RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Yair Carmon' Arun Jambulapati?> Yujia Jin? Aaron Sidford >

Abstract

The accelerated proximal point algorithm (APPA),
also known as “Catalyst”, is a well-established re-
duction from convex optimization to approximate
proximal point computation (i.e., regularized min-
imization). This reduction is conceptually elegant
and yields strong convergence rate guarantees.
However, these rates feature an extraneous log-
arithmic term arising from the need to compute
each proximal point to high accuracy. In this
work, we propose a novel Relaxed Error Criterion
for Accelerated Proximal Point (RECAPP) that
eliminates the need for high accuracy subproblem
solutions. We apply RECAPP to two canonical
problems: finite-sum and max-structured mini-
mization. For finite-sum problems, we match the
best known complexity, previously obtained by
carefully-designed problem-specific algorithms.
For minimizing max, f(x,y) where f is convex
in z and strongly-concave in y, we improve on
the best known (Catalyst-based) bound by a loga-
rithmic factor.

1 Introduction

A fundamental approach to optimization algorithm design is
to break down the problem of minimizing F' : X — R into
a sequence of easier optimization problems, whose solution
converges to £* € arg min,c, F'(x). A canonical “easier’
problem is proximal point computation, i.e., computing

0l

proxp(z) = argmin{F(w’) + A 2" — x||2} .
’ r'eX 2

Here A > 0 is a regularization parameter which balances

between how close computing prox , is to minimizing F,

and how easy it is to compute—as A decreases prox , ()

tends to the true minimizer but becomes harder to compute.

ITel Aviv University 2Stanford University. Correspondence to:
Yujia Jin <yujiajin@stanford.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

The classical proximal point method (Rockafellar, 1976;
Parikh & Boyd, 2014) simply iterates x4 1 = proxp , (z¢),
and (for convex F') minimizes F with rate F(xr) —
F(z*) = O(’\T{{Q) for R := ||zg — z*||. This rate can be
improved, at essentially no additional cost, by carefully com-
bining proximal steps, i.e. proxp , (), with gradient steps
using VF (prox (z¢)) = Aw; — proxg (v)) (Giiler,
1992). This accelerated method converges with rate
0] (/\T—If), a quadratic improvement over proximal point.

To turn this conceptual acceleration scheme into a practi-
cal algorithm, one must prescribe the accuracy to which
each proximal point needs to be computed. Giiler (1992);
Salzo & Villa (2012) provided such conditions, which were
later refined in independently-proposed accelerated approx-
imate proximal point algorithm (APPA) (Frostig et al.,
2015) and Catalyst (Lin et al., 2015; 2017). Furthermore,
APPA/Catalyst obtained global convergence guarantees for
concrete problems by using linearly convergent algorithms
to compute the proximal points to their required accuracy.
The APPA/Catalyst framework has since been used to ac-
celerate full-batch gradient descent, coordinate methods,
finite-sum variance reduction (Frostig et al., 2015; Lin et al.,
2017), eigenvalue problems (Garber et al., 2016), min-max
problems (Yang et al., 2020), and more.

However, the simplicity and generality of APPA/Catalyst
seems to come at a practical and theoretical cost: satisfying
existing proximal point accuracy conditions requires solv-
ing subproblems to fairly high accuracy. In practice, this
means expending computation in subproblem solutions that
could otherwise be used for more outer iterations. In theory,
APPA/Catalyst complexity bounds feature a logarithmic
term that appears unnecessary. For example, in the finite
sum problem of minimizing F(z) = 3" | fi(z) where

each f; is convex and L-smooth, APPA/Catalyst combined
with SVRG (Johnson & Zhang, 2013) and A = L/n finds
an e-optimal point of F' in O ((n + y/nLR?/e)log LTRZ>
computations of V f;, a nearly optimal rate (Woodworth &
Srebro, 2016). A line of work devoted to designing acceler-
ated method tailored to finite sum problems (Shalev-Shwartz
& Zhang, 2014; Allen-Zhu, 2016; Lan et al., 2019) attains
progressively better practical performance and theoretical
guarantees, culminating in an O (n loglogn + y/nLR2/ e)
complexity bound (Song et al., 2020).

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Given the power of APPA/Catalyst, it is natural to ask
whether the additional logarithmic complexity term is fun-
damentally tied to the black-box structure that makes it
generally-applicable? Indeed, Lin et al. (2017) speculate
that the logarithmic term “may be the price to pay for a
generic acceleration scheme.”

Our work proves otherwise by providing a new Re-
laxed Error Condition for Accelerated Proximal Point
(RECAPP) which standard subproblem solvers can sat-
isfy without incurring an extraneous logarithmic complexity
term. For finite-sum problems, our approach combined
with SVRG recovers the best existing complexity bound of

0] (n loglogn + \/nLR?/ e) .I' Preliminary experiments
on logistic regression problem indicate that our method is
competitive with Catalyst-SVRG in practice.”

As an additional application of our framework, we con-
sider the problem of minimizing F'(z) = maxyecy f(z,y)
for a function f that is L-smooth, convex in = and pu-
strongly-convex in y. The best existing complexity bound

for this problem is O(5}% log 5%) evaluations of Vf,

using an extension of APPA/Catalyst to min-max prob-
lems (Yang et al., 2020), and mirror-prox (Korpelevich,
1976; Nemirovski, 2004; Azizian et al., 2020) as the sub-
problem solver.> Our framework (also combined with

mirror-prox) removes this logarithmic factor, finding a point
LR
Vi
(up to lower order terms), which is asymptotically opti-
mal (Ouyang & Xu, 2021). We summarize our complexity

bounds in Table 1.

with expected suboptimality € in O(gradient queries

Technical overview. Our development consists of four
key parts. First, we define a criterion on the function-value
error of the proximal point computation (Definition 3.1) that
significantly relaxes the relative error conditions of prior
work; see Section 3.3 for a detailed comparison. Second,
instead of directly bounding the distance error of the ap-
proximate proximal points (as most prior works implicitly
do), we follow Asi et al. (2021) and require an unbiased
estimator of the proximal point whose variance is bounded
similarly to the function-value error (Definition 3.2). We
prove that any approximation satisfying these guarantees
has the same convergence bounds on its (expected) error as
the exact accelerated proximal points method. Third, we use
the multilevel Monte Carlo technique (Giles, 2015; Blanchet

'Our framework gives accelerated linear convergence for
strongly-convex objectives via a standard restarting argument;
see Proposition 3.6.

2Code available at: github.com/yaircarmon/recapp.

3Yang et al. (2020) also establish the same rate for the dual
problem of maximizing ¥(y) = mingecx f(z,y) over y. Since
our acceleration framework is primal-only, we are currently unable
to remove the logarithmic factor from that rate.

& Glynn, 2015; Asi et al., 2021) to obtain the required un-
biased proximal point estimator using (in expectation) a
constant number of queries to any method satisfying the
function-value error criterion. Finally, we show how to
use SVRG and mirror-prox to efficiently meet our error
criterion, allowing us to solve finite-sum and minimax op-
timization problems without the typical extra logarithmic
factors incurred by previous proximal point frameworks.

Even though we maintain the same iteration structure as
APPA/Catalyst, our novel error criterion induces two non-
trivial modifications to the algorithm. First and foremost,
our relaxed error bound depends on the previous approxi-
mate proximal point z;_; as well as the current query point
s¢—1 (see Algorithm 1). This dependence strongly suggests
that the subproblem solver should depend on x;_; somehow.
For finite-sum problems we use x;_; as the reference point
for variance reduction, while for max-structured problems
we initialize mirror-prox with = s;_; and (approximately)
y = argmax,¢y f(2;—1,y). The second algorithmic con-
sequence, which appeared previously in Asi et al. (2021),
stems from the fact that our function-value error and zero-
bias/bounded-variance requirements are leveraged for dis-
tinct parts of the algorithm (the prox step and gradient step,
respectively). This naturally leads to using distinct approxi-
mate prox points for each part: one directly obtained from
the subproblem solver and one debiased via MLMC.

Paper organization. After providing some notation and
preliminaries in Section 2, we present our improved inexact
accelerated proximal point framework in Section 3. We
then instantiate our framework: in Section 4 we consider
finite-sum problems and SVRG (providing preliminary em-
pirical results in Section 4.1) and in Section 5 we consider
min-max problems and mirror-prox. We provide additional
discussion of related work, including recent independent
work by Kovalev & Gasnikov (2022), in Appendix A. The
rest of the appendix is composed of the proofs for each cor-
responding section, followed by Appendix F which provides
a discussion of limitations and possible extensions of this
work.

2 Preliminaries

General notation. Throughout, X and) refer to closed,
convex sets, with diameters denoted by R and R’ respec-
tively (when needed). We use F’ to denote a convex function
defined on X'. For any parameter A > 0 and point s € X,
we let

A
F () = F(z) + 3 lz = s||” (1)

denote the proximal regularization of F' around z, and let
pI‘OXF7A(S) = argming, .y F)z).

https://github.com/yaircarmon/recapp

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Objective F© Reg. APPROXPROX WARMSTART Overall Ref.
complexity complexity complexity
[AR?
0 <7} — + Tw> Thm. 3.5
€
general A Ta Tw
A LR?
Ol Ta ; log + Tw Prop. 3.6
€
2
1 I O(\/ nLlt +n10g10gn>
€
o Z file) = O(n) O(nloglogn) Thm. 4.3
i€n n ~ L
<l O(n) + O(nloglogn)
Y
LR ~(L LR?
L L L O<‘ﬁe)+0<+ €)
max f(z.y) 4 0 () +o[/= O () a a Thm. 5.4
Y 1% 1 H L L

o)

VY

Table 1: Summary of our results. Throughout, ¢ denotes the solution accuracy, and denotes the strong convexity
parameter of F'. For finite sum problems (the middle row) we assume that each f; is L-smooth, and measure complexity in
terms of V f; evaluations. For max-structured problem (the bottom) we assume that f is L-smooth and p-strongly-concave
in y, and measure complexity in V f evaluations. The notation O(-) hides a logarithmic term. See Section 3 for the definition

of APPROXPROX and WARMSTART.

Distances and norms. We consider Euclidean space
throughout the paper and use ||-|| to denote standard Eu-
clidean norm. We denote a projection of x € R?
onto a closed subspace X C R? by Proj,(z)
arg min, ¢y ||z — 2’||. For a convex function F' : X —
R, we denote the Bregman divergence induced by F' as
VE(') == F(a') — F(x) — (VF(z),2' —), for every
x, 2’ € X. We denoge the Euclidean Bregman divergence
by V(@) i= Vi @) = £ o — o).

Smoothness, convexity and concavity. Given a differen-
tiable, convex function F' : X — R, we say F'is L-smooth
if its gradient VF : X — X* is L-Lipschitz. We say F’
is p-strongly-convex if for all z, 2’ € X, F(z') > F(x) +
(VF(2),2 —x)+5 ||2" — z||®. A function W is p-strongly
concave if —W is p-strongly convex. For f(z,y) that is
convex in x and concave in y, the point (z*, y*) is a saddle-
point if max,cy f(z*,y) < f(z*,v*) < mingex f(z,y*)
forallz,y € X x V.

3 Framework

In this section, we present our Relaxed Error Criterion Ac-
celerated Proximal Point (RECAPP) framework. We start
by defining our central algorithms and relaxed error criteria
(Section 3.1). Next, we state our main complexity bounds
(Section 3.2) and sketch its proof. Then, we illustrate our

new relaxed error criterion by comparing it to the error
requirements of prior work (Section 3.3). Finally, as an il-
lustrative warm-up, we show our framework easily recovers
the complexity bound of Nesterov’s classical accelerated
gradient descent (AGD) method (Nesterov, 1983).

3.1 Methods and Key Definitions

Algorithm 1 describes our core accelerated proximal method.
The algorithm follows the standard template of the (inex-
act) accelerated proximal point method, except that unlike
most such methods (but similar to the methods of Asi et al.
(2021)), our algorithm relies on two distinct approximations
of proxy , (s;) with different relaxed error criterion. We
now define each approximation in turn.

Our first relaxed error criterion constrains the function value
of the approximate proximal point and constitutes our key
contribution.

