(t)
i :=

∥∥∥D̃(t)
i

∥∥∥
∞
,

(and note that since D̃(0) = I then r(0) = 1). Then for any i = 1, . . . ,m we have for t ≥ 1,

r(t) ≤ Uη(t)r
(t−1).

Proof [Proof of Lemma 50] From Lemma 48 we can bound the growth of r(t). Let σ(k, `) ∈ Z
denote the index corresponding to the `th smallest eigenvalue of the kth band so that Hσ(k,`) = λk,`.
Letting

gi(η) := max
{
(1− ηµi)2, (1− ηLi)2

}
,

we have (using Eq. E.3),

r
(t+1)
i = max

j=1,...,di

{
(1− η(t)λi,j)2r(t)i +

Kurt(D)η(t)2

navg

m∑
k=1

dk∑
`=1

D
(t)
σ(k,`)Hσ(k,`)λi,j

}

≤ max
j=1,...,di

{
(1− η(t)λi,j)2

}
r
(t)
i +

Kurt(D)η(t)2

navg

(
m∑
k=1

dkr
(t)
k Lk

)
Li

≤ max
{
(1− η(t)µi)2, (1− η(t)Li)2

}
r
(t)
i +

Kurt(D)η(t)2

navg

(
m∑
k=1

dkr
(t)
k Lk

)
Li

≤ gi(η(t))r(t)i +
Kurt(D)nmaxη

(t)2

navg

(
m∑
k=1

r
(t)
k Lk

)
Li.

Inspecting the definition of Uη(t) finishes the proof.

Remark 51 For simplicity, let Uit denote Uη(t) where it is the index belonging to {1, . . . ,m} such
that the stepsize in the tth step corresponds to the ith eigenvalue band; that is: η(t) = 1/Lit . Recall
that Lemma 50 guarantees that for r(t)i :=

∥∥∥D̃(t)
i

∥∥∥
∞

r(t) ≤ Uitr
(t−1).

We ultimately want to bound
∥∥rN1

∥∥
∞, however the evolution of

{
r(t)
}N1

t=0
is difficult to track exactly.

Instead we can analyze the evolution of
{
u(t)
}N
t=0

where

u(t) := Uitu
(t−1) u(0) = r(0).
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Taking this another step further, for convenience we define

(Vi)jk :=


ρNi+1

(
u(0)

)
, if j = k and j < i,

γi, if j = k and j = i,
Lj

Li
ρ
(
u(0)

)Ni+1+1
, if j > i and k = i,

0, else.

and

(Wi)jk :=

{
1, if j = k = i,

(Vi)jk , else.

Suppose we now re-define
{
u(t)
}N
t=0

where either

u(t) := max
{
Uitu

(t−1),Vitu
(t−1)

}
u(0) = r(0), (E.5)

or

u(t) := max
{
Uitu

(t−1),Witu
(t−1)

}
u(0) = r(0). (E.6)

Then since

r(t) ≤ u(t)

we can analyze
{
u(t)
}N1

t=0
and bound

∥∥u(N1)
∥∥
∞ to get a bound on

∥∥rN1
∥∥
∞. This is convenient

because the evolution of u(t) is easier to track while capturing the critical behavior of the evolution
of r(t). Towards this end, we introduce Algorithm 5 which we call as StochBSLSRes (Res for

“residuals”) and which mirrors the structure of StochBSLS. Lemma 52, which bounds
∥∥u(N1)

∥∥
∞

from Algorithm 5, is the heart of the proof of Theorem 11.

Algorithm 5 BSLS Residuals [For analysis of the stochastic variant]

Procedure StochBSLSResi (u)
1: for t = 0, 1, . . . , Ti − 1 do
2: if i < m then
3: ũ(t) ← StochBSLSResi+1(u

(t))
4: else
5: ũ(t) ← u(t)

6: if t >
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
and i ≥ 2 then

7: u(t+1) ← max
{
Uiũ

(t),Wiũ
(t)
}

(for Wi as defined in Eq. E.6)
8: else
9: u(t+1) ← max

{
Uiũ

(t),Viũ
(t)
}

(for Ui and Vi as defined in Eqs. E.4, E.5 respectively )
10: return StochBSLSResi+1(u

(Ti))
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Lemma 52 For any i = 1, . . . ,m define γi := 1 − (2κi)
−1. Fix some i ∈ {2, . . . ,m} and let

Ti = d8κi log(κglob)e. Let Ni =
∏m
j=i(2Ti + 1) and Tmax = maxi Ti. Define

β0 (u) := inf

{
t

∣∣∣∣uk ≤ tmax

{
Lj
Lk
,
Lk
Lj

}
uj for any j, k ∈ [m]

}
ρ (u) := 1 + 3δm · β0 (u)

βtotal (u) := ρ (u)Tmax(N1+2)2+1 · max
`∈[m]

{
1

γ2`

}
Suppose that

β0 (u)β
m−i+1
total (u) ≤ min

{
κglob

ρ (u)N1
,

1

144N1Tmaxδm
,

1

2max`∈[m] κ`

1

6(N1 + 1)δm

}
. (E.7)

Further suppose that

navg ≥ Kurt(D)m2nmax

∏
i∈[m]

κi

(max
i∈[m]

κi

)
log

(
9
∥∥x(0) − x?

∥∥2
2

ε2

)
logm(κglob).

Then if ũ = StochBSLSResi(u) we have that for all j ≥ i,

ũj ≤
Li−1

Lj
ui−1,

and for all j < i,
ũj ≤ ρNi (u) · uj .

The proof of Lemma 52 requires careful and somewhat tedious analysis of the evolution of u(t).
The difficulty lies in controlling the error induced by stochasticity. For a full proof see Appendix J.2.
With Lemma 52, we can now easily bound the convergence of u(t) which then allows us to bound
the spectral norm of D̃(t).

Lemma 53 Suppose that m ≤ log(κglob)/3 and

navg ≥ Kurt(D)m2nmax

∏
i∈[m]

κi

(max
i∈[m]

κi

)
log

(
9
∥∥∥x(0) − x?

∥∥∥2
2
/ε

)
logm(κglob).

For i = 2, . . . ,m let Ti be as in Lemma 52 and let T1 =

⌈
2κ1 log

(
9‖x(0)−x?‖2

2
ε

)⌉
. Then if

ũ = StochBSLSRes1(1) we have for all i

ũi ≤
ε∥∥x(0) − x?

∥∥2
2

.
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Proof [Proof of Lemma 53] First we show that Eq. E.7 holds for u(0) = 1. We bound β0 (1) , ρ (1) ,
and βtotal (1). Using that max`∈[m]

{
1
γ2`

}
≤ 4 to bound βtotal (1) we have

β0 (1) ≤ 1

ρ (1) = 1 + 3δm

(
max
i≤m−1

Li
Li+1

)
≤ 1 + 3δm

βtotal (1) ≤ 4 (1 + 3δm)Tmax(N1+2)2+1 .

To show Eq. E.7 holds we must show

4m(1+3δm)m(Tmax(N1+2)2+1) ≤ min

{
κglob

(1 + 3δm)N1
,

1

144N1Tmaxδm
,

1

2max`∈[m] {κ`}
1

6(N1 + 1)δm

}
.

(E.8)
Since

navg ≥ Kurt(D)m2nmax

∏
i∈[m]

κi

(max
i∈[m]

κi

)
log

(
9
∥∥x(0) − x?

∥∥2
2

ε2

)
logm(κglob),

then recalling that δ = Kurt(D)nmax/navg and noting thatN1 ≤ 2κ1 log
(
9
∥∥x(0) − x?

∥∥2
2
/ε2
)∏m

i=2 8κi log(κglob)

we have

δ ≤ min

{
1

3m

1

Tmax(N1 + 2)2 + 1
,

1

6m(4m)

(
48mT 2

max(N1 + 2)3
)−1/2

,

1

6m(4m)

(
max
`∈[m]

{κ`} ·mT 2
max(N1 + 2)3

)−1/2}
.

This guarantees that Eq. E.8 holds; to see the details please refer to Appendix J.1. Next we show

T1 ≥ log(1/γ1)

(
9
∥∥x(0) − x?

∥∥2
2

ε

)
.

Indeed, using that log(1/(1− x)) ≥ x and γ1 = 1− 1
2C1κ1

,

log(1/γ1)

(
9
∥∥x(0) − x?

∥∥2
2

ε

)
=

log

(
9‖x(0)−x?‖2

2
ε

)
log (1/γ1)

≤ 2C1κ1 log

(
9
∥∥x(0) − x?

∥∥2
2

ε

)
.

Next recall Claim 98 from the proof of Lemma 52 which shows that

u
(T1)
1 ≤ γT11 u

(0)
1 .

The proof holds in this case as well and so we have that

u
(T1)
1 ≤ γT11 u

(0)
1 ≤

ε

9
∥∥x(0) − x?

∥∥2
2

.
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Note that StochBSLSRes1(1) = StochBSLSRes2(u(T1)). So we have that if ũ = StochBSLSRes1(1)
then

ũ1 ≤
ε∥∥x(0) − x?

∥∥2
2

.

Finally we use that for any j ≥ 2,

ũj ≤
L1

Lj
u
(T1)
1 ≤ ε∥∥x(0) − x?

∥∥2
2

.

Finally we can combine the previous results to give the proof of Theorem 11.

Theorem 54 Suppose Assumption 45 holds. For i = 2, . . . ,m let Ti = d8κi log(κglob)e and let

T1 =
⌈
2κ1 log

(
9
∥∥x(0) − x?

∥∥2
2
/ε
)⌉

. Let nmax denote the maximum number of eigenvalues lying in
any single band region [µi, Li] and further suppose

navg ≥ Kurt(D)m2nmax

∏
i∈[m]

Ti

(max
i∈[m]

Ti

)
.

Then

E
[∥∥∥(StochBSLS1(x(0))− x?)

∥∥∥2
2

]
≤ ε.

Therefore since StochBSLS1 requires O
(
navg2

m
∏
i∈[m] Ti

)
queries of (a(i), b(i)) we conclude

that StochBSLS1 can return in expectation a ε-optimal solution with

O

nmaxKurt(D)

∏
i∈[m]

κ2i

(max
i∈[m]

{κi}
)
log2m(κglob) log

2
(
Lm

∥∥∥x(0) − x?
∥∥∥
2
/ε
)

first order queries.

Proof [Proof of Theorem 54] By Lemma 46 and Lemma 47 we have that for N1 =
∏m
i=1(2Ti + 1)

and for

D(t) := E[(I− η(N1−t+1)A(N1−t+1))D(t−1)(I− η(N1−t+1)A(N1−t+1))] D(0) := I,

then

E
[∥∥∥StochBSLS1(x(0))− x?

∥∥∥2
2

]
= (x(0) − x?)>D(N1)(x(0) − x?). (E.9)

Recall that D̃ := PDP>. As in Lemma 50 we define the following vector to represent the maximum
entry of each D̃

(t)
i ,

r
(t)
i :=

∥∥∥D̃(t)
i

∥∥∥
∞

r(0) = 1.

By Lemma 50 we have r(0) = 1 and

r(t) ≤ Uη(t)r
(t−1).
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By Remark 51 it suffices to argue about the convergence of StochBSLSRes(1). Applying
Lemma 53 with error ε/Lm we have that

‖StochBSLSRes1(1)‖∞ ≤
ε

Lm
∥∥x(0) − x?

∥∥2
2

.

From Remark 51 this implies that if r(N1) is our residuals vector at the end of StochBSLS1 we
have, ∥∥∥r(N1)

∥∥∥
∞
≤ ε

Lm
∥∥x(0) − x?

∥∥2
2

.

Therefore using that P is an orthonormal matrix,∥∥∥D(N1)
∥∥∥
∞

=
∥∥∥P>D̃(N1)P

∥∥∥
∞
≤
∥∥∥D̃(N1)

∥∥∥
∞
≤
∥∥∥r(N1)

∥∥∥
∞
≤ ε

Lm
∥∥x(0) − x?

∥∥2
2

.

Thus by Eq. E.9,

E
[∥∥∥StochBSLS1(x(0))− x?

∥∥∥2
2

]
= (x(0) − x?)>D(N1)(x(0) − x?) ≤ ε/Lm.

Note that

E(a,b)∼D

[
1

2

(
a>x− b

)2]
=

1

2
(x− x?)>Σ(x− x?) ≤ LmE

[
‖x− x?‖22

]
≤ ε.

This concludes the proof.

E.4. Setting where only m, µ1, Lm, and
∏
i∈m κi are known

To extend to this setting we have the following proposition, similar to Theorem 13,

Proposition 55 Let πκ =
∏
i∈m κi. Suppose with failure probability at most p, we can evaluate f

up to a multiplicative constant factor C with T̃ (p, C) oracle queries; that is we can construct some
f̂ such that for any x,

f(x)/C ≤ f̂(x) ≤ Cf(x).

A randomized algorithm A which, in expectation, solves the stochastic multiscale optimization
problem in Definition 4 to sub-optimality ε with T (πκ, κglob,m, ε) gradient queries when the
parameters (µi, Li) are known, can be used along with the approximate function evaluation to
solve the stochastic multiscale optimization problem with failure probability at most C2ε+ p with
T̃ (p, C) · T (πκ25m, κglob,m, ε2) ·O(logm(κglob)) oracle queries when only m, µ1, Lm and πκ are
known.

To apply this proposition to StochBSLS requires guaranteeing first that f(StochBSLS(x(0))) <
εwith good probability (for this we use Markov’s inequality since we have bounded Ef(StochBSLS(x(0))))
and second that we can estimate f(x) up to a multiplicative constant factor (this is why we must
include the assumption from Eq. (3.1)). This results in the following corollary,
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Corollary 56 Assume the setting from Theorem 11 except that only m, µ1, Lm and πk are known.
Suppose that D is such that for a ∼ D there exists some K where

∥∥∥Σ−1/2a
∥∥∥
2
≤ K

(
E
∥∥∥Σ−1/2a

∥∥∥2
2

)1/2

.

Then with failure probability at most δ, StochBSLS can be used to solve the stochastic quadratic
multiscale optimization problem from Definition 4 with Õ(d) space and an extra multiplicative factor
of O

(
K2d log 4d

δ

(
1 +

√
ε/δ
))

queries of (a, b) ∼ D.

The proofs of Theorem 55 and Theorem 56 are in Appendix F.1.

Appendix F. Extended results regarding the multiscale optimization problem

F.1. Black-box reduction from unknown (µi, Li) to known (µi, Li)

In this subsection, we show that the assumption in BSLS that the µi, Li parameters are known is
essentially without loss of generality, since we can reduce from the case where these are unknown
to the case where they are known without changing the asymptotic complexity. The reduction is
black-box and does not utilize any special properties of our algorithm.

Proposition 57 (Restated Theorem 13) Let πκ =
∏
i∈m κi. Suppose with failure probability at

most p, we can evaluate f up to a multiplicative constant factor C with T̃ (p, C) oracle queries; that
is we can construct some f̂ such that for any x,

f(x)/C ≤ f̂(x) ≤ Cf(x).

A randomized algorithm A which, in expectation, solves the stochastic multiscale optimization
problem in Definition 4 to sub-optimality ε with T (πκ, κglob,m, ε) gradient queries when the
parameters (µi, Li) are known, can be used along with the approximate function evaluation to
solve the stochastic multiscale optimization problem with failure probability at most C2ε+ p with
T̃ (p, C) · T (πκ25m, κglob,m, ε2) ·O(logm(κglob)) oracle queries when only m, µ1, Lm and πκ are
known.

Proof Let {(µi, Li), i ∈ [m]} be the original parameters of the multiscale optimization problem.
The proof relies on a simple brute force search over these parameters over a suitable grid. In the
first step, we will do a brute force search for the parameters κi ∀ i ∈ [m]. Then, we do a brute
force search over the the parameters (µi, Li) ∀ i ∈ [m] and run the algorithm with every instance of
these parameters. One of these choices will be guaranteed to work because of the guarantees of the
algorithm. The full procedure is given in Algorithm 6.
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Algorithm 6 Brute force search over (µi, Li) parameters

Procedure Search(m, µ1, Lm, πκ, ε)
1: πκ,log ← dlog2(πκ)e+ 4m
2: µ1,log ← blog2(µ1)c, Lm,log ← dlog2(Lm)e
3: for all {κi,log : i ∈ [m], κi,log ∈ [πκ,log]} such that

∑m
i=1 κi,log = πκ,log do

4: for all {µi,log : i ∈ {2, . . . ,m}, µi,log ∈ {µ1,log, . . . , Lm,log}, µi,log ≤ µi+1,log ∀ i ≤ m−1}
do

5: ∀ i ∈ [m], Li,log ← µi,log + κi,log
6: (m′, {µi,log, Li,log, i ∈ [m′]})← MergeOverlapping(m, {µi,log, Li,log, i ∈ [m]})
7: ∀ i ∈ [m′], µi′ ← 2µi,log , Li′ ← 2Li′,log .
8: π′κ ← 2πκ,log

9: Let x′ be result of running Algorithm A with parameters {(µi′ , Li′), i ∈ [m′]} for
T (π′κ, κglob,m

′, ε) gradient steps, and ε′ be the function error of x′.
10: if ε′ < ε then
11: return x′.
12: return ∅.
Procedure MergeOverlapping(m, {µi,log, Li,log, i ∈ [m]})

m′ ← m
2: for all i ∈ [m′ − 1] do

if Li,log ≥ µi+1,log then
4: Li,log ← Li+1,log

for all i+ 1 ≤ i′ ≤ m− 1 do
6: µi′,log ← µi′+1,log

Li′,log ← Li′+1,log

8: m′ ← m′ − 1
return (m′, {µi,log, Li,log, i ∈ [m′]})

We first remark that at least one of the runs of Algorithm A has the property that for all i ∈ [m]
there exists some i′ ∈ [m′] such that µi′ ≤ µi and Li′ ≥ Li, i.e. the original function f(x) is a
multiscale optimization problem with parameters {(µi′ , Li′), i ∈ [m′]}. Note that it is sufficient to
show that this is true for the choice of parameters before the MergeOverlapping function is called,
since the MergeOverlapping function will preserve this property. To verify that the property is
true before the MergeOverlapping function is called, note that one of the choices in the brute force
search satisfies (a) ∀ i ∈ [m], dlog2(κi)e + 1 ≤ κi,log, (b) ∀ i ∈ [m], µi,log = blog2(µi)c. (a) and
(b) together ensure that Li,log ≥ log2(Li), which verifies that ∀ i ∈ [m], µi,log ≤ log2(µi) and
Li,log ≥ log2(Li).

Finally, we claim that Algorithm 6 runs with at most T (πκ25m, κglob,m, ε) · O(logm(κglob))
gradient evaluations. This follows because (a) each run of Algorithm A runs for T (π′κ, κglob,m

′, ε)
steps where π′κ ≤ 25mπκ and m′ ≤ m, and (b) there are at most O(logm(κglob)) choices for the
brute force search over the parameters.

Next we extend Theorem 13 to the stochastic setting. Recall Theorem 55, restated here for
convenience:
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Proposition 58 (Restated Theorem 55) Let πκ =
∏
i∈m κi. Suppose with failure probability at

most p, we can evaluate f up to a multiplicative constant factor C with T̃ (p, C) oracle queries; that
is we can construct some f̂ such that for any x,

f(x)/C ≤ f̂(x) ≤ Cf(x).

A randomized algorithm A which, in expectation, solves the stochastic multiscale optimization
problem in Definition 4 to sub-optimality ε with T (πκ, κglob,m, ε) gradient queries when the
parameters (µi, Li) are known, can be used along with the approximate function evaluation to
solve the stochastic multiscale optimization problem with failure probability at most C2ε+ p with
T̃ (p, C) · T (πκ25m, κglob,m, ε2) ·O(logm(κglob)) oracle queries when only m, µ1, Lm and πκ are
known.

