
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Yair Carmon 1 Arun Jambulapati 2 Yujia Jin 2 Aaron Sidford 2

Abstract

The accelerated proximal point algorithm (APPA),
also known as “Catalyst”, is a well-established re-
duction from convex optimization to approximate
proximal point computation (i.e., regularized min-
imization). This reduction is conceptually elegant
and yields strong convergence rate guarantees.
However, these rates feature an extraneous log-
arithmic term arising from the need to compute
each proximal point to high accuracy. In this
work, we propose a novel Relaxed Error Criterion
for Accelerated Proximal Point (RECAPP) that
eliminates the need for high accuracy subproblem
solutions. We apply RECAPP to two canonical
problems: finite-sum and max-structured mini-
mization. For finite-sum problems, we match the
best known complexity, previously obtained by
carefully-designed problem-specific algorithms.
For minimizing maxy f(x, y) where f is convex
in x and strongly-concave in y, we improve on
the best known (Catalyst-based) bound by a loga-
rithmic factor.

1 Introduction
A fundamental approach to optimization algorithm design is
to break down the problem of minimizing F : X → R into
a sequence of easier optimization problems, whose solution
converges to x? ∈ argminx∈X F (x). A canonical “easier”
problem is proximal point computation, i.e., computing

proxF,λ(x) = argmin
x′∈X

{
F (x′) +

λ

2
‖x′ − x‖2

}
.

Here λ > 0 is a regularization parameter which balances
between how close computing proxF,λ is to minimizing F ,
and how easy it is to compute—as λ decreases proxF,λ(x)
tends to the true minimizer but becomes harder to compute.

1Tel Aviv University 2Stanford University. Correspondence to:
Yujia Jin <yujiajin@stanford.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

The classical proximal point method (Rockafellar, 1976;
Parikh & Boyd, 2014) simply iterates xt+1 = proxF,λ(xt),
and (for convex F) minimizes F with rate F (xT) −
F (x?) = O

(
λR2

T

)
for R := ‖x0 − x?‖. This rate can be

improved, at essentially no additional cost, by carefully com-
bining proximal steps, i.e. proxF,λ(xt), with gradient steps
using ∇F (proxF,λ(xt)) = λ(xt − proxF,λ(xt)) (Güler,
1992). This accelerated method converges with rate
O
(
λR2

T 2

)
, a quadratic improvement over proximal point.

To turn this conceptual acceleration scheme into a practi-
cal algorithm, one must prescribe the accuracy to which
each proximal point needs to be computed. Güler (1992);
Salzo & Villa (2012) provided such conditions, which were
later refined in independently-proposed accelerated approx-
imate proximal point algorithm (APPA) (Frostig et al.,
2015) and Catalyst (Lin et al., 2015; 2017). Furthermore,
APPA/Catalyst obtained global convergence guarantees for
concrete problems by using linearly convergent algorithms
to compute the proximal points to their required accuracy.
The APPA/Catalyst framework has since been used to ac-
celerate full-batch gradient descent, coordinate methods,
finite-sum variance reduction (Frostig et al., 2015; Lin et al.,
2017), eigenvalue problems (Garber et al., 2016), min-max
problems (Yang et al., 2020), and more.

However, the simplicity and generality of APPA/Catalyst
seems to come at a practical and theoretical cost: satisfying
existing proximal point accuracy conditions requires solv-
ing subproblems to fairly high accuracy. In practice, this
means expending computation in subproblem solutions that
could otherwise be used for more outer iterations. In theory,
APPA/Catalyst complexity bounds feature a logarithmic
term that appears unnecessary. For example, in the finite
sum problem of minimizing F (x) = 1

n

∑n
i=1 fi(x) where

each fi is convex and L-smooth, APPA/Catalyst combined
with SVRG (Johnson & Zhang, 2013) and λ = L/n finds
an ε-optimal point of F in O

(
(n+

√
nLR2/ε) log LR2

ε

)
computations of ∇fi, a nearly optimal rate (Woodworth &
Srebro, 2016). A line of work devoted to designing acceler-
ated method tailored to finite sum problems (Shalev-Shwartz
& Zhang, 2014; Allen-Zhu, 2016; Lan et al., 2019) attains
progressively better practical performance and theoretical
guarantees, culminating in anO

(
n log log n+

√
nLR2/ε

)
complexity bound (Song et al., 2020).

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Given the power of APPA/Catalyst, it is natural to ask
whether the additional logarithmic complexity term is fun-
damentally tied to the black-box structure that makes it
generally-applicable? Indeed, Lin et al. (2017) speculate
that the logarithmic term “may be the price to pay for a
generic acceleration scheme.”

Our work proves otherwise by providing a new Re-
laxed Error Condition for Accelerated Proximal Point
(RECAPP) which standard subproblem solvers can sat-
isfy without incurring an extraneous logarithmic complexity
term. For finite-sum problems, our approach combined
with SVRG recovers the best existing complexity bound of
O
(
n log log n+

√
nLR2/ε

)
.1 Preliminary experiments

on logistic regression problem indicate that our method is
competitive with Catalyst-SVRG in practice.2

As an additional application of our framework, we con-
sider the problem of minimizing F (x) = maxy∈Y f(x, y)
for a function f that is L-smooth, convex in x and µ-
strongly-convex in y. The best existing complexity bound
for this problem is O

(
LR√
µε log

LR√
µε

)
evaluations of ∇f ,

using an extension of APPA/Catalyst to min-max prob-
lems (Yang et al., 2020), and mirror-prox (Korpelevich,
1976; Nemirovski, 2004; Azizian et al., 2020) as the sub-
problem solver.3 Our framework (also combined with
mirror-prox) removes this logarithmic factor, finding a point
with expected suboptimality ε in O

(
LR√
µε

)
gradient queries

(up to lower order terms), which is asymptotically opti-
mal (Ouyang & Xu, 2021). We summarize our complexity
bounds in Table 1.

Technical overview. Our development consists of four
key parts. First, we define a criterion on the function-value
error of the proximal point computation (Definition 3.1) that
significantly relaxes the relative error conditions of prior
work; see Section 3.3 for a detailed comparison. Second,
instead of directly bounding the distance error of the ap-
proximate proximal points (as most prior works implicitly
do), we follow Asi et al. (2021) and require an unbiased
estimator of the proximal point whose variance is bounded
similarly to the function-value error (Definition 3.2). We
prove that any approximation satisfying these guarantees
has the same convergence bounds on its (expected) error as
the exact accelerated proximal points method. Third, we use
the multilevel Monte Carlo technique (Giles, 2015; Blanchet

1Our framework gives accelerated linear convergence for
strongly-convex objectives via a standard restarting argument;
see Proposition 3.6.

2Code available at: github.com/yaircarmon/recapp.
3Yang et al. (2020) also establish the same rate for the dual

problem of maximizing Ψ(y) = minx∈X f(x, y) over y. Since
our acceleration framework is primal-only, we are currently unable
to remove the logarithmic factor from that rate.

& Glynn, 2015; Asi et al., 2021) to obtain the required un-
biased proximal point estimator using (in expectation) a
constant number of queries to any method satisfying the
function-value error criterion. Finally, we show how to
use SVRG and mirror-prox to efficiently meet our error
criterion, allowing us to solve finite-sum and minimax op-
timization problems without the typical extra logarithmic
factors incurred by previous proximal point frameworks.

Even though we maintain the same iteration structure as
APPA/Catalyst, our novel error criterion induces two non-
trivial modifications to the algorithm. First and foremost,
our relaxed error bound depends on the previous approxi-
mate proximal point xt−1 as well as the current query point
st−1 (see Algorithm 1). This dependence strongly suggests
that the subproblem solver should depend on xt−1 somehow.
For finite-sum problems we use xt−1 as the reference point
for variance reduction, while for max-structured problems
we initialize mirror-prox with x = st−1 and (approximately)
y = argmaxy∈Y f(xt−1, y). The second algorithmic con-
sequence, which appeared previously in Asi et al. (2021),
stems from the fact that our function-value error and zero-
bias/bounded-variance requirements are leveraged for dis-
tinct parts of the algorithm (the prox step and gradient step,
respectively). This naturally leads to using distinct approxi-
mate prox points for each part: one directly obtained from
the subproblem solver and one debiased via MLMC.

Paper organization. After providing some notation and
preliminaries in Section 2, we present our improved inexact
accelerated proximal point framework in Section 3. We
then instantiate our framework: in Section 4 we consider
finite-sum problems and SVRG (providing preliminary em-
pirical results in Section 4.1) and in Section 5 we consider
min-max problems and mirror-prox. We provide additional
discussion of related work, including recent independent
work by Kovalev & Gasnikov (2022), in Appendix A. The
rest of the appendix is composed of the proofs for each cor-
responding section, followed by Appendix F which provides
a discussion of limitations and possible extensions of this
work.

2 Preliminaries
General notation. Throughout, X and Y refer to closed,
convex sets, with diameters denoted by R and R′ respec-
tively (when needed). We use F to denote a convex function
defined on X . For any parameter λ > 0 and point s ∈ X ,
we let

Fλ
s (x) := F (x) +

λ

2
‖x− s‖2 (1)

denote the proximal regularization of F around x, and let
proxF,λ(s) = argminx∈X F

λ
s (x).

https://github.com/yaircarmon/recapp

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Objective F Reg. APPROXPROX
complexity

WARMSTART
complexity

Overall
complexity

Ref.

general λ TA TW

O

(
TA

√
λR2

ε
+ TW

)
Thm. 3.5

O

(
TA

√
λ

γ
log

LR2

ε
+ TW

)
Prop. 3.6

1

n

∑
i∈[n]

fi(x)
L

n
O(n) O(n log log n)

O

(√
nLR2

ε
+ n log log n

)
Thm. 4.3

Õ

(√
nL

γ

)
+O(n log log n)

max
y∈Y

f(x, y) µ O

(
L

µ

)
+ Õ

(√
L

µ

)
Õ

(
L

µ

) O

(
LR
√
µε

)
+ Õ

(
L

µ
+

√
LR2

ε

)
Thm. 5.4

Õ

(
L
√
µγ

+
L

µ

)
Table 1: Summary of our results. Throughout, ε denotes the solution accuracy, and γ denotes the strong convexity
parameter of F . For finite sum problems (the middle row) we assume that each fi is L-smooth, and measure complexity in
terms of∇fi evaluations. For max-structured problem (the bottom) we assume that f is L-smooth and µ-strongly-concave
in y, and measure complexity in∇f evaluations. The notation Õ(·) hides a logarithmic term. See Section 3 for the definition
of APPROXPROX and WARMSTART.

Distances and norms. We consider Euclidean space
throughout the paper and use ‖·‖ to denote standard Eu-
clidean norm. We denote a projection of x ∈ Rd

onto a closed subspace X ⊆ Rd by ProjX (x) =
argminx′∈X ‖x− x′‖. For a convex function F : X →
R, we denote the Bregman divergence induced by F as
V F
x (x′) := F (x′) − F (x) − 〈∇F (x), x′ − x〉 , for every
x, x′ ∈ X . We denote the Euclidean Bregman divergence

by V e
x (x

′) := V
1
2‖·‖

2

x (x′) = 1
2 ‖x

′ − x‖2 .

Smoothness, convexity and concavity. Given a differen-
tiable, convex function F : X → R, we say F is L-smooth
if its gradient ∇F : X → X ∗ is L-Lipschitz. We say F
is µ-strongly-convex if for all x, x′ ∈ X , F (x′) ≥ F (x) +

〈∇F (x), x′−x〉+ µ
2 ‖x

′ − x‖2. A function Ψ is µ-strongly
concave if −Ψ is µ-strongly convex. For f(x, y) that is
convex in x and concave in y, the point (x?, y?) is a saddle-
point if maxy∈Y f(x

?, y) ≤ f(x?, y?) ≤ minx∈X f(x, y
?)

for all x, y ∈ X × Y .

3 Framework
In this section, we present our Relaxed Error Criterion Ac-
celerated Proximal Point (RECAPP) framework. We start
by defining our central algorithms and relaxed error criteria
(Section 3.1). Next, we state our main complexity bounds
(Section 3.2) and sketch its proof. Then, we illustrate our

new relaxed error criterion by comparing it to the error
requirements of prior work (Section 3.3). Finally, as an il-
lustrative warm-up, we show our framework easily recovers
the complexity bound of Nesterov’s classical accelerated
gradient descent (AGD) method (Nesterov, 1983).

3.1 Methods and Key Definitions

Algorithm 1 describes our core accelerated proximal method.
The algorithm follows the standard template of the (inex-
act) accelerated proximal point method, except that unlike
most such methods (but similar to the methods of Asi et al.
(2021)), our algorithm relies on two distinct approximations
of proxF,λ(st) with different relaxed error criterion. We
now define each approximation in turn.

Our first relaxed error criterion constrains the function value
of the approximate proximal point and constitutes our key
contribution.
Definition 3.1 (APPROXPROX). Given convex function F :
X → R, parameter λ > 0, and points s, xinit, xprev ∈
X , the point x = APPROXPROXF,λ(s;xinit, xprev) is an
approximate minimizer of Fλ

s (x) := F (x) + λV e
s (x) such

that for x? := proxF,λ(s) = argminx∈X F
λ
s (x),

EFλ
s (x)− Fλ

s (x
?) ≤ λV e

x? (xinit) + V F
x?(xprev)

8
. (2)

Beyond the prox-center s, our robust error criterion depends

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Algorithm 1: RECAPP

1 Parameters: λ > 0, step budget T
2 Initialize α0 ← 1 and
x0 = v0 ← WARMSTARTF,λ(R

2)
. To satisfy EF (x0)− F (x?) ≤ λR2

3 for t = 0 to T − 1 do
4 Set αt+1 ∈ [0, 1] to satisfy 1

α2
t+1
− 1

αt+1
= 1

α2
t

5 st ← (1− αt+1)xt + αt+1vt
6 xt+1 ← APPROXPROXF,λ(st; st, xt)
7 x̃t+1 ← UNBIASEDPROXF,λ(st;xt)

8 vt+1 ← ProjX
(
vt − 1

αt+1
(st − x̃t+1)

)
9 Return: xT

on two additional points: xinit (which in Algorithm 1 is also
set the prox-center st) and xprev (which in Algorithm 1 is
set to the previous iterate xt). The criterion requires the
suboptimality of the approximate solution to be bounded
by weighted combination of two distances: the Euclidean
distance between the true proximal point x? and xinit, and
the Bregman divergence (induced by F) between x? and
xprev. In Section 3.3 we provide a detailed comparison
between our criterion and prior work, but note already that—
unlike APPA/Catalyst—the relative error we require in (2)
is constant, i.e., independent of the desired accuracy or
number of iterations. This constant level of error is key to
enabling our improved complexity bounds.

Our second relaxed error criterion constrains the bias and
variance of the approximate proximal point.