Definition 3.1 (APPROXPROX). Given convex function F :
X — R, parameter A > 0, and points s, Tinit, Tprev €
X, the point © = APPROXPROXF) (8; Tinit, Lprev) IS an
approximate minimizer of F) (z) := F(x) + A\VE(x) such
that for x* := proxp (s) = arg mingex F(2),

- AVE (@init) + VA (@prev)

EF)(z) - F)(a") -

2

Beyond the prox-center s, our robust error criterion depends

2

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Algorithm 1: RECAPP

Algorithm 2: UNBIASEDPROX via MLMC

Parameters: \ > 0, step budget T’
Initialize oy < 1 and
To = vy + WARMSTART 5 (R?)
> To satisfy EF (xg) — F'(z*) <
fort =0toT — 1 do

Set a1 € [0, 1] to satisfy — L

Q41 «

O‘%Jrl
St < (1 — Oét_;,_l) Ty + Q41U

Zy41 < APPROXPROXp z(S¢; ¢, 2t)
Z¢11 < UNBIASEDPROXp » (st ¢)

Vi1 PI’OjX(’Ut — (St — %H_l))

Qi1
Return: z7

on two additional points: xin;; (Which in Algorithm 1 is also
set the prox-center s;) and xp,e, (Which in Algorithm 1 is
set to the previous iterate ;). The criterion requires the
suboptimality of the approximate solution to be bounded
by weighted combination of two distances: the Euclidean
distance between the true proximal point * and i, and
the Bregman divergence (induced by F') between z* and
Tprev- In Section 3.3 we provide a detailed comparison
between our criterion and prior work, but note already that—
unlike APPA/Catalyst—the relative error we require in (2)
is constant, i.e., independent of the desired accuracy or
number of iterations. This constant level of error is key to
enabling our improved complexity bounds.

Our second relaxed error criterion constrains the bias and
variance of the approximate proximal point.

Definition 3.2 (UNBIASEDPROX). Given convex function
F : X — R, parameter A\ > 0, and points s and Tprevy € X,
the point & = UNBIASEDPROXr) (; xprev) is an approx-
imate minimizer of F}(z) = F(x) + A\VE(x) such that
E 2z = 2* = proxp ,(s) = argming ey F(z), and

2 o AVp (s) + Vxli(xpreV)
- 4\ ’

E |z — z*| 3)

Note that the any = APPROXPROXp »(5; S, Tprev) satis-
fies the distance bound (3) (due to A-strong-convexity of
FS’\), but the zero-bias criterion Ex = z* is not guaran-
teed. Nevertheless, an MLMC technique (Algorithm 2) can
extract an UNBIASEDPROX from any APPROXPROX. Al-
gorithm 2 repeatedly calls APPROXPROX a geometrically-
distributed number of times J (every time with x;,;; and
Zprev €qual to the last output), and outputs a point whose
expectation equals to an infinite numbers of iterations of
APPROXPROX, i.e., the exact proxy ,(s). Moreover, we
show that the linear convergence of the procedure implies
that the variance of the result remains appropriately bounded
(see Proposition 3.4 below). Algorithm 2 is a variation of an
estimator by Blanchet & Glynn (2015) that was previously

N S B

8

9

10

Input: APPROXPROX, points s, Tprey € X
Parameter: Geometric distribution parameter
p € [0,1) and integer offset jo > 0
Outut: Unbiased estimator of 2* = proxp , (s)
20« APPROXPROX 1 (5; 8, Tprev)
Sample J,. ~ Geom (1 —p) € {0,1,2,...}
J—Jo+ J+
forj=0toJ — 1do

| 20U+ « APPROXPROXp (55210, 2(0))
ps P[Geom (1 —p) = Ji] = (1 —p) - p’*
Return: x(JO) +p;1(x(‘]) — x(max{Jflij}))

used in a context similar to ours (Asi et al., 2021). However,
prior estimators typically have complexity exponential in J,
whereas ours are linear in J.

Finally, we define a warm start procedure required by our
method.

Definition 3.3 (WARMSTART). Given convex function F :
X — R, parameter A > 0 and diameter bound R, xo =
WARMSTART)\ (R?) is a procedure that outputs xo € X
such that EF (zo) — ming ey F(2') < AR

Note that the exact proximal mapping z = prox , (s) satis-
fies all the requirements above; replacing APPROXPROXF »,
UNBIASEDPROX £ 5, and WARMSTART gy with prox FA
recovers the exact accelerated proximal method.

3.2 Complexity Bounds

We begin with a complexity bound for implementing
UNBIASEDPROX via Algorithm 2 (proved in Appendix B).

Proposition 3.4 (MLMC turns APPROXPROX into
UNBIASEDPROX). For any convex F' and parameter \ >
0, Algorithm 2 with p = 1/2 and jo > 2 implements
UNBIASEDPROX and makes 2 + jo calls to APPROXPROX
in expectation.

We now give our complexity bound for RECAPP and
sketch its proof, deferring the full proof to Appendix B.

Theorem 3.5 (RECAPP complexity bound). Given any
convex function F' : X — R and parameters A\, R > 0,
RECAPP (Algorithm 1) finds x € X with EF(x) —
mingcx F(2') < € within O(\/AR?/e) iterations us-
ing one call to WARMSTART, and O(\/)\Rz/e) calls to
APPROXPROX and UNBIASEDPROX. If we implement
UNBIASEDPROX using Algorithm 2 with p 1/2 and
jo = 2, the total number of calls to APPROXPROX is

O(\/AR?/€) in expectation.

Proof sketch. We split the proof into two steps.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Step 1: Tight idealized potential decrease. Consider itera-
tion ¢ of the algorithm, and define the potential

P, :=Ela; 2 (F(z,) — F(2')) + AVS ()],

where ' is a minimizer of F'in X'. Let z},, := proxy ,(s¢)
and v}, = vy — (au41) (st — x4 1) be the “ideal” values
of x4 and v obtained via an exact prox-point computa-
tion, where for simplicity we ignore the projection onto &’
Using these points we define the idealized potential

Py = E[at-H (F(ziy) = F(a") + AVir (55/)}

Textbook analyses of acceleration schemes show that
Py, < P; (Nesterov, 2018; Monteiro & Svaiter, 2013).
Basic inexact accelerated prox-point analyses proceed by
showing that the true potential is not much worse that the
idealized potential, i.e., P41 < Pf + 6;, which imme-
diately allows one to conclude that Pr < Py, + A for
Ar = >, 10, and therefore that EF (z7) — F(2') <
a2 (AR? + A7), implying the optimal rate of convergence
as long Ar = O(AR?). However, obtaining such a small
A to be that small naively requires approximating the prox-
imal points to very high accuracy, which is precisely what
we attempt to avoid.

Our first step toward a relaxed error criterion is proving
stronger idealized potential decrease. We show that,

VE ()],

While the potential decrease term o Jfl)\Vf*+
t

Py < P =E[ai20VE (s0) +a;

(s¢) is
well known and has been thoroughly exploited lljy prior
work (Frostig et al., 2015; Lin et al., 2017; Monteiro &
Svaiter, 2013), making use of the term «;” ZV;;:H (x4) is, to
the best of our knowledge, new to this work.
Step 2: Matching approximation errors. With the improved
potential decrease at bound in hand, our strategy is clear:
make the approximation error cancel with the potential de-
crease. That is, we wish to show

Py < Pfy + E[OétH)\Ve (st) + Oét_QVr,I::H(xt)},

so that overall we have P,y < P; and consequently
EF(z7) — F(2') = O(a3(F(zo) — F(z') + AR?) =
O(AR?/T?), with the last bound following form the warm-
start condition and oy = O(1/t).

It remains to show that the APPROXPROX and
UNBIASEDPROX criteria provide the needed error
bounds. For the function value, Definition 3.1 implies

AVE, (50)]
1(-tt)

EF(2111) = Flsi) = E|[) (2141) -

AVE
=i

(se)+V5
<E|F} (i) + S—

< F(xf) — F(se) + %)‘V;ZH (st) + %Vggﬂ (z¢),

where for the last inequality we use the property that
E[3AVy: | (240)] SE[GAVE,, ()] + 15Vih | (@) due
to the strong convexity of '* and the approximate optimal-
ity of z;4; guaranteed by APPROXPROX (see (16) and the
derivations before it in Appendix).

For V;’t*+1 («), Definition 3.2 implies v}, ; = Ev;41 and

_ ~ 2
EV;,., () =BV, (@) = () 3E [[of = T
AVE (s)+VE (x4)
< ()72 i —

Substituting back into the expressions for Py and Py

t+1 > 1
iy 3’

Py and conclude the proof.*

and using the fact that we obtain the desired

bound on P —

Complexity bound for strongly-convex functions. For
completeness, we also include a guarantee for minimizing
a strongly-convex function F' by restarting RECAPP. See
Appendix B for pseudocode and proofs.

Proposition 3.6 (RECAPP for strongly-convex functions).
For any ~-strongly-convex function F' : X — R, and
parameters X > ~, R > 0, restarted RECAPP (Algo-
rithm 7) finds x such that EF (x) — ming ey F(2') < ¢
using one call to WARMSTART, and O(\/)\/'y log LTRQ)
calls to APPROXPROX and UNBIASEDPROX. If we imple-
ment UNBIASEDPROX using Algorithm 2 with p = 1/2
and jo = 2, the number of calls to APPROXPROX is

O(\/A/vlog LE-

2 . .
P) in expectation.

3.3 Comparisons of Error Criteria

We now compare APPROXPROX (Definition 3.1) to other
proximal-point error criteria from the literature. Throughout,
we fix a center-point s and let z* = proxp , (s).

Comparison with Frostig et al. (2015). The APPA frame-
work, which focuses on vy-strongly-convex functions, re-
quires the function-value error bound

E?(@E?(x*)SO((z)m) (F3 (wimie) = FY (24))

to hold for all z,;;. To compare this requirement with
APPROXPROX, note that in the unconstrained setting

A
AV (@init) + ViE (Zinit) = Vioe (@init)
= F (-Tﬂlmc) F:‘(x*),

where the last equality is due to the fact that z* minimizes
F2 and therefore (VF}(z*),2* — ziny) = 0. Conse-
quently, the error of APPROXPROX g 1 (S; Zinit, Tinit) 18
1
F) () = F) (a%) < A (F2 (wini) — F2 (2)) -
“The need to have a lower bound like
RECAPP does not take aig =

t“ >3 1 is the reason
i

oo and requlres a warm-start.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Therefore, in the unconstrained setting and the special case
of Tprev = Tinit We require a constant factor relative error
decrease, while APPA requires decrease by a factor pro-
portional to (v/\)3/2, or (¢/(AR?))3/? with the standard
conversion v = ¢/R2. Thus, our requirement is signifi-
cantly more permissive.

Comparison with Lin et al. (2017). The Catalyst frame-
work offers a number of error criteria. Most closely resem-
bling APPROXPROX is their relative error criterion (C2):

F (z) = F2 (2%) < 6AVE(s),

with §; = (¢ + 1) =2 which is of the order of ¢/(\R?) for
most iterations. Setting 6; = 1/10 in the Catalyst criterion
would satisfy APPROXPROX »(s;s,2’) for any 2. Fur-
thermore, APPROXPROX allows for an additional error term
proportional to V. (x¢), which does not exist in Catalyst.
In our analysis in the next sections this additional term is
essential to efficiently satisfy our criterion.

Comparison with the Monteiro-Svaiter (MS) condition.
Ivanova et al. (2021) and Monteiro & Svaiter (2013) con-
sider the error criterion

HVFS’\(QT)H <oX|z—s|.

This criterion implies the bound F () — F2 (z*) <
1 HVFS)‘(w)H2 < 202\VE(s), making it stronger that the
Catalyst C2 criterion when 0 = +/d;/2. However, Mon-
teiro & Svaiter (2013) show that by updating of v; using
VF(xz¢+1), any constant value of o in [0,1) suffices for
obtaining rates similar to those of the exact accelerated prox-
imal point method. The APPROXPROX criterion is strictly
weaker than the MS criterion with o = 1/5.

Ivanova et al. (2021) leverage the MS framework and its im-
proved error tolerance to develop a reduction-based method
that, for some problems, is more efficient than Catalyst by
a logarithmic factor. However, for the finite sum and max-
structured problems we consider in the following sections, it
is unclear how to satisfy the MS condition without incurring
an extraneous logarithmic complexity term.

Stochastic error criteria. It is important to note that in
contrast to APPA and Catalyst, RECAPP is inherently ran-
domized. The unbiased condition of UNBIASEDPROX is
critical to our analysis of the update to v;. Although in many
cases (such as in finite-sum optimization) efficient proximal
point oracles require randomization anyhow, we extend the
use of randomness to the acceleration framework’s update
itself. It is an interesting question to determine if this ran-
domization is necessary and comparable performance to
RECAPP can be obtained based solely on deterministic
applications of APPROXPROX.

3.4 The AGD Rate as a Special Case

For a quick demonstration of our framework, we show how
to recover the classical \/ L R? /e complexity bound for min-
imizing an L-smooth function F' using exact gradient com-
putations. To do so, we set A\ = L and note that Fj is
L-strongly convex and 2L-smooth. Therefore, for each F}
with 2* = proxp , (s) we can implement APPROXPROX by
taking 4 gradient steps starting from zjy;s, since these steps
produce an x satisfying

1
Ve () < (1 - %)4‘/;* (Zinit) = TGV;* (Tinit)
and therefore
A A * e L e
F} (z) — F (%) < 2LV (z) < sz* (Tinit) -

Invoking Theorem 3.5 with A\ = L shows that RECAPP
finds an e-approximate solution with O(R+/L/¢) gradient
queries, recovering the result of Nesterov (1983).