Proof [Proof of Theorem 55] Consider Algorithm 6 with the change in line 9 of Search that the
function error is estimated using f̂ . First note that if Search(m, µ1, Lm, πκ, ε2) returns any x′, it
satisfies that f̂(x) < ε/C and so with failure probability at most p f(x′) < ε. Next we want to show
it will return an x′ with probability at least 1− C2ε. By the proof of Theorem 13 we know there is
at least one run of algorithm A with parameters {(µ′i, L′

i), i ∈ [m′]} such that the original function
f(x) is a multiscale optimization problem with respect to these parameters and π′κ ≤ 25mπκ. Thus
with T (π′κ, κglob,m

′, ε2) many oracle queries, algorithm A returns some x′ such that in expectation
(over the randomness of the algorithm’s output x) f(x′) < ε2. Then by Markov’s Inequality,

P (f(x′) ≥ ε/C2) ≤ E[f(x′)]

ε/C2
≤ C2ε.

Therefore with failure probability at most C2ε, f(x′) < ε/C2. Then since for any x,

f(x)/C ≤ f̂(x) ≤ Cf(x),

we have that with f̂(x′) < ε/C and so Search(m, µ1, Lm, πκ, ε2) will return this x′ if it hasn’t
already returned another x′.

Next recall Theorem 56, restated here for convenience:

Corollary 59 (Restated Theorem 56) Assume the setting from Theorem 11 except that only m, µ1,
Lm and πk are known. Suppose that D is such that for a ∼ D there exists some K where

∥∥∥Σ−1/2a
∥∥∥
2
≤ K

(
E
∥∥∥Σ−1/2a

∥∥∥2
2

)1/2

.

Then with failure probability at most δ, StochBSLS can be used to solve the stochastic quadratic
multiscale optimization problem from Definition 4 with Õ(d) space and an extra multiplicative factor
of O

(
K2d log 4d

δ

(
1 +

√
ε/δ
))

queries of (a, b) ∼ D.

In the proof of Theorem 56 we will make use of the following Theorem 5.6.1 from Vershynin
(2019) which we state for the reader’s convenience.
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Theorem 60 Let x be a random vector in Rd, d ≥ 2. Let Σ = E[xx>] and Σ̂n = 1
n

∑
i∈n xix

>
i

for i.i.d. xi. Assume that for some K ≥ 1,

‖x‖2 ≤ K(E[‖x‖22])
1/2 almost surely.

Then, for every positive integer n and any t ≥ 0,∥∥∥Σ̂n −Σ
∥∥∥ ≤ (√K2d(log d+ t)

n
+

2K2d(log d+ t)

n

)
‖Σ‖ ,

with probability at least 1− 2e−t.

Proof [Proof of Theorem 56] We will show that for T̃ (p, C) = 8K2d log(2d/p)

(1− 1
C )

2 oracle queries of

(a, b) ∼ D we can construct f̂ to estimate f up to multiplicative error C. Recall

f(x) =
1

2
E(a,b)∼D

[
(a>x− b

]
=

1

2
(x− x?)>Σ(x− x?).

We construct f̂n(x) as

f̂n(x) :=
1

2n

∑
i∈n

1

2
(a>i x− bi)2 =

1

2
(x− x?)>Σ̂n(x− x?).

For a ∼ D, consider the random vector ã = Σ−1/2a. Note that by assumption∥∥∥Σ−1/2a
∥∥∥
2
≤ K

(
E
∥∥∥Σ−1/2a

∥∥∥2
2

)1/2

,

almost surely. Suppose for C ≥ 1

n =
8K2d log(2d/p)(

1− 1
C

)2 .

Then by Theorem 60, with failure probability at most p,∥∥∥Σ−1/2Σ̂nΣ
−1/2 − I

∥∥∥ ≤ 1− 1
C

2
+

(
1− 1

C

)2
4

≤ 1− 1

C
. (F.1)

Note that Eq. (F.1) holds if and only if

1

C
Σ � Σ̂n �

(
2 +

1

C

)
.

Therefore for C ≥ 3 since 2 + 1
C ≤ C,

1

C
f(x) ≤ f̂(x) ≤ Cf(x).

To conclude the proof of Theorem 56 we simply recall Theorem 11 and apply Theorem 55.
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F.2. If decomposition is known, then can solve with Õ(
∑

i∈[m]

√
κi) gradient queries

In this subsection we show that when the gradient of sub-objectives are known, then the multiscale
optimization problem (Theorem 1) can be solved in Õ(

∑
i∈[m]

√
κi) queries. To prove this claim,

consider the algorithm that run accelerated gradient descent on each sub-objective fj independently.
Since each sub-objective fj takes O(√κj log(m/ε)) to converge to ε

m -optimality, we only need a
total of

∑
j∈[m]O(

√
κj log(m/ε)) gradients for f to converge to ε-optimality.

However, as we will see in the next subsection (Appendix F.3), recovering the projection Pi is
costly.

F.3. Recovering the projections Pi is costly

In this subsection we show that recovering the projections Pi in the multiscale optimization problem
(Theorem 1) requires Ω(d) gradient evaluations in the worst-case.

Proposition 61 Consider the multiscale optimization problem in Theorem 1 for m = 2. There exist
functions f1, f2 such that recovering P1,P2 requires Ω(d) gradient evaluations in the worst-case,
even if f1, f2 are known.

Proof [Proof of Proposition 61] Let P1,P2 ∈ Rd/4×d. Consider the following multiscale optimiza-
tion problem:

f1(x) = ‖P1x‖2 , f2(x) = (1/κglob) ‖P2x‖2 , f(x) = f1(x) + f2(x).

Note that by our choice of f1 and f2, κ1 = κ2 = 1 and κglob is the overall condition number. Now
we can write,

∇f(x) = 2P>
1 P1x+ (2/κglob)P

>
2 P2x.

Let S1, S2 be the d/4 dimensional subspaces spanned by P>
1 and P>

2 respectively. Note that P>
1 P1x

is the projection of x onto S1, and similarly for S2. Therefore ∇f(x) is a linear combination of the
projections onto S1 and S2, and with every gradient evaluation we get a single vector in the span
of S1 and S2. Since the union of S1, S2 is a d/2 dimensional subspace, any algorithm needs d/2
vectors from the subspace to learn it. Hence any algorithm needs at least d/2 gradient evaluations
to learn S1, S2, and hence also to learn P1,P2. We note that it could be possible to extend this
argument to approximately learning the subspaces S1 and S2 using bounds on quantization on the
Grassmann manifold Dai et al. (2007).

F.4. GD with exact line search or constant step-sizes cannot match the guarantee of BSLS

In this subsection we prove that gradient descent with exact line search or any constant step-size
cannot match the guarantee of BSLS (Algorithm 1) given by Theorem 6.

Formally, gradient descent with exact line search has the form:

x(t+1) ← argmin
x

{
f(x)

∣∣∣x = x(t) − η∇f(x(t)) for some η ∈ R
}
.
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Proposition 62 Consider the objective f(x) = 1
2x

>Ax− b>x with

A =

[
λ1 0
0 λ2

]
, b = 1.

Let λ1 < λ2 and note that κglob = λ2/λ1. Then

(a) Gradient descent with exact line search initialized at x(0) = 0 requires at least
⌊
κglob
8 log

(
(1/λ1)+(1/λ2)

2ε

)⌋
gradient queries to attain ε-optimality.

(b) If κglob ≥ 2, gradient descent with a constant step size requires at least
⌊
κglob
2 log

(
1
λ1ε

)⌋
gradient queries to attain ε-optimality.

Remark 63 Theorem 6 states that BSLS only requires (2 log(κglob + 1) log
(
(1/λ1)+(1/λ2)

2ε

)
gra-

dient queries which compares favorable to gradient descent with exact line search and constant
stepsize.

Proof [Proof of Proposition 62 - Exact Line Search] Assume we initialize x(0) = 0. For exact line
search we update x(t+1) = x(t) − stg(t) with st = g(t)>g(t)

g(t)>Ag(t) . It is a fact that

f(x(t+1))− f(x?) =
(
1− 1

κt

)(
f(x(t))− f(x?)

)
, (F.2)

where if g(t) := ∇f(x(t)),

κt :=
g(t)>Ag(t)

g(t)>g(t)

g(t)>A−1g(t)

g(t)>g(t)
.

Our goal is to show that a large portion of the gradients g(1), . . . ,g(T ) are such that κt is close to κ.
Note g(t) = A(x(t) − x?). For simplicity define

ut := g
(t)
1 = λ1

(
x
(t−1)
1 − x?1

)
vt := g

(t)
2 = λ2

(
x
(t−1)
2 − x?2

)
. (F.3)

We can rewrite κt as,

κt =

(
λ1u

2
t + λ2v

2
t

)
u2t + v2t

(
1
λ1
u2t +

1
λ2
v2t

)
u2t + v2t

=
u4t + v4t + κglobu

2
t v

2
t +

1
κglob

u2t v
2
t

(u2t + v2t )
2

=

(
u2
t

v2
t
+

v2
t

u2
t

)
+ κglob + 1

κglob(
u2
t

v2
t
+

v2
t

u2
t

)
+ 2

.

(F.4)

This motivates us to understand the ratio u2t /v
2
t or rather

(
x
(t)
1 − x?1

)2
/
(
x
(t)
2 − x?2

)2
. Since

x(t+1) − x? = (I− stA)x(t),

we have (
x
(t)
1 − x?1

)2
(
x
(t)
2 − x?2

)2 =

∏t
`=1(1− s`λ1)2

(
x
(0)
1 − x?1

)2
∏t
`=1(1− s`λ2)2

(
x
(0)
2 − x?2

)2 . (F.5)
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Define

pt :=
t∏

`=1

(1− s`λ1)2

(1− s`λ2)2
.

Notice that
g(t+1) = (I− stA)g(t).

Therefore since g(0)= − b = −1,

st+1 =
g
(t+1)2
1 + g

(t+1)2
2

λ1g
(t+1)2
1 + λ2g

(t+1)2
2

=

(∏t
`=1(1− s`λ1)2

)
+
(∏t

`=1(1− s`λ2)2
)

λ1
(∏t

`=1(1− s`λ1)2
)
+ λ2

(∏t
`=1(1− s`λ2)2

)
=

(pt + 1)
(∏t

`=1(1− s`λ2)2
)

(λ1pt + λ2)
(∏t

`=1(1− s`λ2)2
)

=
(pt + 1)

(λ1pt + λ2)
.

Therefore,

1− stλ1
1− stλ2

=
1− λ1 (pt+1)

(λ1pt+λ2)

1− λ2 (pt+1)
(λ1pt+λ2)

=
(λ1pt + λ2)− λ1(pt + 1)

(λ1pt + λ2)− λ2(pt + 1)
=

λ2 − λ1
pt(λ1 − λ2)

= − 1

pt
.

Then since

pt+1 = pt

(
1− stλ1
1− stλ2

)2

,

we have
pt+1 =

1

pt
.

Finally since s1 = 2/(λ1 + λ2) we have p1 = 1 and therefore for any t, pt = 1. Thus, recalling
Eq. F.5 we have (

x
(t)
1 − x?1

)2
(
x
(t)
2 − x?2

)2 =

(
x
(0)
1 − x?1

)2
(
x
(0)
2 − x?2

)2 =
x∗2
1

x∗2
2

= κ2glob.

Recalling the definitions of ut and vt in Eq. F.3 we have

ut
vt

=
λ21

(
x
(t−1)
1 − x?1

)2
λ22

(
x
(t−1)
2 − x?2

)2 = 1.

Finally, recalling Eq. F.4 we have

κt =
2 + κglob +

1
κglob

4
≥ κglob/4.
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Therefore we can lower bound the progress made by exact line search. Using Eq. F.2 we find

f(x(t+1))− f(x?) ≥
(
1− 4

κglob

)(
f(x(t))− f(x?)

)
.

Thus exact line search requires at least
⌊
κglob
8 log

(
f(0)−f(x?)

ε

)⌋
gradient queries. Since f(0) −

f(x?) = 1
2((1/λ1)+(1/λ2)) we conclude exact line search requires at least

⌊
κglob
8 log

(
(1/λ1)+(1/λ2)

2ε

)⌋
gradient queries.

Proof [Proof of Proposition 62 - Constant step-sizes] We make use of the equality

f(x)− f(x?) = 1

2
‖x− x?‖2A , (F.6)

where ‖x‖2A := x>Ax. Since
∇f(x) = A(x− x?),

we have that the gradient descent algorithm with constant stepsize α produces the recursion,

x(t+1) − x? = x(t) − α∇f(x) = (I− αA)(x(t) − x?) = (I− αA)t+1(x(0) − x?).

Therefore using Eq. F.6 we find,

f(x(t))− f(x?) = (x(0) − x?)>(I− αA)tA(I− αA)t(x(0) − x?).

Using the definition of A, the fact that x(0) = 0, and finally the fact that x? =
[
1/λ1 1/λ2

]>, we
have

f(x(t))− f(x?) = 1

λ1
(1− αλ1)2t +

1

λ2
(1− αλ2)2t .

In order to have the function error decrease we must choose α ∈ [0, 2/λ2]. For α in this range we
have,

f(x(t))− f(x?) ≥ 1

λ1
(1− αλ1)2t ≥

1

λ1

(
1− 2λ1

λ2

)2t

.

Suppose t < κglob
4 log

(
1

2λ1ε

)
. Using that

(
1− 1

x

)x ≥ 1
2 for all x ≥ 2 and our assumption that

κglob ≥ 2 we have

f(x(t))− f(x?) ≥ 1

λ1

(
1− 2λ1

λ2

)2t

≥ 1

λ1

(
1− 2λ1

λ2

)κglob
2

log
(

1
2λ1ε

)
≥ 2ε.

This concludes the proof.
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F.5. The orthogonality assumption in Theorem 1 is necessary

In this section we show that without the assumption in Theorem 1 that

PiP
>
j =

{
Idi×di if i = j,
0di×dj otherwise,

Theorem 2 does not necessarily hold. Indeed, in Theorem 64 we show that any first-order method
(even if randomized) must have query complexity at least Ω(√κglob/ polylog(d)).

Proposition 64 There exists a distribution over instances

f(x) =
4∑
i=1

fi(Pix),

where Pi ∈ Rd/2×d is such that
PiP

>
j 6= 0

for i 6= j and each fi is well conditioned with κi ≤ 10 and κglob = Θ(d2) such that any first-order
method (even if randomized) which returns a 1

10κglob
-optimal solution with probability at least 0.9

needs at least Ω(√κglob/ polylog(d)) first-order queries.

Proof We use the following result from Braverman et al. (2020) which establishes a hardness result
for solving linear systems. Let κ(M) denote the condition number of any matrix M.

Theorem 65 (Theorem 6 of Braverman et al. (2020)) Let d0 be a universal constant. Let d ≥ d0
be any ambient dimension and let A be any linear system algorithm. Suppose A is such that for
all positive semi-definite matrices A with condition number κ(A) ≤ d2 and for all initial vectors
x0 ∈ Rd and b ∈ Rd,

Pr

[∥∥x̂−A−1b
∥∥2
A
≤ 1

10d2

]
≥ 1− 1

e
.

Then A must have query complexity at least Ω(κ(A)/ polylog(d)).

We prove our lower bound by showing that the hard instance in Braverman et al. (2020) admits a
decomposition as a multi-scale optimization problem.

The hard distribution over matrices A is A = (γ−1)I+(1/5)W, where W is sampled from the
Wishart distribution, i.e. W = XX> where X ∈ Rd×d and Xi,j is distribution as i.i.d. N(0, 1/d),
and γ = 1 +Θ(1/d2). We show that with high probability A admits a simple decomposition into
the sum of four well-conditioned matrices, hence proving our bound.

Let X1 ∈ Rd×d/2 be the submatrix of X corresponding to its first d/2 columns and W1 =
X1X

>
1 . Similarly, let X2 ∈ Rd×d/2 be the submatrix of X corresponding to its last d/2 columns and

W2 = X2X
>
2 . Note that W = W1 +W2, therefore,

A =
γ − 1

2
I+

1

5
W1︸ ︷︷ ︸

U1

+
γ − 1

2
I+

1

5
W2︸ ︷︷ ︸

U2

.
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Let E1 be the event that all the non-zero eigenvalues of W1 and W2 lie in the interval [0.2, 2].
By concentration bounds for the spectrum of Wishart matrices (see for example Corollary 5.35
of Vershynin (2010)), for sufficiently large d, E1 happens with probability at least 0.99. LetE2 be
the event that κ(A = Θ(d2). By similar concentration bounds for Wishart matrices (for example
Corollary 12 of Braverman et al. (2020)), E2 happens with probability at least 0.99. We condition on
the events E1 and E2 for the rest of the proof.

Let W1 = P>
1 Σ1P1 denote the singular-value decomposition of W1. Let P2 ∈ Rd/2×d be

the matrix whose rows form an orthonormal basis for the orthogonal space to the column space
of W1. Then we can decompose U1 as U1 = A1 +A2, where A1 = P>

1 (
γ−1
2 I + 1

5Σ1)P1 and
A2 = γ−1

2 P>
2 P2. Let Ã1 = γ−1

2 I+ 1
5Σ1 and Ã1 = γ−1

2 I. Note that the eigenvalues of Ã1 lie in
the interval [0.2 + γ−1

2 , 2 + γ−1
2 ] and all eigenvalues of Ã2 are γ−1

2 . Therefore, κ(Ã1) ≤ 10, and
κ(Ã2) = 1.

Similarly, let W2 = P>
3 Σ3P3 denote the singular-value decomposition of W2. Let P4 ∈

Rd/2×d be the matrix whose rows form an orthonormal basis for the orthogonal space to the column
space of W2. Then we can decompose U2 as U2 = A3 + A4, where A3 = P>

3 Ã3P3 and
A4 = P>

4 Ã4P4, where Ã3 = γ−1
2 I + 1

5Σ3 and Ã4 = γ−1
2 I. As before κ(Ã3) ≤ 10, and

κ(Ã4) = 1.
For any matrix A and vectors x,b, let g(A,b,x) = x>Ax− 2b>x. Using the decomposition

of A =
∑4

i=1P
>
i ÃiPi and the fact that x = P1x+P2x = P3x+P4x we can write,

f(x) = g(A,b,x) = g(Ã1,b/2,P1x) + g(Ã2,b/2,P2x) + g(Ã3,b/2,P3x) + g(Ã4,b/2,P4x).

Note that for any 1 ≤ i ≤ 4 the condition number of g(Ãi,b/2,Pix) is κ(Ãi) ≤ 10. The condition
number of g(A,b,x) is κ(A) = Θ(d2).

Since E1 ∩ E2 happens with probability at least 0.98, we have the above decomposition with
probability at least 0.98. Note that any x̂ which is a 1

10d2
-optimal solution to the above problem

satisfies, ∥∥x̂−A−1b
∥∥2
A
≤ 1

10d2
.

Therefore, any algorithm which solves the multi-scale optimization problem probability at least
0.9, also solves the hard instance of A in Braverman et al. (2020) with probability at least 0.8. By
Theorem 65, this requires at least Ω(κ(A)/ polylog(d)) gradient queries.

F.6. Complexity of conjugate gradient for quadratic multiscale optimization

In this section, we give a simple proof that the conjugate gradient algorithm can stably solve the
multiscale optimization problem in the special case when f is quadratic in a number of iterations
that is comparable to what our accelerated BSLS algorithm requires. More precisely, we show:

Theorem 66 (Complexity of conjugate gradient for multiscale quadratic optimization) Consider
an instance of the multiscale optimization problem (Def. 1) in which each fi is quadratic. For any
x(0) and ε > 0, the conjugate gradient method started at x(0), can return an ε-optimal solution with(∏

i∈[m]O(
√
κi)
)
· O
((

logm−1 κglob
)
· log

(
f(x(0))−f?

ε

))
gradient queries. This remains true if

all operations are performed using a number of bits of precision that is logarithmic in the problem
parameters.
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The conjugate gradient method is usually discussed as an algorithm for solving linear systems,
so we begin by rephrasing our quadratic optimization problem in this form.

We can write our quadratic objective function as f(x) = x>Ax− 2b>x for some A ∈ Rd×d
and b ∈ Rd. The assumption that f is strongly convex corresponds to the requirement that the matrix
A be positive definite, and the assumption about the existence of a decomposition of f in terms
of fi with the given smoothness and convexity properties corresponds to the assumption that the
eigenvalues of A all lie in the set S =

⋃
i∈[m][µi, Li].

Since∇f(x) = 2(Ax−b), f is minimized at x? = A−1b, and the function error at some other
point x is given by

f(x)− f(x?) = (x>Ax− 2b>x)− (x?>Ax? − 2b>x?)