Definition 3.2 (UNBIASEDPROX). Given convex function
F : X → R, parameter λ > 0, and points s and xprev ∈ X ,
the point x = UNBIASEDPROXF,λ(s;xprev) is an approx-
imate minimizer of Fλ

s (x) = F (x) + λV e
s (x) such that

E x = x? = proxF,λ(s) = argminx∈X F
λ
s (x), and

E ‖x− x?‖2 ≤ λV e
x? (s) + V F

x?(xprev)

4λ
. (3)

Note that the any x = APPROXPROXF,λ(s; s, xprev) satis-
fies the distance bound (3) (due to λ-strong-convexity of
Fλ
s), but the zero-bias criterion Ex = x? is not guaran-

teed. Nevertheless, an MLMC technique (Algorithm 2) can
extract an UNBIASEDPROX from any APPROXPROX. Al-
gorithm 2 repeatedly calls APPROXPROX a geometrically-
distributed number of times J (every time with xinit and
xprev equal to the last output), and outputs a point whose
expectation equals to an infinite numbers of iterations of
APPROXPROX, i.e., the exact proxF,λ(s). Moreover, we
show that the linear convergence of the procedure implies
that the variance of the result remains appropriately bounded
(see Proposition 3.4 below). Algorithm 2 is a variation of an
estimator by Blanchet & Glynn (2015) that was previously

Algorithm 2: UNBIASEDPROX via MLMC

1 Input: APPROXPROX, points s, xprev ∈ X
2 Parameter: Geometric distribution parameter
p ∈ [0, 1) and integer offset j0 ≥ 0

3 Outut: Unbiased estimator of x? = proxF,λ(s)

4 x(0) ← APPROXPROXF,λ(s; s, xprev)
5 Sample J+ ∼ Geom (1− p) ∈ {0, 1, 2, . . .}
6 J ← j0 + J+
7 for j = 0 to J − 1 do
8 x(j+1) ← APPROXPROXF,λ(s;x

(j), x(j))

9 pJ ← P[Geom (1− p) = J+] = (1− p) · pJ+

10 Return: x(j0) + p−1
J (x(J) − x(max{J−1,j0}))

used in a context similar to ours (Asi et al., 2021). However,
prior estimators typically have complexity exponential in J ,
whereas ours are linear in J .

Finally, we define a warm start procedure required by our
method.

Definition 3.3 (WARMSTART). Given convex function F :
X → R, parameter λ > 0 and diameter bound R, x0 =
WARMSTARTF,λ(R

2) is a procedure that outputs x0 ∈ X
such that EF (x0)−minx′∈X F (x

′) ≤ λR2.

Note that the exact proximal mapping x = proxF,λ(s) satis-
fies all the requirements above; replacing APPROXPROXF,λ,
UNBIASEDPROXF,λ, and WARMSTARTF,λ with proxF,λ

recovers the exact accelerated proximal method.

3.2 Complexity Bounds

We begin with a complexity bound for implementing
UNBIASEDPROX via Algorithm 2 (proved in Appendix B).

Proposition 3.4 (MLMC turns APPROXPROX into
UNBIASEDPROX). For any convex F and parameter λ >
0, Algorithm 2 with p = 1/2 and j0 ≥ 2 implements
UNBIASEDPROX and makes 2 + j0 calls to APPROXPROX
in expectation.

We now give our complexity bound for RECAPP and
sketch its proof, deferring the full proof to Appendix B.

Theorem 3.5 (RECAPP complexity bound). Given any
convex function F : X → R and parameters λ,R > 0,
RECAPP (Algorithm 1) finds x ∈ X with EF (x) −
minx′∈X F (x

′) ≤ ε, within O
(√

λR2/ε
)

iterations us-
ing one call to WARMSTART, and O

(√
λR2/ε

)
calls to

APPROXPROX and UNBIASEDPROX. If we implement
UNBIASEDPROX using Algorithm 2 with p = 1/2 and
j0 = 2, the total number of calls to APPROXPROX is
O
(√

λR2/ε
)

in expectation.

Proof sketch. We split the proof into two steps.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Step 1: Tight idealized potential decrease. Consider itera-
tion t of the algorithm, and define the potential

Pt := E
[
α−2
t (F (xt)− F (x′)) + λV e

vt (x
′)
]
,

where x′ is a minimizer of F inX . Let x?t+1 := proxF,λ(st)
and v?t+1 = vt− (αt+1)

−1(st−x?t+1) be the “ideal” values
of xt+1 and vt+1 obtained via an exact prox-point computa-
tion, where for simplicity we ignore the projection onto X .
Using these points we define the idealized potential

P ?
t+1 := E

[
α−2
t+1

(
F (x?t+1)− F (x′)

)
+ λV e

v?
t+1

(x′)
]
.

Textbook analyses of acceleration schemes show that
P ?
t+1 ≤ Pt (Nesterov, 2018; Monteiro & Svaiter, 2013).

Basic inexact accelerated prox-point analyses proceed by
showing that the true potential is not much worse that the
idealized potential, i.e., Pt+1 ≤ P ?

t+1 + δt, which imme-
diately allows one to conclude that PT ≤ P0 + ∆T for
∆T =

∑
t<T δt, and therefore that EF (xT) − F (x′) ≤

α2
T (λR

2 +∆T), implying the optimal rate of convergence
as long ∆T = O(λR2). However, obtaining such a small
∆T to be that small naively requires approximating the prox-
imal points to very high accuracy, which is precisely what
we attempt to avoid.

Our first step toward a relaxed error criterion is proving
stronger idealized potential decrease. We show that,

P ?
t+1 ≤ Pt − E

[
α−2
t+1λV

e
x?
t+1

(st) + α−2
t V F

x?
t+1

(xt)
]
.

While the potential decrease term α−2
t+1λV

e
x?
t+1

(st) is
well known and has been thoroughly exploited by prior
work (Frostig et al., 2015; Lin et al., 2017; Monteiro &
Svaiter, 2013), making use of the term α−2

t V F
x?
t+1

(xt) is, to
the best of our knowledge, new to this work.

Step 2: Matching approximation errors. With the improved
potential decrease at bound in hand, our strategy is clear:
make the approximation error cancel with the potential de-
crease. That is, we wish to show

Pt+1 ≤ P ?
t+1 + E

[
α−2
t+1λV

e
x?
t+1

(st) + α−2
t V F

x?
t+1

(xt)
]
,

so that overall we have Pt+1 ≤ Pt and consequently
EF (xT) − F (x′) = O

(
α2
T (F (x0)− F (x′) + λR2

)
=

O
(
λR2/T 2

)
, with the last bound following form the warm-

start condition and αt = O(1/t).

It remains to show that the APPROXPROX and
UNBIASEDPROX criteria provide the needed error
bounds. For the function value, Definition 3.1 implies

EF (xt+1)− F (st) = E
[
Fλ
st(xt+1)− λV e

xt+1
(st)

]
≤ E

[
Fλ
st(x

?
t+1) +

λV e
x?
t+1

(st)+V F
x?
t+1

(xt)

8 − λV e
xt+1

(st)

]
≤ F

(
x?t+1

)
− F (st) + 7

8λV
e
x?
t+1

(st) +
5
24V

F
x?
t+1

(xt) ,

where for the last inequality we use the property that
E[12λV

e
x?
t+1

(xt+1)] ≤ E[16λV
e
xt+1

(st)] +
1
12V

F
x?
t+1

(xt) due

to the strong convexity of Fλ and the approximate optimal-
ity of xt+1 guaranteed by APPROXPROX (see (16) and the
derivations before it in Appendix).

For V e
v?
t+1

(x′), Definition 3.2 implies v?t+1 = Evt+1 and

EV e
vt+1

(x′)− EV e
v?
t+1

(x′) = (αt+1)
−2 1

2E
∥∥x?t+1 − x̃t+1

∥∥2
≤ (αt+1)

−2 ·
λV e

x?
t+1

(st)+V F
x?
t+1

(xt)

8λ .

Substituting back into the expressions for Pt+1 and P ?
t+1

and using the fact that α2
t+1

α2
t
≥ 1

3 , we obtain the desired

bound on Pt+1 − P ?
t+1 and conclude the proof.4

Complexity bound for strongly-convex functions. For
completeness, we also include a guarantee for minimizing
a strongly-convex function F by restarting RECAPP. See
Appendix B for pseudocode and proofs.
Proposition 3.6 (RECAPP for strongly-convex functions).
For any γ-strongly-convex function F : X → R, and
parameters λ ≥ γ, R > 0, restarted RECAPP (Algo-
rithm 7) finds x such that EF (x) − minx′∈X F (x

′) ≤ ε,
using one call to WARMSTART, and O

(√
λ/γ log LR2

ε

)
calls to APPROXPROX and UNBIASEDPROX. If we imple-
ment UNBIASEDPROX using Algorithm 2 with p = 1/2
and j0 = 2, the number of calls to APPROXPROX is
O
(√

λ/γ log LR2

ε

)
in expectation.

3.3 Comparisons of Error Criteria

We now compare APPROXPROX (Definition 3.1) to other
proximal-point error criteria from the literature. Throughout,
we fix a center-point s and let x? = proxF,λ(s).

Comparison with Frostig et al. (2015). The APPA frame-
work, which focuses on γ-strongly-convex functions, re-
quires the function-value error bound

Fλ
s (x)−Fλ

s (x?) ≤ O
((γ

λ

)1.5)(
Fλ
s (xinit)− Fλ

s (x?)
)

to hold for all xinit. To compare this requirement with
APPROXPROX, note that in the unconstrained setting

λV e
x? (xinit) + V F

x?(xinit) = V
Fλ

s
x? (xinit)

= Fλ
s (xinit)− Fλ

s (x
?),

where the last equality is due to the fact that x? minimizes
Fλ
s and therefore

〈
∇Fλ

s (x
?), x? − xinit

〉
= 0. Conse-

quently, the error of APPROXPROXF,λ(s;xinit, xinit) is

Fλ
s (x)− Fλ

s (x?) ≤ 1

8

(
Fλ
s (xinit)− Fλ

s (x?)
)
.

4The need to have a lower bound like
α2
t+1

α2
t

≥ 1
3

is the reason
RECAPP does not take α0 = ∞ and requires a warm-start.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Therefore, in the unconstrained setting and the special case
of xprev = xinit we require a constant factor relative error
decrease, while APPA requires decrease by a factor pro-
portional to (γ/λ)3/2, or (ε/(λR2))3/2 with the standard
conversion γ = ε/R2. Thus, our requirement is signifi-
cantly more permissive.

Comparison with Lin et al. (2017). The Catalyst frame-
work offers a number of error criteria. Most closely resem-
bling APPROXPROX is their relative error criterion (C2):

Fλ
s (x)− Fλ

s (x?) ≤ δtλV e
x (s),

with δt = (t + 1)−2 which is of the order of ε/(λR2) for
most iterations. Setting δt = 1/10 in the Catalyst criterion
would satisfy APPROXPROXF,λ(s; s, x

′) for any x′. Fur-
thermore, APPROXPROX allows for an additional error term
proportional to V F

x?(xinit), which does not exist in Catalyst.
In our analysis in the next sections this additional term is
essential to efficiently satisfy our criterion.

Comparison with the Monteiro-Svaiter (MS) condition.
Ivanova et al. (2021) and Monteiro & Svaiter (2013) con-
sider the error criterion∥∥∇Fλ

s (x)
∥∥ ≤ σλ ‖x− s‖ .

This criterion implies the bound Fλ
s (x) − Fλ

s (x?) ≤
1
λ

∥∥∇Fλ
s (x)

∥∥2 ≤ 2σ2λV e
x (s), making it stronger that the

Catalyst C2 criterion when σ =
√
δt/2. However, Mon-

teiro & Svaiter (2013) show that by updating of vt using
∇F (xt+1), any constant value of σ in [0, 1) suffices for
obtaining rates similar to those of the exact accelerated prox-
imal point method. The APPROXPROX criterion is strictly
weaker than the MS criterion with σ = 1/5.

Ivanova et al. (2021) leverage the MS framework and its im-
proved error tolerance to develop a reduction-based method
that, for some problems, is more efficient than Catalyst by
a logarithmic factor. However, for the finite sum and max-
structured problems we consider in the following sections, it
is unclear how to satisfy the MS condition without incurring
an extraneous logarithmic complexity term.

Stochastic error criteria. It is important to note that in
contrast to APPA and Catalyst, RECAPP is inherently ran-
domized. The unbiased condition of UNBIASEDPROX is
critical to our analysis of the update to vt. Although in many
cases (such as in finite-sum optimization) efficient proximal
point oracles require randomization anyhow, we extend the
use of randomness to the acceleration framework’s update
itself. It is an interesting question to determine if this ran-
domization is necessary and comparable performance to
RECAPP can be obtained based solely on deterministic
applications of APPROXPROX.

3.4 The AGD Rate as a Special Case

For a quick demonstration of our framework, we show how
to recover the classical

√
LR2/ε complexity bound for min-

imizing an L-smooth function F using exact gradient com-
putations. To do so, we set λ = L and note that Fλ

s is
L-strongly convex and 2L-smooth. Therefore, for each Fλ

s

with x? = proxF,λ(s) we can implement APPROXPROX by
taking 4 gradient steps starting from xinit, since these steps
produce an x satisfying

V e
x? (x) ≤ (1− 1

2)
4V e

x? (xinit) =
1

16
V e
x? (xinit)

and therefore

Fλ
s (x)− Fλ

s (x?) ≤ 2LV e
x? (x) ≤

L

8
V e
x? (xinit) .

Invoking Theorem 3.5 with λ = L shows that RECAPP
finds an ε-approximate solution with O(R

√
L/ε) gradient

queries, recovering the result of Nesterov (1983).

4 Finite-sum Minimization
In this section, we consider the following problem of finite-
sum minimization:

minimize
x∈X

F (x) :=
1

n

∑
i∈[n]

fi(x), (4)

where each fi is L-smooth and convex.

We solve the problem by combining RECAPP with a single
epoch of SVRG (Johnson & Zhang, 2013), shown in Algo-
rithm 3. Our single point of departure from this classical
algorithm is that the point we center our gradient estimator
at (xfull) is allowed to differ from the initial iterate (xinit).
Setting xfull to be the point xprev of APPROXPROX allows
us to efficiently meet our relaxed error criterion.

Corollary 4.1 (APPROXPROX for finite-sum minimization).
Given finite-sum problem (4), points s, xinit, xfull ∈ X , and
λ ∈ (0, L], ONEEPOCHSVRG (Algorithm 3) with φi(x) :=
fi(x)+

λ
2 ‖x− s‖

2, η ≤ 1
32L , and T = d 32ηλe = O

(
L
λ

)
im-

plements APPROXPROXF,λ(s;xinit, xfull) (Definition 3.1)
using O(n+ L/λ) gradient queries.

Corollary 4.1 follows from a slightly more general bound on
ONEEPOCHSVRG (Proposition C.1 in Appendix C). Below,
we briefly sketch its proof.