4 Finite-sum Minimization

In this section, we consider the following problem of finite-
sum minimization:

minimize F'(z) := % Z fi(z), “4)

reEX ;
1€[n]

where each f; is L-smooth and convex.

We solve the problem by combining RECAPP with a single
epoch of SVRG (Johnson & Zhang, 2013), shown in Algo-
rithm 3. Our single point of departure from this classical
algorithm is that the point we center our gradient estimator
at (zsy) is allowed to differ from the initial iterate (zipit).
Setting ¢, to be the point e, of APPROXPROX allows
us to efficiently meet our relaxed error criterion.

Corollary 4.1 (APPROXPROX for finite-sum minimization).
Given finite-sum problem (4), points s, Tinit, Tl € X, and
A € (0, L], ONEEPOCHSVRG (Algorithm 3) with ¢;(x) :=
filx)+ 5]z —s ’n< s and T = ff]—i =0 (%) im-
plements APPROXPROX r 1 (S; Tinit, Zrun) (Definition 3.1)
using O(n + L/\) gradient queries.

Corollary 4.1 follows from a slightly more general bound on
ONEEPOCHSVRG (Proposition C.1 in Appendix C). Below,
we briefly sketch its proof.

Proof sketch for Corollary 4.1. We begin by carefully
bounding the variance of the gradient estimator g;. In
Lemma C.3 in the appendix we show that

loe = VE) < 4L+ (VE (o) + Vi ())

IS Y NZ I N -

<«

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Algorithm 3: ONEEPOCHSVRG

Algorithm 4: WARMSTART-SVRG

Input: ¢ = 1 Zi.e[n] o (vx./it.h. component gradient.
oracles), center point xs;, initial point z,i¢, step-size
7, iteration number T’

Query gradient V®(zs) = + >icm) VOi(@)

T < Tinit > KEY: Zinit, Tru11 may be different
fort=0toT — 1do

Sample i; ~ Unif[n]

gt — Vi, (x) — Vi, (xan) + VO(2san)

Tyy1 < Projy (w — ngt)

Return: 7 = Dterr) T

Next, standard analysis on variance reduced stochastic gra-
dient method (Xiao & Zhang, 2014) shows that

E |z —2|* < [l — ¥

— B [P (2e41) = FX ()] + 07 |lge — VF ()|
Plugging in the variance bound (5) at iteration x4, rearrang-
ing terms and telescoping for ¢ € [T'] — 1, we obtain

T
1
FEY () = F2 (a7))
t=1
2 4nL A
< ﬁVﬁ* (Tinit) + 4nLV,E (@) + %Vﬂs (@init)
0 1 2 4pL(L+)
< Vs (o —) Var (%ini
_Sr(xfn)-i-(nT-F T e (Tinit)
(7) 1 1
< gAV;* (@init) + gif (fum) ,

where we use (i) smoothness of ', and (i4) the choices of
n and T. Noting that Z = £ > _te(r) Tt satisfies F)Mz) <

L ST (F2(x4)) by convexity concludes the proof sketch.

Warm-start implementation. We now explain how to
reuse ONEEPOCHSVRG for obtaining a valid warm-start
for RECAPP (Definition 3.3). Given any initial iterate with
function error A, we show that a careful choice of step size
for ONEEPOCHSVRG leads to a point with suboptimality

v/ LH: A in O(n) gradient computations (Lemma C.5). Re-
peating this procedure O(log logn) times produces a point
with suboptimality O(LR?/n), which is a valid warm-start
for \ = L/n. We remark that Song et al. (2020) achieve
the same O(n loglog n) complexity with a different proce-
dure that entails changing the recursion for o in Line 3 of
Algorithm 1. We believe that our approach is conceptually
simpler and might be of independent interest.

Corollary 4.2 (WARMSTART-SVRG for finite-sum mini-
mization). Consider problem (4) with minimizer x*, smooth-
ness parameter L, and some initial point xi,;; with R =
|Zinit — 2*), for any X\ > L/n, Algorithm 4 with T = 32n,

-

Input: I = %Zidn] fi, smoothness L, point zjn;s
Parameter: Iteration number 7'
20 ZTinit
fork =0to K —1do

N1 (8Ln2_k_1)71
6 x(k+1) —

ONEEPOCHSVRG (F,z®), 2®) n 1. T)

7 Return: (%)

~

W

(]

K = loglogn implements WARMSTART .\ (R?) with
O(nloglogn) gradient queries.

By implementing APPROXPROX and WARMSTART using
ONEEPOCHSVRG, RECAPP provides the following state-
of-the-art complexity bound for finite-sum problems.

Theorem 4.3 (RECAPP for finite-sum minimization).
Given a finite-sum problem (4) on domain X with
diameter R, RECAPP (Algorithm 1) with parame-
ters A L ana T O(RVLn=te 1), using
ONEEPOCHSVRG for APPROXPROX, and WARMSTART-
SVRG for WARMSTART, outputs an x such that EF () —
ming ey F(2') < e The total gradient query complex-
ity is O(nloglogn + /nLR?/¢) in expectation. Further,
if F is vy-strongly-convex with v < O(L/n), restarted
RECAPP (Algorithm 7) finds an e-approximate solution
using O(nloglogn + +/nL/ylog(LR?/(ne)) gradient
queries in expectation.

4.1 Empirical Results

In this section, we provide an empirical performance com-
parisons between RECAPP and SVRG (Johnson & Zhang,
2013) and Catalyst (Lin et al., 2017). Specifically, we
compare to the C1* variant of Catalyst-SVRG, which Lin
et al. (2017) report to have the best performance in prac-
tice. We implemented all algorithms in Python, using the
Numba (Lam et al., 2015) package for just-in-time compi-
lation which significantly improved runtime. Our code is
available at: github.com/yaircarmon/recapp.

Task and datasets. We consider logistic regression on
three datasets from 1ibSVM (lib): covertype (n = 581,012,
d = 54), real-sim (n = 72,309, d = 20,958), and a9a
(n = 32,561, d = 123). For each dataset we rescale the
feature vectors to using unit Euclidean norm so that each f;
is exactly 0.25-smooth. We do not add ¢» regularization to
the logistic regression objective.

We defer readers to Appendix C.1 for detailed implementa-
tion of the algorithms and parameter tuning.

https://github.com/yaircarmon/recapp

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

covertype real-sim o a%

2
=

—e— SVRG
10779 —=— Catalyst C1*
—a— RECAPP (p=0.25)

!
i
!

—o
103 ——a

optimality gap
g

°
o
°

100 200 300 100 200 300 100 200 300

B
3

RECAPP (p=0.0)

RECAPP (p=0.1)
—— RECAPP (p=0.25)
—<— RECAPP (p=0.5)

ptimality gap
5 B
o
2
g 8§ 8

e
-
o
e

o 2 e P o
Figure 1: Empirical evaluation of RECAPP on finite sum
problems. Columns represent different datasets, the top row
compares RECAPP to SVRG and Catalyst, and the bottom
row compares different MLMC p parameters (p = 0 corre-
sponds to Zy41 = x4y in Algorithm 1, a baseline meant to
test whether MLMC is helpful at all, see Appendix C.1 for
more details). Solid lines show median over 20 seeds, and
shaded regions show interquartile range.

Findings. We summarize our experimental findings
in Figure 1. The top row of Figure 1 shows that RECAPP
is competitive with Catalyst C1*: on covertype RECAPP
is significantly faster, on a9a it is about the same, and on
real-sim it is a bit slower. Note that Catalyst C1* incor-
porates carefully designed heuristics and parameters for
choosing the SVRG initialization and stopping time, while
the RECAPP implementation directly follows our theoret-
ical development. The bottom row of Figure 1 shows that
p € {0.1,0.25} provides a modest but fairly consistent
improvement over the no-MLMC baseline. This provides
evidence that MLMC might be beneficial in practice.

5 Max-structured Minimization

In this section, we consider the following problem of the
max-structured function minimization:

nimize F(2) — 6

minimize (x) max f(z,y), (6)
where f : X x Y — R is L smooth, convex in x (for every
y) and p-strongly-concave in y (for every x).

We solve (6) by combining RECAPP with variants of
mirror-prox method (Nemirovski, 2004), shown in Algo-
rithm 5. Given a convex-concave L-smooth objective
¢, MIRRORPROX (Algorithm 5) starts from initial point
Zinit, Yinit» and finds in O(T') gradient queries an approxi-
mate solution x, yr satisfying for any z,y € X x Y,

L
d(ar,y) = dlz,yr) < = (Vi (@) + Vi, 1) (@)

Our main observation is that applying such a mirror-prox
method to the regularized objective ¢(z,y) = f(z,y) +
pVE(z), initialized at (Zinis, O (2 prev)) Where we define
the best response oracle O (x) = arg max,cy f(,y),

outputs solution satisfying the relaxed error criterion of
APPROXPROXp, after T' = O(L/p) steps. We formalize
this observation in Lemma 5.1.

Lemma 5.1 (APPROXPROX for max-structured min-
imization). Given max-structured minimization prob-
lem (6) and an oracle O%(x) that outputs y2 =
maxycy f(x,y) for any x, MIRRORPROX in Algorithm 5
initialized at (Zinit, O%'(mprev)) implements the procedure
APPROXPROX . ;, (S; Zinit, Tprev) Using a total of O (L /)
gradient queries and one call to O% ().

Before providing a proof sketch for the lemma, let us remark
on the cost of implementing the best response oracle. Since
for any fixed « the function f(z,-) is u-strongly-concave
and L-smooth, we can use AGD to find an §-accurate best re-

sponse 3’ to x in O (\/% log w) gradient queries.
Therefore, even for extremely small values of § we can ex-
pect the best-response computation cost to be negligible
compared to the O(L/u) complexity of the mirror-prox
iterations required to implement APPROXPROX.

Proof sketch for Lemma 5.1. We run MIRRORPROX for
T = O(L/p) steps on ¢(z,y) = f(2,y) + pVs(z). By (7)
the output (w7, yr) satisfies for v = 2* = proxp ,(s),
Yy = yS’T and arbitrary constant c,

Olr, yily) = o(a",yr) < op (Vi (%) + Vi, (v27)) -

The optimality of z* gives ¢(x*,yr) — ¢p(z*,y2) < 0.
Combining with the above implies

FY (er) = FI (@7) < en (Vi (@) + Vg, (427)) -
®)
We now bound the two sides of (8) separately. The strong
concavity of ¢ in y allows us to show that F¥ (x1) —
FE (z*) > 1V (y*). For the right-hand side, the defini-
r
tion of Yinit as a best response 0 Tprey yields uVy: (y*) <
vE (Tprev) . Plugging both inequalities into (8), and choos-
ing sufficiently small ¢, we see the output satisfies the con-
dition of a APPROXPROXf,, oracle, concluding the proof
sketch.

Warm-start implementation. We now explain how to ap-
ply accelerated gradient descent (AGD) and a recursive
use of MIRRORPROX for obtaining a valid warm-start for
RECAPP (Definition 3.3).

Lemma 5.2 (WARMSTART for max-structured minimiza-
tion). Consider problem (6) where R, R’ are diame-
ter bounds for X, Y respectively. Given initial point
Tinit Yinit» Algorithm 6, with parameters T = O(L/p),
K = O(log(L/w)) and Line 3 implemented using AGD,
implements WARMSTART = ,,(R?) with

O (L/ulog(L/p) + /L] plog (R'/R))

gradient queries.

—

IS 7 T I N

R -]

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Algorithm 5: MIRRORPROX

Algorithm 6: WARMSTART-MIRRORPROX

Input: Gradient oracle for ¢ : X x Y — R,
smoothness L, points Zinit, Yinit, iteration number 7'
> To implement APPROXPROX ., we let
Yinit A argmax, ¢y f(x,y)
Parameter: Step-size 7
Initialize g < Zinit, Yo < Yinit
fort =0toT — 1do
ug 4= argmingex NV d(2¢, yt),
Ut <— arg minyey<777vy¢($ta yt)a
Typ1 ¢ argmingex (NVad(ug, ve),
Y1 < arg mingey (—nVyo(ug, vt),
Return: x7, yr

x) + Vg ()

y) + Vi (y)
z) + Vg, (2)
y) + Vi, (y)

By implementing APPROXPROX and WARMSTART using
MIRRORPROX and WARMSTART-MINIMAX, RECAPP
provides the following state-of-the-art complexity bounds
for minimizing the max-structured problems.

Theorem 5.3 (RECAPP for minimizing the max-struc-
tured problem). Given F' = maxycy f(x,y) with diam-
eter bounds R, R' on X, Y, respectively, RECAPP (Algo-
rithm 1) with parameters X = ppand T = O(R+/p/¢) and
MIRRORPROX (Algorithm 5) to implement APPROXPROX,
and WARMSTART-MIRRORPROX (Algorithm 6) to im-
plement WARMSTART, outputs a solution x such that
E F(z) — mingex F(2') < e The algorithm uses
O(LR//we + L/plog(L/p) + /L/ulog (R'/R)) gra-
dient queries in expectation and O(RM) calls to a
best-response oracle O?r(~). Further, if I is ~y-strongly-
convex, restarted RECAPP (Algorithm 7) with parameters

A=upu, T=0 (\/M) K = O (log (LR?/e)) finds an
e-approximate solution using O(LR/./ji7y log (LRQ/E) +
L/plog(L/p) + /L/ulog (R'/R)) gradient queries in
expectation and O (\/glog LTRz) calls to (953'(-).