= (x>Ax− 2x?>Ax)− (x?>Ax? − 2x?>Ax?)

= x>Ax− 2x?>Ax+ x?>Ax?

= (x− x?)>A(x− x?) := ‖x− x?‖2A.

Minimizing f is thus equivalent to solving the linear system Ax = b, and the function error at a
point equals its distance from the optimal solution in the A-norm. To prove Theorem 66, it thus
suffices to bound the convergence rate in the A-norm of the conjugate gradient method applied to
matrices with eigenvalues in S.

Our proof relies on the connection between the performance of the conjugate gradient algorithm
and polynomial approximation. If the algorithm uses exact arithmetic, the classical analysis of the
conjugate gradient algorithm asserts that, after k iterations, the algorithm returns a vector x(k) such
that

‖x(k) − x?‖A ≤ ‖x(0) − x?‖A · min
p∈P0

k

max
i∈[d]
|p(λi(A)|,

where P0
k denotes the set of polynomials of degree at most k with p(0) = 1.

To prove Theorem 66 under exact arithmetic, it thus suffices to construct a polynomial p ∈ P0
k

for k less than or equal to the given bound on the number of gradient queries with |p(x)| ≤ ε for all
x ∈ S.

For finite-precision arithmetic, we apply the following theorem of Greenbaum, which says that
the convergence rate of the conjugate gradient method applied to a matrix A with eigenvalues in
S using precision that is logarithmic in the problem parameters can be bounded in terms of its
convergence rate under exact arithmetic on a matrix with eigenvalues in a slightly enlarged set
S′ ⊇ S.

Theorem 67 (Greenbaum (1989b), as simplified in Musco et al. (2018a)) Given a positive defi-
nite matrix A ∈ Rn×n and a vector b ∈ Rn, let x be the result of running the conjugate gra-
dient method for k iterations on the linear system Ax = b with all operations performed using
Ω
(
log nk(‖A‖+1)

min(η,λmin(A)

)
bits of precision.

Let ∆ = min
(
η, λmin(A)

5

)
. There exists a matrix Ã with eigenvalues in S′ :=

⋃n
i=1[λi(A)−

∆, λi(A) + ∆] and a vector b̃ with ‖Ã−1b̃‖Ã = ‖A−1b‖A such that, if x̃ is the result of running
the conjugate gradient method for k iterations on the linear system Ãx̃ = b̃ in exact arithmetic, then

‖A−1b− x‖A ≤ 1.2‖Ã−1b̃− x̃‖Ã.
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Replacing S with S′ does not change the asymptotic behavior of the bound asserted in Theo-
rem 66, so it suffices to show the existence of polynomials with the properties required in the exact
case. The following Theorem asserts the existence of such polynomials, from which Theorem 66
follows.

Theorem 68 (Existence of good polynomials for unions of intervals) Let S =
⋃
i∈[m][µi, Li],

where µ1 < L1 < µ2 < L2 < . . . . For any ε > 0, there exists a polynomial P such that P (0) = 1,
|P (x)| ≤ ε for all x ∈ S, and deg(P ) ≤

(∏
i∈[m]O(

√
κi)
)
· O
(
logm−1 (κglob) · log (1/ε)

)
.

We devote the remainder of this section to constructing the polynomials required by this the-
orem. Note that our goal here is to present a simple construction that has the desired asymptotic
behavior rather than to optimize the constants, and the polynomials given are not the exactly optimal
polynomials for S.

F.6.1. CONSTRUCTING GOOD POLYNOMIALS FOR UNIONS OF INTERVALS

The basic building blocks of our construction are Chebyshev polynomials. Simple transformations
of Chebyshev polynomials give optimal polynomials for individual intervals. We construct good
polynomials for unions of intervals by multiplying such polynomials together. The main technical
difficulty is that the polynomial for one interval can be quite large on another interval, so naively
multiplying together the polynomials for the individual intervals will not produce something that is
small on all of S. Instead we will carefully choose the degrees of the polynomials on the different
intervals to manage the error caused by these interactions.

We begin by reviewing the definition of Chebyshev polynomials and providing some standard

bounds on their magnitude. Let Td(x) = 1
2

(
x+
√
x2 − 1

)d
+ 1

2

(
x−
√
x2 − 1

)d
be the degree-d

Chebyshev polynomial (of the first kind). This defines a degree-d polynomial with the following
well-known properties:3

1. If |x| ≤ 1, |Td(x)| ≤ 1.

2. If |x| ≥ 1,
1

2

(
1 +

√
2(|x| − 1)

)d
≤ |Td(x)| ≤ |2x|d,

and |Td(x)| for such x is a monotonically increasing function of |x|.

To construct a polynomial p with p(0) = 1 that is small on a single interval, we can simply
compose Chebyshev polynomials with a linear function that maps our interval onto [−1, 1] and then
normalize to get p(0) = 1.

To this end, let

`[a,b](x) =
b+ a− 2x

b− a
be the linear function that maps [a, b] to [−1, 1] with `[a,b](a) = 1 and `[a,b](b) = −1, and define

p
(d)
[a,b](x) =

Td(`[a,b](x))

Td(`[a,b](0))
.

3. For an introduction to Chebyshev polynomials and their basic properties, see Mason and Handscomb (2003)
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Lemma 69 For any b ≥ 2a > 0, if p(d)[a,b](x) is the polynomial defined above, and κ = b/a, then

p
(d)
[a,b](0) = 1

and ∣∣∣p(d)[a,b](x)
∣∣∣ ≤


1 if x ∈ [0, a]

2
(
1 + 2√

κ

)−d
if x ∈ [a, b](

8x
b

)d if x ≥ b.

Proof The fact that p(d)[a,b](0) = 1 follows immediately from the definition.

For the bound on |p(d)[a,b](x), lets first suppose that x ∈ [0, a]. In this case, `[a,b](x) ∈
[
1, `[a,b](0)

]
with `[a,b](0) ≥ 1. By the monotonicity assertion in property 2 of Chebyshev polynomials,

Td(`[a,b](x)) ≤ Td(`[a,b](0)), so
∣∣∣p(d)[a,b](x)

∣∣∣ ≤ ∣∣∣p(d)[a,b](0)
∣∣∣ = 1, as claimed.

Now, suppose x ∈ [a, b]. In this case, note that `[a,b](x) ∈ [−1, 1], so |Td(`[a,b](x))| ≤ 1 by
property 1 of Chebyshev polynomials. For the denominator, we have

`[a,b](0) =
b+ a

b− a
= 1 +

2a

b− a
= 1 +

2

κ− 1
,

so, by property 2 of Chebyshev polynomials and the fact that Td(x) ≥ 0 for x ≥ 1,

Td(`[a,b](0)) = Td

(
1 +

2

κ− 1

)
≥ 1

2

(
1 +

√
2

(
2

κ− 1

))d
≥ 1

2

(
1 +

2√
κ

)d
.

Combining our bounds on the numerator and denominator gives the asserted bound on
∣∣∣p(d)[a,b](x)

∣∣∣ for
x ∈ [a, b].

Finally, suppose x ≥ b, and let γ = x/b ≥ 1. We have |`[a,b](x)| ≥ 1, so, by property 2 of
Chebyshev polynomials,

|Td(`[a,b](x))| ≤
∣∣2`[a,b](x))∣∣d = ∣∣∣∣2(b+ a− 2x

b− a

)∣∣∣∣d = ∣∣∣∣2(κ+ 1− 2x/a

κ− 1

)∣∣∣∣d
=

∣∣∣∣2(κ+ 1− 2κγ

κ− 1

)∣∣∣∣d = ∣∣∣∣−2(1 + 2(γ − 1)

(
1 +

1

κ− 1

))∣∣∣∣d = ∣∣∣∣2 + 4(γ − 1)

(
1 +

1

κ− 1

)∣∣∣∣d .
Our assumption that b ≥ 2a implies that κ ≥ 2, so we have

|Td(`[a,b](x))| ≤ |2 + 8(γ − 1)|d = |8γ − 6|d =
∣∣∣∣8xb − 6

∣∣∣∣d ≤ (8x

b

)d
.

Combining this with the fact that Td(`[a,b](0)) ≥ 1 by the monotonicity in property 2 gives the

desired bound on
∣∣∣p(d)[a,b](x)

∣∣∣ for x ≥ b.

Proof [Proof of Theorem 68] To simplify the calculations, we assume that κi ≥ 2 for all i. By
enlarging and combining our intervals as necessary, we can easily reduce the general theorem to this
case.
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Let dκ(ε) =
√
κdlog(2/ε)e, and note that, for κ ≥ 2 and ε > 0,

2

(
1 +

2√
κ

)−dκ(ε)
< ε.

Let S =
⋃
i∈[m][µi, Li], where µ1 < L1 < µ2 < L2 < . . . , and assume that κi := Li/µi ≥ 2

for all i.
We will obtain a good polynomial for S by multiplying together the polynomials for the different

intervals with carefully-chosen degrees. To this end, let

Pd1,...dm(x) =
∏
i∈[m]

p
(di)
[µi,Li]

(x),

and note that Pd1,...dm(0) = 1.
By Lemma 69, for x ∈ [µj , Lj ], we have

|Pd1,...dm(x)| =
∏
i∈[m]

∣∣∣p(di)[µi,Li]
(x)
∣∣∣ ≤ ∏

i∈[m]


1 if x ∈ [0, µi]

2
(
1 + 2√

κi

)−di
if x ∈ [µi, Li](

8x
Li

)di
if x ≥ Li

=
∏
i<j

(
8x

Li

)di
· 2
(
1 +

2
√
κj

)−dj
·
∏
i>j

1 = 2

(
1 +

2
√
κj

)−dj ∏
i<j

(
8x

Li

)di
.

If we want |Pd1,...dm(x)| ≤ ε for all x ∈ S, it thus suffices to choose the dj so that, for all j,

2

(
1 +

2
√
κj

)−dj
≤ ε ·

∏
i<j

(
8x

Li

)−di
.

We can achieve this by setting d1 = dκ1(ε) =
√
κ1dlog(2/ε)e and then recursively setting

dj = dκj

ε ·∏
i<j

(
8x

Li

)−di


=
√
κj

log
(2/ε) ·

∏
i<j

(
8x

Li

)di =
√
κj

log (2/ε) +
∑
i<j

di log

(
8x

Li

)
Since x/Li ≤ κglob/κ1 and d1 ≥

√
κ1 log(2/ε), and using the fact that

√
κ1 log(9κ1/8) ≥ 1 for

κ1 ≥ 2, we have the bound

dj ≤
√
κj

log 2

ε
+ log

8κglob
κ1

∑
i<j

di

 =
√
κj

log 2

ε
− log

9κ1
8

∑
i<j

di + log(9κglob)
∑
i<j

di


≤ √κj

log 2

ε
− log

9κ1
8

√
κ1 log

2

ε
+ log(9κglob)

∑
i<j

di

 ≤ √κj dlog(9κglob)e
∑
i<j

di.
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Since our recurrence guarantees that di+1 ≥ 2di, we have
∑

i<j di ≤ 2dj−1, so our bound
becomes

dj ≤
√
κj · 2 dlog(9κglob)e dj−1.

Applying this recursively gives

dj ≤

(
j∏
i=2

√
κj

)
(2 dlog(9κglob)e)j−1 d1 =

(
j∏
i=2

√
κj

)
(2 dlog(9κglob)e)j−1 (

√
κ1dlog(2/ε)e)

=

(
j∏
i=1

√
κj

)
(2 dlog(9κglob)e)j−1 dlog(2/ε)e,

and the total degree is then bounded by 2dm, which obeys the desired asymptotic bound.

Appendix G. Proof of BSLS under finite-precision arithmetic

In this section we prove BSLS with finite-precision arithmetic (subject to Requirement 1).
In Theorem 14, we specialized our initialization of x(0) to 0 to simplify the exposition of the

theorem. In fact, we can (and will) prove the following general (but less clean) version with arbitrary
x(0).

Theorem 70 (BSLS under finite-precision arithmetic, general initialization) Consider multiscale
optimization problem defined in Theorem 1, for any initialization x(0) and ε > 0, assuming Require-
ment 1 with

δ−1 ≥

∏
i∈[m]

Ti

max

{
(10κglob)

2m−1m, (10κglob)
2m−1m · f(x

(0))− f?

ε
, 4m+1mLm

‖x?‖22
ε

}

then f(B̂SLS1(x(0)))− f? ≤ 3ε provided that T1, . . . , Tm satisfy

T1 ≥ κ1 log

(
f(x(0))− f?

ε

)
; Ti ≥ κi(2 log(κglob) + 1), for i = 2, . . . ,m. (G.1)

We can also achieve the same asymptotic sample complexity (up to constant factors suppressed in the
O(·)) when {(µi, Li), i ∈ [m]} are unknown and only m, µ1, Lm and πκ =

∏m
i=1 κi are known.

Theorem 14 is clearly a corollary of Theorem 70.
Proof [Proof of Theorem 14 based on Theorem 70] Follows by the fact that

4m+1mLm
‖x?‖22
ε
≤ 4m+2mκglob ·

f(0)− f?

ε
≤ m(10κglob)

2m−1 · f(0)− f
?

ε
.

From now on we focus on the proof of Theorem 70. The proof of Theorem 70 is structured as fol-
lows. We first study the progress of one (inexact) ĜD step in Appendix G.1, and inductively estimate
the progress of B̂SLSi by matrix inequalities for all i ∈ [m] in descent order (see Appendix G.2).
The proof of Theorem 70 is then finished in Appendix G.3. Note that the last part regarding the case
where {(µi, Li), i ∈ [m]} are unknown follows from our black-box reduction in Proposition 13 (in
the same way as in the proof of Theorem 6).
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Additional notation. We introduce notation to simplify the exposition. For any x and i ∈ [m],
define function ∆i(x) := fi(Pix)− f?i . Define vector potentials

∆(x) :=
[
∆1(x),∆2(x), · · · ,∆m(x)

]> ∈ Rm.

We will monitor the progress via this vector potential ∆. Recall that when comparing two vectors or
matrices, we use plain inequalities (≤,≥) to denote element-wise inequality.

G.1. Progress of one GD step under finite arithmetic

In this subsection, we study the effect of one (inexact) gradient step ĜD on the vector potential ∆
under finite arithmetic (subject to Requirement 1). The goal is to establish the following Lemma 71.

Lemma 71 (Progress of one ĜD step under finite arithmetic) Consider multiscale optimization
(Def. 1), and assuming Requirement 1, then for any x and i ∈ [m], the following inequality holds

∆(ĜD(x;Li)) ≤
(
I+ 5δκglob11

>
)
Di∆(x) + 2δ‖x?‖22Lm · 1, (G.2)

where Di is an m×m diagonal matrix defined by

(Di)jj =


1 if j < i,

1− κ−1
i if j = i,

κ2glob if j > i.

(G.3)

To simplify the notation we will define (throughout this section) that

D̂i :=
(
I+ 5δκglob11

>
)
Di. (G.4)

Then Eq. (G.2) becomes

∆(ĜD(x;Li)) ≤ D̂i∆(x) + 2δ‖x?‖22Lm · 1.

Remark 72 The key observation from Lemma 71 is that under finite-precision arithmetic, the
function error in j-th subspace (i.e., ∆j) also depends on the the errors from other subspace, as well
as an constant additive term. If the error in one of the subspaces is too large, it could flow into the
other subspaces and ruins the progress elsewhere. Consequently, the order of step-size schedule is
crucial in finite-precision arithmetic.

To prove Lemma 71, we first study the sensitivity of potential ∆ under multiplicative perturbtaion.

Lemma 73 (Sensitivity of vector potential ∆ under multiplicative perturbation) Assuming x̂,x
satisfies

|x̂− x| ≤ δ|x| (G.5)

for some δ < 1, then for any j ∈ [m],

∆j(x̂) ≤ ∆j(x) + 5δκglob

m∑
k=1

∆k(x) + 2δLj‖x?‖22.

In vector form we have (in a looser form)

∆(x̂) ≤ (I + 5δκglob11
>)∆(x) + 2δLm‖x?‖221.
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Proof [Proof of Lemma 73] For any j ∈ [m],

∆j(x̂) = fj(Pjx̂)− f?j (by definition of ∆j)

≤fj(Pjx)− f?j + 〈∇fj(Pjx),Pj(x̂− x)〉+ Lj
2
‖Pj(x̂− x)‖22 (by Lj-smoothness of fj)

≤fj(Pjx)− f?j +
δ

2Lj
‖∇fj(Pjx)‖22 +

Lj
2δ
‖Pj(x̂− x)‖22 +

Lj
2
‖Pj(x̂− x)‖22

(by Cauchy-Schwartz inequality)

≤fj(Pjx)− f?j +
δ

2Lj
‖∇fj(Pjx)‖22 +

Lj
δ
‖Pj(x̂− x)‖22 (since δ ≤ 1)

≤(1 + δ)(fj(Pjx)− f?j ) +
Lj
δ
‖Pj(x̂− x)‖22 . (by Lj-smoothness of fj)

≤(1 + δ)∆j(x) +
Lj
δ
‖x̂− x‖22 (by definition of ∆j)

By assumption Eq. (G.5)

‖x̂− x‖22 ≤ δ2‖x‖22 ≤ 2δ2‖x− x?‖22 + 2δ2‖x?‖22, (by Cauchy-Schwartz inequality)

and strong convexity of fi’s

‖x− x?‖22 =
∑
i∈[m]

‖Pi(x− x?)‖22 ≤
∑
i∈[m]

2

µi
∆i(x),

we arrive at
Lj
δ
‖(x̂− x)‖22 ≤ 2δLj‖x?‖22 +

∑
i∈[m]

4δLj
µi

∆i(x) ≤ 2δLj‖x?‖22 + 4δκglob
∑
i∈[m]

∆i(x),

where the last inequality is due to Lj

µi
≤ κglob by definition of κglob. In summary

∆j(x̂) ≤ (1 + δ)∆j(x) + 4δκglob
∑
i∈[m]

∆i(x) + 2δLj‖x?‖22

≤ ∆j(x) + 5δκglob
∑
i∈[m]

∆i(x) + 2δLj‖x?‖22.

In vector form we have (since L1 ≤ L2 ≤ · · · ≤ Lm)

∆(x̂) ≤ (I + 5δκglob11
>)∆(x) + 2δLm‖x?‖221,

completing the proof.

With Lemma 73 at hands we are ready to prove Lemma 71:
Proof [Proof of Lemma 71] Apply Lemma 73, we have

∆(ĜD(x;Li)) ≤ (I+ 5δκglob11
>)∆(GD(x;Li)) + 2δLm‖x?‖22 · 1.

By Lemma 12 from exact BSLS analysis we have

∆(GD(x;Li)) ≤ Di∆(x).

Combining the two inequalities above yields Lemma 73.
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G.2. Inductively bound the progress of inexact BSLS by matrix inequalities

In the following Lemma 74, we iteratively construct the bound of ∆ after executing B̂SLSi.

Lemma 74 (Estimate the progress of B̂SLSi by matrix inequalities) Considering multiscale op-
timization problem (Theorem 1), and assuming Requirement 1, define the following three sequences
of m×m matrices {Fi}m+1

i=1 , {Ei}m+1
i=1 , {Zi}m+1

i=1 as follows:

Fm+1 := I, Em+1 := 0, Zm+1 := 0

and for i = m,m− 1 down to 1, define

Fi := (Fi+1Di)
Ti Fi+1, Ei :=

(
(Fi+1 +Ei+1)D̂i

)Ti
(Fi+1 +Ei+1)− (Fi+1Di)

Ti Fi+1.

and

Zi := ((Fi+1 +Ei+1)D̂i)
TiZi+1 +

Ti−1∑
ti=0

(
(Fi+1 +Ei+1)D̂i

)ti
(Zi+1 + Fi+1 +Ei+1) ,

where Di and D̂i were defined in Eqs. (G.3) and (G.4). Then,

(a) For any i ∈ [m+ 1], Fi, Ei and Zi are non-negative matrices.

(b) For any i ∈ [m], the following bound holds

∆(B̂SLSi(x)) ≤ (Fi +Ei)∆(x) + 2δLm‖x?‖22Zi1.

Proof [Proof of Lemma 74]

(a) We first prove (a) by induction in reverse order (from m+ 1 down to 1).