Proof sketch for Corollary 4.1. We begin by carefully
bounding the variance of the gradient estimator gt. In
Lemma C.3 in the appendix we show that

‖gt −∇F (xt)‖2 ≤ 4L ·
(
V F
x? (xfull) + V

Fλ
s

x? (xt)
)
. (5)

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Algorithm 3: ONEEPOCHSVRG

1 Input: Φ = 1
n

∑
i∈[n] φi (with component gradient

oracles), center point xfull, initial point xinit, step-size
η, iteration number T

2 Query gradient ∇Φ(xfull) = 1
n

∑
i∈[n]∇φi(xfull)

3 x0 ← xinit . KEY: xinit, xfull may be different
4 for t = 0 to T − 1 do
5 Sample it ∼ Unif[n]
6 gt ← ∇φit(xt)−∇φit(xfull) +∇Φ(xfull)
7 xt+1 ← ProjX (xt − ηgt)
8 Return: x̄ = 1

T

∑
t∈[T] xt

Next, standard analysis on variance reduced stochastic gra-
dient method (Xiao & Zhang, 2014) shows that

E ‖xt+1 − x?‖2 ≤ ‖xt − x?‖2

− 2ηE
[
Fλ
s (xt+1)− Fλ

s (x?)
]
+ η2 ‖gt −∇F (xt)‖2 .

Plugging in the variance bound (5) at iteration xt, rearrang-
ing terms and telescoping for t ∈ [T]− 1, we obtain

1

T
E

T∑
t=1

(
Fλ
s (xt)− Fλ

s (x?)
)

≤ 2

ηT
V e
x? (xinit) + 4ηLV F

x? (xfull) +
4ηL

T
V

Fλ
s

x? (xinit)

(i)

≤ 1

8
V F
x? (xfull) +

(
2

ηT
+

4ηL(L+ λ)

T

)
V e
x? (xinit)

(ii)

≤ 1

8
λV e

x? (xinit) +
1

8
V F
x? (xfull) ,

where we use (i) smoothness of Fλ
s , and (ii) the choices of

η and T . Noting that x̄ = 1
T

∑
t∈[T] xt satisfies Fλ

s (x̄) ≤
1
T

∑T
t=1

(
Fλ
s (xt)

)
by convexity concludes the proof sketch.

Warm-start implementation. We now explain how to
reuse ONEEPOCHSVRG for obtaining a valid warm-start
for RECAPP (Definition 3.3). Given any initial iterate with
function error ∆, we show that a careful choice of step size
for ONEEPOCHSVRG leads to a point with suboptimality√

LR2∆
n in O(n) gradient computations (Lemma C.5). Re-

peating this procedure O(log log n) times produces a point
with suboptimality O(LR2/n), which is a valid warm-start
for λ = L/n. We remark that Song et al. (2020) achieve
the same O(n log log n) complexity with a different proce-
dure that entails changing the recursion for αt in Line 3 of
Algorithm 1. We believe that our approach is conceptually
simpler and might be of independent interest.

Corollary 4.2 (WARMSTART-SVRG for finite-sum mini-
mization). Consider problem (4) with minimizer x?, smooth-
ness parameter L, and some initial point xinit with R =
‖xinit − x?‖, for any λ ≥ L/n, Algorithm 4 with T = 32n,

Algorithm 4: WARMSTART-SVRG

1 Input: F = 1
n

∑
i∈[n] fi, smoothness L, point xinit

2 Parameter: Iteration number T
3 x(0) ← xinit
4 for k = 0 to K − 1 do
5 ηk+1 ←

(
8Ln2−k−1)−1

6 x(k+1) ←
ONEEPOCHSVRG

(
F, x(k), x(k), ηk+1, T

)
7 Return: x(K)

K = log log n implements WARMSTARTF,λ(R
2) with

O(n log log n) gradient queries.

By implementing APPROXPROX and WARMSTART using
ONEEPOCHSVRG, RECAPP provides the following state-
of-the-art complexity bound for finite-sum problems.

Theorem 4.3 (RECAPP for finite-sum minimization).
Given a finite-sum problem (4) on domain X with
diameter R, RECAPP (Algorithm 1) with parame-
ters λ = L

n and T = O(R
√
Ln−1ε−1), using

ONEEPOCHSVRG for APPROXPROX, and WARMSTART-
SVRG for WARMSTART, outputs an x such that EF (x) −
minx′∈X F (x

′) ≤ ε. The total gradient query complex-
ity is O(n log log n +

√
nLR2/ε) in expectation. Further,

if F is γ-strongly-convex with γ ≤ O(L/n), restarted
RECAPP (Algorithm 7) finds an ε-approximate solution
using O(n log log n +

√
nL/γ log(LR2/(nε)) gradient

queries in expectation.

4.1 Empirical Results

In this section, we provide an empirical performance com-
parisons between RECAPP and SVRG (Johnson & Zhang,
2013) and Catalyst (Lin et al., 2017). Specifically, we
compare to the C1* variant of Catalyst-SVRG, which Lin
et al. (2017) report to have the best performance in prac-
tice. We implemented all algorithms in Python, using the
Numba (Lam et al., 2015) package for just-in-time compi-
lation which significantly improved runtime. Our code is
available at: github.com/yaircarmon/recapp.

Task and datasets. We consider logistic regression on
three datasets from libSVM (lib): covertype (n = 581, 012,
d = 54), real-sim (n = 72, 309, d = 20, 958), and a9a
(n = 32, 561, d = 123). For each dataset we rescale the
feature vectors to using unit Euclidean norm so that each fi
is exactly 0.25-smooth. We do not add `2 regularization to
the logistic regression objective.

We defer readers to Appendix C.1 for detailed implementa-
tion of the algorithms and parameter tuning.

https://github.com/yaircarmon/recapp

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

100 200 300
10 3

10 2

10 1

100

op
tim

al
ity

 g
ap

covertype

100 200 300
10 5

10 3

10 1

real-sim

100 200 300
10 8

10 6

10 4

10 2

100 a9a
SVRG
Catalyst C1*
RECAPP (p=0.25)

100 200 300
gradient computations / n

10 3

10 2

10 1

100

op
tim

al
ity

 g
ap

100 200 300
gradient computations / n

10 5

10 3

10 1

100 200 300
gradient computations / n

10 8

10 6

10 4

10 2

100

RECAPP (p=0.0)
RECAPP (p=0.1)
RECAPP (p=0.25)
RECAPP (p=0.5)

Figure 1: Empirical evaluation of RECAPP on finite sum
problems. Columns represent different datasets, the top row
compares RECAPP to SVRG and Catalyst, and the bottom
row compares different MLMC p parameters (p = 0 corre-
sponds to x̃t+1 = xt+1 in Algorithm 1, a baseline meant to
test whether MLMC is helpful at all, see Appendix C.1 for
more details). Solid lines show median over 20 seeds, and
shaded regions show interquartile range.

Findings. We summarize our experimental findings
in Figure 1. The top row of Figure 1 shows that RECAPP
is competitive with Catalyst C1*: on covertype RECAPP
is significantly faster, on a9a it is about the same, and on
real-sim it is a bit slower. Note that Catalyst C1* incor-
porates carefully designed heuristics and parameters for
choosing the SVRG initialization and stopping time, while
the RECAPP implementation directly follows our theoret-
ical development. The bottom row of Figure 1 shows that
p ∈ {0.1, 0.25} provides a modest but fairly consistent
improvement over the no-MLMC baseline. This provides
evidence that MLMC might be beneficial in practice.

5 Max-structured Minimization
In this section, we consider the following problem of the
max-structured function minimization:

minimize
x∈X

F (x) := max
y∈Y

f(x, y), (6)

where f : X × Y → R is L smooth, convex in x (for every
y) and µ-strongly-concave in y (for every x).

We solve (6) by combining RECAPP with variants of
mirror-prox method (Nemirovski, 2004), shown in Algo-
rithm 5. Given a convex-concave L-smooth objective
φ, MIRRORPROX (Algorithm 5) starts from initial point
xinit, yinit, and finds in O(T) gradient queries an approxi-
mate solution xT , yT satisfying for any x, y ∈ X × Y ,

φ(xT , y)− φ(x, yT) ≤
L

T

(
V e
xinit

(x) + V e
yinit

(y)
)
. (7)

Our main observation is that applying such a mirror-prox
method to the regularized objective φ(x, y) = f(x, y) +
µV e

s (x), initialized at (xinit,Obr
F (xprev)) where we define

the best response oracle Obr
F (x) := argmaxy∈Y f(x, y),

outputs solution satisfying the relaxed error criterion of
APPROXPROXF,µ after T = O(L/µ) steps. We formalize
this observation in Lemma 5.1.
Lemma 5.1 (APPROXPROX for max-structured min-
imization). Given max-structured minimization prob-
lem (6) and an oracle Obr

F (x) that outputs ybrx :=
maxy∈Y f(x, y) for any x, MIRRORPROX in Algorithm 5
initialized at (xinit,Obr

F (xprev)) implements the procedure
APPROXPROXF,µ(s;xinit, xprev) using a total of O (L/µ)
gradient queries and one call to Obr

F (·).

Before providing a proof sketch for the lemma, let us remark
on the cost of implementing the best response oracle. Since
for any fixed x the function f(x, ·) is µ-strongly-concave
and L-smooth, we can use AGD to find an δ-accurate best re-
sponse y′ to x inO

(√
L
µ log F (x)−f(x,y′)

δ

)
gradient queries.

Therefore, even for extremely small values of δ we can ex-
pect the best-response computation cost to be negligible
compared to the O(L/µ) complexity of the mirror-prox
iterations required to implement APPROXPROX.

Proof sketch for Lemma 5.1. We run MIRRORPROX for
T = O(L/µ) steps on φ(x, y) = f(x, y)+µV e

s (x). By (7)
the output (xT , yT) satisfies for x = x? = proxF,λ(s),
y = ybrxT

and arbitrary constant c,

φ(xT , y
br
xT

)−φ(x?, yT) ≤ cµ
(
V e
xinit

(x?) + V e
yinit

(
ybrxT

))
.

The optimality of x? gives φ(x?, yT) − φ(x?, ybrx?) ≤ 0.
Combining with the above implies

Fµ
s (xT)− Fµ

s (x?) ≤ cµ
(
V e
xinit

(x?) + V e
yinit

(
ybrxT

))
.
(8)

We now bound the two sides of (8) separately. The strong
concavity of φ in y allows us to show that Fµ

s (xT) −
Fµ
s (x?) ≥ µV e

ybr
xT

(y?). For the right-hand side, the defini-

tion of yinit as a best response to xprev yields µV e
yinit

(y?) ≤
V F
x? (xprev) . Plugging both inequalities into (8), and choos-

ing sufficiently small c, we see the output satisfies the con-
dition of a APPROXPROXF,µ oracle, concluding the proof
sketch.

Warm-start implementation. We now explain how to ap-
ply accelerated gradient descent (AGD) and a recursive
use of MIRRORPROX for obtaining a valid warm-start for
RECAPP (Definition 3.3).
Lemma 5.2 (WARMSTART for max-structured minimiza-
tion). Consider problem (6) where R, R′ are diame-
ter bounds for X , Y respectively. Given initial point
xinit, yinit, Algorithm 6, with parameters T = O(L/µ),
K = O(log(L/µ)) and Line 3 implemented using AGD,
implements WARMSTARTF,µ(R

2) with

O
(
L/µ log(L/µ) +

√
L/µ log (R′/R)

)
gradient queries.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Algorithm 5: MIRRORPROX

1 Input: Gradient oracle for φ : X × Y → R,
smoothness L, points xinit, yinit, iteration number T
. To implement APPROXPROXF,µ, we let
yinit ≈ argmaxy∈Y f(x, y)

2 Parameter: Step-size η
3 Initialize x0 ← xinit, y0 ← yinit
4 for t = 0 to T − 1 do
5 ut ← argminx∈X 〈η∇xφ(xt, yt), x〉+ V e

xt
(x)

6 vt ← argminy∈Y〈−η∇yφ(xt, yt), y〉+ V e
yt
(y)

7 xt+1 ← argminx∈X 〈η∇xφ(ut, vt), x〉+ V e
xt
(x)

8 yt+1 ← argminy∈Y〈−η∇yφ(ut, vt), y〉+ V e
yt
(y)

9 Return: xT , yT

By implementing APPROXPROX and WARMSTART using
MIRRORPROX and WARMSTART-MINIMAX, RECAPP
provides the following state-of-the-art complexity bounds
for minimizing the max-structured problems.

Theorem 5.3 (RECAPP for minimizing the max-struc-
tured problem). Given F = maxy∈Y f(x, y) with diam-
eter bounds R, R′ on X , Y , respectively, RECAPP (Algo-
rithm 1) with parameters λ = µ and T = O(R

√
µ/ε) and

MIRRORPROX (Algorithm 5) to implement APPROXPROX,
and WARMSTART-MIRRORPROX (Algorithm 6) to im-
plement WARMSTART, outputs a solution x such that
E F (x) − minx′∈X F (x

′) ≤ ε. The algorithm uses
O
(
LR/
√
µε + L/µ log(L/µ) +

√
L/µ log (R′/R)

)
gra-

dient queries in expectation and O
(
R
√
µ/ε
)

calls to a
best-response oracle Obr

f (·). Further, if F is γ-strongly-
convex, restarted RECAPP (Algorithm 7) with parameters
λ = µ, T = O

(√
µ/γ

)
, K = O

(
log
(
LR2/ε

))
finds an

ε-approximate solution using O(LR/
√
µγ log

(
LR2/ε

)
+

L/µ log(L/µ) +
√
L/µ log (R′/R)) gradient queries in

expectation and O
(√

µ
γ log LR2

ε

)
calls to Obr

f (·).

We remark that for strongly-convex F , the restarted Algo-
rithm 9 not only yields a good approximate solution for F ,
but also can be transferred to a good approximate primal-
dual solution for f(x, y) by taking the best-response to the
high-accuracy solution x.

Generalization to the framework. To obtain complex-
ity bounds strictly in terms of gradient queries, we ex-
tend the framework of Section 3 to handle small addi-
tive errors δ ≈ Ω(1/t4) at iteration t when implement-
ing the APPROXPROX procedure as defined in (2). For
x? = argminx∈X F

λ
s (x) we allow APPROXPROX to re-

turn x satisfying

EFλ
s (x)− Fλ

s (x
?) ≤ 1

8

(
λV e

x? (xinit) + V F
x?(xprev)

)
+ δ.

(9)

Algorithm 6: WARMSTART-MIRRORPROX

1 Input: Gradient oracle for φ : X × Y → R, strong
concavity µ, smoothness L, point (xinit, yinit)

2 Parameter: Iteration number T , epoch number K
3 Find y′init so that
f(xinit, y

′
init)− f(xinit, ybrxinit

) ≤ 1
2LR

2

. Implemented via AGD
4 Let φ := f(x, y) + µV e

xinit
(x) and L′ = L+ µ

5 Initialize x(0) ← xinit, y(0) ← yinit
6 for k = 0 to K − 1 do
7 x(k+1), y(k+1) ←

MIRRORPROX(φ,L′, x(k), y(k), T)

8 Return: x(K)

This way, in Lemma 5.1 one can implement the best-
response oracle Obr

f (·) (in Line 3) to a sufficient high ac-
curacy using Õ(

√
L/µ) gradient queries, using the stan-

dard accelerated gradient method (Nesterov, 1983). This
turns the method in Theorem 5.3 into a complete algo-
rithm for solving (6), and only incurs an additional cost of
Õ
(
R
√
L/µ ·

√
µ/ε
)
= Õ

(
R
√
L/ε

)
gradient queries.

