
Datamodels: Predicting Predictions from Training Data

Andrew Ilyas * 1 Sung Min Park * 1 Logan Engstrom * 1 Guillaume Leclerc 1 Aleksander Mądry 1

Abstract

We present a conceptual framework, datamodel-

ing, for analyzing the behavior of a model class
in terms of the training data. For any fixed “tar-
get” example x, training set S, and learning al-
gorithm, a datamodel is a parameterized func-
tion 2S → R that for any subset of S′ ⊂ S—
using only information about which examples of
S are contained in S′—predicts the outcome of
training a model on S′ and evaluating on x. De-
spite the complexity of the underlying process
that is being approximated (e.g. end-to-end train-
ing and evaluation of deep neural networks), we
show that even simple linear datamodels suc-
cessfully predict model outputs. We then demon-
strate that datamodels give rise to a variety of ap-
plications, such as: accurately predicting the ef-
fect of dataset counterfactuals; identifying brittle
predictions; finding semantically similar exam-
ples; quantifying train-test leakage; and embed-
ding data into a well-behaved and feature-rich
representation space.

1. Introduction and Setup

What kinds of biases does my (machine learning) system

exhibit? On what subpopulations does it perform well (or

poorly)? A recent body of work suggests that the answers
to these questions lie within both the learning algorithm and
the training data used. However, it is often difficult to un-
derstand how these two factors combine to yield model pre-
dictions. In this work, we present datamodeling—a frame-
work for tackling this issue by forming an explicit model
for predictions in terms of the training data.

Setting. Consider a typical machine learning setup, start-
ing with a training set S comprising d input-label pairs.
The focal point of this setup is a learning algorithm A that
takes in such a training set of input-label pairs, and out-

*Equal contribution 1MIT. Correspondence to: Andrew Ilyas
<ailyas@mit.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

puts a trained model. This learning algorithm need not be
deterministic—for example, A might encode the process of
training a neural network from random initialization.

Now, consider a fixed target example x and define

fA(x;S) := the outcome of training a model on S
using A, and evaluating it on the input x, (1)

where we leave “outcome” intentionally broad to capture a
variety of settings that one might care about. For example,
fA(x;S) may be the cross-entropy loss of a classifier on
x, or the error of a regression model on x. The potential
stochasticity of A means fA(x;S) is a random variable.

Goal. Broadly, we aim to understand how the training ex-
amples in S combine through the learning algorithm A to
yield fA(x;S) (again, for the specific example x that we
are examining). Towards this goal, we will leverage a clas-
sic technique for studying complex black-box functions:
surrogate modeling (Sacks et al., 1989). In surrogate mod-
eling, one replaces complex functions with inexact but sig-
nificantly easier-to-analyze approximations, then uses the
latter to shed light on the behavior of the original functions.

In our setting, the complex black-box function is fA(x; ·).
We thus aim to find a simple surrogate function g(S′)
whose output roughly matches fA(x;S

′) for a variety of
training sets S′ (but again, for a fixed example x). Achiev-
ing this goal would reduce the challenge of scrutinizing
fA(x; ·)—and more generally, the map from training data
to predictions as mediated by learning algorithm A—to the
(hopefully easier) task of analyzing g.

Datamodeling. By parameterizing the surrogate function
g (as gθ, for a parameter vector θ), we transform the chal-
lenge of constructing a surrogate into a supervised learning

problem. In this problem, the “training examples” are sub-
sets S′ ⊂ S of the original task’s training set S, and the
corresponding “labels” are given by fA(x;S

′) (which we
can compute by training a new model on S′ with algorithm
A, and evaluating on x). Our goal is then to fit a parametric
function gθ mapping the former to the latter.

We now formalize this as datamodeling—the framework
that forms the basis of our work. In this framework, we first
fix a distribution over subsets that we will use to collect the

Datamodels: Predicting Predictions from Training Data

“training data” for gθ,

DS := a fixed distribution over subsets of S (2)

and then use DS to collect a datamodel training set of such
training data, i.e., a collection of pairs

{(S1, fA(x;S1)), . . . , (Sm, fA(x;Sm))} ,

where Si ∼ DS , and again fA(x;Si) is the result of train-
ing a model on Si and evaluating on x (cf. (1)).

In theory, gθ can be any map that takes as input subsets
of the training set, and returns estimates of fA(x; ·). In
this work, however, we greatly simplify matters by ignor-
ing the actual contents of the subsets Si, and instead fo-
cusing solely on the presence of each training example of
S within Si. In particular, we consider the characteristic

vector corresponding to each Si,

1Si
∈ {0, 1}d such that (1Si

)j =

{
1 if zj ∈ Si

0 otherwise,
(3)

a vector that indicates which elements of the original train-
ing set S are present in a given subset Si. We then define a
datamodel for a given input x as a function

gθ : {0, 1}d → R, where

θ = argmin
w

1

m

m∑

i=1

L (gw(1Si
), fA(x;Si)) , (4)

and L(·, ·) is a fixed loss function (e.g., squared-error).
As intended, (4) places datamodels squarely within the
realm of supervised learning: e.g., we can validate a
given datamodel by sampling new subset-output pairs
{(Si, fA(x;Si))} and computing loss. For completeness,
we restate the entire framework as Def. 1.

Definition 1 (Datamodeling). Consider a fixed train-

ing set S, a learning algorithm A, a target example

x, and a distribution DS over subsets of S. For any

set S′ ⊂ S, let fA(x;S
′) be the (stochastic) output

of training a model on S′ using A, and evaluating

on x. A datamodel for x is a parametric function gθ
optimized to predict fA(x;Si) from training subsets

Si ∼ DS , i.e.,

gθ : {0, 1}|S| → R, where

θ = argmin
w

Ê
(m)
Si∼DS

[L (gw(1Si
), fA(x;Si))] ,

1Si
∈ {0, 1}|S| is the characteristic vector of Si in

S (see (3)), L(·, ·) is a loss function, and Ê
(m) is an

m-sample empirical estimate of the expectation.

We pause here to highlight two critical (yet somewhat sub-
tle) properties of the datamodeling framework:

Model classes, not models: Datamodeling focuses on the
entire distribution of models induced by the algorithm A,
rather than a specific model. Recent work suggests this
distinction is particularly significant for modern learning
algorithms (e.g., neural networks), as models can exhibit
drastically different behavior depending on only random
seed used during training (Nakkiran & Bansal, 2020; Jiang
et al., 2021; D’Amour et al., 2020; Zhong et al., 2021).

Datamodels are target example-specific: A datamodel gθ
is selected to predict model outputs on a specific but arbi-
trary target example x. This x might be an example from
the test set, a synthetically generated example, or even an
example from the training set S itself. As a result, we will
often work with collections of datamodels that correspond
to given sets of target examples: it turns out (§ 3.1) that,
as long as the training set S is fixed, computing a collec-
tion of datamodels simultaneously is not much harder than
computing a single one.

1.1. Roadmap and contributions

The key contribution of our work is the datamodeling

framework described above, which allows us to analyze the
behavior of a machine learning algorithm A in terms of the
training data. In the remainder of this work, we show how
to instantiate, implement, and apply this framework.

Specifically, in Section 2, we consider a concrete instantia-
tion of datamodeling in which the map gθ is a linear func-
tion. In Section 3, we develop the remaining machinery
required to apply this instantiation to deep neural networks
trained on standard image datasets. Then, in the rest of the
paper, we find that:

Datamodels successfully predict model outputs (§ 3.2):
despite their simplicity, datamodels yield predictions that
match expected model outputs on new sets S′ drawn from
the same distribution DS . (E.g., the Pearson correlation
between predicted and ground-truth outputs is r > 0.99.)

Datamodels successfully predict counterfactuals (§ 4):
predictions correlate with model outputs even on out-of-
distribution training subsets (Figure 4 and Appendix E), al-
lowing us to estimate the causal effect of removing training
images on a given test prediction. Leveraging this ability,
we find that for 50% of CIFAR-10 test images, predictions

can be made incorrect by removing (i.e., not even mislabel-

ing) less than 200 target-specific training points (i.e., 4%

of total training set size).

Datamodel weights encode train-test similarity (§ 5.1):
the highest-magnitude datamodel weights for a given target
example tend to correspond to similar training examples,
which we can use to identify (significant) train-test leakage.

Datamodels yield a well-behaved feature embedding

Datamodels: Predicting Predictions from Training Data

(§ 5.2): we can view the parameter θ of a given datamodel
gθ as a feature embedding of the corresponding target ex-
ample x into R

d. We find that this embedding induces a
well-behaved representation space that has significant ad-
vantages over standard embeddings from the penultimate
layer of a fixed network.

More broadly, datamodels turn out to be a versatile tool for
understanding how learners leverage their training data.

2. Constructing (Linear) Datamodels

As described in Section 1, to build a datamodel for a spe-
cific target example x, we: (a) pick a parameterized class
of functions gθ; (b) sample a collection of subsets Si ⊂ S
from a fixed training set according to a distribution DS ; (c)

for each subset Si, train a model using algorithm A, eval-
uate the model on target input x using the relevant metric
(e.g., loss); collect the resulting pair (1Si

, fA(x;Si)); (d)

split the collected dataset of subset-output pairs into a data-
model training set of size m, a validation set of size mval,
and a test set of size mtest; (e) estimate parameters θ by
fitting gθ on subset-output pairs, i.e., by minimizing

1

m

m∑

i=1

L (gθ(1Si
), fA(x;Si))

over the collected datamodel training set, and use the vali-
dation set to perform model selection.