For i = m+ 1 the statement apparently holds. Now assume (a) holds for i+ 1, then we study the
case of i. For Fi we have Fi = (Fi+1Di)

TiFi+1 ≥ 0 since both Fi+1 and Di are non-negative. For
Ei we have

Ei = ((Fi+1 +Ei+1)(I+ 5δκglob11
>)Di)

Ti(Fi+1 +Ei+1)− (Fi+1Di)
TiFi+1 ≥ 0.

The non-negativity of Zi is obvious from the non-negativity of Fi and Ei.

(b) Next, we prove (b) by induction in reverse order. To simplify the induction let us define
̂BSLSm+1 := Id and prove (b) for all i ∈ [m+1]. The inequality holds trivially for i = m+1. Now

assume the inequality holds for the case of i+ 1, then we study the case of i.

By definition of B̂SLSi (including i = m),

B̂SLSi =
(

̂BSLSi+1 ◦ ĜD(·;Li)
)Ti

◦ ̂BSLSi+1 = ̂BSLSi+1 ◦ ĜD(·;Li) ◦ · · · ◦ ̂BSLSi+1 ◦ ĜD(·;Li)︸ ︷︷ ︸
Ti iterations of ̂BSLSi+1 ◦ ĜD(·;Li)

◦ ̂BSLSi+1
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By induction hypothesis, for any x,

∆( ̂BSLSi+1(x)) ≤ (Fi+1 +Ei+1)∆(x) + 2δLm‖x?‖22 · Zi+11.

For ĜD(·;Li) step we have by Lemma 71 (for any x)

∆(GD(x;Li)) ≤ D̂i∆(x) + 2δLm‖x?‖221.

Combining the above two inequalities, we obtain

∆( ̂BSLSi+1(ĜD(x;Li))) ≤ (Fi+1 +Ei+1)D̂i∆(x) + 2δLm‖x?‖22 (Zi+1 + Fi+1 +Ei+1)1.

Telescoping

∆(B̂SLSi(x))

≤
(
(Fi+1 +Ei+1)D̂i

)Ti

(Fi+1 +Ei+1)∆(x)

+ 2δLm‖x?‖22

[
((Fi+1 +Ei+1)D̂i)

TiZi+1 +

Ti−1∑
ti=0

(
(Fi+1 +Ei+1)D̂i

)ti
(Zi+1 + Fi+1 +Ei+1)

]
1

=(Fi +Ei)∆(x) + 2δLm‖x?‖22Zi1. (by definition of Fi, Ei and Zi)

Next, we estimate the upper bounds of ‖Fi‖1 (in Appendix G.2.1), ‖Ei‖1 (in Appendix G.2.2),
and ‖Zi‖1 (in Appendix G.2.3).

G.2.1. UPPER BOUND OF F

We first bound ‖Fi‖1 with the following lemma.

Lemma 75 (Upper bound of ‖Fi‖1) Using the same notation as in Lemma 74, and in addition
assuming T1, . . . , Tm satisfies Eq. (G.1), then the following statements hold

(a) For any i ∈ [m+ 1], Fi is a diagonal matrix of the form
∏m
j=i

(
D
Tj ·
∏j−1

k=i(Tk+1)
j

)
.

(b) For any i ∈ [m], ‖Fi+1Di‖1 ≤ 1.

(c) For any i ∈ [m], ‖Fi‖1 ≤ 1.

(d) ‖F1‖1 ≤ ε
f(x(0))−f? .

Proof [Proof of Lemma 75]

(a) The first statement (a) follows immediately by definition of Fi’s. We prove by induction in
reverse order from m+ 1 down to 1. For i = m+ 1 we have Fm+1 = I which is consistent. Now
assume the statement holds for the case of i+ 1, then the case of i also holds in that

Fi = (Fi+1Di)
TiFi+1 =

 m∏
j=i+1

(
D

Tj
∏j−1

k=i+1(Tk+1)

j

)
·Di

Ti
m∏

j=i+1

(
D

Tj
∏j−1

k=i+1(Tk+1)

j

)
=

m∏
j=i

(
D

Tj ·
∏j−1

k=i(Tk+1)
j

)
,

where the last equality is due to the commutability among diagonal matrices.
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(b) Follows by the same analysis as in the exact arithmetic proof in Theorem 6.

(c) By (b), ‖Fi‖1 = ‖(Fi+1Di)
TiFi+1‖1 ≤ ‖(Fi+1Di)‖Ti1 ‖Fi+1‖1 ≤ 1.

(d) Follows by the same analysis as in the exact arithmetic proof in Theorem 6.

G.2.2. UPPER BOUND OF E

Before we state the upper bound of ‖Ei‖1, we first establish the following Lemma 76, which is
essential towards the bound for Ei’s and Zi’s.

Lemma 76 Using the same notation of Lemma 74 and assuming the same assumptions of Lemma
75, and in addition assume δ ≤ 1

10mκglob
, then for any t ≥ 0, the following inequality holds

∥∥∥((Fi+1 +Ei+1)D̂i)
t − (Fi+1Di)

t
∥∥∥
1
≤

{
ϕ(5tδmκglob) i = m

ϕ(2tκ2glob‖Ei+1‖1 + 5tδmκ3glob) i < m,

where ϕ(x) := xex.

Proof [Proof of Lemma 76] Denote Ξi := (Fi+1 +Ei+1)D̂i − Fi+1Di, then∥∥∥((Fi+1 +Ei+1)D̂i)
t − (Fi+1Di)

t
∥∥∥ =

∥∥((Fi+1Di +Ξi)
t − (Fi+1Di)

t
∥∥
1

(by definition of Ξi)

≤
t∑

s=1

(
t

s

)
‖Ξi‖s1 ‖Fi+1Di‖t−s1 ≤

t∑
s=1

(
t

s

)
‖Ξi‖s1 (since ‖Fi+1Di‖1 ≤ 1 by Lemma 75)

≤‖Ξi‖1t
t−1∑
s=0

(
t− 1

s

)
‖Ξi‖s1 (by helper Theorem 100)

=‖Ξi‖1t (1 + ‖Ξi‖1)t−1 ≤ ‖Ξi‖1t exp(‖Ξi‖1t). (G.6)

It remains to bound ‖Ξi‖1. For i = m we have Em+1 = 0, Fm+1 = I, ‖Dm‖1 ≤ 1, which suggests

‖Ξm‖1 = ‖D̂m −Dm‖1 ≤ 5δκglob‖11>‖1 = 5δmκglob.

For other i < m, note that ‖Di‖1 ≤ κ2glob, ‖Fi+1‖1 ≤ 1 (by Lemma 75), ‖11>‖1 = m, we
have

‖Ξi‖1 =
∥∥∥(Fi+1 +Ei+1)(I+ 5δκglob11

>)Di − Fi+1Di

∥∥∥
1

≤‖5δκglob11>Di‖1 + ‖Ei+1(I+ 5δκglob11
>)Di‖1 ≤ 5δmκ3glob + 1.5κ2glob‖Ei+1‖1.

(since δ ≤ 1
10mκglob

)

Substituting back to Eq. (G.6) completes the proof.
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Lemma 77 (Upper bound of ‖Ei‖1) Using the same notation of Lemma 74 and assuming the
same assumptions of Lemma 75, and in addition assume

δ ≤ 1

m(10κglob)2m−1
∏
i∈[m] Ti

, (G.7)

then the following inequality holds for any i ∈ [m],

‖Ei‖1 ≤ δm · (10κglob)2(m−i)+1 ·
m∏
j=i

Tj .

Proof [Proof of Lemma 77] First observe that

‖Ei‖1 =
∥∥∥∥((Fi+1 +Ei+1)D̂i

)Ti
(Fi+1 +Ei+1)− (Fi+1Di)

Ti Fi+1

∥∥∥∥
1

≤
∥∥∥∥((Fi+1 +Ei+1)D̂i

)Ti
(Fi+1 +Ei+1)− (Fi+1Di)

Ti (Fi+1 +Ei+1)

∥∥∥∥
1

+
∥∥∥(Fi+1Di)

Ti Ei+1

∥∥∥
1

≤
∥∥∥∥((Fi+1 +Ei+1)D̂i

)Ti
− (Fi+1Di)

Ti

∥∥∥∥
1

(1 + ‖Ei+1‖1) + ‖Ei+1‖1,

where in the last inequality we applied the fact that ‖Fi+1Di‖1 ≤ 1.
Next, we prove by induction in reverse order from m down to 1.
For i = m, by definition of Em,

‖Em‖1 ≤
∥∥∥((Fm+1 +Em+1)D̂m)

Tm − (Fm+1Dm)
Tm
∥∥∥
1

≤5δmκglobTm exp(5δmκglobTm) (by Lemma 76)

≤5
√
eδmκglobTm ≤ 10δmκglobTm. (since δ ≤ 1

10mκglobTm
by assumption Eq. (G.7))

Now suppose the statement holds for the case of i+ 1, we then study the case of i. By definition
of Ei we have

‖Ei‖1 ≤
∥∥∥((Fi+1 +Ei+1)D̂i)

Ti − (Fi+1Di)
Ti
∥∥∥
1
(1 + ‖Ei+1‖1) + ‖Ei+1‖1

≤‖Ei+1‖1 + (1 + ‖Ei+1‖1)(2‖Ei+1‖1 + 5δmκglob)κ
2
globTi · exp

(
(2‖Ei+1‖1 + 5δmκglob)κ

2
globTi

)
(by Lemma 76)

By induction hypothesis ‖Ei+1‖1 ≤ (10κglob)
2(m−i)−1 · δm

∏m
j=i+1 Tj , we obtain

‖Ei+1‖1 + (1 + ‖Ei+1‖1) (2‖Ei+1‖1 + 5δmκglob)κ
2
globTi

≤4κ2glob

(10κglob)
2(m−i)−1 · δm

m∏
j=i+1

Tj

Ti + 5δmκ3globTi

≤10κ2glob · (10κglob)2(m−i)−1δm ·
m∏
j=i

Tj .
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Also by δ bound Eq. (G.7)

exp
(
(2‖Ei+1‖1 + 5δmκglob)κ

2
globTi

)
≤ exp

9κ2glob · (10κglob)2(m−i)−1δm ·
m∏
j=i

Tj

 ≤ e0.07.
Since 9e0.07 < 10 we have

‖Ei‖1 ≤
∥∥∥((Fi+1 +Ei+1)D̂i)

Ti − (Fi+1Di)
Ti
∥∥∥
1
≤ 0.1(10κglob)

2(m−i)+1δm ·
m∏
j=i

Tj . (G.8)

completing the induction proof.

G.2.3. UPPER BOUND OF Z

Finally we bound ‖Zi‖1 with the following Lemma 78.

Lemma 78 (Upper bound of ‖Zi‖1) Using the same notation of Lemma 74 and assuming the same
assumptions of Lemma 77, then the following inequality holds for any i ∈ [m]

‖Zi‖1 ≤ 2m−i+1
m∏
j=i

(Tj + 1) ≤ 4m−i+1
m∏
j=1

Tj

Proof [Proof of Lemma 78] Recall the definition of Zi

Zi := ((Fi+1 +Ei+1)D̂i)
TiZi+1 +

Ti−1∑
ti=0

(
(Fi+1 +Ei+1)D̂i

)ti
(Zi+1 + Fi+1 +Ei+1) ,

Therefore

‖Zi‖1 ≤

∥∥∥∥∥
Ti∑
ti=0

(
(Fi+1 +Ei+1)D̂i

)ti∥∥∥∥∥
1

(‖Zi+1‖1 + ‖Fi+1‖1 + ‖Ei+1‖1) ,

We will bound
∥∥∥∑Ti

ti=0((Fi+1 +Ei+1)D̂i)
ti
∥∥∥
1

and (‖Zi+1‖1 + ‖Fi+1‖1 + ‖Ei+1‖1) separately.
The former is bounded as∥∥∥∥∥

Ti∑
ti=0

((Fi+1 +Ei+1)D̂i)
ti

∥∥∥∥∥
1

≤
Ti∑
ti=0

∥∥∥((Fi+1 +Ei+1)D̂i)
ti
∥∥∥
1

(by triangle inequality)

≤
Ti∑
ti=0

(∥∥(Fi+1Di)
ti
∥∥
1
+
∥∥∥((Fi+1 +Ei+1)D̂i)

ti − (Fi+1Di)
ti
∥∥∥
1

)
(by triangle inequality)

≤(Ti + 1) +

Ti∑
ti=0

∥∥∥((Fi+1 +Ei+1)D̂i)
ti − (Fi+1Di)

ti
∥∥∥
1

(since ‖Fi+1Di‖1 ≤ 1 by Lemma 75)

≤(Ti + 1)

1 + 0.1(10κglob)
2(m−i)+1δm ·

m∏
j=i

Tj

 (by Eq. (G.8))

≤1.1(Ti + 1) (by δ ≤ 1
m(10κglob)2m−1

∏
i∈[m] Ti

, see Eq. (G.7))
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For ‖Fi+1 +Ei+1 + Zi+1‖1 we have

‖Fi+1 +Ei+1 + Zi+1‖1 ≤ ‖Fi+1‖1 + ‖Ei+1‖1 + ‖Zi+1‖1

≤1 + (10κglob)
2(m−i)−1 · δm

m∏
j=i+1

Tj + ‖Zi+1‖1 ≤ 1.01 + ‖Zi+1‖1 (by δ bound Eq. (G.7))

Consequently ‖Zi‖1 ≤ 1.1(Ti+1) (1.01 + ‖Zi+1‖1). By induction we have ‖Zi‖1 ≤ 2m−i+1
∏m
j=i(Tj+

1).

G.3. Finishing the proof of Theorem 70

We are ready to finish the proof of Theorem 70 (general initialization).
Proof [Proof of Theorem 70] By Lemma 74 we have

∆(B̂SLS1(x
(0))) ≤ (F1 +E1)∆(x(0)) + 2δLm‖x?‖22Z11.

Since f(x)− f? = ‖∆(x)‖1, we obtain

f(B̂SLS1(x
(0)))− f? ≤ (‖F1‖1 + ‖E1‖1)(f(x(0))− f?) + 2δmLm‖x?‖22‖Z1‖1

Plugging in the bound of ‖F1‖1 (from Lemma 75), ‖E1‖1 (from Lemma 77), and ‖Z1‖1 (from
Lemma 78), we obtain

f(B̂SLS1(x
(0)))− f?

≤

(
ε

f(x(0))− f?
+ (10κglob)

2m−1 · δm
m∏
i=1

Ti

)
(f(x(0))− f?) + 2 · 4mδmLm‖x?‖22 ·

m∏
i=1

Ti.

By δ bound

δ ≤
∏
i∈[m]

T−1
i min

{
1

m · (10κglob)2m−1
,

ε

m(10κglob)2m−1 · (f(x(0))− f?)
,

ε

4m+1mLm‖x?‖22

}
,

we immediately obtain f(B̂SLS1(x(0)))− f? ≤ 3ε, completing the proof of Theorem 70.

Appendix H. Proof of AcBSLS under finite-precision arithmetic

In this section, we will prove AcBSLS under finite-precision arithmetic.
In Theorem 21, we specialized our initialization of x(0),v(0) both to 0 to simplify the exposition

of the theorem. In fact, we can (and will) prove the following general (but less clean) version with
arbitrary x(0),v(0).

Theorem 79 (AcBSLS under finite-precision arithmetic, general initialization) Consider mul-
tiscale optimization problem defined in Theorem 1, for any initialization (x(0),v(0)) and ε > 0,
assuming Requirement 2 with

δ−1 ≥

 ∏
i∈[m]

Ti

·max

{
2 · (10κ2glob)2m−1, 2 · (10κ2glob)2m−1m · ψ(x

(0),v(0))

ε
, 4 · 3m+1 ·mLmκglob

‖x?‖22
ε

}
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then ψ( ̂AcBSLS1(x(0),v(0))) ≤ 3ε provided that T1, . . . , Tm satisfy (C.1), which we restate here
for ease of reference

T1 ≥
√
κ1 log

(
ψ(x(0),v(0))

ε

)
, Ti ≥

√
κi(log(4κ

4
glob) + 1), for i = 2, . . . ,m.

We can also achieve the same asymptotic sample complexity (up to constant factors suppressed in the
O(·)) when {(µi, Li), i ∈ [m]} are unknown and only m, µ1, Lm and πκ =

∏m
i=1 κi are known.

Theorem 21 is clearly a corollary of Theorem 79 since

4 · 3m+1 ·mLmκglob
‖x?‖22
ε
≤ 4m(10κ2glob)

2m−1ψ(0,0)

ε
.

The proof of Theorem 79 is structured as follows. We first define two vector potentials and
establish their relations in Appendix H.1. We then study the progress of one (inexact) ÂGD step on
these vector potentials in Appendix H.2, and inductively estimate the progress of ̂AcBSLSi by matrix
inequalities for all i ∈ [m] in descent order (see Appendix H.3). The proof of Theorem 79 is then
finished in Appendix H.4. As before, the last part regarding the case where {(µi, Li), i ∈ [m]} are
unknown follows from our black-box reduction in Proposition 13 (in the same way as in the proof of
Theorem 6).

H.1. Introduction of vector potentials and their relations

We introduce a few more notation to simplify the presentation. For any (x,v) and i ∈ [m], define

∆max
i (x,v) := max{∆i(x),∆i(v)}, rmax

i (x,v) := max{ri(x), ri(v)}. (H.1)

Define a series of vector-valued potential functions φ∆
1 , . . . ,φ

∆
m and φr1, . . . ,φ

r
m:

φ∆
i (x,v) :=



∆max
1 (x,v)

...
∆max
i−1 (x,v)
1
2ψi(x,v)

...
1
2ψm(x,v)


, φri (x,v) :=



rmax
1 (x,v)

...
rmax
i−1 (x,v)
1
2ψi(x,v)

...
1
2ψm(x,v)


. (H.2)

We establish two lemmas on the relations of vector potentials φ∆
i and φri for varying i. Lemma

80 bounds the maximum of two vector potentials; Lemma 81 bounds the sum of two vector potentials.

H.1.1. BOUNDING THE MAXIMUM OF TWO VECTOR POTENTIALS

Lemma 80 Consider multiscale optimization problem defined in Theorem 1, for any x,v, for any
i ∈ [m− 1], the following two matrix inequalities hold (recall ≤ denotes entry-wise inequality)

max
{
φ∆
i+1(x,x),φ

∆
i+1(v,v)

}
≤
[
Ii−1 0
0 2κglob · Im−i+1

]
φ∆
i (x,v),

max
{
φri+1(x,x),φ

r
i+1(v,v)

}
≤
[
Ii−1 0
0 2κglob · Im−i+1

]
φri (x,v).

Proof [Proof of Lemma 80] We study e>j max
{
φ∆
i+1(x,x),φ

∆
i+1(v,v)

}
for three possible cases:

j < i, j = i, or j > i.
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Case of j < i. By definition of φ∆
i we have e>j φ

∆
i+1(x,x) = ∆j(x) for any x. Thus

e>j max
{
φ∆
i+1(x,x),φ

∆
i+1(v,v)

}
= max {∆j(x),∆j(v)} = e>j φ

∆
i (x,v),

where the last equality is by definition of e>j φ
∆
i (x,v).

Case of j = i. Again by definition of φ∆
i

e>i max
{
φ∆
i+1(x,x),φ

∆
i+1(v,v)

}
= max {∆i(x),∆i(v)}

≤max{∆i(x), κiri(v)} ≤ κiψi(x,v) (by definition of ψi)

=2κi · e>i φ∆
i (x,v),

where the last equality is by definition of φ∆
i (x,v) since e>i φ

∆
i (x,v) =

1
2ψi(x,v).

Case of j > i. By definition of φ∆
i+1:

e>j max
{
φ∆
i+1(x,x),φ

∆
i+1(v,v)

}
=

1

2
max {ψj(x,x), ψj(v,v)} (by definition)

=
1

2
max {∆j(x) + rj(x),∆j(v) + rj(v)} ≤

1

2
(1 + κj)ψj(x,v) ≤ κjψj(x,v)

=2κje
>
j φ

∆
i (x,v) (by definition)

Concatenating the above three inequalities yields the first statement of the lemma. The second
statement holds for the same reason.