We state the main result here and refer readers to Appendix E
for the generalization of RECAPP (Algorithm 8, Algo-
rithm 9 and Proposition E.3) and more detailed discussion.

Theorem 5.4 (RECAPP for minimizing the max-structured
problem, without Obr

f). Under the same setting of Theo-
rem 5.3, Algorithm 8 with accelerated gradient descent
to implement Obr

f (·), outputs a primal ε-approximate so-
lution x and has expected gradient query complexity of

O

(
LR√
µε +

L
µ log LR′

µR + R
√

L
ε log L(R+R′)2

ε

)
. Further, if

F is γ-strongly-convex, restarted RECAPP (Algorithm 9)
finds an ε-approximate solution and has expected gradient

query complexity of O
(

LR√
µγ log

(
LR2

ε

)
+ L

µ log
(

LR′

µR

)
+√

L
γ log

(
µL(R+R′)2

γε

)
log
(

LR2

ε

))
.

Acknowledgements
The authors thank anonymous reviewers for helpful sug-
gestions. YC was supported in part by the Israeli Science
Foundation (ISF) grant no. 2486/21 and the Len Blavatnik
and the Blavatnik Family foundation. YJ was supported in
part by a Stanford Graduate Fellowship and the Dantzig-
Lieberman Fellowship. AS was supported in part by a Mi-
crosoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF-1955039, a PayPal research
award, and a Sloan Research Fellowship.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

References
The LIBSVM data webpage. URL https://www.
csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/.

Allen-Zhu, Z. Katyusha: The first direct accelera-
tion of stochastic gradient methods. arXiv preprint
arXiv:1603.05953, 2016.

Asi, H., Carmon, Y., Jambulapati, A., Jin, Y., and Sidford, A.
Stochastic bias-reduced gradient methods. arXiv preprint
arXiv:2106.09481, 2021.

Azizian, W., Mitliagkas, I., Lacoste-Julien, S., and Gidel, G.
A tight and unified analysis of gradient-based methods for
a whole spectrum of games. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust
optimization. Princeton University Press, 2009.

Bertsekas, D. Nonlinear Programming. Athena Scientific,
1999.

Blanchet, J. H. and Glynn, P. W. Unbiased Monte Carlo for
optimization and functions of expectations via multi-level
randomization. In 2015 Winter Simulation Conference
(WSC), pp. 3656–3667, 2015.

Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., and Sidford, A.
Complexity of highly parallel non-smooth convex opti-
mization. In Advances in Neural Information Processing
Systems, 2019.

Bullins, B. Highly smooth minimization of non-smooth
problems. In Conference on Learning Theory, pp. 988–
1030, 2020.

Carmon, Y., Jambulapati, A., Jiang, Q., Jin, Y., Lee, Y. T.,
Sidford, A., and Tian, K. Acceleration with a ball op-
timization oracle. In Advances in Neural Information
Processing Systems, 2020.

Carmon, Y., Hausler, D., Jambulapati, A., Jin, Y., and Sid-
ford, A. Optimal and adaptive monteiro-svaiter accelera-
tion. arXiv:2205.15371, 2022.

Frostig, R., Ge, R., Kakade, S., and Sidford, A. Un-
regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization. In
International Conference on Machine Learning, 2015.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–2030,
2016.

Garber, D., Hazan, E., Jin, C., Musco, C., Netrapalli, P.,
Sidford, A., et al. Faster eigenvector computation via
shift-and-invert preconditioning. In International Confer-
ence on Machine Learning (ICML), 2016.

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova,
E., Selikhanovych, D., Uribe, C. A., Jiang, B., Wang, H.,
Zhang, S., Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., and
Sidford, A. Near optimal methods for minimizing convex
functions with Lipschitz p-th derivatives. In Conference
on Learning Theory (COLT), 2019.

Giles, M. B. Multilevel Monte Carlo methods. Acta Numer-
ica, 24:259–328, 2015.

Gower, R. M., Schmidt, M., Bach, F., and Richtárik, P.
Variance-reduced methods for machine learning. Pro-
ceedings of the IEEE, 108(11):1968–1983, 2020.

Güler, O. New proximal point algorithms for convex mini-
mization. SIAM Journal on Optimization, 2(4):649–664,
1992.

Hu, Y., Chen, X., and He, N. On the bias-variance-cost
tradeoff of stochastic optimization. Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Ivanova, A., Pasechnyuk, D., Grishchenko, D., Shulgin, E.,
Gasnikov, A., and Matyukhin, V. Adaptive catalyst for
smooth convex optimization. In International Conference
on Optimization and Applications, pp. 20–37. Springer,
2021.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances in
neural information processing systems (NeurIPS), 2013.

Korpelevich, G. M. The extragradient method for finding
saddle points and other problems. Ekonomika i Matem-
aticheskie Metody, 12:747–756, 1976.

Kovalev, D. and Gasnikov, A. The first optimal algorithm for
smooth and strongly-convex-strongly-concave minimax
optimization. arXiv:2205.05653, 2022.

Lam, S. K., Pitrou, A., and Seibert, S. Numba: A llvm-
based python JIT compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC,
pp. 1–6, 2015.

Lan, G., Li, Z., and Zhou, Y. A unified variance-reduced
accelerated gradient method for convex optimization.
Advances in Neural Information Processing Systems
(NeurIPS), 32, 2019.

Levy, D., Carmon, Y., Duchi, J. C., and Sidford, A. Large-
scale methods for distributionally robust optimization. Ad-
vances in Neural Information Processing Systems, 2020.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Lin, H., Mairal, J., and Harchaoui, Z. A universal cata-
lyst for first-order optimization. In Advances in Neural
Information Processing Systems (NeurIPS), 2015.

Lin, H., Mairal, J., and Harchaoui, Z. Catalyst acceleration
for first-order convex optimization: from theory to prac-
tice. The Journal of Machine Learning Research, 18(1):
7854–7907, 2017.

Lin, T., Jin, C., and Jordan, M. I. Near-optimal algorithms
for minimax optimization. In Conference on Learning
Theory (COLT), 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Monteiro, R. D. and Svaiter, B. F. An accelerated hybrid
proximal extragradient method for convex optimization
and its implications to second-order methods. SIAM Jour-
nal on Optimization, 23(2):1092–1125, 2013.

Morgenstern, O. and Von Neumann, J. Theory of games and
economic behavior. Princeton university press, 1953.

Nemirovski, A. Prox-method with rate of convergence
O(1/t) for variational inequalities with Lipschitz contin-
uous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization,
15(1):229–251, 2004.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate O(1/k2). Soviet Mathe-
matics Doklady, 27(2):372–376, 1983.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical programming, 103(1):127–152, 2005.

Nesterov, Y. Lectures on convex optimization, volume 137.
Springer, 2018.

Ouyang, Y. and Xu, Y. Lower complexity bounds of first-
order methods for convex-concave bilinear saddle-point
problems. Mathematical Programming, 185(1):1–35,
2021.

Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., and Har-
chaoui, Z. Catalyst acceleration for gradient-based non-
convex optimization. arXiv preprint arXiv:1703.10993,
2017.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in optimization, 2014.

Rockafellar, R. T. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimiza-
tion, 14(5):877–898, 1976.

Salzo, S. and Villa, S. Inexact and accelerated proximal
point algorithms. Journal of Convex analysis, 19(4):1167–
1192, 2012.

Shalev-Shwartz, S. and Zhang, T. Accelerated proximal
stochastic dual coordinate ascent for regularized loss min-
imization. In International conference on machine learn-
ing (ICML), 2014.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Song, C., Jiang, Y., and Ma, Y. Variance reduction via
accelerated dual averaging for finite-sum optimization.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Song, C., Jiang, Y., and Ma, Y. Unified acceleration of high-
order algorithms under Hölder continuity and uniform
convexity. SIAM journal of optimization, 2021.

Thekumparampil, K. K., Jain, P., Netrapalli, P., and Oh,
S. Efficient algorithms for smooth minimax optimiza-
tion. Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Woodworth, B. and Srebro, N. Tight complexity bounds for
optimizing composite objectives. In Advances in Neural
Information Processing Systems, pp. 3646–3654, 2016.

Xiao, L. and Zhang, T. A proximal stochastic gradient
method with progressive variance reduction. SIAM Jour-
nal on Optimization, 24(4):2057–2075, 2014.

Yang, J., Zhang, S., Kiyavash, N., and He, N. A catalyst
framework for minimax optimization. Advances in Neu-
ral Information Processing Systems, 2020.

Zhao, R. A primal dual smoothing framework for max-
structured nonconvex optimization. arXiv:2003.04375,
2020.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

A Additional Related Work
Beyond the closely related work already described, our paper touches on several lines of literature.

Finite-sum problems. The ubiquity of finite-sum optimization problems in machine learning has led to a very large body
of work on developing efficient algorithms for solving them. We refer the reader to Gower et al. (2020) for a broad survey
and focus on accelerated finite-sum methods, i.e., with a leading order complexity term scaling as

√
n/ε (or as

√
nκ for

strongly-convex problems with condition number κ). Accelerated Proximal Stochastic Dual Coordinate Ascent (Shalev-
Shwartz & Zhang, 2014) gave the first such accelerated rate for an important subclass of finite-sum problems. This method
was subsequently interpreted as a special case of APPA/Catalyst (Lin et al., 2015; Frostig et al., 2015), which can also
accelerate several other finite-sum optimization problems. Since then, research has focused on designing more practical and
theoretically efficient accelerated algoirthms by opening the APPA/Catalyst black box. The algorithms Katyusha (Allen-Zhu,
2016), Varag (Lan et al., 2019) and VRADA (Song et al., 2020) offer improved complexity bound at the price of the
generality and simplicity of APPA/Catalyst. Our approach matches the best existing guarantee (due to VRADA) without
paying this price.

Max-structured problems. Objectives of the form F (x) = maxy∈Y f(x, y) are very common in machine learning and
beyond. Such objectives arise from constraints (via Lagrange multipliers) (Bertsekas, 1999), robustness requirements (Ben-
Tal et al., 2009; Ganin et al., 2016; Madry et al., 2018), and game-theoretic considerations (Morgenstern & Von Neumann,
1953; Silver et al., 2017). When f is convex in x and concave in y, the mirror-prox algorithm minimizes F to accuracy
epsilon in O(LRR′/ε) gradient evaluations (with respect to both x and y), where R′ is the diameter of Y . This rate can
be improved when f is µ-strongly-concave in y. For the special bilinear case f(x, y) = φ(x) + 〈y,Ax〉 − ψ(y), where ψ
a “simple” µ-strongly-convex function, an improved complexity bound of O(LR/

√
µε) has long been known (Nesterov,

2005).

More recent work studies the case of general convex-strongly-concave f . Thekumparampil et al. (2019) and Zhao (2020)
establish complexity bounds of O(L

3/2

µ
√
ε
log2 L2RR′

µε), which Lin et al. (2020) improve to O(L√
µε log

3 L2RR′

µε) using an
algorithm loosely based on APPA/Catalyst. Yang et al. (2020) present a more direct application of APPA/Catalyst to
min-max problems, further improving the complexity to O(L√

µε log
L2R2

µε), with logarithmic dependence on R′ only in
a lower order term. Similarly to standard APPA/Catalyst, the min-max variant requires highly accurate proximal point
computation, e.g., to function-value error of O(µ3ε2

L4R2). In contrast, RECAPP requires constant (relative) suboptimality and
removes the final logarithmic factor from the leading-order complexity term. Yang et al. (2020) also provide extensions to
finite-sum min-max problems and problems where f is non-convex in x, which would likely benefit from out method as
well (see Appendix F).

Independent work. In recent independent work, Kovalev & Gasnikov (2022) develop a method that minimizes maxy f(x, y)
assuming µ-strong-concavity in y and γ-strong-convexity in x. They attain an essentially optimal complexity proportional
to 1√

µγ times a logarithmic factor depending on problem parameters. Their method is tailored to saddle point problems,
working in an expanded space by using point-wise conjugate function and applying recent advances in monotone operator
theory. We note that RECAPP with restarts attains the same complexity bound (see Theorem 5.4). However, it is unclear
whether the algorithm of (Kovalev & Gasnikov, 2022) can recover the RECAPP’s complexity bound in the setting where f
is not strongly convex in x.

Monteiro-Svaiter-type acceleration. Monteiro-Svaiter (Monteiro & Svaiter, 2013) propose a variant of the accelerated
proximal point method that uses an additional gradient evaluation to facilitate approximate proximal point computation.
The Monteiro-Svaiter method and its extensions (Gasnikov et al., 2019; Bubeck et al., 2019; Bullins, 2020; Carmon et al.,
2020; Song et al., 2021; Kovalev & Gasnikov, 2022; Carmon et al., 2022) also allow for the regularization parameter λ
to be determined dynamically by the procedure approximating the proximal point. Ivanova et al. (2021) leverage this
technique to develop a variant of Catalyst that offers improved adaptivity and, in certain cases, improved complexity. We
provide additional comparison between the approximation condition of (Monteiro & Svaiter, 2013; Ivanova et al., 2021) and
RECAPP in Section 3.3.

Multilevel Monte Carlo (MLMC). MLMC is a method for debiasing function estimators by randomizing over the level
of accuracy (Giles, 2015). While originally conceived for PDEs and system simulation, a particular variant of MLMC
due to Blanchet & Glynn (2015) has found recent applications in the theory of stochastic optimization (Levy et al., 2020;

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Hu et al., 2021). Our method directly builds on the recent proposal of Asi et al. (2021) to use MLMC in order to obtain
unbiased estimates of proximal points (or, equivalently, the Moreau envelope gradient). Asi et al. (2021) apply this estimator
to de-bias proximal points estimated via SGD and improve several structured acceleration schemes. In contrast, we apply
MLMC on linearly convergent algorithms, allowing us to configure it much more aggressively and avoid the extraneous
logarithmic factors that appeared in the rates of Asi et al. (2021).

B Proofs for Section 3
We first give a formal proof of Proposition 3.4.

Proposition 3.4 (MLMC turns APPROXPROX into UNBIASEDPROX). For any convex F and parameter λ > 0, Algorithm 2
with p = 1/2 and j0 ≥ 2 implements UNBIASEDPROX and makes 2 + j0 calls to APPROXPROX in expectation.

Proof of Proposition 3.4. Let x? := proxF,λ(s) and E0 := λV e
x? (xinit) + V F

x?(xprev). By definition of APPROXPROX and
the strong λ strong-convexity of Fλ

s we have for j = 0,

E
[
λ

2

∥∥∥x(0) − x?∥∥∥2] ≤ EFλ
s

(
x(0)

)
− Fλ

s (x?) ≤ 1

8
E0. (10)

Further, for all j ≥ 1,

E
[
λ

2

∥∥∥x(j) − x?∥∥∥2] ≤ EFλ
s

(
x(j)

)
− Fλ

s (x?) ≤ 1

8
E
(
λV e

x?