We now explicitly instantiate this framework, with the goal
of understanding the predictions of (deep) classification

models (we discuss the precise experimental setup in the
following section). To this end, we revisit the steps (a-

e) above, and consider each relevant aspect—the sampling
distribution DS , the output function fA(x;S), the parame-
terized family gθ, and the loss function L(·, ·)—separately:

(a) What surrogate function gθ should we use? The first
design choice to make is that of the family of parameterized
surrogate functions gθ that we will optimize over. At first,
one might be tempted to use a complex family of functions
in the hope of avoiding misspecification error. After all,
gθ is meant to be a surrogate for the end-to-end training of
a deep classifier. In this work, however, we will instantiate
datamodeling by taking gθ(·) to be a simple linear mapping

gθ(1Si
) := θ⊤1Si

+ θ0, (5)

where we recall that 1Si
is the size-d characteristic vector

of Si within S (see (3)).

Remark 1. While we will allow gθ(·) to fit a bias term

as above, for notation convenience we omit θ0 and write

θ⊤1Si
to represent a datamodel prediction for the set Si.

(b) What distribution DS over training subsets do we

use? In step (a) of the estimation process above, we collect

a “datamodel training set” by sampling subsets Si ⊂ S
from a distribution DS . A reasonable first choice for DS—
and indeed, the one we consider for the remainder of this
work—is the distribution of random α-fraction subsets of
the training set. Formally, we set

DS = Uniform ({S′ ⊂ S : |S′| = αd}) (6)

This design choice reduces the problem of picking DS to
one of picking the subsampling fraction α ∈ (0, 1), a deci-
sion whose impact we explore in Appendix C. In practice,
we estimate datamodels for several choices of α, as it turns
out that the value of α corresponding to the most useful
datamodels can vary by setting.

(c) What outputs fA(x;S
′) should we track? Recall that

for any subset S′ ⊂ S of the training set S, fA(x;S′) is
intended to be a specific (potentially stochastic) function
representing the output of a model trained on S′ and eval-
uated on a target x. There are, however, several candidates
for fA(x;S′) based on which output we opt to track.

In the context of understanding classifiers, perhaps the sim-
plest such candidate is the correctness function (i.e., a
stochastic function that is 1 if the model trained on S′ is
correct on x, and 0 otherwise). However, while the cor-
rectness function may be a natural choice for fA(x;S′), it
ignores potentially valuable information about the model’s
confidence in a given decision.

A natural way to improve over our initial candidate would
thus be to use continuous output function, such as cross-
entropy loss or correct-label confidence. But which ex-
act function should we choose? In Appendix B, we use
a heuristic to guide our choice to the correct-class margin:

fA(x;S
′) := (logit for correct class)

− (highest incorrect logit). (7)

(e) What loss function L should we minimize? In step (e)
above, we are free to pick any estimation algorithm for θ.
This freedom of choice allows us to incorporate priors into
the datamodeling process. In particular, one might expect
that predictions on a given target example will not depend
on every training example. We can thus incorporate a cor-
responding sparsity prior by adding ℓ1 regularization, i.e.,
setting

θ = min
w∈Rd

1

m

m∑

i=1

(
w⊤

1Si
− fA(x;Si)

)2
+ λ‖w‖1, (8)

where we recall that d is the size of the original training set
S. We can use cross-validation to select the regularization
parameter λ for each specific target example x.

Datamodels: Predicting Predictions from Training Data

3. Predicting Outputs with Datamodels

We now demonstrate how datamodels can be applied in the
context of deep neural networks—specifically, we consider
deep image classifiers trained on two standard datasets:
CIFAR-10 (Krizhevsky, 2009) and Functional Map of the
World (FMoW) (Koh et al., 2020) (see Appendix A.1 for
more information on each dataset).

Goal. As discussed in Section 1, our goal is to construct a
collection of datamodels for each dataset, with each data-
model predicting the model-training outcomes for a spe-

cific target example. Thus, for both CIFAR and FMoW, we
fix a deep learning algorithm (architecture, hyperparams,
etc.; see Appendix A.2), and aim to estimate a datamodel
for each test set example and training set example. To this
end, we will obtain n = 10, 000 “test set datamodels” and
n = 50, 000 “training set datamodels” for CIFAR (each
being a linear model gθ parameterized by a vector θ ∈ R

d,
for d = 50, 000); as well as n = 3, 138 test set datamodels
and n = 21, 404 training set datamodels for FMoW (again,
parameterized by θ ∈ R

d where d = 21, 404).

3.1. Implementation details

Before applying datamodels to our two tasks of interest,
we address a few remaining technical aspects of datamodel
estimation:

Simultaneously estimating datamodels for a collection

of target examples. Rather than repeat the entire data-
model estimation process for each target example x of in-
terest separately, we can estimate datamodels for an en-
tire set of target examples simultaneously through model
reuse. Specifically, we train a large pool of models on sub-
sets Si ⊂ S sampled from the distribution DS , and use the
same models to compute outputs fA(x;Si) for each target
example x.

Collecting a (sufficiently large) datamodel training set.

Recent advances in fast neural network training (Page,
2018; Leclerc et al., 2022) allow us to train a wealth of
models on α-subsets of each training set very efficiently
(e.g., we can train 40,000 models/day on an 8×A100 GPU
machine; see Appendix A.3 for details). Table 1 summa-
rizes the models trained.

Estimating datamodels with LASSO. For both datasets
considered (CIFAR-10 and FMoW), we estimate datamod-
els using LASSO (8), yielding a datamodel gθi for each
example xi in the test and training sets.1 In Appendix D.2,
we discuss optimizing LASSO solvers for the scale of our
problem instances.

1Datamodels for the training set require a small modification.
See Appendix D.1.

Subset size (α)
Dataset 0.1 0.2 0.5 0.75

CIFAR-10 1,500,000 750,000 300,000 600,000
FMoW – 375,000 150,000 300,000

Table 1: The number of models (ResNet-9 for CIFAR and
ResNet-18 for FMoW) used to estimate datamodels for
each dataset. All models are trained from scratch using
optimized code (Leclerc et al., 2022). For example, each
α = 0.5 model on CIFAR-10 takes 17s to train (on a single
A100 GPU) to 90% accuracy.

3.2. Linear datamodels predict deep network training

We now assess the quality of the estimated datamodels in
terms of how well they predict model outputs on unseen

subsets (i.e., fresh samples from DS). We refer to this pro-
cess as on-distribution evaluation because we are interested
in subsets Si, sampled from the same distribution DS as the
datamodel training set, but not the exact ones used for esti-
mation. (In fact, recall in Section 2 we explicitly held out
mtest subset-output pairs for evaluation.)

We focus here on the collection of datamodels correspond-
ing to the CIFAR-10 test set, i.e., a set of linear data-
model parameters {θ1, . . . , θn} corresponding to exam-
ples {x1, . . . , xn} for n = 10, 000 (analogous results for
FMoW are in Appendix D.3). In Figure 1, aggregating over
both datamodels {gθj}

n
j=1 and heldout subsets {Si}

m
i=1,

we compare datamodel predictions θ⊤j 1Si
to expected true

model outputs E[fA(xj ;Si)] (which we estimate by train-
ing 100 models on the same subset Si and averaging their
output on xj). Our results show a near-perfect correspon-
dence between datamodel predictions and ground truth.
Thus, for a given target example x, we can accurately pre-
dict the outcome of “training a neural network on a random
training subset and computing correct-class margin on x”
(a process that involves hundreds of SGD steps on a non-
convex objective) as a simple linear function of the charac-
teristic vector of the subset.

Sample complexity. We next study the dependence of
estimation on the size of the datamodel training set m.
Specifically, we measure the on-distribution average mean-
squared error (MSE) of a group of datamodels {θi}ni=1 as

1

2n

n∑

j=1

(
ESi∼DS

[(
θ⊤j 1Si

− fA(xj ;Si)
)2])

. (9)

To evaluate (9), we replace the inner expectation with an
empirical average, again using a heldout set of samples that
was not used for estimation.

In Figure 2, we plot average MSE as a function of the num-
ber of trained models m. To put the results into context,

Datamodels: Predicting Predictions from Training Data

6. Related Work

Datamodels build on (and indeed, are inspired by) a wide
variety of prior work across machine learning and statis-
tics, and these fields also suggest natural ways of im-
proving or applying datamodels. We now briefly discuss
the works most related to datamodeling (with a focus on
disambiguation)—an extensive discussion of related work
is found in Appendix H, and future work in Appendix I.

Most related to our work is the notion of empirical influ-

ence (Hampel et al., 2011), which measures the impact of
removing a training point on a given parameter. As estimat-
ing influences naïvely is prohibitively expensive, Koh &
Liang (2017) apply first-order influence function approx-

imation to study both classical machine learning models
and penultimate-layer embeddings from neural networks.
However, their applicability to modern deep neural net-
works remain limited (Basu et al., 2021; Feldman & Zhang,
2020). A separate line of work proposes other approxi-
mation schemes for influences (Feldman & Zhang, 2020;
Ghorbani & Zou, 2019; Jia et al., 2019). In particular, Feld-
man & Zhang (2020) define a subsampling-based influence
estimator that trades off sample efficiency with accuracy
(w.r.t. the true empirical influence). We can interpret their
form of influence approximations as a specific instance of
datamodeling (as discussed at length in Appendix H.1);
however, our instantiation predicts model behavior signifi-
cantly better (Appendix J).