We remark that for strongly-convex F', the restarted Algo-
rithm 9 not only yields a good approximate solution for F',
but also can be transferred to a good approximate primal-
dual solution for f(x,y) by taking the best-response to the
high-accuracy solution .

Generalization to the framework. To obtain complex-
ity bounds strictly in terms of gradient queries, we ex-
tend the framework of Section 3 to handle small addi-
tive errors § ~ (1/t*) at iteration ¢+ when implement-
ing the APPROXPROX procedure as defined in (2). For
r* = argmingey F)(z) we allow APPROXPROX to re-
turn z satisfying

EFS)‘(:U) — Fs)‘(x) < % ()\V (Tinit) + Vxli(xpreV)) +0.
)

6

8

Input: Gradient oracle for ¢ : X x Y — R, strong
concavity u, smoothness L, point (Zinit, Yinit)
Parameter: Iteration number 7, epoch number K
Find ¥/, so that

f(xinim yi/nit) - < 3LR?

llipluml]lcd via AGD
Let ¢ := f(x,y) + pVy (x)and L' = L+ p
Initialize z(© <« i, y()« Yinit
fork=0to K —1do
gbt1) g (kt1) o
MIRRORPROX (¢, L', x
(K)

J (Tinit, ylb-:mt)

),y ®), 7)
Return: =

This way, in Lemma 5.1 one can implement the best-
response oracle O?J(J (in Line 3) to a sufficient high ac-

curacy using 6(\/L /) gradient queries, using the stan-
dard accelerated gradient method (Nesterov, 1983). This
turns the method in Theorem 5.3 into a complete algo-
rithm for solving (6), and only incurs an additional cost of

O (R\/m \/f/e) =0 (R\/Li/e) gradient queries.

We state the main result here and refer readers to Appendix E
for the generalization of RECAPP (Algorithm 8, Algo-
rithm 9 and Proposition E.3) and more detailed discussion.

Theorem 5.4 (REC APP for minimizing the max-structured
problem, without (’)S’J). Under the same setting of Theo-
rem 5.3, Algorithm 8 with accelerated gradient descent
to implement OE’J(~), outputs a primal e-approximate so-
lution x and has expected gradient query complexity of

/ L(R+R')? .
0(5% + %log% + R\/zlog(t)). Further, if
F'is vy-strongly-convex, restarted RECAPP (Algorithm 9)
finds an e-approximate solution and has expected gradient

query complexity 0f0<\§% log (LTRQ) + %log (%) +
LR2)).

b (57
Acknowledgements

The authors thank anonymous reviewers for helpful sug-
gestions. YC was supported in part by the Israeli Science
Foundation (ISF) grant no. 2486/21 and the Len Blavatnik
and the Blavatnik Family foundation. YJ was supported in
part by a Stanford Graduate Fellowship and the Dantzig-
Lieberman Fellowship. AS was supported in part by a Mi-
crosoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF-1955039, a PayPal research
award, and a Sloan Research Fellowship.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

References

The LIBSVM data webpage. URL https://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.

Allen-Zhu, Z. Katyusha: The first direct accelera-
tion of stochastic gradient methods. arXiv preprint
arXiv:1603.05953, 2016.

Asi, H., Carmon, Y., Jambulapati, A., Jin, Y., and Sidford, A.
Stochastic bias-reduced gradient methods. arXiv preprint
arXiv:2106.09481, 2021.

Azizian, W., Mitliagkas, 1., Lacoste-Julien, S., and Gidel, G.
A tight and unified analysis of gradient-based methods for
a whole spectrum of games. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust
optimization. Princeton University Press, 2009.

Bertsekas, D. Nonlinear Programming. Athena Scientific,
1999.

Blanchet, J. H. and Glynn, P. W. Unbiased Monte Carlo for
optimization and functions of expectations via multi-level
randomization. In 2015 Winter Simulation Conference
(WSC), pp. 3656-3667, 2015.

Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., and Sidford, A.
Complexity of highly parallel non-smooth convex opti-
mization. In Advances in Neural Information Processing
Systems, 2019.

Bullins, B. Highly smooth minimization of non-smooth
problems. In Conference on Learning Theory, pp. 988—
1030, 2020.

Carmon, Y., Jambulapati, A., Jiang, Q., Jin, Y., Lee, Y. T,
Sidford, A., and Tian, K. Acceleration with a ball op-
timization oracle. In Advances in Neural Information
Processing Systems, 2020.

Carmon, Y., Hausler, D., Jambulapati, A., Jin, Y., and Sid-
ford, A. Optimal and adaptive monteiro-svaiter accelera-
tion. arXiv:2205.15371, 2022.

Frostig, R., Ge, R., Kakade, S., and Sidford, A. Un-
regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization. In
International Conference on Machine Learning, 2015.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
Jjournal of machine learning research, 17(1):2096-2030,
2016.

Garber, D., Hazan, E., Jin, C., Musco, C., Netrapalli, P,,
Sidford, A., et al. Faster eigenvector computation via
shift-and-invert preconditioning. In International Confer-
ence on Machine Learning (ICML), 2016.

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova,
E., Selikhanovych, D., Uribe, C. A., Jiang, B., Wang, H.,
Zhang, S., Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., and
Sidford, A. Near optimal methods for minimizing convex
functions with Lipschitz p-th derivatives. In Conference
on Learning Theory (COLT), 2019.

Giles, M. B. Multilevel Monte Carlo methods. Acta Numer-
ica, 24:259-328, 2015.

Gower, R. M., Schmidt, M., Bach, F., and Richtarik, P.
Variance-reduced methods for machine learning. Pro-
ceedings of the IEEE, 108(11):1968-1983, 2020.

Giiler, O. New proximal point algorithms for convex mini-
mization. SIAM Journal on Optimization, 2(4):649-664,
1992.

Hu, Y., Chen, X., and He, N. On the bias-variance-cost
tradeoff of stochastic optimization. Advances in Neural
Information Processing Systems (NeurlPS), 2021.

Ivanova, A., Pasechnyuk, D., Grishchenko, D., Shulgin, E.,
Gasnikov, A., and Matyukhin, V. Adaptive catalyst for
smooth convex optimization. In International Conference
on Optimization and Applications, pp. 20-37. Springer,
2021.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances in
neural information processing systems (NeurlPS), 2013.

Korpelevich, G. M. The extragradient method for finding
saddle points and other problems. Ekonomika i Matem-
aticheskie Metody, 12:747-756, 1976.

Kovalev, D. and Gasnikov, A. The first optimal algorithm for
smooth and strongly-convex-strongly-concave minimax
optimization. arXiv:2205.05653, 2022.

Lam, S. K., Pitrou, A., and Seibert, S. Numba: A llvim-
based python JIT compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC,
pp. 1-6, 2015.

Lan, G., Li, Z., and Zhou, Y. A unified variance-reduced
accelerated gradient method for convex optimization.
Advances in Neural Information Processing Systems
(NeurlPS), 32, 2019.

Levy, D., Carmon, Y., Duchi, J. C., and Sidford, A. Large-
scale methods for distributionally robust optimization. Ad-
vances in Neural Information Processing Systems, 2020.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Lin, H., Mairal, J., and Harchaoui, Z. A universal cata-
lyst for first-order optimization. In Advances in Neural
Information Processing Systems (NeurlPS), 2015.

Lin, H., Mairal, J., and Harchaoui, Z. Catalyst acceleration
for first-order convex optimization: from theory to prac-
tice. The Journal of Machine Learning Research, 18(1):
7854-7907, 2017.

Lin, T., Jin, C., and Jordan, M. I. Near-optimal algorithms
for minimax optimization. In Conference on Learning
Theory (COLT), 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Monteiro, R. D. and Svaiter, B. F. An accelerated hybrid
proximal extragradient method for convex optimization
and its implications to second-order methods. SIAM Jour-
nal on Optimization, 23(2):1092-1125, 2013.

Morgenstern, O. and Von Neumann, J. Theory of games and
economic behavior. Princeton university press, 1953.

Nemirovski, A. Prox-method with rate of convergence
O(1/t) for variational inequalities with Lipschitz contin-
uous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization,
15(1):229-251, 2004.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate O(1/k?). Soviet Mathe-
matics Doklady, 27(2):372-376, 1983.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical programming, 103(1):127-152, 2005.

Nesterov, Y. Lectures on convex optimization, volume 137.
Springer, 2018.

Ouyang, Y. and Xu, Y. Lower complexity bounds of first-
order methods for convex-concave bilinear saddle-point
problems. Mathematical Programming, 185(1):1-35,
2021.

Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., and Har-
chaoui, Z. Catalyst acceleration for gradient-based non-
convex optimization. arXiv preprint arXiv:1703.10993,
2017.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in optimization, 2014.

Rockafellar, R. T. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimiza-
tion, 14(5):877-898, 1976.

Salzo, S. and Villa, S. Inexact and accelerated proximal
point algorithms. Journal of Convex analysis, 19(4):1167—
1192, 2012.

Shalev-Shwartz, S. and Zhang, T. Accelerated proximal
stochastic dual coordinate ascent for regularized loss min-
imization. In International conference on machine learn-
ing (ICML), 2014.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
L., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354-359, 2017.

Song, C., Jiang, Y., and Ma, Y. Variance reduction via
accelerated dual averaging for finite-sum optimization.
In Advances in Neural Information Processing Systems
(NeurlIPS), 2020.

Song, C., Jiang, Y., and Ma, Y. Unified acceleration of high-
order algorithms under Holder continuity and uniform
convexity. SIAM journal of optimization, 2021.

Thekumparampil, K. K., Jain, P., Netrapalli, P., and Oh,
S. Efficient algorithms for smooth minimax optimiza-
tion. Advances in Neural Information Processing Systems
(NeurlPS), 2019.

Woodworth, B. and Srebro, N. Tight complexity bounds for
optimizing composite objectives. In Advances in Neural
Information Processing Systems, pp. 3646-3654, 2016.

Xiao, L. and Zhang, T. A proximal stochastic gradient
method with progressive variance reduction. SIAM Jour-
nal on Optimization, 24(4):2057-2075, 2014.

Yang, J., Zhang, S., Kiyavash, N., and He, N. A catalyst
framework for minimax optimization. Advances in Neu-
ral Information Processing Systems, 2020.

Zhao, R. A primal dual smoothing framework for max-
structured nonconvex optimization. arXiv:2003.04375,
2020.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

A Additional Related Work

Beyond the closely related work already described, our paper touches on several lines of literature.

Finite-sum problems. The ubiquity of finite-sum optimization problems in machine learning has led to a very large body
of work on developing efficient algorithms for solving them. We refer the reader to Gower et al. (2020) for a broad survey
and focus on accelerated finite-sum methods, i.e., with a leading order complexity term scaling as /n/¢ (or as y/nk for
strongly-convex problems with condition number x). Accelerated Proximal Stochastic Dual Coordinate Ascent (Shalev-
Shwartz & Zhang, 2014) gave the first such accelerated rate for an important subclass of finite-sum problems. This method
was subsequently interpreted as a special case of APPA/Catalyst (Lin et al., 2015; Frostig et al., 2015), which can also
accelerate several other finite-sum optimization problems. Since then, research has focused on designing more practical and
theoretically efficient accelerated algoirthms by opening the APPA/Catalyst black box. The algorithms Katyusha (Allen-Zhu,
2016), Varag (Lan et al., 2019) and VRADA (Song et al., 2020) offer improved complexity bound at the price of the
generality and simplicity of APPA/Catalyst. Our approach matches the best existing guarantee (due to VRADA) without
paying this price.

Max-structured problems. Objectives of the form F'(z) = max,cy f(z,y) are very common in machine learning and
beyond. Such objectives arise from constraints (via Lagrange multipliers) (Bertsekas, 1999), robustness requirements (Ben-
Tal et al., 2009; Ganin et al., 2016; Madry et al., 2018), and game-theoretic considerations (Morgenstern & Von Neumann,
1953; Silver et al., 2017). When f is convex in = and concave in y, the mirror-prox algorithm minimizes F' to accuracy
epsilon in O(LRR'/¢) gradient evaluations (with respect to both = and y), where R’ is the diameter of). This rate can
be improved when f is u-strongly-concave in y. For the special bilinear case f(z,y) = ¢(x) + (y, Az) — 1 (y), where ¢
a “simple” p-strongly-convex function, an improved complexity bound of O(LR/,/ji€) has long been known (Nesterov,
2005).