(
x(j−1)

)
+ V F

x?(x(j−1))
)

(i)
=

1

8
E
(
V

Fλ
s

x? (x(j−1))
) (ii)

≤ 1

8
E
(
Fλ
s

(
x(j−1)

)
− Fλ

s (x?)
) (iii)

≤
(
1

8

)j+1

E0, (11)

where we use (i) the equality that ‖a− b‖2 + ‖b− c‖2 − 2 〈c− b, a− b〉 = ‖a− c‖2, (ii), the optimality of x? which
implies

〈
∇Fλ

s (x
?), x− x?

〉
≥ 0 for any x ∈ X , (iii) induction over j and (10). Consequently, Ex(j) → x? as j → ∞.

Further, since P[J = k] = pJ for all k ≥ j0, the algorithm returns a point x satisfying

Ex = EJ

[
x(j0−1) + p−1

J (x(J) − x(J−1))
]
= lim

j→∞
x(j) = x?,

which shows the output is an unbiased estimator of x?.

Next, to bound the variance, we use that pJ = 2−(J++1) for p = 1/2. Applying (10) and (11) yields that for all j > j0

E
∥∥∥x(j) − x(j−1)

∥∥∥2 = E
∥∥∥(x(j) − x?)− (x(j−1) − x?)

∥∥∥2 ≤ 2E
∥∥∥x(j) − x?∥∥∥2 + 2E

∥∥∥x(j−1) − x?
∥∥∥2

≤
(
2

8
+ 2

)(
1

8

)j (
2E0

λ

)
= 4.5 ·

(
1

8

)j (
E0

λ

)
.

Consequently,

E
∥∥∥p−1

J

(
x(J) − x(max{J−1,j0})

)∥∥∥2 =

∞∑
j=j0+1

p−1
j E

∥∥∥x(j) − x(j−1)
∥∥∥2 =

∞∑
j=1

2j+1E
∥∥∥x(j0+j) − x(j0+j−1)

∥∥∥2
≤ 4.5

∞∑
j=1

2j+1

8j0+j

(
E0

λ

)
=

3

8j0
·
(
E0

λ

)
and therefore,

E
∥∥∥x(j0) + p−1

J

(
x(J) − x(J−1)

)
− x?

∥∥∥2
≤ 2E

∥∥∥x(j0) − x?∥∥∥2 + 2E
∥∥∥p−1

J

(
x(J) − x(max{J−1,j0})

)∥∥∥2
≤

[
4

(
1

8

)j0+1

+ 2 · 3

8j0

](
E0

λ

)
=

6.5 · E0

λ · 8j0
.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Since j0 ≥ 2 this implies that the algorithm implements UNBIASEDPROX as claimed.

Finally, note that the expected number of calls made to APPROXPROX is EJ = j0 + EJ+. Further, EJ+ = 1
1−p since J+ is

geometrically distributed with success probability 1−p. Consequently, the expected number of calls made to APPROXPROX
is j0 + 1

1−p as desired.

Theorem 3.5 (RECAPP complexity bound). Given any convex function F : X → R and parameters λ,R > 0, RECAPP
(Algorithm 1) finds x ∈ X with EF (x)−minx′∈X F (x

′) ≤ ε, withinO
(√

λR2/ε
)

iterations using one call to WARMSTART,
and O

(√
λR2/ε

)
calls to APPROXPROX and UNBIASEDPROX. If we implement UNBIASEDPROX using Algorithm 2 with

p = 1/2 and j0 = 2, the total number of calls to APPROXPROX is O
(√

λR2/ε
)

in expectation.

Notation. We first define the filtration Ft = σ(x1, v1, . . . , xt, vt) and use the notation x?t = argminx∈X F
λ
st−1

(x) to
denote the exact proximal mapping which iteration xt of the algorithm approximates. We note that st, x?t+1,∈ Ft, i.e., they
are deterministic when conditioned on xt, vt. We also recall in literature it is well-known that the coefficients αt we pick
satisfy the condition that αt ∈ [4/

√
3

t+3 ,
2

t+2] (Paquette et al., 2017; Yang et al., 2020).

For each iteration of Algorithm 1, we obtain the following bound on potential decrease (a special case and more careful
analysis of its variant in Lemma 5 of Asi et al. (2021)).

Proposition B.1. Under the assumptions of Theorem 3.5, let x′ be a minimizer of F . For every t, the iterates of Algorithm 1
satisfy

E
[

1

α2
t+1

(F (xt+1)− F (x′)) +
λ

2
‖vt+1 − x′‖

2

∣∣∣∣ Ft

]
≤ 1

α2
t

(F (xt)− F (x′)) +
λ

2
‖vt − x′‖

2
.

This proposition can be proved directly by combining the following two lemmas.

Lemma B.2 (Potential decrease guaranteed by exact proximal step). At t-th iteration of Algorithm 1, let x?t+1 := proxF,λ(st)
and v?t+1 = vt− (αt+1)

−1(st−x?t+1) be the “ideal” values of xt+1 and vt+1 obtained via an exact prox-point computation,
then we have

1

α2
t+1

(
F
(
x?t+1

)
− F (x′)

)
+
λ

2

∥∥v?t+1 − x′
∥∥2

≤ 1

α2
t

(F (xt)− F (x′)) +
λ

2
‖vt − x′‖

2 − λ

α2
t+1

V e
x?
t+1

(st)−
1

α2
t

V F
x?
t+1

(xt) . (12)

Proof. We let g?t+1 = λ
(
st − x?t+1

)
and v?t+1 = vt − (αt+1)

−1(st − x?t+1). Now we bound both sides of the quantity〈
g?t+1, vt − x′

〉
. First, note that

1

αt+1
(vt − x′) =

1

αt+1

(
x?t+1 − x′

)
+

1

α2
t

(
x?t+1 − xt

)
− 1

α2
t+1

(
x?t+1 − st

)
.

Since g?t+1 ∈ ∂F
(
x?t+1

)
(see Fact 1.4 by Asi et al. (2021)), F is convex and

〈
g?t+1, x

?
t+1 − st

〉
= −λ

∥∥x?t+1 − st
∥∥2, we

have by update of αt and vt that

1

αt+1

〈
g?t+1, vt − x′

〉
=

1

αt+1

〈
g?t+1, x

?
t+1 − x′

〉
+

1

α2
t

〈
g?t+1, x

?
t+1 − xt

〉
− 1

α2
t+1

〈
g?t+1, x

?
t+1 − st

〉
≥ 1

αt+1

(
F
(
x?t+1

)
− F (x′)

)
+

1

α2
t

(
F (x?t+1)− F (xt) + V F

x?
t+1

(xt)
)
+

2λ

α2
t+1

V e
x?
t+1

(st)

=
1

α2
t+1

(
F
(
x?t+1

)
− F (x′)

)
− 1

α2
t

(F (xt)− F (x′)) +
2λ

α2
t+1

V e
x?
t+1

(st) +
1

α2
t

V F
x?
t+1

(xt) . (13)

On the other hand to upper bound 1
αt+1

〈
g?t+1, vt − x′

〉
, note by definition of g?t+1 and v?t+1,

∥∥v?t+1 − x′
∥∥2 =

∥∥∥∥vt − 1

αt+1λ
g?t+1 − x′

∥∥∥∥2 = ‖vt − x′‖
2 − 2

αt+1λ

〈
g?t+1, vt − x′

〉
+

1

α2
t+1

∥∥st − x?t+1

∥∥2 .

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Combining the last two displays and rearranging, we obtain

1

α2
t+1

(
F
(
x?t+1

)
− F (x′)

)
+
λ

2

∥∥v?t+1 − x′
∥∥2

≤ 1

α2
t

(F (xt)− F (x′)) +
λ

2
‖vt − x′‖

2 − 2λ

α2
t+1

V e
x?
t+1

(st)−
1

α2
t

V F
x?
t+1

(xt) +
λ

2α2
t+1

∥∥st − x?t+1

∥∥2
≤ 1

α2
t

(F (xt)− F (x′)) +
λ

2
‖vt − x′‖

2 − λ

α2
t+1

V e
x?
t+1

(st)−
1

α2
t

V F
x?
t+1

(xt) .

Lemma B.3 (Potential difference between exact and approximate proximal step). Following the same notation as
in Lemma B.2, for xt+1 and vt+1 defined as in Algorithm 1, we have

E
[

1

α2
t+1

(F (xt+1)− F (x′)) +
λ

2
‖vt+1 − x′‖

2

∣∣∣∣ Ft

]
≤ 1

α2
t+1

(
F
(
x?t+1

)
− F (x′)

)
+
λ

2

∥∥v?t+1 − x′
∥∥2 + λ

α2
t+1

V e
x?
t+1

(st) +
1

α2
t

V F
x?
t+1

(xt) , (14)

Proof. To prove (14), we consider the effect of approximation errors of xt+1, vt+1 in terms of x?t+1, v?t+1, respectively.
First, by definition of xt+1 and APPROXPROX we have that

E[F (xt+1) | Ft] = E
[
F (xt+1) +

λ

2
‖xt+1 − st‖2

∣∣∣∣ Ft

]
− E

[
λ

2
‖xt+1 − st‖2

∣∣∣∣ Ft

]
≤ F

(
x?t+1

)
+ λV e

x?
t+1

(st) +
1

8

(
λV e

x?
t+1

(st) + V F
x?
t+1

(xt)
)
− E

[
λV e

xt+1
(st)

∣∣∣ Ft

]
(15)

Now we further have

E
[
λV e

x?
t+1

(xt+1)
∣∣∣ Ft

] (i)

≤ E
[
Fλ
st(xt+1)

∣∣ Ft

]
− Fλ

st(x
?
t+1)

(ii)

≤ 1

8
λV e

x?
t+1

(st) +
1

8
V F
x?
t+1

(xt)

(iii)

≤ E
[
1

4
λV e

x?
t+1

(xt+1) +
1

4
λV e

xt+1
(st)

∣∣∣∣ Ft

]
+

1

8
V F
x?
t+1

(xt) ,

where we once again use (i) the strong convexity of Fλ, (ii) the definition of APPROXPROX and (iii) the triangle inequality
that ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 for any vectors a, b. By rearranging terms and rescaling by a factor of 1/2 this implies
equivalently

E
[
1

2
λV e

x?
t+1

(xt+1)

∣∣∣∣ Ft

]
≤ E

[
1

6
λV e

xt+1
(st)

∣∣∣∣ Ft

]
+

1

12
V F
x?
t+1

(xt) . (16)

Combining the above inequalities we have

E[F (xt+1) | Ft] = E
[
F (xt+1) +

λ

2
‖xt+1 − st‖2

∣∣∣∣ Ft

]
− E

[
λ

2
‖xt+1 − st‖2

∣∣∣∣ Ft

]
(i)

≤ F
(
x?t+1

)
+

7

8
λV e

x?
t+1

(st) + E
[
1

2
λV e

x?
t+1

(xt+1) +
1

2
λV e

xt+1
(st)

∣∣∣∣ Ft

]
+

1

8
V F
x?
t+1

(xt)− E
[
λV e

xt+1
(st)

∣∣∣ Ft

]
(ii)

≤ F
(
x?t+1

)
+

7

8
λV e

x?
t+1

(st) +
5

24
V F
x?
t+1

(xt) + E
[(

λ

2
+
λ

6
− λ

)
V e
xt+1

(st)

∣∣∣∣ Ft

]
≤ F

(
x?t+1

)
+

7

8
λV e

x?
t+1

(st) +
5

24
V F
x?
t+1

(xt) , (17)

where we use (i) rearranging of terms and using the triangle inequality λV e
x?
t+1

(st) +
1
8λV

e
x?
t+1

(st) ≤ 7
8λV

e
x?
t+1

(st) +

E
[
1
2λV

e
x?
t+1

(xt+1) +
1
2λV

e
xt+1

(st)
∣∣∣ Ft

]
in (15), and (ii) plugging back the inequality (16).

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Now that given definition of UNBIASEDPROX for vt+1 so that E[vt+1 | Ft] = v?t+1 and consequently

E
[
λ

2
‖vt+1 − x′‖

2

∣∣∣∣ Ft

]
=
λ

2

∥∥v?t+1 − x′
∥∥2 + E

[
λ

2

∥∥vt+1 − v?t+1

∥∥2 ∣∣∣∣ Ft

]
≤ λ

2

∥∥v?t+1 − x′
∥∥2 + λ

2α2
t+1

E
[∥∥x̃t+1 − x?t+1

∥∥2 ∣∣∣ Ft

]
≤ λ

2

∥∥v?t+1 − x′
∥∥2 + λ

8α2
t+1

V e
x?
t+1

(st) +
1

8α2
t+1

V F
x?
t+1

(xt). (18)

Rescaling and summing up inequalities (15) and (18), together with the bound that (αt)
2
/ (αt+1)

2 ≤ 4(t+4)2

16(t+2)2/3 ≤ 3, this
proves (14), which also concludes the proof.

Proof of Theorem 3.5. By requirement of WARMSTART function, we have F (x0)− F (x′) ≤ λR2. Applying the potential
decreasing argument in Proposition B.1 recursively on t = 0, 1, · · · , T − 1 thus gives

1

α2
T

E [F (xT)− F (x′)] ≤ E
[

1

α2
T

(F (xT)− F (x′)) +
λ

2
‖vT − x′‖

2
]

≤ 1

α2
0

(F (x0)− F (x′)) +
λ

2
‖x0 − x′‖

2 ≤ 3

2
λR2.

Multiplying both by α2
T and using the fact that for T ≥ d

√
6λR2/εe, α2

T ≤ 4
(T+2)2 ≤

2ε
3λR2 , we show that xT output

by Algorithm 1 satisfy that
E [F (xT)− F (x′)] ≤ ε.

The number of calls to each oracles follow immediately.

When implementing UNBIASEDPROXF,λ using MLMC, guarantees of Proposition 3.4 immediately implies the correctness
and the total number of (expected) calls to APPROXPROXF,λ.

We now show an adaptation of our framework to the strongly-convex setting in Algorithm 7. We prove its guarantee as
follows.

Algorithm 7: Restarted RECAPP

1 Input: F : X → R, RECAPP
2 Parameter: λ,R > 0, iteration number T , epoch number K
3 Initialize x(0) ← WARMSTARTF,λ(R

2) . To satisfy EF (x0)−minx′ F (x′) ≤ λR2

4 for k = 0 to K − 1 do
5 Run RECAPP on F with x0 = v0 = x(k) without WARMSTART (Line 1) for T iterations

. Halving error to true optimizer in each iteration and recurse
6 Return: x(K)

Proposition 3.6 (RECAPP for strongly-convex functions). For any γ-strongly-convex function F : X → R, and parameters
λ ≥ γ, R > 0, restarted RECAPP (Algorithm 7) finds x such that EF (x) − minx′∈X F (x

′) ≤ ε, using one call to
WARMSTART, and O

(√
λ/γ log LR2

ε

)
calls to APPROXPROX and UNBIASEDPROX. If we implement UNBIASEDPROX

using Algorithm 2 with p = 1/2 and j0 = 2, the number of calls to APPROXPROX is O
(√

λ/γ log LR2

ε

)
in expectation.