H.1.2. BOUNDING THE SUM OF TWO VECTOR POTENTIALS

Lemma 81 Consider multiscale optimization problem defined in Theorem 1, for any x,v, for any
i ∈ [m− 1], the following two inequalities hold

φ∆
i+1(x,x) + φri+1(v,v) ≤

2κglobIi 2
2κglobIm−i−1

φ∆
i (x,v),

φ∆
i+1(x,x) + φri+1(v,v) ≤

2κglobIi 2
2κglobIm−i−1

φri (x,v).

Proof [Proof of Lemma 81] We study e>j (φ
∆
i+1(x,x) + φri+1(v,v)) for three possible cases: j < i,

j = i, or j > i.

Case of j < i. By definition of φ∆
i and φri we have e>j φ

∆
i+1(x,x) = ∆j(x) and e>j φ

r
i+1(v,v) =

rj(v). Thus

e>j (φ
∆
i+1(x,x) + φri+1(v,v)) = ∆j(x) + rj(v)

≤∆j(x) + κj∆j(v) ≤ 2κj max{∆j(x),∆j(v)}
=2κje

>
j φ

∆
i (x,v). (by definition of φ∆

i )

Similarly e>j (φ
∆
i+1(x,x) + φri+1(v,v)) ≤ 2κje

>
j φ

r
i (x,v).
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Case of j = i. Similarly

e>i (φ
∆
i+1(x,x) + φri+1(v,v)) = ∆j(x) + rj(v) (by definition)

=ψi(x,v) = 2e>i φ
∆
i (x,v) = 2e>i φ

r
i (x,v). (by definition)

Case of j ≥ i. By definition we have e>j φ
∆
i+1(x,x) =

1
2ψj(x,x) and e>j φ

r
i+1(v,v) =

1
2ψj(v,v).

Thus

e>j (φ
∆
i+1(x,x) + φri+1(v,v)) =

1

2
ψj(x,x) +

1

2
ψj(v,v) (by definition)

=
1

2
(∆j(x) + rj(v) + ∆j(v) + rj(v))

≤1

2
(1 + κj)ψj(x,v) ≤ κjψj(x,v) = 2κj · e>j φ∆

i (x,v) = 2κj · e>j φri (x,v).

Concatenating the above inequalities completes the proof.

H.2. Progress of AGD step under finite arithmetic

In this subsection, we study the effect of one inexact AGD (also denoted as ÂGD step) on the vector
potentials φ∆

i and φri . The main goal of this subsection is to prove the following Lemma 82.

Lemma 82 (Progress of one ÂGD step under finite arithmetic) Consider multiscale optimization
problem defined in Theorem 1, assuming Requirement 2, then for any x,v and i ∈ [m], the following
two inequalities hold

(a) φ∆
i (ÂGD(x,v;Li, µi)) ≤ (I+ 10δκ2glob11

>)Diφ
∆
i (x,v) + 4δLm‖x?‖221.

(b) φri (ÂGD(x,v;Li, µi)) ≤ (I+ 10δκ2glob11
>)Diφ

r
i (x,v) + 4δLm‖x?‖221.

where D1, D2, . . . , Dm are m×m diagonal matrices defined by

Di =

Ii−1

1− κ−
1
2

i

2κ2globIm−i

 (H.3)

To simplify the notation we will define (throughout this section)

D̂i := (I+ 10δκ2glob11
>)Di. (H.4)

We will prove Lemma 82 in three steps. First, we first bound the perturbation of residual rj and
functional error ∆j under multiplicative error in Lemma 83. Then we bound the potential rmax

j ,∆max
j ,

and ψj , and the vector potential φrj and φ∆
j in Lemma 84. The proof of Lemma 82 is finished in

Appendix H.2.3.
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H.2.1. SENSITIVITY OF RESIDUAL AND FUNCTIONAL ERROR UNDER MULTIPLICATIVE ERROR

In this subsubsection, we establish the first supporting lemma for Lemma 82.

Lemma 83 (Sensitivity of residual and functional error under multiplicative error) Assuming
x̂,x satisfies

|x̂− x| ≤ δ|x| (H.5)

for some δ < 1, then for any j ∈ [m],

(a) ∆j(x̂) ≤ ∆j(x) + 5δκglob
∑m

k=1∆k(x) + 2δLj‖x?‖22

(b) rj(x̂) ≤ rj(x) + 5δκglob
∑m

k=1 rk(x) + 2δµj‖x?‖22

Proof [Proof of Lemma 83]

(a) Same as Lemma 73.

(b) Let ε := x̂− x, then by Cauchy-Schwartz inequality,

‖Pj(x̂− x?)‖22 = ‖Pj(x− x? + ε)‖22 ≤ (1 + δ)‖Pj(x− x?)‖22 + 2δ−1‖Pjε‖22 (H.6)

By assumption (H.5) we have

‖Pjε‖22 ≤ ‖ε‖22 ≤ δ2‖x‖22 ≤ 2δ2‖x− x?‖22 + 2δ2‖x?‖22 ≤ 2δ2
m∑
k=1

‖Pk(x− x?)‖22 + 2δ2‖x?‖22

(H.7)
Combining (H.6) and (H.7) yields

‖Pj(x̂− x?)‖22 ≤ (1 + δ)‖Pj(x− x?)‖22 + 4δ
m∑
k=1

‖Pk(x− x?)‖22 + 4δ‖x?‖22 (H.8)

It follows that

rj(x̂) :=
1

2
µj‖Pj(x̂− x?)‖22 (by definition of rj)

≤(1 + δ) · 1
2
µj‖Pj(x− x?)‖22 + 2µjδ

m∑
k=1

‖Pk(x− x?)‖22 + 2δµj‖x?‖22 (by (H.8))

=(1 + δ)rj(x) + 4δ

m∑
k=1

µj
µk
rk(x) + 2δµj‖x?‖22 (by definition of rj’s)

≤(1 + δ)rj(x) + 4δκglob

m∑
k=1

rk(x) + 2δµj‖x?‖22 (since µj
µk
≤ κglob for any j, k ∈ [m])

≤rj(x) + 5δκglob

m∑
k=1

rk(x) + 2δµj‖x?‖22.

80



BIG-STEP-LITTLE-STEP: EFFICIENT GRADIENT METHODS FOR OBJECTIVES WITH MULTIPLE SCALE

H.2.2. SENSITIVITY OF POTENTIALS UNDER MULTIPLICATIVE ERROR

In this subsubsection, we establish the second supporting lemma for Lemma 82.

Lemma 84 (Sensitivity of potentials under multiplicative error) Assuming x̂,x, v̂,v satisfies

|x̂− x| ≤ δ|x|, |v̂ − v| ≤ δ|v|

for some δ < 1. Then for any j ∈ [m],

(a) rmax
j (x̂, v̂) ≤ rmax

j (x,v) + 5δκglob
∑m

k=1 r
max
k (x,v) + 2δµj‖x?‖22.

(b) ∆max
j (x̂, v̂) ≤ ∆max

j (x,v) + 5δκglob
∑m

k=1∆
max
k (x,v) + 2δLj‖x?‖22.

(c) ψj(x̂, v̂) ≤ ψj(x,v) + 5δκglob
∑m

k=1 ψk(x,v) + 4δLj‖x?‖22.

(d) φ∆
i (x̂, v̂) ≤ (I+ 10δκ2glob11

>)φ∆
i (x,v) + 4δLm‖x?‖221.

(e) φri (x̂, v̂) ≤ (I+ 10δκ2glob11
>)φri (x,v) + 4δLm‖x?‖221.

Proof [Proof of Lemma 84]

(a) By Lemma 83, for any j ∈ [m],

rmax
j (x̂, v̂) = max{rj(x̂), rj(x̂)} (by definition of rmax

j (H.1))

≤max

{
rj(x) + 5δκglob

m∑
k=1

rk(x) + 2δµj‖x?‖22, rj(v) + 5δκglob

m∑
k=1

rk(v) + 2δµj‖x?‖22

}

≤rmax
j (x,v) + 5δκglob

m∑
k=1

rmax
k (x,v) + 2δµj‖x?‖22 (by definition of rmax

j )

(b) Holds for the same reason as (a).

(c) For any j ∈ [m], by Lemma 83,

ψj(x̂, v̂) = ∆j(x̂) + rj(v̂) (by definition of ψj)

≤∆j(x) + 5δκglob

m∑
k=1

∆k(x) + 2δLj‖x?‖22 + rj(v) + 5δκglob

m∑
k=1

rk(v) + 2δµj‖x?‖22

(by Lemma 83)

≤ψj(x,v) + 5δκglob

m∑
k=1

ψk(x,v) + 4δLj‖x?‖22. (by definition of ψj and µj ≤ Lj)
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(d) We will prove (d) by considering e>j φ
∆
i for two different cases: j < i or j ≥ i (recall ej is

defined as the j-th unit vector). For j < i, by definition of φ∆
i (H.2), we have

e>j φ
∆
i (x̂, v̂) = ∆max

j (x̂, v̂) (definition of φ∆
i )

≤∆max
j (x,v) + 5δκglob

m∑
k=1

∆max
k (x,v) + 2δLj‖x?‖22 (by (b))

≤∆max
j (x,v) + 5δκglob

∑
k<i

∆max
k (x,v) + κglob

∑
k≥i

ψk(x,v)

+ 2δLj‖x?‖22

(since ∆max
k (x,v) = max{∆k(x),∆k(v)} ≤ ∆k(x) + ∆k(v) ≤ ∆k(x) + κkrk(v) ≤ κkψk(x,v))

≤∆max
j (x,v) + 5δκ2glob

∑
k<i

∆max
k (x,v) +

∑
k≥i

ψk(x,v)

+ 2δLj‖x?‖22

=e>j φ
∆
i (x,v) + 5δκ2glob

m∑
k=1

e>k φ
∆
i (x,v) + 2δLj‖x?‖22 (definition of φ∆

i )

For j ≥ i, by definition,

e>j φ
∆
i (x̂, v̂) = ψj(x̂, v̂) (definition of φ∆

i )

≤ψj(x,v) + 5δκglob

m∑
k=1

ψk(x,v) + 4δLj‖x?‖22 (by (c))

≤ψj(x,v) + 5δκglob

2
∑
k<i

∆max
k (x,v) +

∑
k≥i

ψk(x,v)

+ 4δLj‖x?‖22

(since ψk(x,v) = ∆k(x) + rk(v) ≤ ∆k(x) + ∆k(v) ≤ 2∆max
k (x,v))

≤ψj(x,v) + 10δκglob

∑
k<i

∆max
k (x,v) +

∑
k≥i

ψk(x,v)

+ 4δLj‖x?‖22

=e>j φ
∆
i (x,v) + 10δκglob

m∑
k=1

e>k φ
∆
i (x,v) + 4δLj‖x?‖22 (definition of φ∆

i )

In matrix form we arrive at

φ∆
i (x̂, v̂) ≤ (I+ 10δκ2glob11

>)φ∆
i (x,v) + 4δLm‖x?‖221.

(e) Holds for the same reason as (d).

H.2.3. FINISHING THE PROOF OF LEMMA 82

We are ready to finish the proof of Lemma 82.
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Proof [Proof of Lemma 82] By Lemma 16 from exact AGD analysis we have

φ∆
i (AGD(x,v;Li, µi)) ≤ Diφ

∆
i (x,v),

then applying Lemma 84 shows (a). (b) holds for the same reason.

H.3. Inductively bound the progress of inexact AcBSLS by matrix inequalities

In the following lemma, we iteratively construct the bound of vector potentials φ∆ and φr after
executing ̂AcBSLSi.

Lemma 85 (Estimate the progress of ̂AcBSLSi by matrix inequalities) Consider multiscale op-
timization problem defined in Theorem 1, and assuming Requirement 2, define the following three
sequences of m×m matrices {Fi}m+1

i=1 , {Ei}m+1
i=1 , {Zi}m+1

i=1 :

Fm+1 := I, Em+1 := 0, Zm+1 := 0

and for i = m,m− 1 down to 1, define

F̂i+1 :=


[Ii−1|0(i−1)×(m−i+1)](Fi+1 +Ei+1)

[
Ii−1 0
0 2κglob · Im−i+1

]
e>i (Fi+1 +Ei+1)

κglobIi 1
κglobIm−i−1


[0(m−i)×i|Im−i](Fi+1 +Ei+1)


Fi := (KiFi+1Di)

Ti , Ei := (KiF̂i+1D̂i)
Ti − (KiFi+1Di)

Ti ,

Zi :=

Ti−1∑
ti=0

(KiF̂i+1D̂i)
ti
(
KiF̂i+1 + 2Zi+1

)
.

where Di, D̂i were defined in Eqs. (H.3) and (H.4), and Ki is defined by

Ki :=

[
Ii

2κglobIm−i.

]
Then,

(a) For any i ∈ [m + 1], Fi are non-negative diagonal matrices, Ei and Zi are non-negative
matrices.

(b) For any i ∈ [m], the following bound holds

φ∆
i ( ̂AcBSLSi(x,v)) ≤ (Fi +Ei)φ

∆
i (x,v) + 4δLm‖x?‖22Zi1,

φri ( ̂AcBSLSi(x,v)) ≤ (Fi +Ei)φ
r
i (x,v) + 4δLm‖x?‖22Zi1.
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Proof [Proof of Lemma 85] The proof of (a) is the same as the proof for Lemma 74(a). We will prove
the first inequalities in (b) by induction in reverse order (from m back to 1). The second inequality
holds for the same reason.

The induction base apparently holds. Now assume for any x,v,

φ∆
i+1( ̂AcBSLSi+1(x,v)) ≤ (Fi+1 +Ei+1)φ

∆
i+1(x,v) + 4δLm‖x?‖22Zi+11,

then we will show that

φ∆
i ( ̂AcBSLSi(x,v)) ≤ (KiF̂i+1D̂i)

Tiφ∆
i (x,v),+4δLm‖x?‖22 ·

Ti−1∑
ti=0

(KiF̂i+1D̂i)
ti(F̂i+1 + 2Zi+1)1,

To this end, let
[
x(0)

v(0)

]
,

[
x̃(0)

ṽ(0)

]
, · · ·

[
x(Ti)

v(Ti)

]
be the trajectory generated by running ̂AcBSLSi.

Since (x̃(t), ṽ(t)) = ÂGD(x(t),v(t);Li, µi), we have by Lemma 82,

φ∆
i (x̃

(t), ṽ(t)) ≤ (I+ 10δκ2glob11
>)Diφ

∆
i (x

(t),v(t)) + 4δLm‖x?‖221,

We study the x(t+1),v(t+1) by considering 3 cases. For j < i,

e>j φ
∆
i (x

(t+1),v(t+1)) = ∆max
j (x(t+1),v(t+1)) = max{∆j(x

(t+1)),∆j(v
(t+1))}

≤max{∆max
j ( ̂AcBSLSi+1(x̃

(t), x̃(t))),∆max
j ( ̂AcBSLSi+1(ṽ

(t), ṽ(t)))}

=e>j max{φ∆
i+1( ̂AcBSLSi+1(x̃

(t), x̃(t))),φ∆
i+1( ̂AcBSLSi+1(ṽ

(t), ṽ(t)))} (by definition of φ∆
i+1)

≤e>j max{(Fi+1 +Ei+1)φ
∆
i+1(x̃

(t), x̃(t)), (Fi+1 +Ei+1)φ
∆
i+1(ṽ

(t), ṽ(t))}+ 4δLm‖x?‖22e>j Zi+11

≤e>j (Fi+1 +Ei+1)max{φ∆
i+1(x̃

(t), x̃(t)),φ∆
i+1(ṽ

(t), ṽ(t))}+ 4δLm‖x?‖22e>j Zi+11

≤e>j (Fi+1 +Ei+1)

[
Ii−1 0
0 2κglob · Im−i+1

]
φ∆
i (x̃

(t), ṽ(t)) + 4δLm‖x?‖22e>j Zi+11.

(by Lemma 80)

For j = i,

e>i φ
∆
i (x

(t+1),v(t+1)) =
1

2
ψi(x

(t+1),v(t+1)) =
1

2
∆i(x

(t+1)) +
1

2
ri(v

(t+1))

≤1

2
∆max
i ( ̂AcBSLSi+1(x̃

(t), x̃(t))) +
1

2
rmax
i ( ̂AcBSLSi+1(ṽ

(t), ṽ(t)))

=
1

2
e>i

(
φ∆
i+1( ̂AcBSLSi+1(x̃

(t), x̃(t))) + φri+1( ̂AcBSLSi+1(ṽ
(t), ṽ(t)))

)
≤1

2
e>i

(
(Fi+1 +Ei+1)φ

∆
i+1(x̃

(t), x̃(t)) + (Fi+1 +Ei+1)φ
r
i+1(ṽ

(t), ṽ(t))
)
+ 4δLm‖x?‖22e>i Zi+11

≤e>i (Fi+1 +Ei+1)

κglobIi 1
κglobIm−i−1

φ∆
i (x̃

(t), ṽ(t)) + 4δLm‖x?‖22e>i Zi+11.

(by Lemma 81)
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For j > i

e>j φ
∆
i (x

(t+1),v(t+1)) =
1

2
ψj(x

(t+1),v(t+1)) =
1

2
∆j(x

(t+1)) +
1

2
rj(v

(t+1))

=
1

2
ψj( ̂AcBSLSi+1(x̃

(t), x̃(t))) +
1

2
ψj( ̂AcBSLSi+1(ṽ

(t), ṽ(t)))

=e>j

(
φ∆
i+1( ̂AcBSLSi+1(x̃

(t), x̃(t))) + φri+1( ̂AcBSLSi+1(ṽ
(t), ṽ(t)))

)
≤e>j

(
(Fi+1 +Ei+1)φ

∆
i+1(x̃

(t), x̃(t)) + (Fi+1 +Ei+1)φ
r
i+1(ṽ

(t), ṽ(t))
)
+ 8δLm‖x?‖22e>j Zi+11

≤e>j (Fi+1 +Ei+1)

2κglobIi 2
2κglobIm−i−1

φ∆
i (x̃

(t), ṽ(t)) + 8δLm‖x?‖22e>j Zi+11

≤2κglobe>j (Fi+1 +Ei+1)φ
∆
i (x̃

(t), ṽ(t)) + 8δLm‖x?‖22e>j Zi+11.

In matrix form we obtain

φ∆
i (x

(t+1),v(t+1)) ≤ KiF̂i+1φ
∆
i (x̃

(t), ṽ(t)) + 8δLm‖x?‖22Zi+11.

Hence

φ∆
i (x

(t+1),v(t+1)) ≤ KiF̂i+1D̂iφ
∆
i (x

(t),v(t)) + 4δLm‖x?‖22(KiF̂i+1 + 2Zi+1)1.

Telescoping

φ∆
i (x

(Ti),v(Ti)) ≤ (KiF̂i+1D̂i)
Tiφ∆

i (x
(0),v(0))+4δLm‖x?‖22·

Ti−1∑
ti=0

(KiF̂i+1D̂i)
ti(KiF̂i+1+2Zi+1)1.

Next, we estimate the upper bounds of Fi (in Lemma 86), Ei (in Lemma 88) and Zi’s (in Lemma
89).

H.3.1. UPPER BOUND OF F

We first bound ‖Fi‖1 with the following lemma.

Lemma 86 (Upper bound of ‖Fi‖1) Using the same notation as in Lemma 85, and in addition
assume T1, . . . , Tm satisfies (C.1), then the following statements hold,

(a) For any i ∈ [m+ 1], Fi is a diagonal matrix of the form
∏m
j=i

(
(KjDj)

∏j
k=i Tk

)
.

(b) For any i ∈ [m], ‖KiFi+1Di‖1 ≤ 1.

(c) For any i ∈ [m+ 1], ‖Fi‖1 ≤ 1.

(d) ‖F1‖1 ≤ ε
ψ(x(0),v(0))

.

Proof [Proof of Lemma 86]
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(a) The first statement (a) follows immediately by definition of Fi’s. We prove by induction in
reverse order from m + 1 doewn to 1. For i = m + 1 we have Fm+1 = I by definition, which is
consistent. Now assume the statement holds for the case of i+ 1, then the case of i also holds in that

Fi = (KiFi+1Di)
Ti =

Ki

m∏
j=i+1

(
(KjDj)

∏j
k=i+1 Tk

)
Di

Ti

=

m∏
j=i

(
(KjDj)

∏j
k=i Tk

)
,

where the last equality holds because of the commutability among diagonal matrices.