More recent work studies the case of general convex-strongly-concave f. Thekumparampil et al. (2019) and Zhao (2020)
establish complexity bounds of O(%\Z log? szRl), which Lin et al. (2020) improve to O(—% log® M) using an

€ Ve e
algorithm loosely based on APPA/Catalyst. Yang et al. (2020) present a more direct application of APPA/Catalyst to
L

min-max problems, further improving the complexity to O(log %), with logarithmic dependence on R’ only in

€
a lower order term. Similarly to standard APPA/Catalyst, thg%in—max variant requires highly accurate proximal point
computation, e.g., to function-value error of O(fj—;;). In contrast, RECAPP requires constant (relative) suboptimality and
removes the final logarithmic factor from the leading-order complexity term. Yang et al. (2020) also provide extensions to
finite-sum min-max problems and problems where f is non-convex in x, which would likely benefit from out method as
well (see Appendix F).

Independent work. In recent independent work, Kovalev & Gasnikov (2022) develop a method that minimizes max, f(x,y)
assuming p-strong-concavity in ¢ and y-strong-convexity in x. They attain an essentially optimal complexity proportional

to \/% times a logarithmic factor depending on problem parameters. Their method is tailored to saddle point problems,
working in an expanded space by using point-wise conjugate function and applying recent advances in monotone operator
theory. We note that RECAPP with restarts attains the same complexity bound (see Theorem 5.4). However, it is unclear
whether the algorithm of (Kovalev & Gasnikov, 2022) can recover the RECAPP’s complexity bound in the setting where f

is not strongly convex in z.

Monteiro-Svaiter-type acceleration. Monteiro-Svaiter (Monteiro & Svaiter, 2013) propose a variant of the accelerated
proximal point method that uses an additional gradient evaluation to facilitate approximate proximal point computation.
The Monteiro-Svaiter method and its extensions (Gasnikov et al., 2019; Bubeck et al., 2019; Bullins, 2020; Carmon et al.,
2020; Song et al., 2021; Kovalev & Gasnikov, 2022; Carmon et al., 2022) also allow for the regularization parameter A
to be determined dynamically by the procedure approximating the proximal point. Ivanova et al. (2021) leverage this
technique to develop a variant of Catalyst that offers improved adaptivity and, in certain cases, improved complexity. We
provide additional comparison between the approximation condition of (Monteiro & Svaiter, 2013; Ivanova et al., 2021) and
RECAPP in Section 3.3.

Multilevel Monte Carlo (MLMC). MLMC is a method for debiasing function estimators by randomizing over the level
of accuracy (Giles, 2015). While originally conceived for PDEs and system simulation, a particular variant of MLMC
due to Blanchet & Glynn (2015) has found recent applications in the theory of stochastic optimization (Levy et al., 2020;

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Hu et al., 2021). Our method directly builds on the recent proposal of Asi et al. (2021) to use MLMC in order to obtain
unbiased estimates of proximal points (or, equivalently, the Moreau envelope gradient). Asi et al. (2021) apply this estimator
to de-bias proximal points estimated via SGD and improve several structured acceleration schemes. In contrast, we apply
MLMC on linearly convergent algorithms, allowing us to configure it much more aggressively and avoid the extraneous
logarithmic factors that appeared in the rates of Asi et al. (2021).

B Proofs for Section 3

We first give a formal proof of Proposition 3.4.

Proposition 3.4 (MLMC turns APPROXPROX into UNBIASEDPROX). For any convex F' and parameter A > 0, Algorithm 2
with p = 1/2 and jo > 2 implements UNBIASEDPROX and makes 2 + jo calls to APPROXPROX in expectation.

Proof of Proposition 3.4. Let x* := proxp (s) and Eg := AV (Zinit) + V5 (Zprev). By definition of APPROXPROX and
the strong \ strong-convexity of F} we have for j = 0,

E A Hx(o) —z*
2

2
} <EF} (x(0)> ~FMa) < %Eo. (10)

Further, for all j > 1,

T
E [2 [+~ =

8

O Lg (v o) € Le (R (20-0) — 2 1) € (;)jﬂ Fo, (D)

Jeme () -2 < B (i (20) vE)

where we use (i) the equality that |la — b||* + ||b— ¢||* — 2 (c — b,a — b) = ||a — ¢||?, (ii), the optimality of z* which
implies (VE} (z*),z — 2*) > 0 for any z € X, (44i) induction over j and (10). Consequently, Ez(/) — z* as j — oo.
Further, since P[.J = k] = p; for all k > jo, the algorithm returns a point satisfying

Ex=E;, [ac(jo_l) +p;7 () - x(J_l))] = lim 29 = z*,

Jj—o0
which shows the output is an unbiased estimator of x*.

Next, to bound the variance, we use that p; = 2~ (J++1) for p = 1/2. Applying (10) and (11) yields that for all 7 > j

- qu) _ x(j—l)HQ _E H(xm) — (26D — g ?

2 1\’ (2E, Ey
<l=4+2])(= — | =45 .
Consequently,

. a2 = .y 2
E Hp;l (x(J) _ CE(max{J—l,Jo})) H Z P -1 H () _ (]—1)H _ ZQJHE Hx<]0+]> B x(JOﬂ_l)H
j=1

Jj=jo+1

2i+1 3 Ey
<153 (3) =5 ()

2 . 2 .
< 2E H;v(]) —z*|| +2E Hx(]_l) —z*

and therefore,

o Hx(jm +p; (xm _ x(J—l)) _ |

< 2EH (Go) _ g

x(maX{J—Ljo})) H2

+2]EHp

< s 1 JO+1+ 3 g 65E0
- 8 8]0 by M- &Jo

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Since jo > 2 this implies that the algorithm implements UNBIASEDPROX as claimed.

Finally, note that the expected number of calls made to APPROXPROX is EJ = jy + EJ,. Further, EJ, = ﬁ since J is
geometrically distributed with success probability 1 — p. Consequently, the expected number of calls made to APPROXPROX
is jo + 12, as desired. O
Theorem 3.5 (RECAPP complexity bound). Given any convex function F' : X — R and parameters A\, R > 0, RECAPP
(Algorithm 1) finds v € X with EF (z) —ming cx F(z') < €, within O(\/AR? [€) iterations using one call to WARMSTART,

and O(\AR?/ e) calls to APPROXPROX and UNBIASEDPROX. If we implement UNBIASEDPROX using Algorithm 2 with
p =1/2and jo = 2, the total number of calls to APPROXPROX is O(\/AR?/€) in expectation.

Notation. We first define the filtration F; = o(z1,v1,..., o, v;) and use the notation 2} = argmingcx Fg\t _(x)to
denote the exact proximal mapping which iteration x; of the algorithm approximates. We note that s¢, 77, 1, € J, i.e., they

are deterministic when conditioned on x4, v¢. We also recall in literature it is well-known that the coefficients a; we pick

satisfy the condition that a; € [%—‘?, t_%Q] (Paquette et al., 2017; Yang et al., 2020).

For each iteration of Algorithm 1, we obtain the following bound on potential decrease (a special case and more careful
analysis of its variant in Lemma 5 of Asi et al. (2021)).

Proposition B.1. Under the assumptions of Theorem 3.5, let x' be a minimizer of F. For every t, the iterates of Algorithm 1

satisfy

1 A
E|——(F(zi41) — F(2) + 5 [[vepr — 2/
Qg 2

1 , A ,
E]SQuwa@»+|fo.
oh 2

This proposition can be proved directly by combining the following two lemmas.

Lemma B.2 (Potential decrease guaranteed by exact proximal step). At t-th iteration of Algorithm 1, let x;, := proxy ,(s¢)
and vy = vy — (ouq1) " (8¢ — x},) be the “ideal” values of x4 and vy obtained via an exact prox-point computation,
then we have

1 A
o (F (aiy1) = F () + 5 [Jof =]

S|
1 ' A 12 A e 1 F
< g (Fle) = F@) + Sl = = 5V ()= Vi (). (12)

Proof. Welet g7, 1 = A (s; —x},) and vf; = v — (ap41) " (s¢ — 27,,). Now we bound both sides of the quantity
(gf1, v —). First, note that

1 1 1 1
P (ve —2) = P (2540 —) + o2 (2741 — 2e) — E (241 = 5t) -

2
, we

Since g, € OF (x},,) (see Fact 1.4 by Asi et al. (2021)), F is convex and (g7, 1, 27,1 — st) = — ||z} — st
have by update of a;; and v, that

1 " 1 % . 1 N . 1 .)
Qi1 <gt+131}t - x’> = 7at+1 <gt+171't+1 — :c’> + 22 <gt+1,xt+1 — zt> — aTl <gt+17xt+1 — 5t>
t t+
1 * 1 2)\
Tt (F (#h) = F (@) + a? (F(lq:“) - Flzy) + VII;H (mt)) + a?iy Var,, (s1)
1 1 2\ 1
e F * _ F / o F _ F / 7‘/6* 7‘/}: . 13
@H((%” () o2 () u»+aalmgw+agmjﬂ)<)

On the other hand to upper bound -~ (g{,,v¢ —), note by definition of g7, and v,

2 2
= |lve — 33'” -

2 1
ﬁ<g§+1,vt—x’>+a2 [[s¢ — 274"

2
* !
H”t+1 - H

1
* /
V¢t — ——~ 941 — T
Olt+1>\

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Combining the last two displays and rearranging, we obtain

1 * A *
2 (F (i) = F (") + 5 vz — |
t+1
1 A 2 2\ 1 5
< ;%(F(xt) - F($/)) + 5 ||vt - le at+1 Vwef+1 (st) - ;%V1;+1 (:Ct) + 204%+1 HSt - ZC;‘FlH

A A 1
< ng(F(It) = F@) + 5 lloe = o|° - ilVe; (1) = — Vi, (1)

Lemma B.3 (Potential difference between exact and approximate proximal step). Following the same notation as
in Lemma B.2, for ;11 and vy, defined as in Algorithm 1, we have

1 A
| g (F(avs) = F@) 4 5 o =o' | 7]
Qi1
1 * A * 2 A
<—5—(F ('Tt+1)_F(xl))+§’|vt+1_9f“ T2 Ve (se) + LvE (zt) s (14)
t+1

Qi +1 2 xt+1

Proof. To prove (14), we consider the effect of approximation errors of z411, vs41 in terms of z}, |, vf, 1, respectively.
First, by definition of 2, and APPROXPROX we have that

A A
BIF (z411) | Fi] = E[F (@er1) + 5 e — s }—t} - E[Q 41 — sel® }—t}
< F(x} AVE L (e Vi E|A\VS F 15
< F (274q) + o, (81) + 3 (v, (81) + z;+1(1’t)) - [wess (1) t} 15)

Now we further have

(i) 1 1
)\V* xt—&-l ’]:t:| <]E[F ($t+1 |./T"t] — /\(.Tt+1) S *)\V; (St)"' Vli (.Tt)

(44%)

< BV, () + P2, ()

Fi :| + V (.’I?t) 5
where we once again use (7) the strong convexity of F*, (i7) the definition of APPROXPROX and (ii7) the triangle inequality

that ||a + b||> < 2|a||* 4 2]b||* for any vectors a, b. By rearranging terms and rescaling by a factor of 1/2 this implies
equivalently

1
E|:2)\V;:+l ($t+1) ‘]:t:| S E|: AVe St) ’]:t:| + VF ($t) . (16)

Tt41 12 wt+1
Combining the above inequalities we have

A
BIF (a041) | £ = B[P (a) + 5 e s

A
]-‘t} - IE[2 l2es1 — s¢? ’]-}}
(1)

7 1 1 1
< F (af) + gAVE, () +E[2)\Vf:+l (211) + SNV, (s2) ’]—‘t} + 5V (@) - {)\me (s¢) ‘ ft}

(i1) 7 5 AL A
< F (l':Jrl) + g)\vxe* 1 (St) + 7Vl§ +1 (xt) +E[(2 te A) Ve St) ‘ Ft:|

6 Tit1

< F (nf) + DAVE,, (50 + g Vil), (17)

8 TP

where we use (i) rearranging of terms and using the triangle inequality /\VC (st) + %/\VIC:+1 (50) < INVS (sy) +

8 Tiiq
]E[%/\V;ZH (@es1) + 1AV

Tt41

(s¢) ’]-'t} in (15), and (4¢) plugging back the 1nequality (16).

—

~

w

IS

[

N

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Now that given definition of UNBIASEDPROX for vy 41 so that E[v; 41 | 7] = v;,; and consequently

A A A
Eb [er— Ft} =3 |vips — 37/”2 +E[2 i1 — Ut*+1||2]:t}
AL A .
< 3l =T+ gl il]
A 2 A 1
S 5 H’U:+1 — x’” —+ @Vf{+l(8t) + @Vx§+1 (.’L’t) (18)

Rescaling and summing up inequalities (15) and (18), together with the bound that (a)” / (cv41)” < 1&%;))22/3 < 3, this
proves (14), which also concludes the proof.