Proof of Proposition 3.6. Let x′ be the minimizer of F , we show by induction that for the choice of T = O
(√

λ/γ
)

, the

iterates x(k) satisfy the condition that

E
[
F
(
x(k)

)
− F (x′) + λ

2

∥∥∥x(k) − x′∥∥∥2] ≤ 3

2k−1
λR2, for k = 0, 1, · · · ,K. (19)

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

For the base case k = 0, we have the inequality holds immediately by definition of procedure WARMSTART. Now suppose
the inequality (19) holds for k. For k + 1, by Proposition B.1 and proof of Theorem 3.5 we obtain

1

α2
T

E
[
F
(
x(k+1)

)
− F (x′)

]
≤ E

[
F
(
x(k)

)
− F (x′)

]
+
λ

2

∥∥∥x(k) − x′∥∥∥2 ≤ 3

2k−1
λR2.

By our choice of T = O
(√

λ/γ
)

, we have

E
[
F
(
x(k+1)

)
− F (x′)

]
≤ 3

2 · 2k
γR2,

and consequently by γ-strong convexity it holds that

E
[
γ

2

∥∥∥x(k+1) − x′
∥∥∥2] ≤ E

[
F
(
x(k+1)

)
− F (x′)

]
≤ 3

2 · 2k
γR2 =⇒ E

[
λ

2

∥∥∥x(k+1) − x′
∥∥∥2] ≤ 3

2 · 2k
λR2.

Summing up the two inequalities together we obtain

E
[
F
(
x(k+1)

)
− F (x′) + λ

2

∥∥∥x(k+1) − x′
∥∥∥2] ≤ 3

2k
λR2,

which shows by math induction that the inequality (19) holds for k = 0, 1, · · · ,K.

Now by choice of K = O
(
log
(
λR2/ε

))
, we have

E
[
F
(
x(K)

)
− F (x′)

]
≤ E

[
F
(
x(K)

)
− F (x′) + λ

2

∥∥∥x(K) − x′
∥∥∥2] ≤ 3

2K−1
λR2 ≤ ε,

which proves the correctness of the algorithm.

The algorithm uses one call to procedure WARMSTART in Line 2. The number of calls to procedures APPROXPROX,
UNBIASEDPROX is K times the number of calls within each epoch k ∈ [K], which is bounded by O(T). The case when
implementing UNBIASEDPROX by MLMC and APPROXPROX follows immediately from Proposition 3.4.

C Proofs for Section 4
Proposition C.1 (Guarantee for ONEEPOCHSVRG). For any convex, L-smooth fi(x) : X → R, and parameter λ ≥ 0,
consider the finite-sum problem Φ(x) :=

∑
i∈[n]

1
nφi(x) where φi(x) := fi(x) +

λ
2 ‖x− s‖

2. Given a centering point s,

an initial point xinit, and an anchor point xfull, Algorithm 3 with instantiation of φi(x) = fi(x) +
λ
2 ‖x− s‖

2, outputs a
point x̄ = 1

T

∑
t∈[T] xt−1 satisfying

EFλ
s (x̄)− Fλ

s (x?) ≤ 2

ηT
V e
x? (xinit) + 4ηLV F

x? (xfull) where x? := argmin
x∈X

Φ(x) .

The algorithm uses a total of O(n+ T) gradient queries.

To prove Proposition C.1, we first recall the following basic fact for smooth functions.

Lemma C.2. Let f : X → R be an L-smooth convex function. For any x, x′ ∈ X we have

1

L
‖∇f(x)−∇f(x′)‖2 ≤ 〈∇f(x)−∇f(x′), x− x′〉 (20)

and
1

2L
‖∇f(x)−∇f(x′)‖2 ≤ f(x′)− f(x) + 〈∇f(x), x− x′〉 . (21)

We also observe the following few properties of Algorithm 3.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Lemma C.3 (Gradient estimator properties). For any x, xfull ∈ X , sample i ∈ [n] uniformly and let g(x) = ∇fi(x) −
∇fi(xfull) +∇F (xfull) + λ(x− s). It holds that E [g(x)] = ∇Fλ

s (x), and for x? = argminx∈X F
λ
s (x),

E
[∥∥g(x)−∇Fλ

s (x)
∥∥2] ≤ E

[
‖∇fi(xfull)−∇fi(x)‖2

]
≤ 4L

(
V F
x? (xfull) + V

Fλ
s

x? (x)
)
. (22)

Proof. First, by definition of how we construct g it holds that

E [g(x)] = λ(x− s) +∇F (xfull) +
1

n

n∑
i=1

(∇fi(x)−∇fi(xfull))

= λ(x− s) +∇F (xfull) +∇F (x)−∇F (xfull) = ∇Fλ
s (x).

This proves that g is an unbiased estimator of ∇Fλ
s .

Next, for such unbiased estimator g we have

E
[∥∥g(x)−∇Fλ

s (x)
∥∥2] = E

[
‖∇F (xfull)−∇F (x)−∇fi(xfull) +∇fi(x)‖2

]
≤ E

[
‖∇fi(xfull)−∇fi(x)‖2

]
,

where we used that E
[
‖Z − EZ‖2

]
≤ E

[
‖Z‖2

]
for any random Z. This proves the first inequality in (22).

For the second inequality, note

E
[
‖∇fi(xfull)−∇fi(x)‖2

] (i)

≤ 2E
[
‖∇fi(xfull)−∇fi(x?)‖2 + ‖∇fi(x)−∇fi(x?)‖2

]
(ii)

≤ 4L · E [fi(xfull)− fi(x?) + 〈∇fi(x?), x? − xfull〉+ fi(x)− fi(x?) + 〈∇fi(x?), x? − x〉]
= 4L ·

(
V F
x? (xfull) + F (x)− F (x?) + 〈∇F (x?), x? − x〉

)
,

(23)

where we use (i) Cauchy-Schwarz inequality for Euclidean norms, and (ii) the property of smoothness of fi (see Eq. (21)).

Using the standard inequality that 2 〈a− b, b− c〉 = ‖a− c‖2 − ‖b− c‖2 − ‖a− b‖2, we also have

F (x)− F (x?) + 〈∇F (x?), x? − x〉

= Fλ
s (x)− Fλ

s (x
?) + 〈∇F (x?) + λ(x? − s), x? − x〉 − λ 〈x? − s, x? − x〉 − λ

2
‖x− s‖2 + λ

2
‖x? − s‖2

≤ V Fλ
s

x? (x)− λV e
x?(x) ≤ V Fλ

s
x? (x) .

Substituting this in (23) proves the second inequality in (22).

The following proof on progress per step follows from the standard analysis by Xiao & Zhang (2014) (as the constrained
finite-sum minimization we consider is a special case of theirs), which we include the full statement here for completeness.

Lemma C.4 (Progress per step of ONEEPOCHSVRG, cf. Xiao & Zhang (2014)). Let x? ∈ argminx∈X Φ(x) where
each φi is L-smooth and convex. For η ≤ 1/L, consider step t in ONEEPOCHSVRG, define ∆t = gt − ∇Φ(xt) and
x?t+1 = ProjX (xt − ηgt), it holds that

E ‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − 2η [Φ(xt+1)− Φ(x?)] + 2η2E ‖∆t‖2 .

With these helper lemmas, we are ready to formally prove Proposition C.1.

Proof of Proposition C.1. Consider the t-th step of Algorithm 3, by Lemma C.4 and Φ = Fλ
s , for η ≤ 1

2L ≤
1

λ+L we have

E ‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − 2ηE
[
Fλ
s (xt+1)− Fλ

s (x?)
]
+ η2E

[∥∥gt −∇Fλ
s (xt)

∥∥2] .

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Our bounds on the variance of SVRG plus the L-smoothness of F yields

E
[∥∥gt −∇Fλ

s (xt)
∥∥2] ≤ 4L

(
V F
x? (xfull) + V

Fλ
s

x? (xt)
)
.

Thus we have by definition of xt+1 and divergence,

EV e
x? (xt+1) ≤V e

x? (xt)− ηE
[
Fλ
s (xt+1)− Fλ

s (x?)
]
+ 2η2LV

Fλ
s

x? (xt) + 2η2LV F
x? (xfull) . (24)

Note V F
x? (xfull) is independent of xt. Telescoping bounds (24) and using optimality of x? so that

〈
∇Fλ

s (x?) , x? − x
〉
≤ 0

for t ≥ 1, we obtain

EV e
x? (xT) ≤ V e

x? (xinit)− η (1− 2ηL)E

[
T−1∑
t=0

(
Fλ
s (xt+1)− Fλ

s (x?)
)]

+ 2η2LV
Fλ

s
x? (xinit) + 2η2LTV F

x? (xfull) .

Rearranging terms, dividing over ηT/2, and using convexity of Fλ
s , we have for η ≤ 1

32L and T ≥ 32
ηλ ≥

128ηL2

λ

EFλ
s

 1

T

∑
t∈[T]

xt

− Fλ
s (x?) ≤ 1

T
E

T∑
t=1

(
Fλ
s (xt)− Fλ

s (x?)
)
≤ 2(1− 2ηL)

T
E

[
T−1∑
t=0

(
Fλ
s (xt)− Fλ

s (x
?)
)]

≤ 2

ηT
V e
x? (xinit) + 4ηLV F

x? (xfull) +
4ηL

T
V

Fλ
s

x? (xinit)

(?)

≤ 1

8
V F
x? (xfull) +

(
2

ηT
+

4ηL(L+ λ)

T

)
V e
x? (xinit)

≤ 1

8
V F
x? (xfull) +

1

8
λV e

x? (xinit) ,

where for inequality (?) we use the fact that Fλ
s is (L+ λ)-smooth, and the property of smoothness.

To show how we implement the WARMSTART procedure required in Algorithm 1, we first show the guarantee of the
low-accuracy solver for finite-sum minimization of Algorithm 4.

Lemma C.5 (Low-accuracy solver for finite-sum minimization). For any problem (4) with minimizer x?, smoothness
parameter L, initial point xinit so that R = ‖x? − xinit‖, and any α ≥ L/n, Algorithm 4 with T = 32n, finds a point x(K)

after K epochs such that E F
(
x(K)

)
− F (x?) ≤ 1

2n
−1+2−K

LR2.

Proof of Lemma C.5. We prove the argument by math induction and let c(k) = n−1+2−k

. Note that for the base case k = 0,
F (x(0))−F (x?) ≤ c(0)

2 LR2 by Eq. (21). Now suppose the above inequality holds for k, i.e. F (x(k))−F (x?) ≤ c(k)

2 LR2.
Then for epoch k by guarantee of Proposition C.1 together given choice of ηk+1 = 1

8L
√
nc(k)

and T = 32n we have

EF
(
x(k+1)

)
− F (x?) ≤ 2

ηk+1T
V e
x?

(
x(k)

)
+ 4ηk+1LV

F
x?

(
x(k)

)
≤ LR2

4

√
c(k)

n
+
LR2

4

√
c(k)

n
=
c(k+1)

2
LR2.

where for the last inequality we note that series c(k) satisfies c(k+1) =
√
c(k)/n.

Consequently, after K = O(log log n) epochs, we have

c(K) ≤ 2

n
=⇒ EF

(
x(K)

)
− F (x?) ≤ L

n
R2 ≤ αR2,

for any α ≥ L/n, which immediately proves the following corollary.

Corollary 4.2 (WARMSTART-SVRG for finite-sum minimization). Consider problem (4) with minimizer x?, smoothness
parameter L, and some initial point xinit with R = ‖xinit − x?‖, for any λ ≥ L/n, Algorithm 4 with T = 32n,
K = log log n implements WARMSTARTF,λ(R

2) with O(n log log n) gradient queries.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Now we give the formal proof of Theorem 4.3, the main theorem showing one can use our accelerated scheme RECAPP to
solve the finite-sum minimization problem (4) efficiently.

Theorem 4.3 (RECAPP for finite-sum minimization). Given a finite-sum problem (4) on domain X with diameter R,
RECAPP (Algorithm 1) with parameters λ = L

n and T = O(R
√
Ln−1ε−1), using ONEEPOCHSVRG for APPROXPROX,

and WARMSTART-SVRG for WARMSTART, outputs an x such that EF (x)−minx′∈X F (x
′) ≤ ε. The total gradient query

complexity is O(n log log n+
√
nLR2/ε) in expectation. Further, if F is γ-strongly-convex with γ ≤ O(L/n), restarted

RECAPP (Algorithm 7) finds an ε-approximate solution using O(n log log n+
√
nL/γ log(LR2/(nε)) gradient queries

in expectation.

Proof of Theorem 4.3. We first consider the objective function F without strong convexity. The correctness of the algorithm
follows directly from Theorem 3.5, together with Corollary 4.1 and Corollary 4.2. For the query complexity, calling
WARMSTART-SVRG to implement the procedure of WARMSTARTF,λ(R

2) requires gradient queries O (n log log n) follow-

ing Corollary 4.2. The main Algorithm 1 calls O
(
R
√
λ/ε
)
= O(R

√
Ln−1ε−1) of procedure APPROXPROXF,λ, which

by implementation of ONEEPOCHSVRG each requires O(n + L/λ) = O(n) gradient queries following Corollary 4.1.
Summing them together gives the claimed gradient complexity in total.

When the objective F is γ-strongly-convex, the proof follows by the same argument as above and the guarantee of restarted
RECAPP in Theorem 3.5.

C.1 Additional Details on Empirical Results

Here we provide additional details for the empirical results in Section 4.1.

SVRG implementation. We implement the SVRG iterates as in Algorithm 3, using T = 2n and η = 4 (i.e., the inverse
of the smoothness of each function). However, instead of outputting the average of all iterates, we return the average of the
final T/2 = n iterates.

Catalyst implementation. Our implementation follows closely Catalyst C1* as described in (Lin et al., 2017), where for
the subproblem solver we use repeatedly called Algorithm 3 with the parameters and averaging modification described
above, checking the C1 termination criterion between each call.

RECAPP implementation. Our RECAPP implementation follows Algorithms 1 and 2, with Algorithm 3 and Algorithm 4
implemented APPROXPROXand WARMSTART, respectively, and Algorithm 3 configured and modified and described above.
In Algorithm 2 we set the parameters j0 = 0 and we test p ∈ {0, 0.1, 0.25, 0.5}. The setting p = 0 which corresponds to
setting x̃t+1 = xt+1 in Algorithm 1) is a baseline meant to test whether MLMC is helpful at all. For p > 0 we change the
parameter T in Algorithm 3 such that the expected amount of gradient computations is the same as for p = 0. Slightly
departing from the pseudocode of Algorithm 1, we take xt+1 to be x(J) computed in Algorithm 2, rather than x(0), since it
is always a more accurate proximal point approximation. We note that our algorithm still has provable guarantees (with
perhaps different constant factors) under this configuration.

Parameter tuning. For RECAPP and Catalyst, we tune the proximal regularization parameter λ (called κ in (Lin et al.,
2017)). For each problem and each algorithm, we test λ values of the form αL/n, where L = 0.25 is the objective
smoothness, n is the dataset size and α in the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0}. We report results for
the best λ value for each problem/algorithm pair.