Finally, image-level surrogate models such as LIME
(Ribeiro et al., 2016; Lundberg & Lee, 2017; Sokol et al.,
2019), fundamentally differ from datamodels. In particu-
lar, LIME and its counterparts study how the predictions of
a fixed model changes as one varies the pixels of the target
example. In contrast, datamodels hold the target example

fixed, and instead study how the training data changes the
predictions of the learning algorithm.

7. Conclusion

We present datamodeling, a framework for framing the out-
put of model training as a simple function of the presence
of each training data point. We show that a simple linear
instantiation of datamodeling enables us to predict model
outputs accurately, and facilitates a variety of applications.

Datamodels: Predicting Predictions from Training Data

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communi-

cations Security, pp. 308–318. ACM, 2016.

Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., and
Carlsson, S. Factors of transferability for a generic con-
vnet representation. IEEE transactions on pattern anal-

ysis and machine intelligence, 2015.

Bagdasaryan, E., Poursaeed, O., and Shmatikov, V. Differ-
ential privacy has disparate impact on model accuracy.
In Neural Information Processing Systems (NeurIPS),
2019.

Bansal, Y., Nakkiran, P., and Barak, B. Revisiting model
stitching to compare neural representations. In Neural

Information Processing Systems (NeurIPS), 2021.

Bartlett, P. L., Montanari, A., and Rakhlin, A. Deep
learning: a statistical viewpoint. In arXiv preprint

arXiv:2103.09177, 2021.

Barz, B. and Denzler, J. Do we train on test data? purging
cifar of near-duplicates. In Journal of Imaging, 2020.

Basu, S., Pope, P., and Feizi, S. Influence functions in
deep learning are fragile. In International Conference

on Learning Representations (ICLR), 2021.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira,
F. Analysis of representations for domain adaptation.
In Neural Information Processing Systems (NeurIPS),
2007.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. In IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,
2013.

Bresler, G. and Nagaraj, D. A corrective view of neural
networks: Representation, memorization and learning.
In Conference on Learning Theory (COLT), 2020.

Broderick, T., Giordano, R., and Meager, R. An au-
tomatic finite-sample robustness metric: Can dropping
a little data change conclusions? In Arxiv preprint

arXiv:2011.14999, 2021.

Brown, G., Bun, M., Feldman, V., Smith, A., and Talwar,
K. When is memorization of irrelevant training data nec-
essary for high-accuracy learning? In Proceedings of

the 53rd Annual ACM SIGACT Symposium on Theory of

Computing, 2021.

Carlini, N., Liu, C., Kos, J., Erlingsson, Ú., and Song, D.
The secret sharer: Measuring unintended neural network
memorization & extracting secrets. In USENIX Security

Symposium, 2019.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Er-
lingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium

(USENIX Security 21), 2021.

Carter, S., Armstrong, Z., Schubert, L., Johnson, I., and
Olah, C. Activation atlas. Distill, 2019.

Charpiat, G., Girard, N., Felardos, L., and Tarabalka, Y.
Input similarity from the neural network perspective.
In Neural Information Processing Systems (NeurIPS),
2019.

Chatterjee, S. Learning and memorization. In Proceedings

of the 35th International Conference on Machine Learn-

ing, 2018.

Christie, G., Fendley, N., Wilson, J., and Mukherjee, R.
Functional map of the world. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 6 2018.

D’Amour, A., Heller, K. A., Moldovan, D., Adlam, B., Ali-
panahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein,
J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou,
S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y.,
McLean, C. Y., Mincu, D., Mitani, A., Montanari, A.,
Nado, Z., Natarajan, V., Nielson, C., Osborne, T. F., Ra-
man, R., Ramasamy, K., Sayres, R., Schrouff, J., Senevi-
ratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymy-
rov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T.,
Zhai, X., and Sculley, D. Underspecification presents
challenges for credibility in modern machine learning.
In Arxiv preprint arXiv:2011.03395, 2020.

Daskalakis, C., Dikkala, N., and Panageas, I. Regression
from dependent observations. In Proceedings of the 51st

Annual ACM SIGACT Symposium on Theory of Comput-

ing, pp. 881–889, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. 2019.

DeVries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. In arXiv

preprint arXiv:1708.04552, 2017.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In Annual International Conference

on the Theory and Applications of Cryptographic Tech-

niques, 2006.

Datamodels: Predicting Predictions from Training Data

Eberhardt, F. and Scheines, R. Interventions and causal
inference. In Philosophy of Science, 2007.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D.,
Tran, B., and Madry, A. Adversarial robustness as
a prior for learned representations. In ArXiv preprint

arXiv:1906.00945, 2019.

Feldman, V. Does learning require memorization? a short
tale about a long tail. In Symposium on Theory of Com-

puting (STOC), 2019.

Feldman, V. and Zhang, C. What neural networks memo-
rize and why: Discovering the long tail via influence es-
timation. In Advances in Neural Information Processing

Systems (NeurIPS), volume 33, pp. 2881–2891, 2020.

Friedman, J., Hastie, T., and Tibshirani, R. Regulariza-
tion paths for generalized linear models via coordinate
descent. Journal of statistical software, 2010.

Gazagnadou, N., Gower, R. M., and Salmon, J. Optimal
mini-batch and step sizes for saga. In International Con-

ference on Machine Learning (ICML), 2019.

Ghorbani, A. and Zou, J. Data shapley: Equitable valua-
tion of data for machine learning. In International Con-

ference on Machine Learning (ICML), 2019.

Guérin, J., Gibaru, O., Thiery, S., and Nyiri, E. CNN fea-
tures are also great at unsupervised classification. In
Arxiv preprint arXiv:1707.01700, 2017.

Guyon, I. and Elisseeff, A. An introduction to variable
and feature selection. In Journal of Machine Learning

Research (JMLR), 2003.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Sta-
hel, W. A. Robust statistics: the approach based on influ-

ence functions, volume 196. John Wiley & Sons, 2011.

Hanawa, K., Yokoi, S., Hara, S., and Inui, K. Evaluation of
similarity-based explanations. In International Confer-

ence on Learning Representations (ICLR), 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

Hooker, S., Courville, A., Dauphin, Y., and Frome, A. Se-
lective brain damage: Measuring the disparate impact
of model pruning. In arXiv preprint arXiv:1911.05248,
2019.

Huang, J., Zhang, T., and Metaxas, D. Learning with struc-
tured sparsity. In Journal of Machine Learning Research

(JMLR), 2011.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J. To-
wards efficient data valuation based on the shapley value.
In Proceedings of the Twenty-Second International Con-

ference on Artificial Intelligence and Statistics, 2019.

Jiang, Y., Nagarajan, V., Baek, C., and Kolter, J. Z. As-
sessing generalization of sgd via disagreement. In Arxiv

preprint arXiv:2106.13799, 2021.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Confer-

ence on Machine Learning, 2017.

Koh, P. W., Ang, K.-S., Teo, H. H., and Liang, P. On
the accuracy of influence functions for measuring group
effects. In Neural Information Processing Systems

(NeurIPS), 2019.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Beery, S., et al. Wilds: A benchmark of in-the-wild
distribution shifts. arXiv preprint arXiv:2012.07421,
2020.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Simi-
larity of neural network representations revisited. In Pro-

ceedings of the 36th International Conference on Ma-

chine Learning (ICML), 2019.

Krizhevsky, A. Learning multiple layers of features from
tiny images. In Technical report, 2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Neural Information Processing Systems

(NeurIPS), 2017.

Leclerc, G., Salman, H., Ilyas, A., Vemprala, S., Engstrom,
L., Vineet, V., Xiao, K., Zhang, P., Santurkar, S., Yang,
G., et al. 3db: A framework for debugging computer vi-
sion models. In arXiv preprint arXiv:2106.03805, 2021.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman,
H., and Madry, A. ffcv. https://github.com/

libffcv/ffcv/, 2022.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. In Arxiv preprint

arXiv:2107.06499, 2021.

Li, T., Levina, E., and Zhu, J. Prediction models for
network-linked data. In The Annals of Applied Statistics,
2019.

Lundberg, S. and Lee, S.-I. A unified approach to interpret-
ing model predictions. In Neural Information Processing

Systems (NeurIPS), 2017.

Datamodels: Predicting Predictions from Training Data

Mania, H., Miller, J., Schmidt, L., Hardt, M., and Recht, B.
Model similarity mitigates test set overuse. In Advances

in Neural Information Processing Systems (NeurIPS),
pp. 9993–10002, 2019.

Martinsson, P. and Tropp, J. Randomized numerical linear
algebra: foundations & algorithms. In arXiv preprint

arXiv:2002.01387, 2020.

Massias, M., Gramfort, A., and Salmon, J. Celer: a fast
solver for the lasso with dual extrapolation. In Proceed-

ings of the 35th International Conference on Machine

Learning (ICML), 2018.