Proof of Theorem 3.5. By requirement of WARMSTART function, we have F(zo) — F'(z') < AR?. Applying the potential

decreasing argument in Proposition B.1 recursively on ¢ = 0,1,--- ;T — 1 thus gives
1 / 1 ’ A 2
—E[F(ar) = F')| SE| = (Flar) = F@)) + 5 Jor - o'|
T T
1 A 3
< —(F(z0) — F(a')) + 5 [lwo — 2| < SAR2.
ag 2 2

Multiplying both by o2 and using the fact that for T > [1/6AR%/e], a2 < ﬁ < 3755, we show that z7 output
by Algorithm 1 satisfy that
E[F(zr) — F(2')] <e.

The number of calls to each oracles follow immediately.
When implementing UNBIASEDPROX i » using MLMC, guarantees of Proposition 3.4 immediately implies the correctness
and the total number of (expected) calls to APPROXPROXF ».]

We now show an adaptation of our framework to the strongly-convex setting in Algorithm 7. We prove its guarantee as
follows.

Algorithm 7: Restarted RECAPP
Input: F: ¥ — R, RECAPP
Parameter: \, R > 0, iteration number 7', epoch number K
Initialize 2(*) WARMSTART g (R?) > To satisfy EF (zo) — mings F(z') < AR?
fork=0to K —1do
Run RECAPP on F with 2y = vy = 2(¥) without WARMSTART (Line 1) for T iterations
> Halving error to true optimizer in each iteration and recurse

Return: z (%)

Proposition 3.6 (RECAPP for strongly-convex functions). For any y-strongly-convex function F' : X — R, and parameters

A > 7, R > 0, restarted RECAPP (Algorithm 7) finds x such that EF(x) — ming cx F(2') < € using one call to
WARMSTART, and O(«/ A/vlog U:?) calls to APPROXPROX and UNBIASEDPROX. If we implement UNBIASEDPROX

using Algorithm 2 with p = 1/2 and jo = 2, the number of calls to APPROXPROX is O (\ /A7 log LTRZ) in expectation.

Proof of Proposition 3.6. Let x’ be the minimizer of F', we show by induction that for the choice of T = O (\ /A 7), the

iterates 2(*) satisfy the condition that

E {F (+®) - Fa') + % Hx(k) _

2 3
] < QHAR% fork=0,1,---, K. (19)

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

For the base case k = 0, we have the inequality holds immediately by definition of procedure WARMSTART. Now suppose
the inequality (19) holds for k. For k + 1, by Proposition B.1 and proof of Theorem 3.5 we obtain

3 2
AR

el () -] 5[() - o] oo

By our choice of T'= O (x/)\/y), we have

E [F (x<k+1>) - F(x')} < ~R?,

2.2k
and consequently by ~y-strong convexity it holds that

3
2.2k

Y k+1 ’
E[2Hx('-= 9. ok

2 2
} <E {F (x(kH)) —F(x’)} < YR?* = E {/2\ Ha:(kﬂ) —a } < 5 AR%.

Summing up the two inequalities together we obtain

E [F (+4+0) - P + % o0 — &

2 3 9

which shows by math induction that the inequality (19) holds for k = 0,1, --- | K.
Now by choice of K = O (log ()\Rg/e)), we have

E [F (s49) -)] <B |7 () - Py 4 5 [0 - 2] < am <

which proves the correctness of the algorithm.

The algorithm uses one call to procedure WARMSTART in Line 2. The number of calls to procedures APPROXPROX,
UNBIASEDPROX is K times the number of calls within each epoch k € [K], which is bounded by O(T"). The case when
implementing UNBIASEDPROX by MLMC and APPROXPROX follows immediately from Proposition 3.4.

O

C Proofs for Section 4

Proposition C.1 (Guarantee for ONEEPOCHSVRG). For any convex, L-smooth f;(x) : X — R, and parameter A > 0,
consider the finite-sum problem ®(x) := 3, Lo () where ¢;(z) == fi(z) + 5 ||z — s||%. Given a centering point s,
an initial point Tinit, and an anchor point s, Algorithm 3 with instantiation of ¢;(x) = fi(z) + 3 ||z — s ? outputs a

point T = % Zte[T] Ty_1 satisfying

2
EF} (Z) — F) (2*) < 7V:* (Tinit) + AnLV.E (zpa) where z* := arg mi;l b(x).
n e

The algorithm uses a total of O(n + T') gradient queries.

To prove Proposition C.1, we first recall the following basic fact for smooth functions.

Lemma C.2. Let f : X — R be an L-smooth convex function. For any x,x' € X we have

LIVF(@) ~ VI < (VF@) - Vi), o - a) 0)

and

o7 V7 @) = VI < f&) ~ @)+ (V@)oo —). an

We also observe the following few properties of Algorithm 3.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Lemma C.3 (Gradient estimator properties). For any x, s € X, sample i € [n] uniformly and let g(x) = V f;(x) —
Vfi(zean) + VE (2ean) + M — s). It holds that E [g(z)] = VF) z), and for x* = arg mingex F (),

E[llg@@) - VEX @] < B [IVfilwrn) = VA7) <42 (VE (o) + Vi () 22)

Proof. First, by definition of how we construct g it holds that

n

E[g(z)] = Mz — s) + VF(zr) + % > (Vfile) = Vii(zmn))

=1

=Xz — 8) + VF(2fan) + VF(z) — VF(2tan) = VE) (2).

This proves that g is an unbiased estimator of V.

Next, for such unbiased estimator g we have

E[lg@) - VR @)[*] = E[IVF @) = VF(@) = Vi) + V@)
<E ||V filan) - V@],

where we used that E [||Z -EZ HQ} <E [HZ ||2} for any random Z. This proves the first inequality in (22).

For the second inequality, note

E [V (@nan) = V@))€ 2 [IV o) = VAP + IV £@) = V)]

(44) (23)
< AL -E[fi(xfan) — fi(@®) +(Vfi(2), 2" — zpan) + fi(z) — fi(z*) + (V fi(z™), 2" — z)]

=4L- (VE (zpn) + F(2) — F(z*) + (VF(2¥),2* — z)),
where we use (i) Cauchy-Schwarz inequality for Euclidean norms, and (i) the property of smoothness of f; (see Eq. (21)).

Using the standard inequality that 2 (a — b,b — ¢) = |la — ¢||* = [|b — ¢||* — | %, we also have

F(z) — F(z*) + (VF(z"), 2" — z)
A A
= F@) = F) @) + (VF(@") + Ma* = s),0" —2) =Mo" —s,0" =) = T |lo - s+ 5 " = s|”
F} F}
<V () = AV (z) < V.0 (z).
Substituting this in (23) proves the second inequality in (22). O

The following proof on progress per step follows from the standard analysis by Xiao & Zhang (2014) (as the constrained
finite-sum minimization we consider is a special case of theirs), which we include the full statement here for completeness.

Lemma C.4 (Progress per step of ONEEPOCHSVRG, cf. Xiao & Zhang (2014)). Let * € argmingcx ®(z) where
each ¢; is L-smooth and convex. For n < 1/L, consider step t in ONEEPOCHSVRG, define Ay = g — V®(x¢) and
xf = Projy (x¢ — ngy), it holds that

E w1 — a||* < [lor — a*|* = 27 [®(zi11) — @(2*)] + 20°E | A

With these helper lemmas, we are ready to formally prove Proposition C.1.

Proof of Proposition C.1. Consider the t-th step of Algorithm 3, by Lemma C.4 and ® = F, for n < i < /\-+L we have

E lloess — 2% < e — 271 = 20 [F2 (e041) = 2 (@1)] + 0°E [|lg = VE2 @) [7]

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Our bounds on the variance of SVRG plus the L-smoothness of F' yields
2
E{llge = VEX@oI’] < 4L (VE (wran) + Vi ()
Thus we have by definition of z;4; and divergence,

A
EVE: (@i1) SV& (20) =0 [F) (wes1) = F) ()] + 2LV, (20) + 207 LV (@) 24

Note V.5 (x¢un1) is independent of z;. Telescoping bounds (24) and using optimality of z* so that (VF}* (z*) ,z* —z) <0
fort > 1, we obtain

A
EVE (z7) < V& (i) —n (1 —2nL)E Z (zr41) — F) (@) | + 202 LV,EE (@imie) + 202 LTVE () -

t=0
Rearranging terms, dividing over 7/2, and using convexity of F>‘, we have for n < 32L and T > 37 > 128/(7L2
1 - 2(1—29L) [
EF) - > a| - F)a) < fEZ (FMx) — F) (2¥)) < = E > (FMay) — M)
te[T] t=1 t=0
AnL _ >
2V (i) + 40LVE (zgan) + LV (200)
nT T
1 2 AnL(L+)
< 7‘/}: u eal - 7 V ni
< gVe ($f11)+(nT+ T (Zinit)
1 1
< V& (@) + AV (@init) »
8 8
where for inequality () we use the fact that £ is (L + \)-smooth, and the property of smoothness. O

To show how we implement the WARMSTART procedure required in Algorithm 1, we first show the guarantee of the
low-accuracy solver for finite-sum minimization of Algorithm 4.

Lemma C.5 (Low-accuracy solver for finite-sum minimization). For any problem (4) with minimizer x*, smoothness
parameter L, initial point Tinit so that R = ||a* — zinit||, and any « > L/n, Algorithm 4 with T = 32n, finds a point 2(E)
after K epochs such that E F (z5)) — F(2*) < %n’HQ_KLR?

Proof of Lemma C.5. We prove the argument by math induction and let ¢(*) = n~1+27" Note that for the base case k = 0,

F(z©) - F(z*) < @LR2 by Eq. (21). Now suppose the above inequality holds for &, i.e. F(z(*)) — F(z*) < %’OLRQ.
Then for epoch k by guarantee of Proposition C.1 together given choice of 1,41 = W and T' = 32n we have

2 LR2 c(k) LR2 (k+1)
EF (x<k+1>) SF@) S Ve (x(k)) + g LVE (:A \/ \/ ¢ LR

where for the last inequality we note that series ¢(*) satisfies ¢(*+1) = /(%) /n. O

Consequently, after K = O(loglogn) epochs, we have
Ky - 2 (K) o o L2 2

for any o > L /n, which immediately proves the following corollary.

Corollary 4.2 (WARMSTART-SVRG for finite-sum minimization). Consider problem (4) with minimizer x*, smoothness
parameter L, and some initial point Tinix with R = ||Tiny — 2*||, for any X > L/n, Algorithm 4 with T = 32n,
K = loglog n implements WARMSTART . (R?) with O(nloglog n) gradient queries.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Now we give the formal proof of Theorem 4.3, the main theorem showing one can use our accelerated scheme RECAPP to
solve the finite-sum minimization problem (4) efficiently.

Theorem 4.3 (RECAPP for finite-sum minimization). Given a finite-sum problem (4) on domain X with diameter R,
RECAPP (Algorithm 1) with parameters A\ = % and T = O(RvV Ln—1e~1), using ONEEPOCHSVRG for APPROXPROX,
and WARMSTART-SVRG for WARMSTART, outputs an x such that EF (x) — ming ¢ x F(2') < e. The total gradient query
complexity is O(nloglogn + \/nLR2/¢) in expectation. Further, if F is y-strongly-convex with v < O(L/n), restarted
RECAPP (Algorithm 7) finds an e-approximate solution using O(nloglogn + v/nL/vlog(LR?/(ne)) gradient queries
in expectation.

Proof of Theorem 4.3. We first consider the objective function F' without strong convexity. The correctness of the algorithm
follows directly from Theorem 3.5, together with Corollary 4.1 and Corollary 4.2. For the query complexity, calling
WARMSTART-SVRG to implement the procedure of WARMSTART - (R?) requires gradient queries O (n log log n) follow-

ing Corollary 4.2. The main Algorithm 1 calls O (R\ / /\/e) = O(RV Ln=1e™ 1) of procedure APPROXPROXf 5, which

by implementation of ONEEPOCHSVRG each requires O(n + L/)\) = O(n) gradient queries following Corollary 4.1.
Summing them together gives the claimed gradient complexity in total.

When the objective F' is y-strongly-convex, the proof follows by the same argument as above and the guarantee of restarted
RECAPP in Theorem 3.5. O

C.1 Additional Details on Empirical Results

Here we provide additional details for the empirical results in Section 4.1.

SVRG implementation. We implement the SVRG iterates as in Algorithm 3, using 7" = 2n and n = 4 (i.e., the inverse
of the smoothness of each function). However, instead of outputting the average of all iterates, we return the average of the
final T'/2 = n iterates.

Catalyst implementation. Our implementation follows closely Catalyst C1* as described in (Lin et al., 2017), where for
the subproblem solver we use repeatedly called Algorithm 3 with the parameters and averaging modification described
above, checking the C1 termination criterion between each call.