(b) By (a) we have

KiFi+1Di = Ki

m∏
j=i+1

(
(KjDj)

∏j
k=i+1 Tk

)
Di =

m∏
j=i

(
(KjDj)

∏j
k=i+1 Tk

)
,

By definition of Di we can write the l-th diagonal element of KiFi+1Di as

(KiFi+1Di)ll =

{
1 l < i,

(1− κ−
1
2

l )
∏l

k=i+1 Tk · (4κ4glob)
∑l−1

j=i

∏j
k=i+1 Tk l ≥ i.

Note that

(1− κ−
1
2

l )
∏l

k=i+1 Tk · (4κ4glob)
∑l−1

j=i

∏j
k=i+1 Tk ≤ exp

−κ
− 1

2
l

l∏
k=i+1

Tk + log(4κ4glob) ·
l−1∑
j=i

j∏
k=i+1

Tk︸ ︷︷ ︸
denoted as γl

 .

Observe that γi = −κ−1
i < 0. For l ≥ i, it is the case that

γl+1 − γl

=− κ−
1
2

l+1

l+1∏
k=i+1

Tk + log(4κ4glob) ·
l∑
j=i

j∏
k=i+1

Tk + κ
− 1

2
l

l∏
k=i+1

Tk − log(4κ4glob) ·
l−1∑
j=i

j∏
k=i+1

Tk

=− κ−
1
2

l+1

l+1∏
k=i+1

Tk + κ
− 1

2
l

l∏
k=i+1

Tk + log(4κ4glob) ·
l∏

k=i+1

Tk

=
l∏

k=i+1

Tk

(
−κ−

1
2

l+1Tl+1 + κ
− 1

2
l + log(4κ4glob)

)
≤ 0

(since Tl+1 ≥ κ
1
2
l+1(1 + log(4κ4glob)) by (C.1))

Hence γm ≤ γm−1 ≤ · · · ≤ γi ≤ 0. Consequently we have (KiFi+1Di)ll ≤ 1 for all l, and thus
‖KiFi+1Di‖1 ≤ 1.

(c) By (b), ‖Fi‖1 = ‖(KiFi+1Di)
Ti‖1 ≤ ‖(KiFi+1Di)‖Ti1 ≤ 1.
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(d) Follows by the same argument as in the exact arithmetic proof Theorem 15, which we sketch here
for completeness. By (a),

(F1)ll =

 m∏
j=1

(
(KjDj)

∏j
k=1 Tk

)
ll

= (1− κ−
1
2

l )
∏l

k=1 Tk · (4κ4glob)
∑l−1

j=i

∏j
k=1 Tk

≤ exp

−κ
− 1

2
l

l∏
k=1

Tk + log(4κ4glob) ·
l−1∑
j=1

j∏
k=1

Tk︸ ︷︷ ︸
denoted as γl

 .

Since T1 ≥ κ
1
2
1 log(ψ(x

(0),v(0))
ε ), we have γ1 = −κ

− 1
2

1 T1 ≤ − log(ψ(x
(0),v(0))
ε ). Following the same

argument as in (b), we have γm ≤ γm−1 ≤ · · · ≤ γ1. Consequently, for any l ∈ [m]

(F1)ll ≤ exp

(
− log(

ψ(x(0),v(0))

ε
)

)
≤ ε

ψ(x(0),v(0))
,

which implies ‖F1‖1 ≤ ε
ψ(x(0),v(0))

since F1 is diagonal (by (a)).

H.3.2. UPPER BOUND OF E

Before we state the upper bound of Ei’s, we first establish the following Lemma 87, which is essential
towards the bound for Ei’s and Zi’s.

Lemma 87 Using the same notation of Lemma 85, and assume T1, . . . , Tm satisfies (C.1), and
assume δ ≤ 1

20mκ2glob
, then for any t ≥ 0, for any i ∈ [m], the following inequality holds

∥∥∥(KiF̂i+1D̂i)
t − (KiFi+1Di)

t
∥∥∥
1
≤

{
ϕ(10tδmκ2glob) i = m

ϕ(40tδmκ6glob + 12tκ4glob‖Ei+1‖1) i < m,

where ϕ(x) := xex.

Proof [Proof of Lemma 87] Let Ξi := KiF̂i+1D̂i −KiFi+1Di (which is non-negative), then∥∥∥(KiF̂i+1D̂i)
t − (KiFi+1Di)

t
∥∥∥
1
=
∥∥(KiFi+1Di +Ξi)

t − (KiFi+1Di)
t
∥∥
1

≤
t∑

s=1

(
t

s

)
‖Ξi‖s ‖KiFi+1Di‖t−s1 ≤

t∑
s=1

(
t

s

)
‖Ξi‖s1 (since ‖KiFi+1Di‖1 ≤ 1)

≤‖Ξi‖1t
t−1∑
s=0

(
t− 1

s

)
‖Ξi‖s1 = ‖Ξi‖1t (1 + ‖Ξi‖1)t−1 (by Theorem 100)

≤‖Ξi‖1t exp(‖Ξi‖1t). (H.9)
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It remains to bound ‖Ξi‖1. For i = m we have Em+1 = 0, Fm+1 = I, F̂m+1 = I, Km = I, which
implies ‖Ξm‖1 = ‖D̂m − I‖1 ≤ 10δmκ2glob.

For other i < m, first note that (since Fi is diagonal)

F̂i+1 = Fi+1 +


[Ii−1|0(i−1)×(m−i+1)]Ei+1

[
Ii−1 0
0 2κglob · Im−i+1

]
e>i Ei+1

κglobIi 1
κglobIm−i−1


[0(m−i)×i|Im−i]Ei+1


︸ ︷︷ ︸

denoted as ¨

(H.10)

thus

F̂i+1D̂i − Fi+1Di = (Fi+1 + ¨)(I+ 10δκ2glob11
>)Di − Fi+1Di

=10δκ2globFi+111
>Di + ¨(I+ 10δκ2glob11

>)Di

Since ‖¨‖1 ≤ 2κglob‖Ei+1‖1 and ‖Di‖ ≤ 2κ3glob we have bound∥∥∥F̂i+1D̂i − Fi+1Di

∥∥∥
1
≤ 20δmκ5glob + 4κ4glob‖Ei+1‖1(1 + 10δmκ2glob).

Thus (for i < m)

‖Ξi‖1 ≤ 2κglob
(
20δmκ5glob + 4κ4glob‖Ei+1‖1(1 + 10δmκ2glob)

)
≤40δmκ6glob + 8κ4glob‖Ei+1‖1(1 + 10δmκ2glob) ≤ 40δmκ6glob + 12κ4glob‖Ei+1‖1.

(since δ ≤ 1
20mκ2glob

)

Substituting back to Eq. (H.9) completes the proof.

Now we state the bound for Ei’s.

Lemma 88 (Upper bound of ‖Ei‖1) Using the same notation of Lemma 85, and assume T1, . . . , Tm
satisfies (C.1), and assume

δ ≤ 1

2 · (10κ2glob)2m−1m
∏m
j=1 Tj

, (H.11)

then for any t ≥ 0, for any i ∈ [m], the following inequality holds then the following inequality holds

‖Ei‖1 ≤ 2 · (10κ2glob)2(m−i)+1δm

m∏
j=i

Tj . (H.12)

Proof [Proof of Lemma 88] We prove by induction in reverse order from m down to 1.
For i = m, by definition of Em,

‖Em‖1 =
∥∥∥(KmF̂m+1D̂m)

Tm − (KmFm+1Dm)
Tm
∥∥∥
1

≤10δmκ2globTm exp(10δmκ2globTm) (by Lemma 87)

≤10
√
eδmκ2globTm ≤ 17δmκ2globTm, (since δ ≤ 1

20mκ2glob
)
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which satisfies the bound (H.12).
Now suppose the statement holds for the case of i+ 1, we then study the case of i. By definition

of Ei,

‖Ei‖1 =
∥∥∥(KiF̂i+1D̂i)

Ti − (KiFi+1Di)
Ti
∥∥∥
1

≤
(
40δmκ6glob + 12κ4glob‖Ei+1‖1

)
Ti · exp

[(
40δmκ6glob + 12κ4glob‖Ei+1‖1

)
Ti
]

(by Lemma 87)

Observe that(
40δmκ6glob + 12κ4glob‖Ei+1‖1

)
Ti

≤40δmκ6globTi + 24κ4glob(10κ
2
glob)

2(m−i−1)+1δm
m∏
j=i

Tj (by induction hypothesis (H.12))

≤28κ4glob(10κ2glob)2(m−i−1)+1δm
m∏
j=i

Tj (H.13)

and thus

exp
[(
40δmκ6glob + 12κ4glob‖Ei+1‖1

)
Ti
]
≤ exp

28κ4glob(10κ2glob)2(m−i−1)+1δm

m∏
j=i

Tj


(by (H.13))

=exp

0.28(10κ2glob)2m−1δm

m∏
j=1

Tj

 ≤ exp(0.14) < 1.16 (by δ bound (H.11))

Consequently

‖Ei‖1 ≤ 28κ4glob(10κ
2
glob)

2(m−i)+1δm

m∏
j=i

Tj × 1.16

≤45κ4glob(10κ2glob)2(m−i−1)+1δm
m∏
j=i

Tj = 0.45 · (10κ2glob)2(m−i)+1δm
m∏
j=i

Tj

≤2 · (10κ2glob)2(m−i)+1δm
m∏
j=i

Tj .

H.3.3. UPPER BOUND OF Z

Lemma 89 (Upper bound of ‖Zi‖1) Using the same notation of Lemma 85 and assuming the same
assumptions of Lemma 88, then the following inequality holds for any i ∈ [m],

‖Zi‖1 ≤ 3m−i+2κglob

m∏
j=i

Tj .
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Proof [Proof of Lemma 89] Recall the definition of Zi from Lemma 85,

Zi :=

Ti−1∑
ti=0

(KiF̂i+1D̂i)
ti
(
KiF̂i+1 + 2Zi+1

)

We will bound ‖
∑Ti−1

ti=0 (KiF̂i+1D̂i)
ti‖1 and ‖KiF̂i+1+2Zi+1‖1 separately. The former is bounded

as ∥∥∥∥∥
Ti−1∑
ti=0

(KiF̂i+1D̂i)
ti

∥∥∥∥∥
1

≤
Ti−1∑
ti=0

∥∥∥(KiF̂i+1D̂i)
ti
∥∥∥
1

(by triangle inequality)

≤
Ti−1∑
ti=0

(
‖(KiFi+1Di)

ti‖1 +
∥∥∥(KiF̂i+1D̂i)

ti − (KiFi+1Di)
ti
∥∥∥) (by triangle inequality)

≤Ti +
Ti−1∑
ti=0

∥∥∥(KiF̂i+1D̂i)
ti − (KiFi+1Di)

ti
∥∥∥ (since ‖KiF̂i+1D̂i‖1 ≤ 1 by Lemma 86)

≤Ti

1 + 0.45 · (10κ2glob)2(m−i)+1δm

m∏
j=i

Tj

 (by the proof of Lemmas 87 and 88)

≤1.23Ti (by δ bound (H.11))

The second term is bounded as∥∥∥KiF̂i+1 + 2Zi+1

∥∥∥
1
≤ ‖Ki‖1 · ‖F̂i+1‖1 + 2‖Zi+1‖1

≤2κglob · (1 + 2κglob‖Ei+1‖1) + 2‖Zi+1‖1 (by (H.10))

≤2.04κglob + 2‖Zi+1‖1 (since ‖Ei+1‖1 ≤ 1
100mκ2glob

by Lemma 88)

In summary ‖Zi‖1 ≤ 1.23Ti(2.04κglob + 2‖Zi+1‖1). By induction we can show that ‖Zi‖1 ≤
3m−i+2κglob

∏m
j=1 Tj .

H.4. Finishing the proof of Theorem 79

We are ready to finish the proof of Theorem 79.
Proof [Proof of Theorem 79] By Lemma 85 we have

φ∆
1 ( ̂AcBSLS1(x(0),v(0))) ≤ (F1 +E1)φ

∆
1 (x

(0),v(0)) + 4δLm‖x?‖22Z11.

By definition of vector potential φ∆
1 we have ‖φ∆

1 (x,v)‖1 = ψ(x,v) for any x,v. Consequently

ψ( ̂AcBSLS1(x(0),v(0)))

≤
∥∥(F1 +E1)φ

∆
1 (x,v) + 4δLm‖x?‖22Z11

∥∥
1

(by Lemma 85)

≤(‖F1‖1 + ‖E1‖1)ψ(x,v) + 4δmLm‖x?‖22‖Z1‖1 (triangle inequality)
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Plugging in the bound of ‖F1‖ (from Lemma 86), ‖E1‖ (from Lemma 88), and ‖Z1‖1 (from Lemma
89), we arrive at

ψ( ̂AcBSLS1(x(0),v(0)))

≤

 ε

ψ(x(0),v(0))
+ 2 · (10κ2glob)2(m−i)+1δm

m∏
j=i

Tj

ψ(x(0),v(0)) + 4 · 3m+1δmκglobLm‖x?‖22
m∏
j=1

Tj .

By δ bound

δ ≤

 ∏
i∈[m]

T−1
i

min

{
1

2 · (10κ2glob)2m−1m
,

ε

2 · (10κ2glob)2m−1 · ψ(x(0),v(0))
,

ε

4 · 3m+1 ·mLmκglob‖x?‖22

}
,

we immediately obtain ψ( ̂AcBSLS1(x(0),v(0))) ≤ 3ε.

Appendix I. Deferred proof of supporting lemmas of Lemma 26

In this appendix section we provide the proof of several supporting lemmas toward Lemma 26.

I.0.1. DEFERRED PROOF OF LEMMA 41

Proof [Proof of Lemma 41] Apply Lemma 39, since for any k ∈ [m− 1],∫ µk+1

Lk

h(ζ)√
q(ζ)

= 0,

we conclude that h(z) has m− 1 real roots r1, r2, . . . , rm−1 such that rk ∈ [Lk, µk+1]. Therefore

gS(0) =

∫ µ1

0

∏
k∈[m−1](rk − ζ)√∏

k∈[m](µk − ζ)(Lk − ζ)
dζ

By monotonocity,∫ µ1

0

∏
k∈[m−1](rk − ζ)√∏

k∈[m](µk − ζ)(Lk − ζ)
dζ ≤

∏
k∈[m−1] rk√∏

k∈[m](Lk − µ1) ·
∏m
k=2(µk − µ1)

·
∫ µ1

0

dζ√
µ1 − ζ

dζ

=

∏
k∈[m−1] rk√∏

k∈[m](Lk − µ1) ·
∏m
k=2(µk − µ1)

· 2√µ1 =
2
∏
k∈[m−1]

rk
µk√∏

k∈[m](
Lk
µk
− µ1

µk
) ·
∏m
k=2(1−

µ1
µk
)
.

By assumption Lk
µk
≥ 2 we have µ1

µk
≤ 1

2k−1 , and thus Lk
µk
− µ1

µk
≥ (1− 1

2k
)Lk
µk

. Hence

∏
k∈[m]

(
Lk
µk
− µ1
µk

)
·
m∏
k=2

(
1− µ1

µk

)
≥

 ∏
k∈[m]

Lk
µk

 ·
 ∏
k∈[m]

(1− 2−k)

 ∏
k∈[m−1]

(1− 2−k)
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Since
∏∞
k=1(1− 2−k) > 0.288 (see Theorem 101) we arrive at

gS(0) ≤
2
∏
k∈[m−1]

rk
µk+1√

0.2882
∏
k∈[m]

Lk
µk

≤
7
∏
k∈[m−1]

rk
µk+1√∏

k∈[m]
Lk
µk

.

completing the proof.

I.0.2. DEFERRED PROOF OF LEMMA 43

Proof [Proof of Lemma 43] Since h(z) =
∏m−1
j=1 (z − rj) satisfies

0 =

∫ µk+1

Lk

h(ζ)√
q(ζ)

dζ =

∫ µk+1

Lk

∏
j∈[m](ζ − rj)√

q(ζ)
dζ,

we have for any k ∈ [m− 1]∫ µk+1

Lk

rk
∏
j 6=k(ζ − rj)√
q(ζ)

dζ =

∫ µk+1

Lk

ζ
∏
j 6=k(ζ − rj)√
q(ζ)

dζ.

Thus

rk =

∫ µk+1

Lk

ζ
∏

j∈[k−1](rj−ζ)·
∏m−1

j=k+1(ζ−rj)√∏
j∈[m](ζ−µj)

∏
j∈[m](ζ−Lj)

dζ∫ µk+1

Lk

∏
j∈[k−1](rj−ζ)·

∏m−1
j=k+1(ζ−rj)√∏

j∈[m](ζ−µj)
∏

j∈[m](ζ−Lj)
dζ

.

Rearranging

rk =

∫ µk+1

Lk

ζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)

(∏
j∈[k−1]

ζ−rj√
(ζ−µj)(ζ−Lj)

)(∏m−1
j=k+1

rj−ζ√
(µj+1−ζ)(Lj+1−ζ)

)
dζ

∫ µk+1

Lk

1√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)

(∏
j∈[k−1]

ζ−rj√
(ζ−µj)(ζ−Lj)

)(∏m−1
j=k+1

rj−ζ√
(µj+1−ζ)(Lj+1−ζ)

)
dζ

.

Observe that

• For any j < k, ζ−rj√
(ζ−µj)(ζ−Lj)

is non-negative and monotonically increasing in ζ ∈ [Lk, µk+1]

since µj < Lj < rj .

• For any j > k, rj−ζ√
(ζ−µj+1)(ζ−Lj+1)

is non-negative and monotonically decreasing in ζ ∈
[Lk, µk+1] since rj < µj+1 < Lj+1.

Consequently

rk ≤

∫ µk+1

Lk

ζdζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)∫ µk+1

Lk

dζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)

·
∏

j∈[k−1]


µk+1−rj√

(µk+1−µj)(µk+1−Lj)

Lk−rj√
(Lk−µj)(Lk−Lj)︸ ︷︷ ︸

denoted as γj

 (I.1)

92



BIG-STEP-LITTLE-STEP: EFFICIENT GRADIENT METHODS FOR OBJECTIVES WITH MULTIPLE SCALE

Note that

γj :=

µk+1−rj√
(µk+1−µj)(µk+1−Lj)

Lk−rj√
(Lk−µj)(Lk−Lj)

=
1− rj

µk+1

1− rj
Lk

·

√
(1− µj

Lk
)(1− Lj

Lk
)√

(1− µj
µk+1

)(1− Lj

µk+1
)
≤ 1

1− rj
Lk

.

and by minj∈[m]
Lj

µj
≥ 2 one has

rj
Lk
≤ µj+1

Lk
≤ 2−(k−j).

We arrive at (by Theorem 101,
∏∞
j=1 1− 2−i ≥ 0.288)∏

j∈[k−1]

γj ≤
∏

j∈[k−1]

1

1− 2−(k−j) ≤
1

0.288
≤ 4.

Substitute back to Eq. (I.1),

rk ≤ 4 ·

∫ µk+1

Lk

ζdζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)∫ µk+1

Lk

dζ√
(ζ−µk)(ζ−Lk)(µk+1−ζ)(Lk+1−ζ)

.

I.0.3. DEFERRED PROOF OF LEMMA 44

We will prove Lemma 44 by analyzing the integrals in the numerator and denominator. In particular,
we will apply the tools from elliptic integral theory. We adopt the following Legendre forms of
elliptic integrals, defined as follows:

• F(φ|p) :=
∫ φ
0

dθ√
1−p sin2 θ

denotes the (incomplete) elliptic integral of the first kind.

• K(p) := F(π2 |p) denotes the complete elliptic integral of the first kind.

• E(φ|p) :=
∫ φ
0

√
1− p sin2 θdθ denotes the (incomplete) elliptic integral of the second kind.

• E(p) := E(π2 |p) denotes the complete elliptic integral of the second kind.

• Π(n;φ|p) :=
∫ φ
0

dθ

(1−n sin2 θ)
√

(1−p sin2 θ)
denotes the incomplete elliptic integral of the third kind.

• Π(n|p) := Π(n; π2 |p) denotes the complete elliptic integral of the third kind.

To simplify the notation, throughout this subsubsection we assume without loss of generality that
k = 1. The result apparently holds for any k ∈ [m− 1].