Nakkiran, P. and Bansal, Y. Distributional generaliza-
tion: A new kind of generalization. In Arxiv preprint

arXiv:2009.08092, 2020.

Neal, R. Bayesian Learning for Neural Networks. Springer,
1996.

Olah, C., Mordvintsev, A., and Schubert, L. Feature visu-
alization. In Distill, 2017.

Owen, G. Multilinear extensions of games. In Management

Science, 1972.

Page, D. CIFAR-10 Fast. GitHub Repository, 10 2018.
URL https://github.com/davidcpage/

cifar10-fast.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. In Journal of

Machine Learning Research, volume 12, pp. 2825–2830,
2011.

Pezeshkpour, P., Jain, S., Wallace, B. C., and Singh, S. An
empirical comparison of instance attribution methods for
nlp. In North American Chapter of the Association for

Computational Linguistics (NAACL), 2021.

Pruthi, G., Liu, F., Sundararajan, M., and Kale, S. Estimat-
ing training data influence by tracing gradient descent.
In Neural Information Processing Systems (NeurIPS),
2020.

Ribeiro, M. T., Singh, S., and Guestrin, C. “why should
i trust you?”: Explaining the predictions of any classi-
fier. In International Conference on Knowledge Discov-

ery and Data Mining (KDD), 2016.

Robertson, T., Wright, F., and Dykstra, R. L. Order Re-

stricted Statistical Inference. Wiley Series in Probability
and Statistics, 1988.

Rosenfeld, E., Winston, E., Ravikumar, P., and Kolter, Z.
Certified robustness to label-flipping attacks via random-
ized smoothing. In International Conference on Machine

Learning (ICML), 2020.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P.
Design and analysis of computer experiments. In Statis-

tical Science, volume 4, pp. 409–423. Institute of Mathe-
matical Statistics, 1989. URL http://www.jstor.

org/stable/2245858.

Sagawa, S., Raghunathan, A., Koh, P. W., and Liang, P. An
investigation of why overparameterization exacerbates
spurious correlations. In International Conference on

Machine Learning, pp. 8346–8356. PMLR, 2020.

Sellam, T., Yadlowsky, S., Wei, J., Saphra, N., D’Amour,
A., Linzen, T., Bastings, J., Turc, I., Eisenstein, J., Das,
D., Tenney, I., and Pavlick, E. The multiberts: Bert re-
productions for robustness analysis. In Arxiv preprint

arXiv:2106.16163, 2021.

Shapley, L. Notes on the n-person game—ii: The value of
an n-person game, the rand corporation, the rand corpo-
ration. In Research Memorandum, 1951.

Shawe-Taylor, J. and Cristianini, N. Kernel Methods for

Pattern Analysis. Cambridge University Press, 2004.

Sokol, K., Hepburn, A., Santos-Rodriguez, R., and Flach,
P. blimey: Surrogate prediction explanations beyond
lime. In Arxiv preprint arXiv:1910.13016, 2019.

Spearman, C. The proof and measurement of association
between two things. In The American Journal of Psy-

chology, 1904.

Wang, T., Zeng, Y., Jin, M., and Jia, R. A unified frame-
work for task-driven data quality management. In ArXiv

preprint arXiv:2106.05484, 2021.

Wong, E., Santurkar, S., and Madry, A. Leveraging sparse
linear layers for debuggable deep networks. In Interna-

tional Conference on Machine Learning (ICML), 2021.

Xiao, H., Xiao, H., and Eckert, C. Adversarial label flips
attack on support vector machines. In European Confer-

ence on Artificial Intelligence (ECAI), 2012.

Yeh, C.-K., Kim, J. S., Yen, I. E. H., and Ravikumar, P.
Representer point selection for explaining deep neural
networks. In Neural Information Processing Systems

(NeurIPS), 2018.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. In International Conference on Learning

Representations (ICLR), 2016.

Datamodels: Predicting Predictions from Training Data

Zhang, C., Bengio, S., Hardt, M., Mozer, M. C., and Singer,
Y. Identity crisis: Memorization and generalization un-
der extreme overparameterization. In International Con-

ference on Learning Representations (ICLR), 2020.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and
Wang, O. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In Computer Vision and

Pattern Recognition (CVPR), 2018.

Zhong, R., Ghosh, D., Klein, D., and Steinhardt, J. Are
larger pretrained language models uniformly better?
Comparing performance at the instance level. In Find-

ings of the Association for Computational Linguistics

(Findings of ACL), 2021.

Datamodels: Predicting Predictions from Training Data

Appendices

A Experimental Setup 16

A.1 Datasets . 16

A.2 Models and hyperparameters . 16

A.3 Training infrastructure . 16

B Selecting Output Function to Model 18

C The Role of the Subsampling fraction α 19

C.1 Linear Regression Simulation . 19

D Regression 22

D.1 Computing datamodels for training examples. 22

D.2 Solver details . 22

D.3 Additional analyses . 23

E Datamodels for Counterfactual Prediction 24

E.1 General setup . 24

E.2 Baselines . 24

E.3 Removed sets for counterfactual evaluation . 25

E.4 Data support estimation . 25

E.5 Brittleness to mislabeling . 26

E.6 Comparing raw effect sizes . 27

E.7 Effect of training stochasticity . 27

E.8 Transfer to different architecture . 27

E.9 Stress testing . 28

E.10 Additional plots for different α values . 30

F Datamodels for Train-Test Similarity 32

F.1 Finding similar training examples . 32

F.2 Identifying train-test leakage . 39

G Datamodels as a Feature Embedding 43

G.1 Spectral clustering with datamodel embeddings . 43

G.2 Analyzing datamodel embeddings with PCA . 47

G.3 FMoW . 53

H Related work 54

H.1 Connecting datamodeling to empirical influence estimation . 54

H.2 Other connections . 54

I Future work 57

I.1 Improving datamodel estimation . 57

I.2 Studying generalization . 58

I.3 Applying datamodels . 58

J Connection between Influence Estimation and Datamodels 59

Datamodels: Predicting Predictions from Training Data

J.1 Proof of Lemma 1 . 59

J.2 Evaluating influence estimates as datamodels . 60

J.3 Testing Lemma 1 empirically . 60

J.4 View of empirical influences as a Taylor approximation . 63

Datamodels: Predicting Predictions from Training Data

A. Experimental Setup

A.1. Datasets

CIFAR-10. We use the standard CIFAR-10 dataset (Krizhevsky, 2009).

FMoW. FMoW (Christie et al., 2018) is a land use classification dataset based on satellite imagery. WILDS (Koh et al.,
2020) uses a subset of FMoW and repurposes it as a benchmark for out-of-distribution (OOD) generalization; we use same
the variant (presized to 224x224, single RGB image per example rather than a time sequence). We perform our analysis
only on the in-distribution train/test splits (e.g. overlapping years) as our focus is not on OOD settings. Also, we limit our
data to the year 2012. (These restrictions are only for convenience, and our framework can easily extend and scale to more
general settings.)

Properties of both datasets are summarized in Table A.1.

Table A.1: Properties of datasets used.

Dataset Classes Size (Train/Test) Input Dimensions

CIFAR-10 10 50,000/10,000 3× 32× 32
FMoW 62 21,404/3,138 3× 224× 224

A.2. Models and hyperparameters

CIFAR-10. We use a ResNet-9 variant from Kakao Brain3 optimized for fast training. The hyperparameters (Table A.2)
were chosen using a grid search. We use the standard batch SGD. For data augmentation, we use random 4px random crop
with reflection padding, random horizontal flip, and 8× 8 CutOut (DeVries & Taylor, 2017).

For counterfactual experiments with ResNet-18 (Figure E.6), we use the standard variant (He et al., 2016).

FMoW. We use the standard ResNet-18 architecture (He et al., 2016). The hyperparameters (Table A.2) were chosen using
a grid search, including over different optimizers (SGD, Adam) and learning rate schedules (step decay, cyclic, reduce on
plateau). As in Koh et al. (2020), we do not use any data augmentation. Unlike prior work, we do not initialize from a
pre-trained ImageNet model; while this results in lower accuracy, this allows us to focus on the role of the FMoW dataset
in isolation.

Table A.2: Hyperparameters for used model class.

Dataset Initial LR Batch Size Epochs Cyclic LR Peak Epoch Momentum Weight Decay

CIFAR-10 0.5 512 24 5 0.9 5e-4
FMoW 0.4 512 15 6 0.9 1e-3

Performance. In Table A.3, we show for each dataset the accuracies of the chosen model class (with its specific hyperpa-
rameters), across different values of α.

A.3. Training infrastructure

Computing resources. We train our models on a cluster of machines, each with 9 NVIDIA A100 GPUs and 96 CPU
cores. We also use half-precision to increase training speed.

Data loading. We use FFCV (Leclerc et al., 2022), which removes the data loading bottleneck for smaller models and
allows us achieve a throughput of over 5,000 CIFAR-10 models a day per GPU.

Data processing. Our datamodel estimation uses (the characteristic vectors) of training subsets and model outputs (mar-
gins) on train and test sets. Hence, we do not need to store any model checkpoints, as it suffices to store the training subset
and the model outputs after evaluating at the end of training. In particular, training subsets and model outputs can be stored

3https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

Datamodels: Predicting Predictions from Training Data

Table A.3: Accuracies for our chosen model classes on CIFAR-10 and FMoW across varying α.