RECAPP implementation. Our RECAPP implementation follows Algorithms 1 and 2, with Algorithm 3 and Algorithm 4
implemented APPROXPROXand WARMSTART, respectively, and Algorithm 3 configured and modified and described above.
In Algorithm 2 we set the parameters jo = 0 and we test p € {0,0.1,0.25,0.5}. The setting p = 0 which corresponds to
setting Z+4+1 = 41 in Algorithm 1) is a baseline meant to test whether MLMC is helpful at all. For p > 0 we change the
parameter 7' in Algorithm 3 such that the expected amount of gradient computations is the same as for p = 0. Slightly
departing from the pseudocode of Algorithm 1, we take ., to be 2(/) computed in Algorithm 2, rather than (%), since it
is always a more accurate proximal point approximation. We note that our algorithm still has provable guarantees (with
perhaps different constant factors) under this configuration.

Parameter tuning. For RECAPP and Catalyst, we tune the proximal regularization parameter A (called « in (Lin et al.,
2017)). For each problem and each algorithm, we test A values of the form aL/n, where L = 0.25 is the objective
smoothness, n is the dataset size and « in the set {0.001, 0.003,0.01, 0.03,0.1,0.3,1.0,3.0,10.0}. We report results for
the best A\ value for each problem/algorithm pair.

D Proofs for Section 5

We first consider a special case of standard mirror-prox-type methods (Nemirovski, 2004) with Euclidean ¢5-divergence on x
and y domains separately, i.e. V, ,(2',y") = V(2") + V(') . This ensures each step of the methods can be implemented
efficiently. Below we state its guarantees, which is standard from literature and we include here for completeness.

Lemma D.1 (T-step guarantee of MIRRORPROX, cf. also Nemirovski (2004)). Let any ¢(z,y), (z,y) € X X Y be a
convex-concave, L-smooth function, MIRRORPROX (¢, L, Tinit, Yinit, 1) in Algorithm 5 with initial points (Zinit, Yinit) and

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

step size) = 1/ L outputs a point (x,yr) satisfying for any x,y € X x Y

L (] (¢
¢($T} y) - qb(x’ yT) S T (Vﬂiinit (:L‘) + Vyinit (y)) . (25)
Next we give complete proofs on the implementation of APPROXPROXr,,, and WARMSTARTr,,, using MIRRORPROX
(Algorithm 5) with proper choices of initialization Zinit, Yinit, and WARMSTART-MINIMAX (Algorithm 6), respectively.

Lemma 5.1 (APPROXPROX for max-structured minimization). Given max-structured minimization problem (6) and an
oracle O% (z) that outputs y2" := max,cy f(z,y) for any x, MIRRORPROX in Algorithm 5 initialized at (Zinit, O% (T prev))
implements the procedure APPROXPROX ., (S; Zinit, Tprev) Using a total of O (L/) gradient queries and one call to O%r(-).

Proof of Lemma 5.1. We incur MIRRORPROX with ¢(z,y) = f(z,y) + § ||z — s||?, smoothness L + y, initial point

. . 64(L
Tinit, Yinit» and number of iterations 7' = %

that forany z € X,y € Y

. By guarantee (25) in Lemma D.1, the algorithm outputs x7, yr such

1
Owr,y) — é(w,yr) < oo (Vo (@) + V5 (1)) -

Suppose ¢ has (z*, y*) as its unique saddle-point, in particular we pick © = z* and y = yng = argmaxyey f(ar,y) =
arg max,cy ¢(zr,y) in the above inequality to obtain

FY (wr) = FI' (@) = ¢ (2r,95,) — 0 (2%,y%) = (¢ (a1, u5y) — ¢ (2", yr) + (6 (2%, y7)) — ¢ (2%, y"))
r * 1 e * e r
S QS (IL'T,y;T) - (rb (I 7yT) S @,LL (Vacin;t (SE) + V;Jinic (yZT)) ?
where for the first inequality we use the definition that y* = arg max,cy ¢(z*,y). Now for the LHS of (26), we have

F (vr) = FY (27)

> (1 - 1) (FF (27) — FI () + o= (6 (2 92) — 6 (a157)) + = (6 (2r57) — 6 (2%, 57))

(26)

32 32 32
1 L
> . 14 _ 14 * " yre *)
= (1 32) (Fs (xT) E@ (‘T)) + 39 ‘/y:bch (y) 27

Plugging (27) back to (26) and rearranging terms, we obtain

(Ft (or) — B (24) <0 (v ey rve (o)) - L2 e o

. ST—1/32 e vase o)) = T 739 Vi, W
) /64 /32 /32 /32
< Ve * Ve * e *\ e *) (28)
ST 132 Ve) F 727 733 Vo WO+ 72733 Vb, 0 = 707 55 Vo, 07)

1 * e *
SEIJ’ (Vfreinit (x) + Vyinit (y)) ’

where we use (x) Cauchy-Schwarz inequality for Euclidean norm.
Further, to bound RHS of (28), we note that by definition of F' and y;piy O?r(:ﬁprev),

(1)
W) =1V (") = f (Zprens 880) = f (@prew,)

prev
()

<f (zprevay;;rev> - f (CC*,y*) - <vwf (ZE*,y*) y Lprev — l‘*> = Va:}: (zprev) ,
where we use () strong convexity in y of — f and (47) convexity of f(-,y*).

Plugging this back in (28), we obtain

1 1
FY (CET) - Fl (33*) < %Vainit (1‘*) + gvxli (mprGV) < 3 (sze* (xinit) + lef (xpreV)) .

Thus we prove that APPROXPROX,, can be implemented via MIRRORPROX properly. The total complexity includes one
call to O%(-) and O(T') = O(L/) gradient queries as each iteration in MIRRORPROX requires two gradients. O

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Lemma 5.2 (WARMSTART for max-structured minimization). Consider problem (6) where R, R’ are diameter bounds
Sor X, Y respectively. Given initial point Xinit, Yinit, Algorithm 6, with parameters T = O(L/u), K = O(log(L/)) and
Line 3 implemented using AGD, implements WARMSTART g, (R?) with

O (L/ulog(L/p) + /L] plog (R'/R))

gradient queries.

Proof of Lemma 5.2. Given domain diameter R, R’ and the initialization Zipi¢, Yinit, We first use accelerated gradient
descent (cf. Nesterov (1983)) to find a ©(L R?)-approximate solution of maxy,cy f(Zinit, y) (which we set to be ¢/ .,) using

0] (« /L/ulog (R’/R)) gradient queries. We recall the definition of 32 = argmaxycy f(Zinit,y) and thus

1
M‘/yei/nit (yﬂt;:nit) = f(minit’ yilﬂit) o f('rinit’ y;:nit) < §LR2 (29)

Now we incur MIRRORPROX with objective ¢(z,y) = f(z,y) + § ||z — Zinit||*, smoothness L + 1, initial points
(Zinit, Yinse)- Welet * (¢) , y* to denote its unique saddle point. Thus, we have by iterating guarantee of (25) in Lemma D.1
with T = O(L/) iterations, after K = O (log L /1) calls to MIRRORPROX we have

1 4
Vi (@ () + Viio (@) < 75 (£) (Vi @) + V3,

< (Y (Ve) v, (08,.) + 2V
— 40 \L Zinit Yinit Yainie Y imie

() 1 cp\t (1, LR L
< — [= — - = yre *

38 B
I

(y*))
(y*))

—4\L Y
where we use (i) Cauchy-Schwarz inequality for Euclidean norms, and (ii) condition (29) and the fact that y° is L/pu-

Lipschitz in z.

Thus given F(z) = max, f(z,y) being (L + L?/u)-smooth, we have
w
F (x<K>) — F (" (9)) < (L+L*/n) Vi (x(K)) < LR (30)

Note we also have

(%)
Pt (0) < B, (00 0) € Fo, (0) = F @)+ 2o = anl? < P a) + 22,

Tinit Tinit

where we use () that 2* (¢) minimizes I (z). Plugging this back to (30), we obtain F' (z5)) — F (z*) < pR2.

The gradient complexity of mirror-prox part is O(KT) = O(L/ulog(L/u)). Summing this together with the gradient
complexity for accelerated gradient descent used in obtaining ¥/ ;. gives the claimed query complexity.

O

E Generalization of Framework and Proof of Theorem 5.4

In this section, we present a generalization of the framework, where we allow additive errors when implementing
APPROXPROX and UNBIASEDPROX (Definition E.1 and E.2). When the additive error is small enough, it would contributes
to at most O(e) additive error in the function error and thus generalize our framework (Algorithm 8 and Proposition E.3).
In comparison to prior works APPA/Catalyst (Frostig et al., 2015; Lin et al., 2015; 2017), in the application to solving
max-structured problems our additive error comes from some efficient method with cheap total gradient costs, thus only
contributing to the low-order terms in the oracle complexity (Theorem 5.4).

We first re-define the following procedures of APPROXPROX and UNBIASEDPROX, which also tolerates additive (4-)error.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Definition E.1 (APPROXPROX). Given convex function F: X — R, regularization parameter A\ > 0, a centering point
s € X and two points Tinit, Tprev € X, APPROXPROX‘;_ A(8; Tinit, Tprev) IS a procedure that outputs an approximate

solution x such that for * = proxp ,(s) = arg mingex F' (),

EF}(z) = FM(2*) < o (AVE (@inie) + Vi (Tprev)) + 0.

ol —

€2y

Definition E.2 (UNBIASEDPROX’). Given convex function F: X — R, regularization parameter \ > 0, a centering point
5 € X, two points Tinit, Tprev € X, UNBIASEDPROX%A (s; xp,.ev) is a procedure that outputs an approximate solution x

such that E x = x* = proxp , (s) = arg mingex F(x), and

o 1 . P 26
E”x —x || SE (/\ foet (S) + V$*(1‘prev)) + N

(32)

Algorithm 8: RECAPP with Additive Error

Input: F : X — R, APPROXPROX’, UNBIASEDPROX’

Parameter:)\, R > 0, iteration number 7', ag = 1

Initialize x¢ < WARMSTARTF,)\(RQ) > To satisfy E F'(xo) — F(x*)
fort =0to7T —1do

Update parameters a1 € [0, 1] to satisfy

moR W N =

1 1 _ 1

2
Qi 41 [£27

6 St < (1 — Oét+1) Ty + Q41U

< AR?

7 Op41 ﬁaf)\lﬁ > Additive error decreases as O(1/t) to ensure convergence

5
8 Ty41 < APPROXPROX ;! (8¢5 8¢, 2¢)

10 Vip1 & Projy (vt - atlﬂ (s¢ — 5t+1))

n Return: o1

12 function MLMC‘g(F7 A, 8y Tprev)

13 Jp — 2735

u | 20« APPROXPROX?/\(S; 8, Tprev)

1s | Sample random epoch number J ~ 1+ Geom (3) € {2,3,---}
16 for j =1to Jdo

(Sj — %(2‘,1

29 ¢ APPROXPROXY , (s; 20—V, 2U~ D)

v | Return: (V) 4+ 27 (2(7) — z(=1)

9 Tyl < UNBIASEDPROXiff\1 (8¢5 x¢) > We implement this using MLMC®*+1 (F, X, s¢, 1)

Algorithm 9: Restarted RECAPP with Additive Error

1 Input: F': X — R, RECAPP with additive error
2 Parameter: A\, R > 0, iteration number 7', epoch number K, oy = 1

3 Initialize (9 « WARMSTARTF,)\(RQ) > To satisfy B F(zo) — F(2*) < AR?

sfork=0to K —1do

> Halving error to true optimizer and recurse

5 Run RECAPP (Algorithm 8) on F' with g = vy = z*) without WARMSTART (Line 3) for T iterations
s Return: z(%)

With the new definitions of §-additive proximal oracles and J-additive unbiased proximal point estimators, we can formally

give the guarantee of Algorithm 8 in Proposition E.3.

Proposition E.3 (RECAPP with additive error). For any convex function F: X — R, parameters A, R > 0, RECAPP
with additive error (Algorithm 8) finds x such that EF (x) — ming cx F(2') < € within O (R\//\/e) iterations. The

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

algorithm uses one call to WARMSTART, and an expectation of oracle complexity

Z Z %N (APPROXPROX, F, \,27%74,) |,

te[T] j=0
where we let 6; = 7703 AR? = Q(e?/(AR?)), and use N'(APPROXPROX, F, A, §) to denote some oracle complexity for
calling each APPROXPROXR)\.

For any ~-strongly-convex F: X — R, parameters A\, R > 0, restarted RECAPP (Algorithm 9) finds x such that
EF(z) — ming cx F(2') < €, using one call to WARMSTART and an expectation of oracle complexity

O Z ZZ J\/(APPROXPROX F,\,27%5¢) ,

ke[K]te[T] j=0

where K = O(log LR?/¢), T = O («/)\/7), and 5§k) = s @ AR? = Q (552 AR?) for t € [T],k € [K].

To prove the correctness of Proposition E.3, we first show in Lemma E.4 that MLMC® implements an UNBIASEDPROX’
for given F', A > 0, with the corresponding inputs. In comparison with the § = 0 case presented in Section 3, the key
difference is we need to ensure when we sample a large index j (with tiny probability), the algorithm calls APPROXPROX%/
to smaller additive error d; =~ ©(477) - §, so as to ensure it contributes in total a finite O(J) additive term in the variance.