Denote (throughout this subsubsection) that

ϕ(z) := (z − µ1)(z − L1)(µ2 − z)(L2 − z).

The following Lemma 90 analyzes
∫ µ2
L1

dζ√
ϕ(ζ)

.
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Lemma 90 For any 0 < µ1 < L1 < µ2 < L2, the following equality holds∫ µ2

L1

dζ√
ϕ(ζ)

=
2K
(
(L2−µ1)(µ2−L1)
(L2−L1)(µ2−µ1)

)
√
(L2 − L1)(µ2 − µ1)

.

Proof [Proof of Lemma 90] The antiderivative of 1√
ϕ(ζ)

in [L1, µ2] is

Q(ζ) := −2

√
−1

(L1 − µ1) (L2 − µ2)
F

(
Arcsin

(√
−(ζ − L1) (L2 − µ2)
(L2 − L1) (µ2 − ζ)

)∣∣∣∣∣(L2 − L1) (µ2 − µ1)
(L1 − µ1)(L2 − µ2)

)
.

The lemma then follows by the fact that limζ→L1 Q(ζ) = 0 and

lim
ζ→µ2

Q(ζ) = 2

√
1

(L1 − µ1) (L2 − µ2)
K
(
−(L2 − µ1)(µ2 − L1)

(L1 − µ1)(L2 − µ2)

)
=

2K
(
(L2−µ1)(µ2−L1)
(L2−L1)(µ2−µ1)

)
√

(L2 − L1)(µ2 − µ1)
.

The following Lemma 91 analyzes
∫ µ2
L1

ζdζ√
ϕ(ζ)

.

Lemma 91 For any 0 < µ1 < L1 < µ2 < L2, the following equality holds∫ µ2

L1

ζdζ√
ϕ(ζ)

=2

√
1

(µ2 − µ1)(L2 − L1)
·(

L2K
(
(L2 − µ1)(µ2 − L1)

(L2 − L1)(µ2 − µ1)

)
− (L2 − µ2)Π

(
µ2 − L1

L2 − L1

∣∣∣∣(L2 − µ1) (µ2 − L1)

(L2 − L1)(µ2 − µ1)

))
.

Proof [Proof of Lemma 91] The antiderivative of ζ√
ϕ(ζ)

in [L1, µ2] is

P (ζ) :=2

√
1

(µ2 − µ1)(L2 − L1)
·(

iL1F

(
Arcsin

(√
−(L2 − L1) (µ2 − ζ)
(ζ − L1) (L2 − µ2)

)∣∣∣∣∣(L1 − µ1) (L2 − µ2)
(L2 − L1)(µ2 − µ1)

)

+i (µ2 − L1)Π

(
L2 − µ2
L2 − L1

; Arcsin

(√
−(L2 − L1) (µ2 − ζ)
(ζ − L1) (L2 − µ2)

)∣∣∣∣∣(L1 − µ1) (L2 − µ2)
(L2 − L1)(µ2 − µ1)

))
.

The lemma then follows by the fact that limζ→µ2 P (ζ) = 0 and

lim
ζ→L1

P (ζ) =2

√
1

(µ2 − µ1)(L2 − L1)
·(

−L2K
(
(L2 − µ1)(µ2 − L1)

(L2 − L1)(µ2 − µ1)

)
+ (L2 − µ2)Π

(
µ2 − L1

L2 − L1

∣∣∣∣(L2 − µ1) (µ2 − L1)

(L2 − L1)(µ2 − µ1)

))
.

Next, we establish the following inequality regarding elliptic integrals.
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Lemma 92 For any x ∈ [0, 12 ] and y ∈ (0, 1], the following inequality holds

Π(x|1− y)
K(1− y)

≥ 1

1− x

(
1− 4x

log(16y )

)
.

Proof [Proof of Theorem 92] We first prove two claims:

Claim 93 The function (1− x)Π(x|1− y) is concave in x for x ∈ [0, 1) and y ∈ (0, 1].

Proof [Proof of Claim 93] By standard convex analysis we can show that 1−x
1−x sin2 θ is concave in x

for any x ∈ [0, 1) and θ ∈ [0, π2 ]. Thus by linearity of integrals we have that (1− x)Π(x|1− y) =∫ π
2
0

(1−x)dθ
(1−x sin2 θ)

√
1−(1−y) sin2 θ

is also concave in x ∈ [0, 1) provided that y ∈ (0, 1].

Claim 94 Let ϕ(x, y) := (1− x) · Π(x|1−y)
K(1−y) . Then for any y ∈ (0, 1], the following inequality holds

∂ϕ(12 , y)

∂x
≥ −4

log 16
y

.

Proof [Proof of Claim 94] By standard elliptic integral analysis

∂ϕ(12 , y)

∂x
= −1 +

2E(1− y)−Π(12 , 1− y)
(2y − 1)K(1− y)

.

Expanding the above quantity around y = 0 shows the lower bound −4
log 16

y

.

The proof of Theorem 92 then follows by the above two claims. Since (1− x)Π(x|1− y) is concave
in x ∈ [0, 12 ], so is ϕ(x, y) defined in Claim 94. Thus for any x ∈ [0, 12 ],

ϕ(x, y) ≥ ϕ(0, y) + x
∂ϕ(12 , y)

∂x
≥ 1− 4x

log 16
y

.

Hence
Π(x|1− y)
K(1− y)

=
ϕ(x, y)

1− x
≥ 1

1− x

(
1− 4x

log(16y )

)
.

Finally, the proof of Lemma 44 then follows by applying Lemmas 90, 91 and 92.
Proof [Proof of Lemma 44] By Lemmas 90, 91 and 92,(∫ µ2

L1

dζ√
ϕ(ζ)

)−1(∫ µ2

L1

ζdζ√
ϕ(ζ)

)
= L2 − (L2 − µ2)

Π
(
µ2−L1

L2−L1

∣∣∣ (L2−µ1)(µ2−L1)
(L2−L1)(µ2−µ1)

)
K
(
(L2−µ1)(µ2−L1)
(L2−L1)(µ2−µ1)

)
≤L2 − (L2 − µ2)

1

1− µ2−L1

L2−L1

1−
4µ2−L1

L2−L1

log
(
16 (µ2−µ1)(L2−L1)

(L1−µ1)(L2−µ2)

)


(by Theorem 92 and assumption µ2
L2
≤ 1

2 )

=L1 +
4(µ2 − L1)

log
(
16 (µ2−µ1)(L2−L1)

(L1−µ1)(L2−µ2)

) ≤ L1 +
4µ2

log
(
16 (µ2−µ1)(L2−L1)

(L1−µ1)(L2−µ2)

) .
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Since

(µ2 − µ1)(L2 − L1)

(L1 − µ1)(L2 − µ2)
=

(
1 +

µ2
L1
− 1

1− µ1
L1

)(
1 +

µ2 − L1

L2 − µ2

)
≥ 1 +

µ2
L1
− 1 =

µ2
L1
,

and
L1

µ2
≤ 3

log(16 µ2L1
)
,

we obtain (∫ µ2

L1

dζ√
ϕ(ζ)

)−1(∫ µ2

L1

ζdζ√
ϕ(ζ)

)
≤ L1 +

4µ2
log(16 µ2L1

)
≤ 7µ2

log(16 µ2L1
)
.

Appendix J. Technical details for Appendix E

Remark 95 We can obtain an example of a non-product, non-Gaussian distribution that satisfies
the second-order independence condition by considering any collection of pairwise independent
random variables that take values in {±1}d and have expected value 0. As an example: let P be
the d × d identity matrix. Let a ∈ {±1}d be uniform on the subset of the hypercube {±1}d with
even parity: Πdi=1ai = 1. Now, note that the distribution of a does not have a product structure but
the second-order independence condition is satisfied: E[(Pa)i(Pa)2k(Pa)j ] = 0 since each pair of
coordinates of a is pairwise independent (for d > 2). Note that we could also obtain a candidate
distribution which satisfies the property if P is not the identity: We can choose the distribution over
a such that Pa is still uniform on the subset of the hypercube with even parity as before. Another
different example is any distribution over

{
a ∈ Rd s.t. ‖Pa‖0 ≤ 1

}
.

J.1. Missing details for proof of Lemma 53 Eq. (J.1)

We want to show that if

δ ≤ min

{
1

3m

1

Tmax(N1 + 2)2 + 1
,

1

6m(4m)

(
48mT 2

max(N1 + 2)3
)−1/2

,

1

6m(4m)

(
max
`∈[m]

{κ`} ·mT 2
max(N1 + 2)3

)−1/2}
,

then

4m(1+3δm)m(Tmax(N1+2)2+1) ≤ min

{
κglob

(1 + 3δm)N1
,

1

144N1Tmaxδm
,

1

2max`∈[m] {κ`}
1

6(N1 + 1)δm

}
.

(J.1)
Using that for any x ≥ 0, (1 + 1

x)
x ≤ e and that κglob ≥ (4e)m we have,

4m(1 + 3δm)m(Tmax(N1+2)2+1) ≤ (4e)m ≤ κglob,
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therefore
4m(1 + 3δm)m(Tmax(N1+2)2+1) ≤

κglob
(1 + 3δm)N1

.

Next suppose for some x, p, C ∈ R we have px ≤ 1/4, x ≤
√
C/4p, and C, p ≥ 1. Then

(1 + x)px ≤ (1 + 2px)x ≤

√
C

4p
+
C

4
≤ C.

Then letting x = 3δm, p = m(Tmax(N1+2)2+1), and C = (144N1Tmax4
m)−1 we have that when

δ ≤ 1
6m(4m)

(
48mT 2

max(N1 + 2)3
)−1/2 then

4m(1 + 3δm)m(Tmax(N1+2)2+1) ≤ 1

144N1Tmaxδm
.

Similarly, letting x = 3δm, p = m(Tmax(N1+2)2+1), andC =
(
2max`∈[m] {κ`} 6(N1 + 1)4m

)−1

we have that when δ ≤ 1
6m(4m)

(
max`∈[m] {κ`} ·mT 2

max(N1 + 2)3
)−1/2 then

4m(1 + 3δm)m(Tmax(N1+2)2+1) ≤ 1

2max`∈[m] {κ`}
1

6(N1 + 1)δm
.

Therefore Eq. J.1 holds.

J.2. Proof of Lemma 52

Proof [Proof of Lemma 52] We prove Lemma 52 by induction on i. We start with the base case of
StochBSLSResm and then we will show that if Lemma 52 is true for StochBSLSResi+1 then
it is true for StochBSLSResi. Let u(0) denote our input vector u to StochBSLSResi and u(t)

denotes the tth iteration of StochBSLSResi. Before beginning the proof by induction we establish
several useful claims that will be used throughout the proof. First note that if

navg ≥ Kurt(D)m2nmax

(
m∏
i=1

κi

)
logm(κglob),

then since δ := Kurt(D)nmax/navg we have

δ ≤

(
m2

(
m∏
i=1

κi

)
logm(κglob)

)−1

. (J.2)

Note that if u(t+1)
i = Uiu

(t)
i we have

u
(t+1)
i ≤ γiu(t)

i +

(
δ

m∑
k=i+1

Lk
Li

u
(t)
k

)
+

(
δ

i−1∑
k=1

Lk
Li

u
(t)
k

)
, (J.3)

u
(t+1)
j ≤

(
Lj
Li
− 1

)2

u
(t)
j + δ

m∑
k=1

LkLj
L2
i

u
(t)
k , (For all j ≥ i+ 1)

u
(t+1)
j ≤

(
1− µj

CiLi

)2

u
(t)
j + δ

m∑
k=1

LkLj
L2
i

u
(t)
k . (For all j ≤ i− 1)
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Finally,

Ti ≥ logγ̃i

(
1

β
Ni+1

i

(
u(0)

) Li−1

Li

u
(0)
i−1

u
(0)
i

)
. (J.4)

To see this note,

logγ̃i

(
1

β
Ni+1

i

(
u(0)

) Li−1

Li

u
(0)
i−1

u
(0)
i

)
=

log

(
1

ρNi+1(u(0))
Li−1

Li

u
(0)
i−1

u
(0)
i

)
log(γ̃i)

=

log

(
ρNi+1

(
u(0)

)
Li
Li−1

u
(0)
i

u
(0)
i−1

)
log(1/γ̃i)

≤ 2κi log

(
ρNi+1

(
u(0)

) Li
Li−1

u
(0)
i

u
(0)
i−1

)
(γ̃i = 1− 1

2κi
and log(1/(1− x)) ≥ x)

≤ 2κi log

(
ρNi+1

(
u(0)

)
β0

L2
i

L2
i−1

)
(u(0)
i /u

(0)
i−1 ≤ β0Li/Li−1)

≤ 6κi log (κglob)
(β0ρNi+1

(
u(0)

)
≤ κglob and Li/Li−1 ≤ κglob)

≤ Ti.

Base Case. Consider StochBSLSResm. Suppose that β0
(
u(0)

)
satisfies Eq. E.7. Since u(0) is

not ambiguous we will shorten β0
(
u(0)

)
, ρ
(
u(0)

)
, and βm

(
u(0)

)
all to β0, ρ, and βm respectively.

First we will prove the following claim:

Claim 96 (Fast Convergence Phase) Recall γ̃m. For any t ≤ logγ̃m

(
1

β
Nm+1
m (u(0))

Lm−1

Lm

u
(0)
m−1

u
(0)
m

)
+

1 we have
u(t) = Vt

mu
(0).

Moreover, defining

βm

(
u(0)

)
:= ρ

(
u(0)

)Nm+2
,

we have for any j, k ∈ [m],

u
(t)
k ≤ β0β

t
m

1

γ̃m
max

{
Lj
Lk
,
Lk
Lj

}
u
(t)
j . (J.5)

We will prove Claim 96 by induction. The case t = 0 holds immediately. Now suppose Claim 96 is
true for t. First we prove that for any t ≤ Tm,

βtm ≤ 3. (J.6)
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We first bound βm by 1 + (1/Tm),

βm = (1 + 3δmβ0)
Nm+2

≤ 1 + 12(Nm + 2)δmβ0

≤ 1 +
1

Tm
. (β0 < 1/(24NmTmδm) by Eq. E.7)

Therefore since supx≥0(1 + (1/x))x ≤ 3 we have that for any t ≤ Tm

βtm ≤ βTmm ≤
(
1 +

1

Tm

)Tm
≤ 3.

This concludes the proof of Eq. J.6. Now we can continue with our proof by induction of Claim 96.
Suppose the inductive hypothesis (I.H.) that Claim 96 holds for t. Let u(t+1) := Umu

(t). By Eq. J.3
we have,

u(t+1)
m ≤ γmu(t)

m + δ
m−1∑
k=1

Lk
Lm

u
(t)
k

≤ γmu(t)
m + δβ0β

t
m

m−1∑
k=1

Lk
Lm

Lm
Lk

u(t)
m (I.H. of Claim 96 Eq. J.5)

≤
(
γm + β0β

t
mδ(m− 1)

)
u(t)
m

≤ γ̃mu(t)
m . (I.H. of Claim 96, Eq. J.6, and Eq. J.2)

Therefore

u(t+1)
m = max

{
u(t+1)
m ,

(
Viu

(t)
)
m

}
= max

{
u(t+1), γ̃mu

(t)
m

}
= γ̃mu

(t)
m . (J.7)

Next for j ≤ m− 1,

u
(t+1)
j ≤ u

(t)
j +

(
δ

j∑
k=1

LkLj
L2
m

u
(t)
k

)
+

δ m∑
k=j+1

LkLj
L2
m

u
(t)
k


≤ u

(t)
j +

(
δβ0β

t
m

j∑
k=1

LkLj
L2
m

Lj
Lk

u
(t)
j

)
+

δβ0βtm m∑
k=j+1

LkLj
L2
m

Lk
Lj

u
(t)
j


(I.H. of Claim 96 Eq. J.5)

=
(
1 + β0β

t
mδm

)
u
(t)
j

≤ ρu(t)
j . ( Eq. J.6)

Therefore for j ≤ m− 1,

u
(t+1)
j = max

{
u
(t+1)
j ,

(
Viu

(t)
)
j

}
= max

{
u(t+1), ρu

(t)
j

}
= ρu

(t)
j . (J.8)
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Combining Eq. J.7 and Eq. J.8 with the I.H. of Claim 96 for t shows that u(t+1) = Vt+1
m u(0). Finally

to establish Claim 96 we first show that if t ≤ logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)
− 1 then for all j, k,

u
(t)
k ≤ β0β

t
mmax

{
Lj
Lk
,
Lk
Lj

}
u
(t)
j .

Then we show that this implies that for t =
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
, for all j, k,

u
(t)
k ≤ β0β

t
m

1

γ̃m
max

{
Lj
Lk
,
Lk
Lj

}
u
(t)
j .

If both j, k ≤ m− 1 then

u
(t+1)
k

u
(t+1)
j

=
ρu

(t)
k

ρu
(t)
j

(Eq. J.8)

≤ β0βtmmax

{
Lj
Lk
,
Lk
Lj

}
(I.H. of Claim 96)

≤ β0βt+1
m max

{
Lj
Lk
,
Lk
Lj

}
. (βm ≥ 1)

Next suppose k = m. By Eq. J.7, u(t+1)
m ≤ u

(t)
m and by Eq. J.8 for j ≤ m − 1, u(t+1)

j ≥ u
(t)
j .

Therefore
u
(t+1)
m

u
(t+1)
j

≤ u
(t)
m

u
(t)
j

.

Then combining this with the I.H. of Claim 96,

u(t)
m ≤ β0βtmmax

{
Lj
Lm

,
Lm
Lj

}
u
(t)
j =⇒ u(t+1)

m ≤ β0βt+1
m max

{
Lj
Lm

,
Lm
Lj

}
u
(t+1)
j .

Finally we consider the case where j = m. First suppose t+ 1 ≤ logγ̃m

(
1

β
Nm+1
m (u(0))

Lm−1

Lm

u
(0)
m−1

u
(0)
m

)
.

By I.H. of Claim 96,

u(t+1)
m = γ̃t+1

m u(0)
m ≥

1

ρ

Lm−1

Lm
u
(0)
m−1 ≥

Lm−1

Lm

1

ρt+1
u
(t)
m−1. (J.9)

Therefore for any k ≤ m− 1,

u
(t+1)
k = ρu

(t)
k

≤ ρβ0βtmmax

{
Lm−1

Lk
,
Lk
Lm−1

}
u
(t)
m−1

≤ ρβ0βtmmax

{
Lm−1

Lk
,
Lk
Lm−1

}
ρt+1 Lm

Lm−1
u(t+1)
m (Eq. J.9)

= ρt+2β0β
t
m

Lm
Lk

u(t+1)
m

≤ β0βt+1
m

Lm
Lk

u(t+1)
m . (ρt+2 ≤ βm)
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Next if t+ 1 = logγ̃m

(
1

β
Nm+1
m (u(0))

Lm−1

Lm

u
(0)
m−1

u
(0)
m

)
+ 1 then we have

u(t+1)
m ≥ γ̃m

Lm−1

Lm

1

ρt+1
u
(t)
m−1,

and so using the same logic as before,

u
(t+1)
k ≤ 1

γ̃m
β0β

t+1
m

Lm
Lk

u(t+1)
m .

This concludes the proof of Claim 96. Now we consider the steps for which t >
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
.

We have the following claim.

Claim 97 (Extraneous Steps Phase) Suppose t >
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
. Then

u(t+1) = Wmu
(t).

Moreover Eq. J.5 holds from Claim 96.

To prove Claim 97 we recall that for u(t+1) := Umu
(t) we have u(t+1) ≤ Vmu

(t). Next since Wm

is entry-wise larger than Vm we conclude

u(t+1) = max
{
u(t+1),Wmu

(t)
}
= Wmu

(t).

Finally we need to show that Eq. J.5 holds. The same reasoning that Eq. J.5 holds in the case

t ≤
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
can be used to show that Eq. J.5 holds in the case where

t >

⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
and j, k ≤ m− 1. We simply need to consider the case where

j = m or k = m. First suppose j = m. We have for any k ≤ m− 1,

u
(t+1)
k = ρu

(t)
k (I.H. of Claim 97)

≤ ρβ0βtm
Lm
Lk

u(t)
m (I.H. of Claim 97)

= ρβ0β
t
m

Lm
Lk

u(t+1)
m ((Wm)mm = 1)

≤ β0βt+1
m

Lm
Lk

u(t+1)
m . (ρ ≤ βm)

Next suppose k = m and j ≤ m − 1. This case is trivial since u
(t+1)
j ≥ u

(t)
j and u

(t+1)
i = u

(t)
i .