Accuracy (%)
Subset size (α) CIFAR-10 FMoW

1.0 93.00 33.76
0.75 91.77 31.16
0.5 89.61 25.97
0.2 81.62 14.70
0.1 71.60 N/A

as m × n or m × d matrices, with one row for each model instance and one column for each train or test example. All
subsequent computations only require the above matrices.

Datamodels: Predicting Predictions from Training Data

Setup. We consider an underdetermined linear regression model operating on n data points with d binary features, i.e.,
xi ∈ {0, 1}d, yi ∈ R. Let X ∈ R

n×d and y ∈ R
n denote their matrix and vector counterparts. S is training set consisting

of these n samples, and we use an equally sized held-out set SV for evaluation.

The feature coordinates are distributed as Bernoulli variables of varying frequency:

xik ∼ Bernoulli(pk) for 1 ≤ i ≤ n, (11)

where pk ∈

{
1

10
,
2

10
,
3

10
,
4

10
,
5

10

}
for 1 ≤ k ≤ d.

Each feature k ∈ [d] naturally defines a subpopulation Sk, the group of training examples with feature k active, i.e.,
Sk := {xi ∈ S : xik = 1}. Features with lower (resp. higher) frequency pk are intended to capture more local (resp. more
global) effects.

The observed labels are generated according to a linear model y := Xw +N (0, ǫ), where w is the true parameter vector
and ǫ > 0 is a constant. We generate samples with d = 150, n = 125 and use linear regression6 to estimate w.

Now, to use datamodels to analyze the above “training process” of fitting a linear regression model, we will model the
output function fA(;) given by the prediction of the linear model at point xj when w is estimated with samples S ⊂ S,
e.g.

fA(xj ;S) = (X⊤
S (XSX

⊤
S)−1yS) · xj (12)

We generate m = 1, 000, 000 subsampled training subsets7 along with their evaluations, and use ordinary least squares
(OLS) to fit the datamodels. (Note that the use of OLS here is separate from the use of linear regression above as the
original model class.)

Analysis. Our hypothesis is that datamodels estimated with lower (resp. higher) α are better at detecting the effect of
features of higher (resp. lower) frequency. To test this, we estimate datamodels for the entire test set (stacking them into
a matrix Θ ∈ R

n×n, where Θ·,j is the datamodel for xj) . We do this for varying values of α ∈ (0, 1), and evaluate how
well each set of datamodels predicts the effects of features across different frequencies. First, to evaluate a datamodel on
some feature k, we can compare the following two quantities for different test examples xj ∈ SV :

(a) The actual effect of removing the subpopulation Sk on xj , i.e., fA(xj ;S)− fA(xj ;S \ Sk),

(b) The datamodel-predicted effect of removing Sk, i.e.,
∑

xi∈S Θij · 1{xi ∈ Sk}.

To quantify the predictiveness of the datamodel at frequency p, we compute the Pearson correlation between the above two
quantities over all features k with frequency p and all test examples. We repeat this evaluation varying p and the datamodel
(varying α). According to our intuition, for features k with lower (resp. higher) frequency pk, this correlation should be
maximized at higher (resp. lower) values of α, where the datamodels capture more local (resp. global) effects. Figure C.2
accurately reflects this intuition: more local (i.e., less frequent) features are best detected at higher α.

6As the system is underdetermined, we use the pseudoinverse of X to find the solution with the smallest norm.
7Large sample size make sampling error negligible.

Datamodels: Predicting Predictions from Training Data

D. Regression

D.1. Computing datamodels for training examples.

Recall that the target example x for which we estimate a datamodel can be arbitrary. In particular, x could itself be a
training example—indeed, as we mention above, our goal is to estimate a datamodel for every image in the FMoW and
CIFAR-10 test and training sets. When x is in the training set, however, we slightly alter the datamodel estimation objective
(8) to exclude training sets Si containing the target example:

θ = min
w∈Rd

1

m

m∑

i=1

1{x 6∈ Si} ·
(
w⊤

1Si
− fA(x;Si)

)2
+ λ‖w‖1. (13)

D.2. Solver details

As mentioned in Section 2, we construct datamodels by running ℓ1-regularized linear regression, predicting correct-class
margins from characteristic vectors, or masks, 1Si

. The resulting optimization problem is rather large: for example,
estimating datamodels for α = 50% requires running LASSO with a covariate matrix X of size 50, 000× 300, 000, which
corresponds to about 60GB of data; for α = 10%, datamodels this increases five folds as there are 1.5 million models.
Moreover, we need to solve up to 60, 000 regression problems (one datamodel each train / test example). The large-scale
nature of our estimation problem rules out off-the-shelf solutions such as scikit-learn (Pedregosa et al., 2011), GLMNet
(Friedman et al., 2010), or Celer (Massias et al., 2018), all of which either runs out of memory or does not terminate within
reasonable time.

Note that solving large linear systems efficiently is an area of active research ((Martinsson & Tropp, 2020)), and as a
result we anticipate that datamodel estimation could be significantly improved by applying techniques from numerical
optimization. In this paper, however, we take a rather simple approach based on the SAGA algorithm of (Gazagnadou
et al., 2019). Our starting point is the GPU-enabled implementation of Wong et al. (2021)—while this implementation
terminated (unlike the CPU-based off-the-shelf solutions), the regressions are still prohibitively slow (i.e., on the order of
several GPU-hours per single datamodel estimation). To address this, we make the following changes:

Fast dataloading. The first performance bottleneck turns out to be in dataloading. More specifically, SAGA is a minibatch-
based algorithm: at each iteration, we have to read B masks (50,000-dimensional binary vectors) and B outputs (scalars)
and move them onto the GPU for processing. If the masks are read from disk, I/O speed becomes a major bottleneck—on
the other hand, if we pre-load the entire set of masks into memory, then we are not able to run multiple regressions on
the same machine, since each regression will use essentially the entire RAM disk. To resolve this issue, we use the FFCV
library (Leclerc et al., 2022) for dataloading—FFCV is based on memory mapping, and thus allows for multiple processes
to read from the same memory (combining the benefits of the two aforementioned approaches). FFCV also supports batch
pre-loading and parallelization of the data processing pipeline out-of-the-box—adapting the SAGA solver to use FFCV cut
the runtime significantly.

Simultaneous outputs. Next, we leverage the fact that the SAGA algorithm is trivially parallelizable across different
instances (sharing the same input matrix), allowing us to estimate multiple datamodels at the same time. In particular, we
estimate datamodels for the entire test set in one pass, effectively cutting the runtime of the algorithm by the test set size
(e.g., 10,000 for CIFAR-10).

Optimizations. In order to parallelize across test examples, we need to significantly reduce the GPU memory footprint of
the SAGA solver. We accomplish this through a combination of simple code optimization (e.g., using in-place operations
rather than copies) as well as writing a few custom CUDA kernels to speed up and reduce the memory consumption of
algorithms such as soft thresholding or gradient updating.

Experimental details. For each dataset considered, we chose a maximum λ: 0.01 for CIFAR-10 test, 0.1 for CIFAR-10
trainset, and 0.05 for FMoW datamodels. Next, we chose k = 100 logarithmically spaced intermediate values between
(λ/100, λ) as the regularization path. We ran one regression per intermediate λ, using m−50, 000 samples (where m is as
in the table in Figure 1 (right)) to esitmate the parameters of the model and the remaining 50, 000 samples as a validation
set. For each image in the test set, we select the λ corresponding to the best-performing predictor (on the heldout set)
along the regularization path. We then re-run the regression once more using these optimal λ values and the full set of m
samples.

Datamodels: Predicting Predictions from Training Data

E. Datamodels for Counterfactual Prediction

E.1. General setup

Sample selection. For all of our counterfactual experiments, we use a random sample of the respective test datasets. We
select at random 300 test images for CIFAR-10 (class-balanced; 30 per class) and 100 test images for FMoW. For the
CIFAR-10 baselines, we consider counterfactuals for a 100 image subset of the 300.

Size of counterfactuals. For CIFAR-10, we remove top k = {10, 20, 40, 80, 160, 320, 640, 1280} images and bottom
k = {20, 40, 80, 160, 320} where applicable. For FMoW, we remove top and bottom k = {10, 20, 40, 80, 160, 320, 640}.

Reducing noise by averaging. Each counterfactual (i.e., training models on a given training set S′) is evaluated over T
trials to reduce the variance that arises purely from non-determinism in model training. We use T = 20 for CIFAR-10 and
FMoW, and T = 10 for CIFAR-10 baselines. In Appendix E.7, we show that using sufficiently high T is important for
reducing noise.

Control values. To calculate the actual effects in all of our counterfactual evaluation, we need control values E[fA(x;S)]
for the “null,” i.e, margins when trained on 100% of the data. We estimate this by averaging over models on trained on the
full training set (10,000 for CIFAR-10 and 500 for FMoW).

E.2. Baselines

We describe the baseline methods used to generate data support estimates and counterfactuals. Each of the methods gives
a way to select training examples that are most similar or influential to a target example. As in prior work (Hanawa
et al., 2021; Pezeshkpour et al., 2021), we consider a representative set of baselines spanning both methods based on
representation similarity and gradient-based methods, such as influence functions.