Lemma E4 (MLMC turns APPROXPROX®(®) into UNBIASEDPROX®). Given comvex F: X — R, A > 0,
S, Tprey € X, function MLMCé(F,)\,s,xpreV) in Algorithm 8 implements UNBIASEDPROX%,,\(S;xprev). De-
note N(APPROXPROX,F,A,2_36) as some oracle complexity for calling each APPROXPROX%}A, then the oracle
complexiry N for UNBIASEDPROXY, is EN' = N (APPROXPROX, F, \,2735) + N (APPROXPROX, F, A, 27°6) +
Py N (APPROXPROX, F, \, 2~ (3+21)¢).

j=2 23 272
Proof of Lemma E.4. Let x* = arg min,¢ y F2(x), by definition of APPROXPROX’, we have

()\V (xinit) + V;: (mprev)) + é

A
for j =0, E [2 H:c(o) —z* 3

1
8

2} <E F> (x“’)) ~_FMa¥) <

A .
for 7 >1, E [2 Hx(” —z*

2} <§> EVE (:c(j)) <EF} (x@) — F} (a¥)
5

< % E (W (2970) +VE@U™)) +

)
2. 45+1

E(F(«970) - R @") +

F) o (-
E (Vx*b (20 1))) +
é
2. 45+1
(i) 1\t . F ’ 1
< 3 (AVie (@init) + Ve (Tprev)) +0 z:o 2.8 . 4itl |’
Jj'=

where we use (i) the optimality of z* which implies (VF (z*),x —2*) > 0 for any x € X, (i7) the equality that
la—b|* +1b—c|* —2(c—b,a—b) = %, (iii) the induction over j.

In conclusion, this shows that Ex(¥) — z* as J — 00, and thus by choice of p; = 1 / 23—1 for 7 > 2, the algorithm returns a
point x satisfying

Ex=E; [az(l) + 27 () — x(‘]fl))} = lim 29 = 2*

j—oo

which shows the output is an unbiased estimator of x*.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

For the variance, we have by a same calculation as in the proof of Proposition 3.4,

2 2 <9)
2.9k H (G) _ p*
}4—;2 [x z

E qu) 1 9J (xw _ x(J—l)) o

5
<3E {H“"” d

]
2 (5 /1\> <9/8 (1}’ . r 56 95 =5 1
HUOK 27 (3)) 0) 4 vE o) + g5+ 5 231y

1
ﬁ (AV;* (xinit) + Vzlj (xprev)) +

which proves the bound as claimed.

26
)\)

IN

The query complexity is in expectation

00 7

1 -/

_ —(3425") _ -3

EN = E 2—2%1 E ON (APPROXPROX,F,)\,Q J 6) = N (APPROXPROX, F, \,27%6)
Jj= j'=

1
202

+ N (APPROXPROX, F, \,27%6) +

i

I|
N

N (APPROXPROX, F)\, 2‘(3+2j>§> .
J

O

This shows that we can implement UNBIASEDPROX’ using APPROXPROX‘S, similar to the case without additive error ¢, as
in Proposition 3.4. Now we are ready to provide a complete proof of Proposition E.3, which shows the correctness and
complexity of Algorithm 8.

Proof of Proposition E.3. First of all we recall the notation of filtration F; = o(z1,v1,...,2,0), TF =
argmingex F2 (), g1 = A (se — @341), vfy1 = v¢ — (uq1) " *(s¢ — 274,) and &’ as the minimizer of F : X — R
(see Appendix B for more detailed discussion).

The majority of the proof still lies in showing the potential decreasing lemma as in Proposition B.1, while also taking into
account the extra additive error § when implementing oracles APPROXPROX® and UNBIASEDPROX’ .

Following (12), we recall the inequality that

1 " Al 2
2 (F (i) = F (2') + 5 [
t+1
1 / A 12 A e 1 F
< OT?(F(M) = F@)) + 5 llve —2lI” - o2, Ve, (se) — OT%VI;H (1) - (33)

Thus, by definition of x4 1, d;11 and APPROXPROX® we have that
A 2
E[F (x441) | F] S E|F (z441) +) [Ze41 — sell™ | Fo

* 7 e 5
< F(274) + g \Var,, (50) + ﬂvfgﬂ(%) + 0141

+1

Similarly to (18) and its analysis, we also have by definition of UNBIASEDPROX® that

7|
Ay, A _ .
e EE[HM — ot | 7]

2 A (AV;Z+1 (St) VII;:Jrl (xt) + 25t+1)

<5 ot = o) +
= 2 Mt 202, 4 4\ A

A
E|5 o - o1

A
ft:| = ||y - :v’||2 +E[2 o1 — ”t*+1H2

IN

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Plugging these back into (33), we conclude that

1)\
—— (E[F (@141) | Fi] = F () + SE[loesa = /| | Fi]
SN
1 A 2 | 20141
< 5 (F(a) = F(&) + 5 loe = 2" +
af 2 afyy
Recursively applying this bound for ¢t = 0,1,--- , 7" — 1 and together with the WARMSTART guarantee we have
1) A 2
5 (EIF (v01) | Fi) = F () + SE[Jlven = ') |]
T
1 A 26
< — (F(ao) = F(&) + 5 v — I + 3 =2
0 of
te[T)
1
— @ (]E[F (II}'t+1) | .Ft] — (<)\R2 + Z < 4)\R2

te[T)
= (E[F (z441) | Ft] = F (2)) < e,
where we use the choice of §; = 1 tg oy 2\R? and that Zte[T % < 72 /6 < 2. This shows the correctness of the algorithm.

The algorithm uses O(1) call to WARMSTART. At each iteration ¢ + 1, by guarantee of implementing UNBIASEDPROX’
using MLMC in Lemma E.4, we have the query complexity with respect to APPROXPROX? is in expectation

N (APPROXPROX, F, \, 6;11) + N (APPROXPROX, F, A, 27 64,1) + N (APPROXPROX, F, A, 27 7541)

1 (349 < q L
+Z; 2].72/\/ (APPROXPROX,F, A, 27 y)5t+1) =0 E 0 g./\/’ (APPROXPROX, F, \,27%6,1)
= <

which implies the total oracle complexity through calling APPROXPROX’ by summing over ¢t =0,1,--- ;T — 1.

The strongly-convex case follows by a similar analysis as in the proof of Proposition 3.6. We show by in duction

E [F (+®) - P + % |o® - &

2
] < Qk “AR?, fork =0,1,--- K, (34)

1)

taking into account that by choice of 5§ 41 »the contribution of the additive errors is always bounded by 5z 2= AR?. This choice

also implies the expected oracle complexity due to calling APPROXPROX ¢ dlfferently at each epoch and iteration. [

The additive errors allowed by this framework are helpful to the task of minimizing the max-structured convex objective
F(z) = maxyecy f(z,y). This is because we can then use accelerated gradient descent to solve max, f(x,y) for the
best-response oracle needed in Line 3 to high accuracy before calling calling Algorithm 5 , and show that MIRRORPROX
formally implements a AEPROXPROX‘S. The resulting gradient complexity has an extra logarithmic term on 4, but only
shows up on a low-order O(y/L/p) terms.

Corollary E.5 (Implementation of APPROXPROX’ for minimizing max-structured function). Given the minimization of
max-structured problem in (6), a centering point s, points Tinit, Tprev, ORE can use accelerated gradient descent to solve to
additive error ¢ for (3) and use Lemma 5.1 to implement the procedure APPROXPROXJF#L(S; Tinit, xprev). It uses a total of

(L/u ++/L/plog(L(R) /5)) gradient queries.

Proof of Corollary E.5. Given the initialization z;,;;, we first use accelerated gradient descent Nesterov (1983) to find
a d-approximate solution of maxycy f (xprev, y) (which we set to be yi,it). We recall the definition of yT e =
arg maxycy f(Zprev,y) and thus

nyohm (y;;rev> < f(xpreV7 Yinit) — f(-rprevy yg;rev) <9d (35)

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

using O(y/L/ulog(L(R')?/§)) gradient queries.

Then, we invoke MIRRORPROX with ¢(z,y) = f(z,y) + § ||z — s||?, initial point Zini¢, Yinit, and number of iterations

T = S4E+1) The rest of the proof is essentially the same as in Lemma 5.1, with the only exception that when bounding
RHS of (28), we note that by choice of yi,;; and the error bound in (35), it becomes

Hre
§Vyinit (y) — MV br

y-zprev

)+ 1V (88) < 7 (e 880,) = F @prens ™) + 0 S VE (i) 4.
Plugging this new bound with additive error ©(J) back in (28), we obtain

Fi (o) — FI' (a%) < Love (a%) +

— 16 Tinit Vx}: (xpreV) + 6

([LVJ:* (-Tmlt) + Vx* (xplev)) + 0.

Oo\>—~

8

Thus the procedure implements APPROXPROX%’ ;1(85 Tinit, Tprev). The total gradient complexity is the complexity in
MIRRORPROX same as Lemma 5.2 plus the extra complexity in implementing O (-) using accelerated gradient descent,

which sums up to O (L/u +v/L/plog (L(R')? /5)) as claimed. O

Theorem 5.4 (RECAPP for minimizing the max-structured problem, without (952'). Under the same setting of Theo-
rem 5.3, Algorithm 8 with accelerated gradient descent to implement Ob'(-) outputs a primal e-approximate solution x

and has expected gradient query complexity ofO(L}R L log ,“‘R + R\/710g R+R) . Further, if F' is ~y-strongly-

convex, restarted RECAPP (Algorithm 9) finds an e- approxzmate solution and has expected gradient query complexity of

O(ﬁ%log<L§2)+ﬁlog([£) \/>log (ML(RJrR))10g (L?z))

Proof of Theorem 5.4. For the non-strongly-convex case, 7' = O (R\/ w/ e), the correctness of the algorithm fol-

lows directly from the non-strongly-convex case of Proposition E.3, together with Corollary E.5 and Lemma 5.2.
For the query complexity, calling WARMSTART-MINIMAX to implement the procedure of WARMSTART to puR? er-

ror requires O (L/ wlog(L/u) ++/L/plog (R'/R)) gradient queries by Lemma 5.2. Following Proposition E.3,
denote AN (APPROXPROX, F, i1, 6) to be the gradient complexity of implementing APPROXPROX%M: we have
N (APPROXPROX, F, i1,6) = O (L/ w~+/L/plog(L(R) /5)) by Corollary E.5. Consequently, the total gradient

complexity for implementing all APPROXPROX? is in expectation

o) / .
33" N (APPROXPROX, F 1, 278,) | = O (Wﬁ (L . \F og (L<R+R>)>)
te[T] =0 e\n \u ¢

L LR2 / 2
o< R R10g<L(R+R) >>
Ve € €

where we use 6, > Q (FrpuR?) = Q(e/v/T) and choice of T = O (R\/u/e).

Summing the gradient query complexity from both WARMSTART and APPROXPROX’ procedures give the final complexity.

For the ~-strongly-convex case, the correctness of the algorithm follows directly from the strongly-convex case of Propo-
sition E.3, together with Corollary E.5 and Lemma 5.2. The query complexity for calling one WARMSTART-MINIMAX
remains unchanged. Following Proposition E.3, denote A/ (APPROXPROX, F), 1, §) to be the gradient complexity of imple-

menting APPROXPROX%H: we have A (APPROXPROX, F, \,8) = O (L/u ++/L/plog(L(R) /5)) by Corollary E.5.

RECAPP: Crafting a More Efficient Catalyst for Convex Optimization

Consequently, the total gradient complexity for implementing all APPROXPROX? is in expectation

oy T i%j\f (APPROXPROX,F,M,2_2'j5§k))

ke[K]te[T] 7=0

oy () (5 s (215))
=o0(Jien (14) o (I (1))

where we use 5t(k) > Q (3x-7r1R?) and choice of K and 7.

F Discussion

This paper proposes an improvement of the APPA/Catalyst acceleration framework, providing an efficiently attainable
Relaxed Error Criterion for the Accelerated Prox Point method (RECAPP) that eliminates logarithmic complexity terms
from previous result while maintaining the elegant black-box structure of APPA/Catalyst.

The main conceptual drawback of our proposed framework (beyond its reliance on randomization) is that efficiently attaining
our relaxed error criterion requires a certain degree of problem-specific analysis as well as careful subproblem solver
initialization. In contrast, APPA/Catalyst rely on more standard and readily available linear convergence guarantees (which
of course also suffice for RECAPP).

Nevertheless, we believe there are many more situations where efficiently meeting the relaxed criterion is possible. These
include variance reduction for min-max problems, smooth min-max problems which are (strongly-)concave in y but not
convex in z, and problems amenable to coordinate methods. All of these are settings where APPA/Catalyst is effective (Yang
et al., 2020; Frostig et al., 2015; Lin et al., 2017) and our approach can likely be provably better.

Moreover, even when proving improved rates is difficult, APPROXPROX can still serve as an improved stopping criterion.
This motivates further research into practical variants of APPROXPROX that depend only on observable quantities (rather
than, e.g. the distance to the true proximal point).