Thus since βi ≥ 1,

u
(t)
i ≤ β0β

t
mu

(t)
j =⇒ u

(t+1)
i ≤ β0βt+1

m u
(t+1)
j .

This concludes the proof of Claim 97.
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Conclusion of Base Case To conclude we use Claim 96, Claim 97, and Eq. J.4 which guarantee
that

ũm = u(Tm)
m

= γ̃

⌈
logγ̃m

(
1

β
Nm+1
m (u(0))

Lm−1
Lm

u
(0)
m−1

u
(0)
m

)⌉
m u(0)

m

≤ γ̃
logγ̃m

(
1

β
Nm+1
m (u(0))

Lm−1
Lm

u
(0)
m−1

u
(0)
m

)
m u(0)

m

=
Lm−1

Lm
u
(0)
m−1.

Next since Nm = Tm we have for any j ≤ m− 1,

ũj = u
(Nm)
j = ρNmu

(0)
j .

This concludes the base case.

Inductive Case Suppose β0
(
u(0)

)
satisfies Eq. E.7.

Claim 98 (Fast Convergence Phase) Suppose we are in the tth iteration of StochBSLSResi and
assume

t ≤

⌈
logγ̃i

(
1

β
Ni+1

i

(
u(0)

) Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
.

Then
u(t) = Vt

iu
(0),

and letting
βi (u) := ρ (u)(Ni+2)(Ni+1+1)+1

we have for any j, k ∈ [m],

u
(t)
k ≤ β0

(
u(0)

)
max

{
1

γ̃2i
βti

(
u(0)

)
,
ρNi+1

(
u(0)

)
γ̃i

}
max

{
Lj
Lk
,
Lk
Lj

}
u
(t)
j . (J.10)

We will prove Claim 98 by induction (be careful not to confuse this with the overarching proof
by induction of Lemma 52). Again since u(0) unambiguously denotes the initial vector passed to
StochBSLSResi for the majority of the proof we will shorten β0

(
u(0)

)
, ρ
(
u(0)

)
, and βi

(
u(0)

)
all to β0, ρ, and βi respectively. Before proceeding with our proof of Claim 98 we show that for any
t ≤ Ti,

max

{
1

γ̃2i
βti ,

ρNi+1

γ̃i

}
≤ 3, (J.11)

so that

u
(t)
k ≤ 3β0max

{
Lj
Lk
,
Lk
Lj

}
u
(t)
j .
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First we bound βi
(
u(0)

)
by 1 + 1/(3Ti). Using that (1 + x)p ≤ 1 + 2px if px ≤ 1/4 and that

(3β0δm)(2Ni+1) ≤ 1/4 we have,

βi = (1 + 3β0δm)2Ni+1

≤ (1 + 12Ni+1β0δm)

≤ 1 +
1

3Ti
. (β0 ≤ 1/(144Ni+1δmTi) by Eq. E.7)

Therefore for any t ≤ Ti,

1

γ̃2i
βti ≤ 2

(
1 +

1

3Ti

)t
≤ 2

(
3

2

)
≤ 3. (J.12)

Next we have

ρNi+1

γ̃i
≤ 2ρNi+1 (γ̃i ≥ 1/2 since κi ≥ 1)

≤ 2(1 + 6Ni+1β0δm) ((1 + x)p ≤ 1 + 2px if px ≤ 1/4 and (3β0δm)(Ni+1) ≤ 1/4)

≤ 3. (12Ni+1β0δm ≤ 1)

Therefore Eq. J.11 holds. Next note that

(γi + 3β0δm) ρNi+1 ≤ 1− 1

2κi
. (J.13)

Indeed,

(γi + 3β0δm) ρNi+1 =

(
1− 2

κi
+

1

κ2i
+ 3β0δm

)
ρNi+1

≤
(
1− 2

κi
+

1

κ2i
+ 3β0δm

)
(1 + 6Ni+1β0δm)

((1 + x)p ≤ 1 + 2px if px ≤ 1/4 and (3β0δm)(Ni+1) ≤ 1/4)

≤ 1− 2

κi
+

2

κ2i
+ 6β0δm+ 6Ni+1β0δm (6Ni+1β0δm ≤ 1)

≤ 1− 1

2κi
. (6(Ni+1 + 1)β0δm ≤ 1/(2κi))

With Eq. J.11 and Eq. J.13 in hand we are ready to prove Claim 98 by induction. The base case
t = 0 holds immediately by assumption. Now using the I.H. of Claim 98 at t we will show Claim 98
holds at t+1. Let u(t+1) := U(1/Li)u

(t). If Claim 98 holds for u(t) then the necessary conditions to
apply Lemma 52 to StochBSLSResi+1 hold. Indeed, when we call StochBSLSResi+1 to u(t)

we now have initial vector u(0)
recursive = u(t) and so we simply need to show that Eq. E.7 holds for

u
(0)
recursive. To this end we see by Claim 98

β0

(
u(t)
)
≤ β0

(
u(0)

) 1

γ̃2i
βti

(
u(0)

)
≤ β0

(
u(0)

)
βtotal

(
u(0)

)
.
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Therefore

β0

(
u
(0)
recursive

)
β
m−(i+1)+1
total

(
u
(0)
recursive

)
= β0

(
u(t)
)
β
m−(i+1)+1
total

(
u(t)
)

≤
(
β0

(
u(0)

)
βtotal

(
u(0)

))
β
m−(i+1)+1
total

(
u(t)
)

=
(
β0

(
u(0)

)
βtotal

(
u(0)

))(
1 + 3δmβ0

(
u(t)
))Tmax(N1+1)+1

· max
`∈[m]

{
1

γ̃2`

}
≤
(
β0

(
u(0)

)
βtotal

(
u(0)

))(
1 + 3δmβ0

(
u(0)

) 1

γ̃2i
βti

(
u(0)

))Tmax(N1+1)+1

· max
`∈[m]

{
1

γ̃2`

}
.

Now that we have expressed the above only in terms of u(0) we drop its notation and use our typical
shorthand. Thus we have,

β0

(
u
(0)
recursive

)
β
m−(i+1)+1
total

(
u
(0)
recursive

)
≤
(
β0β

m−(i+1)+1
total

)(
1 + 3δmβ0

1

γ̃2i
βti

)Tmax(N1+1)+1

· max
`∈[m]

{
1

γ̃2`

}
≤
(
β0β

m−(i+1)+1
total

)(
1 + 9δmβ0

1

γ̃2i

)Tmax(N1+1)+1

· max
`∈[m]

{
1

γ̃2`

}
≤
(
β0β

m−(i+1)+1
total

)
βtotal

= β0β
m−i+1
total

Then since Eq. E.7 holds for StochBSLSResi we can conclude that it holds for StochBSLSResi+1

with initialization u(t). Recalling the notation that ũ(t) = StochBSLSResi+1(u
(t)), by the (origi-

nal) inductive hypothesis that Lemma 52 is true for StochBSLSResi+1 we have,

u
(t+1)
i = γiũ

(t)
i +

(
δ

m∑
k=i+1

Lk
Li

ũ
(t)
k

)
+

(
δ

i−1∑
k=1

Lk
Li

ũ
(t)
k

)

≤ γiρNi+1u
(t)
i +

(
δ

m∑
k=i+1

u
(t)
i

)
+ ρNi+1

(
δ
i−1∑
k=1

Lk
Li

u
(t)
k

)

≤ γiρNi+1u
(t)
i + δ(m− i− 1)u

(t)
i + ρNi+1

(
δβ0β

t
i

i−1∑
k=1

Lk
Li

Li
Lk

u
(t)
i

)
(I.H. of Claim 98)

≤
(
γiρ

Ni+1 + δ(m− i− 1) + ρNi+1δiβ0β
t
i

)
u
(t)
i

≤ (γi + 3β0δm) ρNi+1u
(t)
i (Eq. J.12)

≤ γ̃iu(t)
i . (Eq. J.13)

Then

u
(t+1)
i = max

{
u
(t+1)
i ,

(
Viu

(t)
)
i

}
= γ̃iu

(t)
i . (J.14)
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Now we turn our attention to u
(t+1)
j for j ≤ i− 1. We have

u
(t+1)
j =

(
1− µj

Li

)2

ũ
(t)
j +

(
δ

j∑
k=1

LkLj
L2
i

ũ
(t)
k

)
+

δ i−1∑
k=j+1

LkLj
L2
i

ũ
(t)
k

+

(
2δ

m∑
k=i

LkLj
L2
i

ũ
(t)
k

)

≤ ρNi+1

u
(t)
j + δ

j∑
k=1

LkLj
L2
i

u
(t)
k + δ

i−1∑
k=j+1

LkLj
L2
i

u
(t)
k

+

(
δ

m∑
k=i

LkLj
L2
i

Li
Lk

u
(t)
i

)
(I.H. of Lemma 52)

≤ ρNi+1

u
(t)
j + δβti

j∑
k=1

LkLj
L2
i

Lj
Lk

u
(t)
j + δβti

i−1∑
k=j+1

LkLj
L2
i

Lk
Lj

u
(t)
j


+

(
2δβti

m∑
k=i

LkLj
L2
i

Li
Lk

Li
Lj

u
(t)
j

)
(I.H. of Claim 98)

= ρNi+1

1 + δβti

j∑
k=1

L2
j

L2
i

+ δβti

i−1∑
k=j+1

L2
k

L2
i

u
(t)
j +

(
2δβti

m∑
k=i

u
(t)
j

)

≤ ρNi+1+1u
(t)
j . (Eq. J.12)

Therefore,
u
(t+1)
j = max

{
u
(t+1)
j , (Viu)j

}
= ρNi+1+1u

(t)
j . (J.15)

Next we consider u(t+1)
` for ` ≥ i+ 1. We have,

u
(t+1)
` ≤

(
L`
Li

)2

ũ
(t)
` +

(
δ

m∑
k=i+1

LkL`
L2
i

ũ
(t)
k

)
+

(
δ

i∑
k=1

LkL`
L2
i

ũ
(t)
k

)

≤
(
L`
Li

)2 Li
L`

u
(t)
i +

(
2δ

m∑
k=i+1

LkL`
L2
i

Li
Lk

u
(t)
i

)
+

(
δ

i∑
k=1

LkL`
L2
i

ρNi+1u
(t)
k

)
(I.H. of Lemma 52)

≤ L`
Li

(
(1 + 2δ(m− i− 1))u

(t)
i +

(
δ

i∑
k=1

Lk
Li
ρNi+1β0β

t
i

Li
Lk

u
(t)
i

))
(I.H. of Claim 98)

≤ L`
Li

(
1 + 2δ(m− i− 1) + 3β0δiρ

Ni+1
)
u
(t)
i (βti ≤ 3 by Eq. J.12)

≤ L`
Li
ρNi+1+1u

(t)
i .

Therefore,

u
(t+1)
` = max

{
u
(t+1)
` ,

(
Viu

(t)
)
`

}
=
L`
Li
ρNi+1+1u

(t)
i . (J.16)

Combining Eq. J.14, Eq. J.15, and Eq. J.16 we conclude

u(t+1) = Viu
(t).
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Finally we prove Eq. J.10 of Claim 98. First we will prove by induction that if the pair (j, k) is such

that Case One, Case Two, or Case Three holds in Table 1 and t ≤ logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)
− 1,

then we have

u
(t)
k ≤ β0β

t
i max

{
Lk
Lj
,
Lj
Lk

}
u
(t)
j . (J.17)

Instead if t ∈
[
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)
− 1, logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)
+ 1

]

u
(t)
k ≤ β0β

t
i

(
1

γ̃2i

)
max

{
Lk
Lj
,
Lj
Lk

}
u
(t)
j .

After proving this we will show that if the pair (j, k) is such that j ≤ i and k ≥ i+ 1 then

u
(t)
k ≤ β0

ρNi+1

γ̃i

Lk
Lj

u
(t)
j .

Table 1: Cases for which Eq. J.17 holds

Case One j ≤ i k ≤ i
Case Two j ≥ i+ 1 k ≤ i
Case Three j ≥ i+ 1 k ≥ i+ 1

To that end, we begin by considering Case One where j ≤ i and k ≤ i. First assume j ≤ i− 1.
Then we have

u
(t+1)
k

u
(t+1)
j

≤
ρNi+1+1u

(t)
k

ρNi+1+1u
(t)
j

=
u
(t)
k

u
(t)
j

.

Therefore since βi ≥ 1,

u
(t)
k ≤ β0β

t
i max

{
Lk
Lj
,
Lj
Lk

}
u
(t)
j =⇒ u

(t+1)
k ≤ β0βt+1

i max

{
Lk
Lj
,
Lj
Lk

}
u
(t+1)
j .

Next we set j = i. Suppose t+ 1 ≤ logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)
. Then we have

u
(t+1)
i = γ̃t+1

i u
(0)
i ≥ γ̃

logγ̃i

 1

β
Ni+1
i (u(0))

Li−1
Li

u
(0)
i−1

u
(0)
i


i u

(0)
i =

1

ρNi+1

Li−1

Li
u
(0)
i−1 ≥

Li−1

Li

1

ρ(t+1)(Ni+1+1)
u
(t)
i−1.

106



BIG-STEP-LITTLE-STEP: EFFICIENT GRADIENT METHODS FOR OBJECTIVES WITH MULTIPLE SCALE

Therefore if j = i and k ≤ i,

u
(t+1)
k ≤ ρNi+1+1u

(t)
k

≤ ρNi+1+1β0β
t
i max

{
Li−1

Lk
,
Lk
Li−1
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u
(t)
i−1

≤ ρNi+1+1β0β
t
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Li−1
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Lk
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Li
Li−1
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t
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Lk

u
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i

≤ β0βt+1
i

Li
Lk

u
(t+1)
i . (ρ(t+2)(Ni+1+1)+1 ≤ βi)

Next we consider Case Two where j ≥ i+ 1 and k ≤ i. Using similar reasoning we find,

u
(t+1)
k ≤ ρNi+1u

(t)
k (I.H. of Claim 98)

≤ ρNi+1β0β
t
i

Li
Lk

u
(t)
i (I.H. of Claim 98)

= ρNi+1β0β
t
i

Li
Lk

(
Li
Lj

1

ρNi+1
u
(t+1)
j

)
(Eq. J.16)

≤ β0βti
Li
Lk

Lj
Li

u
(t+1)
j (Li < Lj)

≤ β0βt+1
i

Lj
Lk

u
(t+1)
j . (βi ≥ 1)

Finally we consider Case Three where j ≥ i+ 1 and k ≥ i+ 1. We have

u
(t+1)
k

u
(t+1)
j

=

Lk
Li
ρNi+1+1u

(t)
i

Lj

Li
ρNi+1+1u

(t)
i

=
Lk
Lj
.

Now we address the case where t ∈
[
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)
− 1, logγ̃i

(
1

β
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i (u(0))

Li−1
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u
(0)
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)
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]
.

For any t in this range

u
(t)
i = γ̃tiu

(0)
i ≥ γ̃

logγ̃i

 1

β
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Li−1
Li
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i

+1

i u
(0)
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Li−1

Li
u
(0)
i−1 = γ̃i

Li−1
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1

ρ(t+1)(Ni+1+1)
u
(t)
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Therefore, using the same logic as before we have that if j = i and k ≤ i,

u
(t)
k ≤ β0β

t
i

1

γ̃i

2 Li
Lk

u
(t)
i .

All other cases remain the same.
As promised, we now consider the case where j ≤ i and k ≥ i+ 1 separately. By I.H. of Claim 98
for t we have

u
(t+1)
k =
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Li
ρNi+1u

(t)
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Li
ρNi+1u
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i =

(
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)
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i .
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Also note that for any j ≤ i, u(t+1)
i ≤ u

(t)
i and u(t+1)

j ≥ u
(t)
j and so for any t ≤ logγ̃i

(
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β
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(0)
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Therefore for any j ≤ i,
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We conclude that for t ≤ logγ̃i

(
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β
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i (u(0))

Li−1
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u
(0)
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u
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)
+ 1 and for any j, k,
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Lj

}
u
(t)
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This concludes the proof of Claim 98. Now we consider the steps for which t >
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i
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We have the following claim.

Claim 99 (Extraneous Steps Phase.) Suppose t >
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
. Then

u(t+1) = Wiu
(t).

Moreover, Eq. J.10 holds from Claim 98.

To prove Claim 99 we first need to show that
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{
Uiũ

(t)
i ,Wiũ

(t)
i

}
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i .

However we have already shown this while proving earlier that
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(t)
i

}
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i .

All that is left is to note that Vi and Wi are identical except (Vi)ii < (Wi)ii. Next we show that

Eq. J.10 holds when t >
⌈
logγ̃i
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β
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.
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Therefore whenever the pair (j, k) is such that k ≤ i− 1 we can recycle the proof showing Eq. J.10

holds in Claim 98 (i.e. t ≤
⌈
logγ̃i

(
1

β
Ni+1
i (u(0))

Li−1

Li

u
(0)
i−1

u
(0)
i

)⌉
). We simply need to consider the case

where the pair (j, k) is such that k ≥ i. Examining the proof of Eq. J.10 for Claim 98 we see that it
suffices to simply consider k = i. First suppose that j ≤ i−1. Then we are done since u(t+1)

i = u
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i

and u
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j ≥ u

(j)
j . Therefore since βi ≥ 1,
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Next suppose that j ≥ i+ 1. Then we have for any t,
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Therefore we conclude that Eq. J.10 holds when t >
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Conclusion of Inductive Case To conclude we recall Eq. J.4,
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Using this we see,

u
(Ti)
i = γ̃

logγ̃i
 1

β
Ni+1
i (u(0))

Li−1
Li

u
(0)
i−1

u
(0)
i


i u

(0)
i

≤ γ̃
logγ̃i

 1

β
Ni+1
i (u(0))

Li−1
Li

u
(0)
i−1

u
(0)
i


i u

(0)
i

=
1

ρNi+1

Li−1

Li
u
(0)
i−1

Next, since we return StochBSLSResi+1(u
(Ti)) we have by the Inductive Hypothesis that Lemma 52

holds for StochBSLSResi+1 that if ũ = StochBSLSResi+1(u
(Ti)) then
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Finally since Ni = Ni+1(2Ti + 1), for all j ≤ i− 1
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Niu
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Appendix K. Miscellaneous helper lemmas

In this section we provide some helper lemmas and that are used throughout the other sections.

Lemma 100 For any integer pairs (p, q) such that p ≥ q ≥ 1, we have
(
p
q

)
≤ p ·

(
p−1
q−1

)
.

Proof [Proof of Lemma 100] By definition(
p

q

)
=

p!

q!(p− q)!
=
p

q

(p− 1)!

(q − 1)!(p− q)!
=
p

q
·
(
p− 1

q − 1

)
≤ p ·

(
p− 1

q − 1

)
.

Lemma 101
∞∏
j=1

(
1− 2−j

)
> 0.288.

The lemma is standard from combinatoric analysis. We provide an elementary proof here for
completeness.
Proof [Proof of Lemma 101] Decompose the infinity product into two parts

∞∏
j=1

(1− 2−j) =

 10∏
j=1

(1− 2−j)

 · exp
 ∞∑
j=11

log(1− 2−j)

 .

Since log(1− 2−j) ≥ −2−j+1 for j ≥ 1, we obtain

exp

 ∞∑
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 ≥ exp
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 = exp
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)
> 0.998.

On the other hand we know that
∏10
j=1(1 − 2−j) > 0.289. Therefore

∏∞
j=1(1 − 2−j) > 0.289 ×

0.998 > 0.288.

Lemma 102 Suppose for any i, ai, bi, xi > 0. Then for any n,∑n
i=1 aixi∑n
i=1 bixi

≤ max
i∈[n]

{
ai
bi

}
.

Proof [Proof of Lemma 102] This follows immediately from the fact that we can write the expression
on left-hand side of the inequality as a convex combination of the fractions ai

bi
(with coefficients

ci =
bixi∑n
i=1 bixi
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i=1 aixi∑n
i=1 bixi
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} n∑
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}
.
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