Representation distance. We use ℓ2 distances in the penultimate layer’s representation to rank the training examples in
order of similarity to the target test example. We also evaluated dot product, cosine, and mahalanobis distances, but they
did not show much variation in their counterfactual effects.8

In order to more fairly compare with datamodels—so that we can disentangle the variance reduction from using many
models and the additional signal captured by datamodels—we also averaged up to 1000 models’ representation distances9,
but this had no discernible difference on the size of the counterfactual effects.

Influence functions. We apply the influence function approximation introduced in (Koh & Liang, 2017). In particular, we
use the following first-order approximation for the influence of z on the loss L evaluated at ztest:

Iup,loss(z, ztest) = −∇θℓ(ztest, θ̂)
⊤H−1

θ̂
∇θℓ(z, θ̂)

where θ̂ is the empirical risk minimizer on the training set and H is the Hessian of the loss. The influence here is just the
dot product of gradients, weighted by the Hessian. We approximate these influence values by using the methods in (Koh
& Liang, 2017) and as implemented (independently) in pytorch-influence-functions.10 As in (Koh & Liang,
2017), we take a pretrained representation (of a ResNet-9 model, same as that modeled by our datamodels), and compute
approximate influence functions with respect to only the parameters in the last linear layer.

TracIn. Pruthi et al. (2020) define an alternative notion of influence: the influence of a training example z on a test example
z′ is the total change in loss on z′ contributed by updates from mini-batches containing z—intuitively, this measures
whether gradient updates from z are helpful to learning example z′. They approximate this in practice with TracInCP,
which considers checkpoints θt1 , ..., θtk across training, and sums the dot product of the gradients at z and z′ at each
checkpoint:

TracInCP(z, z′) =

k∑

i=1

ηi∇θℓ(z, θti) · ∇θℓ(z
′, θti)

One can view TracInCP as a variant of the gradient dot product, but averaged over models at different epochs) and

8With the exception of dot product, which performs poorly due to lack of normalization; this is consistent with the findings in Hanawa
et al. (2021).

9We simply average the ranks from each model, but there are potentially better ways to aggregate them.
10https://github.com/nimarb/pytorch_influence_functions

Datamodels: Predicting Predictions from Training Data

weighted by the learning rate ηi.

Random baseline. We also consider a random baseline of removing examples from the same class.

E.3. Removed sets for counterfactual evaluation

We generate the removed sets R(x) as follows:

(a) setting R(x) to be the nearest k training examples to the target example x using the baseline methods described
in Appendix E.2: influence function (Koh & Liang, 2017), TracIn (Pruthi et al., 2020), or distance in pre-trained

representation space (Bengio et al., 2013).

(b) setting R(x) to be the maximizer of the datamodel-predicted counterfactual, i.e.,

R(x) = arg max
|R|=k

gθ(S)− gθ(S \R) = arg max
|R|=k

θ⊤1R.

(Note that since our datamodels are linear, this simplifies to excluding the training examples corresponding to the top
k coordinates of the datamodel parameter θ.)

(c) setting R(x) to be the training images corresponding to the bottom (i.e., most negative) k coordinates of the datamodel
weight θ.

E.4. Data support estimation

Setup. We use datamodels together with counterfactual evaluations in a guided search to efficiently estimate upper bounds
on the size of data supports. For a given target example x with corresponding datamodel gθ, we want to find candidate
training subsets of small size k whose removal most reduces the classification margin on x:

Gk := arg min
|G|=k

gθ(S \Gk). (14)

Because gθ is a linear model in our case, the solution to the above minimization problem is simply the set corresponding
to the largest k coordinates of the datamodel parameter θ:

Gk = arg max
G⊂S;|G|=k

θ⊤1G = top-k indices of θ. (15)

Our goal is to the find the smallest of these subsets {Gk}k so that fA(x;S \Gk) < 0, i.e., the example is misclassified
on average as per our definition.11 Thus, for each target x, we try several values of k ∈ {10, 20, 40, 80, 160, 320, 640,
1280}, training models on the set S \ Gk and evaluating the resulting models on x.12 We train T = 20 models on each
counterfactual S \Gk to reduce variance.

(Given that we are using datamodels as surrogates afterall, one might wonder if the above counterfactual evaluations are
actually necessary—one could instead consider estimating the optimal k directly from θ. We revisit a heuristic estimation
procedure based on this idea at the end of this subsection.)

Estimation methodology. We assume that the expected margin h(k) := fA(x;S \Gk) after removing k examples de-
creases monotonically in k; this is expected from the linearity of our datamodels and is further supported empirically
(see Figure E.1). Then, our goal is to estimate the unique zero13 k̂ of the above function h(k) based on (noisy) samples
of h(k) at our chosen values of k. Note that by definition, k̂ is an upperbound on SUPPORT(x). Now, because of our
monotonicity assumption, we can cast estimating k̂ as instance of an isotonic regression problem (Robertson et al., 1988));
this effectively performs piecewise linear interpolation, while ensuring that monotonity constraint is not violated. We use
sklearn’s IsotonicRegression to fit an estimate h(k), and use this to estimate k̂.

Verifying support estimates. Due to stochasticity in evaluating counterfactuals, the estimate k̂ is noisy. Thus, it is
possible that k̂ is not a valid upperbound on SUPPORT(x), e.g. removing top k̂ examples do not misclassify x. In fact,

11Note that EfA(x; ·) < 0 does not imply that the probability of misclassification is > 50%. Nonetheless, it is a natural threshold.
12While a binary search over k for each x would be more sample efficient, we collect the entire grid of samples for simplicity.
13More precisely, the upper ceiling as data support is defined as an integer quantity.

Datamodels: Predicting Predictions from Training Data

Figure F.4: Additional examples of held-out images and corresponding most relevant training examples, while varying α.

Datamodels: Predicting Predictions from Training Data

F.2. Identifying train-test leakage

We now leverage datamodels’ ability to surface similar training examples to a given target in order to identify same-scene

train-test leakage: cases where test examples are near-duplicates of, or clearly come from the same scene as, training
examples. Below, we use datamodels to uncover evidence of train-test leakage on both CIFAR and FMoW, and show that
datamodels outperform a natural baseline for this task.

F.2.1. TRAIN-TEST LEAKAGE IN CIFAR-10

To find train-test leakage in CIFAR-10, we collect ten candidate training examples for each image in the CIFAR-10 test
set—corresponding to the ten largest coordinates (top 5 and bottom 5) of the test example’s datamodel parameter. We
then show crowd annotators (using Amazon Mechanical Turk15; Figure F.8 shows the interface) tasks that consist of a
random CIFAR-10 test example accompanied by its candidate training examples. We ask the annotators to label any of
the candidate training images that constitute instances of same-scene leakage (as defined above). We show each task (i.e.,
each test example) to nine annotators, and compute the “annotation score” for each of the test example’s candidate training
examples as the fraction of annotators who marked it as an instance of leakage. Finally, we compute the “leakage score”
for each test example as the highest annotation score (over all of its candidate train images)—we use the leakage score as
a proxy for whether or not the given image constitutes train-test leakage.

In Figure 5, we plot the distribution of leakage scores over the CIFAR-10 test set, along with random train-test pairs
stratified by their annotation score. As the annotation score increases, pairs (qualitatively) appear more likely to correspond
to leakage; we show more examples of (train, test) pairs stratified by annotation score in Figure F.9. Overall roughly 10%
of test set images were labeled as train-test leakage by over half of the annotators that reviewed them. The vast majority of
potential leakage found corresponded to training examples by the positive datamodel weight (one of the top 5).

Comparison with CIFAIR. Barz & Denzler (2020) present CIFAIR, a version of CIFAR with fewer duplicates. The
authors define duplicates slightly differently than we define pairs constituting same scene train-test leakage, see Section
3.2 of their work compared to the screenshot of the annotation interface in Appendix Figure F.8. The authors identify train-
test leakage by using a deep neural network to measure representation space distances between images across training
partitions and manually inspecting the lowest distances.

F.2.2. TRAIN-TEST LEAKAGE IN FMOW

To identify train-test leakage on FMoW, we begin with the same candidate-finding process that we used for CIFAR-10.
However, FMoW differs from CIFAR in that the examples (satellite images labeled by category, e.g., “port” or “arena”)
are annotated with geographic coordinates. These coordinates allow us to avoid crowdsourcing—instead, we compute the
geodesic distance between the test image and each of the candidates, and use a simple threshold d (in miles) to decide
whether a given test example constitutes train-test leakage.

Furthermore, we can calculate a “ground-truth” number of train-test leakage instances by counting the test examples
whose geodesic nearest-neighbor in the training set is within the specified threshold d.16 Comparing this ground truth to
the number of instances of leakage found within the candidate examples yields a qualitative measure of the efficacy of our
method (i.e., the quality of candidates we generate).

In Figure F.10, we plot this measure of efficacy (# instances found / # ground truth) as a function of the threshold d, and
also visualize examples images from the FMoW test set together with their corresponding datamodel-identified training set
candidates. To put our quantitative results into context, we compare the efficacy of candidates derived from top datamodel
coordinates (i.e., the ones we use here and for CIFAR-10) to that of candidates derived from nearest neighbors in the
representation space of a pretrained neural network (Bengio et al., 2013; Zhang et al., 2018) (examining such nearest
neighbors is a standard way of finding train-test leakage, e.g., used by (Barz & Denzler, 2020) to study CIFAR-10 and
CIFAR-100). Datamodels consistently outperform the baseline.