D Proofs for Section 5
We first consider a special case of standard mirror-prox-type methods (Nemirovski, 2004) with Euclidean `2-divergence on x
and y domains separately, i.e. Vx,y(x′, y′) = V e

x (x
′) + V e

x (y
′) . This ensures each step of the methods can be implemented

efficiently. Below we state its guarantees, which is standard from literature and we include here for completeness.

Lemma D.1 (T -step guarantee of MIRRORPROX, cf. also Nemirovski (2004)). Let any φ(x, y), (x, y) ∈ X × Y be a
convex-concave, L-smooth function, MIRRORPROX(φ,L, xinit, yinit, T) in Algorithm 5 with initial points (xinit, yinit) and

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

step size η = 1/L outputs a point (xT , yT) satisfying for any x, y ∈ X × Y

φ(xT , y)− φ(x, yT) ≤
L

T

(
V e
xinit

(x) + V e
yinit

(y)
)
. (25)

Next we give complete proofs on the implementation of APPROXPROXF,µ and WARMSTARTF,µ, using MIRRORPROX
(Algorithm 5) with proper choices of initialization xinit, yinit, and WARMSTART-MINIMAX (Algorithm 6), respectively.
Lemma 5.1 (APPROXPROX for max-structured minimization). Given max-structured minimization problem (6) and an
oracleObr

F (x) that outputs ybrx := maxy∈Y f(x, y) for any x, MIRRORPROX in Algorithm 5 initialized at (xinit,Obr
F (xprev))

implements the procedure APPROXPROXF,µ(s;xinit, xprev) using a total ofO (L/µ) gradient queries and one call toObr
F (·).

Proof of Lemma 5.1. We incur MIRRORPROX with φ(x, y) = f(x, y) + µ
2 ‖x− s‖

2, smoothness L + µ, initial point
xinit, yinit, and number of iterations T = 64(L+µ)

µ . By guarantee (25) in Lemma D.1, the algorithm outputs xT , yT such
that for any x ∈ X , y ∈ Y

φ(xT , y)− φ(x, yT) ≤
1

64
µ
(
V e
xinit

(x) + V e
yinit

(y)
)
.

Suppose φ has (x?, y?) as its unique saddle-point, in particular we pick x = x? and y = ybrxT
:= argmaxy∈Y f(xT , y) =

argmaxy∈Y φ(xT , y) in the above inequality to obtain

Fµ
s (xT)− Fµ

s (x?) = φ
(
xT , y

br
xT

)
− φ (x?, y?) =

(
φ
(
xT , y

br
xT

)
− φ (x?, yT) + (φ (x?, yT))− φ (x?, y?)

)
≤ φ

(
xT , y

br
xT

)
− φ (x?, yT) ≤

1

64
µ
(
V e
xinit

(x?) + V e
yinit

(
ybrxT

))
,

(26)

where for the first inequality we use the definition that y? = argmaxy∈Y φ(x
?, y). Now for the LHS of (26), we have

Fµ
s (xT)− Fµ

s (x?)

≥
(
1− 1

32

)
(Fµ

s (xT)− Fµ
s (x?)) +

1

32

(
φ
(
xT , y

br
xT

)
− φ (xT , y?)

)
+

1

32
(φ (xT , y

?)− φ (x?, y?))

≥
(
1− 1

32

)
(Fµ

s (xT)− Fµ
s (x?)) +

µ

32
V e
ybr
xT

(y?) . (27)

Plugging (27) back to (26) and rearranging terms, we obtain

(Fµ
s (xT)− Fµ

s (x?)) ≤ µ/64

1− 1/32

(
V e
xinit

(x?) + V e
yinit

(
ybrxT

))
− µ/32

1− 1/32
V e
ybr
xT

(y?)

(?)

≤ µ/64

1− 1/32
V e
xinit

(x?) +
µ/32

1− 1/32
V e
yinit

(y?) +
µ/32

1− 1/32
V e
ybr
xT

(y?)− µ/32

1− 1/32
V e
ybr
xT

(y?)

≤ 1

16
µ
(
V e
xinit

(x?) + V e
yinit

(y?)
)
,

(28)

where we use (?) Cauchy-Schwarz inequality for Euclidean norm.

Further, to bound RHS of (28), we note that by definition of F and yinit ← Obr
f (xprev),

µV e
yinit

(y?) =µV e
ybr
xprev

(y?)
(i)

≤ f
(
xprev, y

br
xprev

)
− f (xprev, y?)

(ii)

≤ f
(
xprev, y

br
xprev

)
− f (x?, y?)− 〈∇xf (x

?, y?) , xprev − x?〉 = V F
x? (xprev) ,

where we use (i) strong convexity in y of −f and (ii) convexity of f(·, y?).

Plugging this back in (28), we obtain

Fµ
s (xT)− Fµ

s (x?) ≤ µ

16
V e
xinit

(x?) +
1

8
V F
x? (xprev) ≤

1

8

(
µV e

x? (xinit) + V F
x? (xprev)

)
.

Thus we prove that APPROXPROXF,µ can be implemented via MIRRORPROX properly. The total complexity includes one
call to Obr

f (·) and O(T) = O(L/µ) gradient queries as each iteration in MIRRORPROX requires two gradients.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Lemma 5.2 (WARMSTART for max-structured minimization). Consider problem (6) where R, R′ are diameter bounds
for X , Y respectively. Given initial point xinit, yinit, Algorithm 6, with parameters T = O(L/µ), K = O(log(L/µ)) and
Line 3 implemented using AGD, implements WARMSTARTF,µ(R

2) with

O
(
L/µ log(L/µ) +

√
L/µ log (R′/R)

)
gradient queries.

Proof of Lemma 5.2. Given domain diameter R,R′ and the initialization xinit, yinit, we first use accelerated gradient
descent (cf. Nesterov (1983)) to find a Θ(LR2)-approximate solution of maxy∈Y f(xinit, y) (which we set to be y′init) using

O
(√

L/µ log (R′/R)
)

gradient queries. We recall the definition of ybrxinit
:= argmaxy∈Y f(xinit, y) and thus

µV e
y′
init

(
ybrxinit

)
≤ f(xinit, y′init)− f(xinit, ybrxinit

) ≤ 1

2
LR2. (29)

Now we incur MIRRORPROX with objective φ(x, y) = f(x, y) + µ
2 ‖x− xinit‖

2, smoothness L + µ, initial points
(xinit, y

′
init). We let x? (φ) , y? to denote its unique saddle point. Thus, we have by iterating guarantee of (25) in Lemma D.1

with T = O(L/µ) iterations, after K = O (logL/µ) calls to MIRRORPROX we have

V e
x(K) (x

? (φ)) + V e
y(K) (x

?) ≤ 1

40

(µ
L

)4 (
V e
xinit

(x? (φ)) + V e
y′
init

(y?)
)

(i)

≤ 1

40

(µ
L

)4 (
V e
xinit

(x? (φ)) + 2V e
y′
init

(
ybrxinit

)
+ 2V e

ybr
xinit

(y?)
)

(ii)

≤ 1

40

(µ
L

)4(1

2
R2 +

LR2

µ
+ 2

L2

µ2
V e
xinit

(x? (φ))

)
≤ 1

4

(µ
L

)4 L2

µ2
R2 =

µ2

4L2
R2,

where we use (i) Cauchy-Schwarz inequality for Euclidean norms, and (ii) condition (29) and the fact that ybrx is L/µ-
Lipschitz in x.

Thus given F (x) = maxy f(x, y) being (L+ L2/µ)-smooth, we have

F
(
x(K)

)
− F (x? (φ)) ≤

(
L+ L2/µ

)
V e
x?(φ)

(
x(K)

)
≤ µ

2
R2. (30)

Note we also have

F (x? (φ)) ≤ Fµ
xinit

(x? (φ))
(?)

≤ Fµ
xinit

(x?) = F (x?) +
µ

2
‖x? − xinit‖2 ≤ F (x?) +

µ

2
R2,

where we use (?) that x? (φ) minimizes Fµ
xinit

(x). Plugging this back to (30), we obtain F
(
x(K)

)
− F (x?) ≤ µR2.

The gradient complexity of mirror-prox part is O(KT) = O(L/µ log(L/µ)). Summing this together with the gradient
complexity for accelerated gradient descent used in obtaining y′init gives the claimed query complexity.

E Generalization of Framework and Proof of Theorem 5.4
In this section, we present a generalization of the framework, where we allow additive errors when implementing
APPROXPROX and UNBIASEDPROX (Definition E.1 and E.2). When the additive error is small enough, it would contributes
to at most O(ε) additive error in the function error and thus generalize our framework (Algorithm 8 and Proposition E.3).
In comparison to prior works APPA/Catalyst (Frostig et al., 2015; Lin et al., 2015; 2017), in the application to solving
max-structured problems our additive error comes from some efficient method with cheap total gradient costs, thus only
contributing to the low-order terms in the oracle complexity (Theorem 5.4).

We first re-define the following procedures of APPROXPROX and UNBIASEDPROX, which also tolerates additive (δ-)error.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Definition E.1 (APPROXPROXδ). Given convex function F : X → R, regularization parameter λ > 0, a centering point
s ∈ X and two points xinit, xprev ∈ X , APPROXPROXδ

F,λ(s;xinit, xprev) is a procedure that outputs an approximate
solution x such that for x? = proxF,λ(s) = argminx∈X F

λ
s (x),

EFλ
s (x)− Fλ

s (x
?) ≤ 1

8

(
λV e

x? (xinit) + V F
x?(xprev)

)
+ δ. (31)

Definition E.2 (UNBIASEDPROXδ). Given convex function F : X → R, regularization parameter λ > 0, a centering point
s ∈ X , two points xinit, xprev ∈ X , UNBIASEDPROXδ

F,λ (s;xprev) is a procedure that outputs an approximate solution x
such that E x = x? = proxF,λ(s) = argminx∈X F

λ
s (x), and

E ‖x− x?‖2 ≤ 1

4λ

(
λV e

x? (s) + V F
x?(xprev)

)
+

2δ

λ
. (32)

Algorithm 8: RECAPP with Additive Error

1 Input: F : X → R, APPROXPROXδ , UNBIASEDPROXδ

2 Parameter: λ,R > 0, iteration number T , α0 = 1
3 Initialize x0 ← WARMSTARTF,λ(R

2) . To satisfy E F (x0)− F (x?) ≤ λR2

4 for t = 0 to T − 1 do
5 Update parameters αt+1 ∈ [0, 1] to satisfy 1

α2
t+1
− 1

αt+1
= 1

αt

6 st ← (1− αt+1)xt + αt+1vt
7 δt+1 ← 1

4t2α
2
tλR

2 . Additive error decreases as O(1/t4) to ensure convergence

8 xt+1 ← APPROXPROX
δt+1

F,λ (st; st, xt)

9 x̃t+1 ← UNBIASEDPROX
δt+1

F,λ (st;xt) . We implement this using MLMCδt+1(F, λ, st, xt)

10 vt+1 ← ProjX

(
vt − 1

αt+1
(st − x̃t+1)

)
11 Return: xT
12 function MLMCδ(F, λ, s, xprev)
13 δ0 ← 2−3δ

14 x(0) ← APPROXPROXδ0
F,λ(s; s, xprev)

15 Sample random epoch number J ∼ 1 + Geom
(
1
2

)
∈ {2, 3, · · · }

16 for j = 1 to J do
17 δj ← 1

4δj−1

18 x(j) ← APPROXPROX
δj
F,λ(s;x

(j−1), x(j−1))

19 Return: x(1) + 2J(x(J) − x(J−1))

Algorithm 9: Restarted RECAPP with Additive Error

1 Input: F : X → R, RECAPP with additive error
2 Parameter: λ,R > 0, iteration number T , epoch number K, α0 = 1

3 Initialize x(0) ← WARMSTARTF,λ(R
2) . To satisfy E F (x0)− F (x?) ≤ λR2

4 for k = 0 to K − 1 do
. Halving error to true optimizer and recurse

5 Run RECAPP (Algorithm 8) on F with x0 = v0 = x(k) without WARMSTART (Line 3) for T iterations
6 Return: x(K)

With the new definitions of δ-additive proximal oracles and δ-additive unbiased proximal point estimators, we can formally
give the guarantee of Algorithm 8 in Proposition E.3.

Proposition E.3 (RECAPP with additive error). For any convex function F : X → R, parameters λ,R > 0, RECAPP
with additive error (Algorithm 8) finds x such that EF (x) − minx′∈X F (x

′) ≤ ε within O
(
R
√
λ/ε
)

iterations. The

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

algorithm uses one call to WARMSTART, and an expectation of oracle complexity

O

∑
t∈[T]

∞∑
j=0

1

2j
N
(
APPROXPROX, F, λ, 2−2jδt

) ,

where we let δt = 1
4t2α

2
tλR

2 = Ω(ε2/(λR2)), and use N (APPROXPROX, F, λ, δ) to denote some oracle complexity for
calling each APPROXPROXδ

F,λ.

For any γ-strongly-convex F : X → R, parameters λ,R > 0, restarted RECAPP (Algorithm 9) finds x such that
EF (x)−minx′∈X F (x

′) ≤ ε , using one call to WARMSTART and an expectation of oracle complexity

O

 ∑
k∈[K]

∑
t∈[T]

∞∑
j=0

1

2j
N
(

APPROXPROX, F, λ, 2−2jδ
(k)
t

) ,

where K = O(logLR2/ε), T = O
(√

λ/γ
)

, and δ(k)t = 1
2k·4t2α

2
tλR

2 = Ω
(

1
2kt4

λR2
)

for t ∈ [T], k ∈ [K].

To prove the correctness of Proposition E.3, we first show in Lemma E.4 that MLMCδ implements an UNBIASEDPROXδ

for given F , λ > 0, with the corresponding inputs. In comparison with the δ = 0 case presented in Section 3, the key
difference is we need to ensure when we sample a large index j (with tiny probability), the algorithm calls APPROXPROXδj

to smaller additive error δj ≈ Θ(4−j) · δ, so as to ensure it contributes in total a finite O(δ) additive term in the variance.

Lemma E.4 (MLMC turns APPROXPROXO(δ) into UNBIASEDPROXδ). Given convex F : X → R, λ > 0,
s, xprev ∈ X , function MLMCδ(F, λ, s, xprev) in Algorithm 8 implements UNBIASEDPROXδ

F,λ(s;xprev). De-
note N

(
APPROXPROX, F, λ, 2−3δ

)
as some oracle complexity for calling each APPROXPROXδ

F,λ, then the oracle
complexity N for UNBIASEDPROXδ

F,λ is EN = N
(
APPROXPROX, F, λ, 2−3δ

)
+ N

(
APPROXPROX, F, λ, 2−5δ

)
+∑∞

j=2
1

2j−2N
(
APPROXPROX, F, λ, 2−(3+2j)δ

)
.

Proof of Lemma E.4. Let x? = argminx∈X F
λ
s (x), by definition of APPROXPROXδ , we have

for j = 0, E
[
λ

2

∥∥∥x(0) − x?∥∥∥2] ≤ E Fλ
s

(
x(0)

)
− Fλ

s (x?) ≤ 1

8

(
λV e

x? (xinit) + V F
x?(xprev)

)
+
δ

8
,

for j ≥ 1, E
[
λ

2

∥∥∥x(j) − x?∥∥∥2] (i)

≤ E V Fλ
s

x?