15We paid 12 cents per task completed, and used qualifications: locale in US/CA/GB and percentage of hits approved > 95%.
16 It turns out that despite having already been de-duplicated, about 20% and 80% of FMoW test images are within 0.25 and 2.6 miles

of a training image, respectively—see Figure F.11.

Datamodels: Predicting Predictions from Training Data

Figure F.9: More annotation scores paired with (train, test) leakage pairs.

Datamodels: Predicting Predictions from Training Data

G. Datamodels as a Feature Embedding

Using datamodels for counterfactual prediction (Section 4 and Appendix E) and train-test similarity (Section 5.1 and
Appendix F) illustrate the utility of datamodels on an per-example level, i.e., for predicting the outcome of training on
arbitrary training subsets and evaluating on a specific target example, or for finding similar training images (again, to a
specific target). By adopting a new perspective on datamodels, Section 5.2 demonstrates that datamodels can also help
uncover global structure in datasets of interest. We explore this further here.

Critically, the coordinates of a datamodel embedding have a consistent interpretation across datamodel embeddings, even
for different target examples. That is, we expect similar target examples to be acted upon similarly by the training set,
and thus have similar datamodel embeddings. In the same way, if model performance on two unrelated target examples is
driven by two disjoint sets of training examples, their datamodel embeddings will be orthogonal. This intuition suggests
that by embedding an entire dataset of examples {xi} as a set of feature vectors {θi ∈ R

d}, we may be able to uncover
structure in the set of examples by looking for structure in their datamodel embeddings, i.e., in the (Euclidean) space R

d.

In this section we demonstrate, through two applications, the potential for datamodel embeddings to discover dataset
structure in this way. In §,G.1, we use datamodel embeddings to partition datasets into disjoint clusters, and in § G.2
we use principal component analysis to get more fine-grained insights into dataset structure. To emphasize our shift in
perspective (i.e., from θ being just a parameter of a datamodel gθ, to θ being an embedding for the target example x), we
introduce an embedding function ϕ(x) 7→ θ which maps a particular target example to the weights of its corresponding
datamodel.

G.1. Spectral clustering with datamodel embeddings

We begin with a simple application of datamodel embeddings, and show that they enable high-quality clustering. Specifi-
cally, given two examples x1 and x2, datamodel embeddings induce a natural similarity measure between them:

d(x1, x2) := K(ϕ(x1), ϕ(x2)), (16)

where we recall that ϕ(·) is the datamodel embedding function mapping target examples to the weights of their correspond-
ing datamodels, and K(·, ·) is any kernel function.17 Taking this even further, for a set of k target examples {x1, . . . , xk},
we can compute a full similarity matrix A ∈ R

k×k, whose entries are

Aij = d(xi, xj). (17)

Finally, we can view this similarity matrix as an adjacency matrix for a (dense) graph connecting all the examples
{x1, . . . xk}: the edge between two examples will be d(xi, xj), which is in turn the kernelized inner product between
their two datamodel weights. We expect similar examples to have high-weight edges between them, and unrelated exam-
ples to have (nearly) zero-weight edges between them.

Such a graph unlocks a myriad of graph-theoretic tools for exploring datasets through the lens of datamodels (e.g., cliques
in this graph should be examples for which model behavior is driven by the same subset of training examples). A complete
exploration of these tools is beyond the scope of our work: instead, we focus on one just such tool, namely spectral
clustering.

At a high level, spectral clustering is an algorithm that takes as input any similarity graph G as well as the number of
clusters C, and outputs a partitioning of the vertices of G into C disjoint subsets, in a way that (roughly) minimizes the
total weight of inter-cluster edges. We run an off-the-shelf spectral clustering algorithm on the graph induced by the
similarity matrix A above for the images in the CIFAR-10 test set. The results demonstrate a simple unsupervised method
for uncovering subpopulations in datasets: Figure 6 shows examples of clusters from two classes, Figure G.1 compares top
clusters for the horse class across different α. Figure G.2 and ?? shows additional clusters for eight other classes, apart
from the ones shown in Figure 6.

Implementation. We use sklearn’s cluster.SpectralClustering. Internally, this computes similarity scores
using the radial basis function (RBF) kernel on the datamodel embeddings. Then, it runs spectral clustering on the graph
defined by the similarity matrix A: it computes a Laplacian L, represents each node using the first k eigenvectors of L, and
runs k-means clustering on the resulting feature representations. We use k = 100.

17A kernel function K(·, ·) is a similarity measure that computes the inner product between its two arguments in a transformed inner
product space (see (Shawe-Taylor & Cristianini, 2004) for an introduction). The RBF kernel is K(v1, v2) = exp{−‖v1 − v2‖

2/2σ2}

Datamodels: Predicting Predictions from Training Data

Figure G.1: Omitted spectral clustering results for datamodels computed with α = 10% (top left), 20% (top right), 50%
(bottom left), and 75% (bottom left).

Datamodels: Predicting Predictions from Training Data

G.2. Analyzing datamodel embeddings with PCA

From the last section, we observe that datamodel embeddings encode enough information about their corresponding exam-
ples to cluster them into (at least qualitatively) coherent groups. We now try to gain even further insight into the structure
of these datamodel embeddings, in the hopes of shedding light on the structure of the underlying dataset itself.

Datamodel embeddings are both high-dimensional and sparse, making analyzing them directly (e.g., by looking at the vari-
ation of each coordinate) a daunting task. Instead, we leverage a canonical tool for finding structure in high-dimensional
data: principal component analysis (PCA). PCA is a dimensionality reduction technique which—given a set of embed-
dings {ϕ(xi) ∈ R

d} and any k ≪ d—returns a transformation function that maps any embedding ϕ(x) ∈ R
d to a new

embedding φ̃(x) ∈ R
k, such that:

(a) each of the k coordinates of the transformed embeddings is a (fixed) linear combination of the coordinates of the
initial datamodel embeddings, i.e., ϕ̃(x) = M · ϕ(x) for a fixed k × d matrix M ;

(b) transformed embeddings preserve as much information as possible about the original ones (more formally, we find the
matrix M that allows us to reconstruct the given set of embeddings {ϕ(xi) ∈ R

d} from their transformed counterparts
with minimal error).

Note that in (a), the i-th coordinate of a transformed embedding is always the same linear combination of the corresponding
original embedding (and thus, each coordinate of the transformed embedding has a concrete interpretation as a weighted
combination of datamodel coefficients). The exact coefficients of this combination (i.e., the rows of the matrix M above)
are called the first k principal components of the dataset.

We apply PCA to the collection of datamodel embeddings {ϕ(xi) ∈ R
d}di=1 for the CIFAR-10 training set, and use the

result to to compute new k-dimensional embeddings for each target example in both the training set and the test set (i.e.,
by computing each target example’s datamodel embedding then transforming it to an embedding in R

k). We can then look
at each coordinate in the new, much more manageable (k-dimensional) embeddings.18

Coordinates identify subpopulations. Our point of start in analyzing the transformed embeddings is to examine each
transformed coordinate separately. In particular, in Figures G.4 and G.9 we visualize, for a few sample coordinate indices
i ∈ [k], the target examples whose transformed embeddings have particularly high or low values of the given coordinate
(equivalently, these are the target examples whose datamodel embeddings have the highest or lowest projections onto the
i-th principal component). We find that:

(a) The examples whose transformed embeddings have a large i-th coordinate all (visually) share a common feature: e.g.,
the first-row images in Figure G.4 share similar pose and color composition;

(b) This (visual) feature is consistent across both train and test set examples19; and

(c) For a given coordinate, the most positive images and most negative images (i.e., the left and right side of each row
of Figure G.4, respectively) either (a) have a differing label but share the same common feature or (b) have the same
label but differ along the relevant feature.

Principal components are model-faithful. We verify that not only are the groups of images found by PCA visually
coherent, they are in fact rooted in how the model class makes predictions. To that end, we analyze how “removing”
different principal components affect model predictions. More precisely, we remove training examples corresponding to:

• Top k most positive coordinates of the principal component vector

• Top k most negative coordinates of the principal component vector

Then, for each principal component direction considered, we measure their impact on three groups of held-out samples:

18One detail here is that we first normalize each datamodel embedding before transforming them (i.e., we transform ϕ(x)/‖ϕ(x)‖).
19Recall that we computed the PCA transformation to preserve the information in only the training set datamodel embeddings. Thus,

this result suggests that the transformed embeddings computed by PCA are not “overfit” to the specific examples that we used to compute
it.

Datamodels: Predicting Predictions from Training Data

H. Related work

Datamodels build on a rich and growing body of literature in machine learning, statistics, and intepretability. In this section,
we illustrate some of the connections to these fields, highlight a few of the most closely related works to ours.