(
x(j)

)
≤ E Fλ

s

(
x(j)

)
− Fλ

s (x?)

≤ 1

8
E
(
λV e

x?

(
x(j−1)

)
+ V F

x?(x(j−1))
)
+

δ

2 · 4j+1

(ii)

≤ 1

8
E
(
V

Fλ
s

x? (x(j−1))
)
+

δ

2 · 4j+1

≤ 1

8
E
(
Fλ
s

(
x(j−1)

)
− Fλ

s (x?)
)
+

δ

2 · 4j+1

(iii)

≤
(
1

8

)j+1 (
λV e

x? (xinit) + V F
x?(xprev)

)
+ δ

 j∑
j′=0

1

2 · 8j′ · 4j+1

 ,

where we use (i) the optimality of x? which implies 〈∇F (x?), x− x?〉 ≥ 0 for any x ∈ X , (ii) the equality that
‖a− b‖2 + ‖b− c‖2 − 2 〈c− b, a− b〉 = ‖a− c‖2, (iii) the induction over j.

In conclusion, this shows that Ex(j) → x? as j →∞, and thus by choice of pj = 1/2j−1 for j ≥ 2, the algorithm returns a
point x satisfying

E x = EJ

[
x(1) + 2J(x(J) − x(J−1))

]
= lim

j→∞
x(j) = x?,

which shows the output is an unbiased estimator of x?.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

For the variance, we have by a same calculation as in the proof of Proposition 3.4,

E
∥∥∥x(1) + 2J

(
x(J) − x(J−1)

)
− x?

∥∥∥2 ≤ 5

2
· E
[∥∥∥x(1) − x?∥∥∥2]+ ∞∑

j=2

9

2
· 2j · E

[∥∥∥x(j) − x?∥∥∥2]

≤ 2

λ

5

2

(
1

8

)2

+

∞∑
j=2

9/8

2

(
1

4

)j
(λV e

x? (xinit) + V F
x?(xprev)

)
+

5δ

16λ
+

9δ

8λ

∞∑
j=2

5

4
· 1
2j

≤ 1

4λ

(
λV e

x? (xinit) + V F
x?(xprev)

)
+

2δ

λ
,

which proves the bound as claimed.

The query complexity is in expectation

EN =

∞∑
j=2

1

2j−1

j∑
j′=0

N
(

APPROXPROX, F, λ, 2−(3+2j′)δ
)
= N

(
APPROXPROX, F, λ, 2−3δ

)
+N

(
APPROXPROX, F, λ, 2−5δ

)
+

∞∑
j=2

1

2j−2
N
(

APPROXPROX, F, λ, 2−(3+2j)δ
)
.

This shows that we can implement UNBIASEDPROXδ using APPROXPROXδ , similar to the case without additive error δ, as
in Proposition 3.4. Now we are ready to provide a complete proof of Proposition E.3, which shows the correctness and
complexity of Algorithm 8.

Proof of Proposition E.3. First of all we recall the notation of filtration Ft = σ(x1, v1, . . . , xt, vt), x?t =
argminx∈X F

λ
st−1

(x), g?t+1 = λ
(
st − x?t+1

)
, v?t+1 = vt − (αt+1)

−1(st − x?t+1) and x′ as the minimizer of F : X → R
(see Appendix B for more detailed discussion).

The majority of the proof still lies in showing the potential decreasing lemma as in Proposition B.1, while also taking into
account the extra additive error δ when implementing oracles APPROXPROXδ and UNBIASEDPROXδ .

Following (12), we recall the inequality that

1

α2
t+1

(
F
(
x?t+1

)
− F (x′)

)
+
λ

2

∥∥v?t+1 − x′
∥∥2

≤ 1

α2
t

(F (xt)− F (x′)) +
λ

2
‖vt − x′‖

2 − λ

α2
t+1

V e
x?
t+1

(st)−
1

α2
t

V F
x?
t+1

(xt) . (33)

Thus, by definition of xt+1, δt+1 and APPROXPROXδ we have that

E[F (xt+1) | Ft] ≤ E
[
F (xt+1) +

λ

2
‖xt+1 − st‖2

∣∣∣∣ Ft

]
≤ F

(
x?t+1

)
+

7

8
λV e

x?
t+1

(st) +
5

24
V F
x?
t+1

(xt) + δt+1

Similarly to (18) and its analysis, we also have by definition of UNBIASEDPROXδ that

E
[
λ

2
‖vt+1 − x′‖

2

∣∣∣∣ Ft

]
=
∥∥v?t+1 − x′

∥∥2 + E
[
λ

2

∥∥vt+1 − v?t+1

∥∥2 ∣∣∣∣ Ft

]
≤ λ

2

∥∥v?t+1 − x′
∥∥2 + λ

2α2
t+1

E
[∥∥x̃t+1 − x?t+1

∥∥2 ∣∣∣ Ft

]
≤ λ

2

∥∥v?t+1 − x′
∥∥2 + λ

2α2
t+1

(
λV e

x?
t+1

(st)

4λ
+
V F
x?
t+1

(xt)

4λ
+

2δt+1

λ

)
.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Plugging these back into (33), we conclude that

1

α2
t+1

(E[F (xt+1) | Ft]− F (x′)) +
λ

2
E
[
‖vt+1 − x′‖

2
∣∣∣ Ft

]
≤ 1

α2
t

(F (xt)− F (x′)) +
λ

2
‖vt − x′‖

2
+

2δt+1

α2
t+1

.

Recursively applying this bound for t = 0, 1, · · · , T − 1 and together with the WARMSTART guarantee we have

1

α2
T

(E[F (xt+1) | Ft]− F (x′)) +
λ

2
E
[
‖vt+1 − x′‖

2
∣∣∣ Ft

]
≤ 1

α2
0

(F (x0)− F (x′)) +
λ

2
‖x0 − x′‖

2
+
∑
t∈[T]

2δt
α2
t

=⇒ 1

α2
T

(E[F (xt+1) | Ft]− F (x′)) ≤ 3

2
λR2 +

∑
t∈[T]

2δt
α2
t

≤ 4λR2

=⇒ (E[F (xt+1) | Ft]− F (x′)) ≤ ε,

where we use the choice of δt = 1
4t2α

2
tλR

2 and that
∑

t∈[T]
1
t2 ≤ π

2/6 ≤ 2. This shows the correctness of the algorithm.

The algorithm uses O(1) call to WARMSTART. At each iteration t+ 1, by guarantee of implementing UNBIASEDPROXδ

using MLMC in Lemma E.4, we have the query complexity with respect to APPROXPROXδ is in expectation

N (APPROXPROX, F, λ, δt+1) +N
(
APPROXPROX, F, λ, 2−3δt+1

)
+N

(
APPROXPROX, F, λ, 2−5δt+1

)
+

∞∑
j=2

1

2j−2
N
(

APPROXPROX, F, λ, 2−(3+2j)δt+1

)
= O

 ∞∑
j=0

1

2j
N
(
APPROXPROX, F, λ, 2−2jδt+1

)
which implies the total oracle complexity through calling APPROXPROXδ by summing over t = 0, 1, · · · , T − 1.

The strongly-convex case follows by a similar analysis as in the proof of Proposition 3.6. We show by in duction

E
[
F
(
x(k)

)
− F (x′) + λ

2

∥∥∥x(k) − x′∥∥∥2] ≤ 4

2k−1
λR2, for k = 0, 1, · · · ,K, (34)

taking into account that by choice of δ(k+1)
t+1 , the contribution of the additive errors is always bounded by 1

2k
λR2. This choice

also implies the expected oracle complexity due to calling APPROXPROXδ
(k)
t differently at each epoch and iteration.

The additive errors allowed by this framework are helpful to the task of minimizing the max-structured convex objective
F (x) = maxy∈Y f(x, y). This is because we can then use accelerated gradient descent to solve maxy f(x, y) for the
best-response oracle needed in Line 3 to high accuracy before calling calling Algorithm 5 , and show that MIRRORPROX
formally implements a APPROXPROXδ. The resulting gradient complexity has an extra logarithmic term on δ, but only
shows up on a low-order Õ(

√
L/µ) terms.

Corollary E.5 (Implementation of APPROXPROXδ for minimizing max-structured function). Given the minimization of
max-structured problem in (6), a centering point s, points xinit, xprev, one can use accelerated gradient descent to solve to
additive error δ for (3) and use Lemma 5.1 to implement the procedure APPROXPROXδ

F,µ(s;xinit, xprev). It uses a total of

O
(
L/µ+

√
L/µ log(L(R′)2/δ)

)
gradient queries.

Proof of Corollary E.5. Given the initialization xinit, we first use accelerated gradient descent Nesterov (1983) to find
a δ-approximate solution of maxy∈Y f(xprev, y) (which we set to be yinit). We recall the definition of ybrxprev

:=
argmaxy∈Y f(xprev, y) and thus

µV e
yinit

(
ybrxprev

)
≤ f(xprev, yinit)− f(xprev, ybrxprev

) ≤ δ (35)

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

using O(
√
L/µ log(L(R′)2/δ)) gradient queries.

Then, we invoke MIRRORPROX with φ(x, y) = f(x, y) + µ
2 ‖x− s‖

2, initial point xinit, yinit, and number of iterations
T = 64(L+µ)

µ . The rest of the proof is essentially the same as in Lemma 5.1, with the only exception that when bounding
RHS of (28), we note that by choice of yinit and the error bound in (35), it becomes

µ

2
V e
yinit

(y?) ≤ µV e
ybr
xprev

(y?) + µV e
yinit

(
ybrxprev

)
≤ f

(
xprev, y

br
xprev

)
− f (xprev, y?) + δ ≤ V F

x? (xprev) + δ.

Plugging this new bound with additive error Θ(δ) back in (28), we obtain

Fµ
s (xK)− Fµ

s (x?) ≤ µ

16
V e
xinit

(x?) +
1

8
V F
x? (xprev) + δ ≤ 1

8

(
µV e

x? (xinit) + V F
x? (xprev)

)
+ δ.

Thus the procedure implements APPROXPROXδ
F,µ(s;xinit, xprev). The total gradient complexity is the complexity in

MIRRORPROX same as Lemma 5.2 plus the extra complexity in implementing Obr
F (·) using accelerated gradient descent,

which sums up to O
(
L/µ+

√
L/µ log

(
L(R′)2/δ

))
as claimed.

Theorem 5.4 (RECAPP for minimizing the max-structured problem, without Obr
f). Under the same setting of Theo-

rem 5.3, Algorithm 8 with accelerated gradient descent to implement Obr
f (·), outputs a primal ε-approximate solution x

and has expected gradient query complexity of O
(

LR√
µε +

L
µ log LR′

µR +R
√

L
ε log L(R+R′)2

ε

)
. Further, if F is γ-strongly-

convex, restarted RECAPP (Algorithm 9) finds an ε-approximate solution and has expected gradient query complexity of

O

(
LR√
µγ log

(
LR2

ε

)
+ L

µ log
(

LR′

µR

)
+
√

L
γ log

(
µL(R+R′)2

γε

)
log
(

LR2

ε

))
.

Proof of Theorem 5.4. For the non-strongly-convex case, T = O
(
R
√
µ/ε
)

, the correctness of the algorithm fol-
lows directly from the non-strongly-convex case of Proposition E.3, together with Corollary E.5 and Lemma 5.2.
For the query complexity, calling WARMSTART-MINIMAX to implement the procedure of WARMSTART to µR2 er-
ror requires O

(
L/µ log(L/µ) +

√
L/µ log (R′/R)

)
gradient queries by Lemma 5.2. Following Proposition E.3,

denote N (APPROXPROX, F, µ, δ) to be the gradient complexity of implementing APPROXPROXδ
F,µ: we have

N (APPROXPROX, F, µ, δ) = O
(
L/µ+

√
L/µ log(L(R′)2/δ)

)
by Corollary E.5. Consequently, the total gradient

complexity for implementing all APPROXPROXδ is in expectation

O

∑
t∈[T]

∞∑
j=0

1

2j
N
(
APPROXPROX, F, µ, 2−2jδt

) = O

(
R

√
µ

ε

(
L

µ
+

√
L

µ
log

(
L(R′ +R)2

ε

)))

= O

(
LR
√
µε

+

√
LR2

ε
log

(
L(R′ +R)2

ε

))
,

where we use δt ≥ Ω
(

1
T 4µR

2
)
= Ω(ε/

√
T) and choice of T = O

(
R
√
µ/ε
)

.

Summing the gradient query complexity from both WARMSTART and APPROXPROXδ procedures give the final complexity.

For the γ-strongly-convex case, the correctness of the algorithm follows directly from the strongly-convex case of Propo-
sition E.3, together with Corollary E.5 and Lemma 5.2. The query complexity for calling one WARMSTART-MINIMAX
remains unchanged. Following Proposition E.3, denote N (APPROXPROX, F, µ, δ) to be the gradient complexity of imple-
menting APPROXPROXδ

F,µ: we have N (APPROXPROX, F, λ, δ) = O
(
L/µ+

√
L/µ log(L(R′)2/δ)

)
by Corollary E.5.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Consequently, the total gradient complexity for implementing all APPROXPROXδ is in expectation

O

 ∑
k∈[K]

∑
t∈[T]

∞∑
j=0

1

2j
N
(

APPROXPROX, F, µ, 2−2jδ
(k)
t

)
= O

(√
µ

γ
log

(
LR2

ε

)(
L

µ
+

√
L

µ
log

(
µL(R′ +R)2

εγ

)))

= O

(
L
√
µγ

log

(
LR2

ε

)
+

√
L

γ
log

(
µL(R′ +R)2

εγ

)
log

(
LR2

ε

))
,

where we use δ(k)t ≥ Ω
(

1
2K ·T 4µR

2
)

and choice of K and T .

F Discussion
This paper proposes an improvement of the APPA/Catalyst acceleration framework, providing an efficiently attainable
Relaxed Error Criterion for the Accelerated Prox Point method (RECAPP) that eliminates logarithmic complexity terms
from previous result while maintaining the elegant black-box structure of APPA/Catalyst.

The main conceptual drawback of our proposed framework (beyond its reliance on randomization) is that efficiently attaining
our relaxed error criterion requires a certain degree of problem-specific analysis as well as careful subproblem solver
initialization. In contrast, APPA/Catalyst rely on more standard and readily available linear convergence guarantees (which
of course also suffice for RECAPP).

Nevertheless, we believe there are many more situations where efficiently meeting the relaxed criterion is possible. These
include variance reduction for min-max problems, smooth min-max problems which are (strongly-)concave in y but not
convex in x, and problems amenable to coordinate methods. All of these are settings where APPA/Catalyst is effective (Yang
et al., 2020; Frostig et al., 2015; Lin et al., 2017) and our approach can likely be provably better.

Moreover, even when proving improved rates is difficult, APPROXPROX can still serve as an improved stopping criterion.
This motivates further research into practical variants of APPROXPROX that depend only on observable quantities (rather
than, e.g. the distance to the true proximal point).