H.1. Connecting datamodeling to empirical influence estimation

We start by discussing the particularly important connection between datamodels and another well-studied concept that
has recently been applied to the machine learning setting: influence estimators. In particular, a recent line of work aims to
compute the empirical influence (Hampel et al., 2011) of training points xi on predictions f(xj), i.e.,

Infl[xi → xj] := P (model trained on S is correct on xj)− P (model trained on S \ {xi} is correct on xj) ,

where randomness is taken over the training algorithm. Evaluating these influence functions naïvely requires training C · d
models where d is again the size of the train set and C is the number of samples necessary for an accurate empirical
estimate of the probabilities above. To circumvent this prohibitive sample complexity, a recent line of work has proposed
approximation schemes for Infl[xi → xj]. We discuss these approximations (and their connection to our work) more
generally in Appendix H.2, but here we focus on a specific approximation used by Feldman & Zhang (2020) (and in a
similar form, by (Ghorbani & Zou, 2019) and (Jia et al., 2019))20:

Înfl[xi → xj] = PS∼DS
(model trained on S is correct on xj |xi ∈ S)

− PS∼DS
(model trained on S is correct on xj |xi 6∈ S) . (18)

This estimator improves sample efficiency by reusing the same set of models to compute influences between different
input pairs. More precisely, Feldman & Zhang (2020) show that the size of the random subsets trades off sample efficiency
(model reuse is maximized when α = 0.5) and accuracy with respect to the true empirical influence (which is maximized
at α → 1). Despite its different goal, formulation, and estimation procedure, it turns out that we can cast the difference-of-
probabilities estimator (18) above as a rescaled datamodel (in the infinite-sample limit). In particular, in Appendix J.1 we
show:

Lemma 1. Fix a training set S of size n, and a test example x. For i ∈ [m], let Si be a random variable denoting a random

50%-subset of the the training set S. Let winfl ∈ R
n be the estimated empirical influences (18) onto x estimated using

the sets Si. Let wOLS be the least-squares estimator of whether a particular model will get image x correct, i.e.,

wOLS := argmin
w

1

m

m∑

i=1

(
w⊤zi − 1{model trained on Si correct on x}

)2
, where zi = 2 · 1Si

− 1n.

Then, as m → ∞, ‖(1 + 2
n
)wOLS − 1

2winfl‖2 → 0.

We illustrate this result quantitatively in Appendix J and perform an in-depth study of influence estimators as datamodels.
As one might expect given their different goal, influence estimates significantly underperform explicit datamodels in terms
of predicting model outputs with respect to every metric we studied (Table J.1, Figure J.1). We attempt to explain this
performance gap and reconcile it with Lemma 1 in terms of the estimation algorithm (OLS vs. LASSO), scale (number of
models trained), and output function (0/1 loss vs. margins).

In addition to forging a connection between datamodels and influence estimates, this result provides an alternate perspective
on the parameter α. In light of our discussion in Appendix C, it suggests that α may control the kinds of correlations that
are surfaced by empirical influence estimates.

H.2. Other connections

Influence functions and instance-based explanations.

First-order influence functions are a canonical tool in robust statistics that allows one to approximate the impact of removing
a data point on a given parameter without re-estimating the parameter itself (Hampel et al., 2011). Koh & Liang (2017)

20In fact, (18) is ubiquitous—e.g., in causal inference, it is called the average treatment effect of training on xi on the correctness of
xj .

Datamodels: Predicting Predictions from Training Data

apply influence functions to both a variety of classical machine learning models and to penultimate-layer embeddings
from neural network architectures, to trace model’s predictions back to individual training examples. In classical settings
(namely, for a logistic regression model), Koh et al. (2019) find that influence functions are also useful for estimating
the impact of groups of examples. On the other hand, Basu et al. (2021) finds that approximate influence functions scale
poorly to deep neural network architectures; and Feldman & Zhang (2020) argue that understanding the dynamics of
the penultimate layer is insufficient for understanding deep models’ decision mechanisms. Other methods for influence
approximation (or more generally, instance-level attribution) include gradient-based methods (Pruthi et al., 2020) and
metrics based on representation similarity (Charpiat et al., 2019; Yeh et al., 2018)—see (Hanawa et al., 2021) for a more
detailed overview. Finally, another related line of work (Ghorbani & Zou, 2019; Jia et al., 2019; Wang et al., 2021) uses
Shapley values (Shapley, 1951) to assign a value to datapoints based on their contribution to some aggregate metric (e.g.,
test accuracy).

As discussed in Section H.1, datamodels serve a different purpose to influence functions—the former constructs an explicit
statistical model, whereas the latter measures the counterfactual value of each training point. Nevertheless, we find that
wherever efficient influence approximations and datamodels are quantitatively comparable (e.g., see Section 4 or Appendix
J) datamodels predict model behavior better.

Pixel-space surrogate models for interpretability. Datamodels are essentially surrogate models for the function map-
ping training data to predictions. Surrogate models from pixel-space to predictions are popular tools in machine learning
interpretability (Ribeiro et al., 2016; Lundberg & Lee, 2017; Sokol et al., 2019). For example, LIME (Ribeiro et al., 2016)
constructs a local linear model mapping test images to model predictions. Such surrogate models try to understand, for a
fixed model, how the features of a given test example change the prediction. In contrast, datamodels hold the test example
fixed and instead study how the images present in the training set change the prediction.

In addition to the advantages of our data-based view stated in Section 1, datamodels have two additional advantages over
pixel-level surrogate models: (a) a clear notion of missingness (i.e., it is easy to remove a training example but usually
hard to remove a feature); (b) globality of predictions—pixel-level surrogate models are typically accurate within a small
neighborhood of a given input in pixel space, whereas datamodels model entire distribution over subsets of the training set,
and remain useful both on- and off-distribution.

Model understanding beyond fixed weights. Recall (from Section 1) that datamodels are, in part, inspired by the fact that
re-training deep neural networks using the same data and model class leads to models with similar accuracies but vastly
different individual predictions. This phenomenon has been observed more broadly. For example, Sellam et al. (2021)
make this point explicitly in the context of BERT (Devlin et al., 2019) pre-trained language models. Similarly, Nakkiran &
Bansal (2020) make note of this non-determinism for networks trained on the same training distribution (but not the same
data), while Jiang et al. (2021) find that the same is true for networks trained on the same exact data. D’Amour et al. (2020)
find that on out-of-distribution data even overall accuracy is highly random. More closely in spirit to our work, Zhong et al.
(2021) find that non-determinism of individual predictions poses a challenge for comparing different model architectures.
(They also propose a set of statistical techniques for overcoming this challenge.) More traditionally, the non-determinism
is leveraged by Bayesian (Neal, 1996) and ensemble methods (Lakshminarayanan et al., 2017), which use a distribution
over model weights to improve aspects of inference such as calibration of uncertainty.

Learning and memorization. Recent work (see (Feldman, 2019; Chatterjee, 2018; Zhang et al., 2016; Bresler & Nagaraj,
2020) and references therein) brings to light the interplay between learning and memorization, particularly in the context of
deep neural networks. While memorization and generalization may seem to be at odds, the picture is more sutble. Indeed,
Chatterjee (2018) builds a network of small lookup tables on small vision datasets to show that purely memorization-based
systems can still generalize-well. Feldman (2019) suggests that memorization of atypical examples may be necessary to
generalize well due to a long tail of subpopulations that arises in standard datasets. Feldman & Zhang (2020) find some
empirical support for this hypothesis by identifying memorized images on CIFAR-100 and ImageNet and showing that
removing them hurts overall generalization. Relatedly, Brown et al. (2021) proves that for certain natural distributions,
memorization of a large fraction of data, even data irrelevant to the task at hand, is necessary for close to optimal gen-
eralization. For state of the art models, recent works (e.g., (Carlini et al., 2019; 2021)) show that one can indeed extract
sensitive training data, indicating models’ tendency to memorize.

Conversely, it has been observed that differentially private (DP) machine learning models—whose aim is precisely to
avoid memorizing the training data—tend to exhibit poorer generalization than their memorizing counterparts (Abadi
et al., 2016). Moreover, the impact on generalization from DP is disparate across subgroups (Bagdasaryan et al., 2019). A

Datamodels: Predicting Predictions from Training Data

similar effect has been noted in the context of neural network pruning (Hooker et al., 2019). Datamodeling may be a useful
tool for studying these phenomena and, more broadly, the mechanisms mapping data to predictions for modern learning
algorithms.

Brittleness of conclusions. A long line of work in statistics focuses on testing the robustness of statistical conclusions
to the omission of datapoints. Broderick et al. (2021) study the robustness of econometric analyses to removing a (small)
fraction of data. Their method uses a Taylor-approximation based metric to estimate the most influential subset of examples
on some target quantity, similar in spirit to our use of datamodels to estimate data support for a target example (as in Figure
3). Datamodels may be a helpful tool for extending such robustness analyses to the context of state-of-the-art machine
learning models.

Datamodels: Predicting Predictions from Training Data

I. Future work

Our instantiation of the datamodeling framework yields both good predictors of model behavior and a variety of direct
applications. However, this instantiation is fairly basic and thus leaves significant room for improvement along several
axes. More broadly, datamodeling provides a lens under which we can study a variety of questions not addressed in this
work. In this section, we identify (a subset of) these questions and provide connections to existing lines of work on them
across machine learning and statistics.

I.1. Improving datamodel estimation

In Section 2, we outlined our basic procedure for fitting datamodels: we first sample subsets uniformly at random, then fit
a sparse linear model from (the characteristic vectors of) training subsets to model outputs (margins) via ℓ1 regularization.
We first discuss various ways in which this paradigm might be improved to yield even better predictions.

• Correlation-aware estimation. One key feature of our estimation methodology is that the same set of models is
used to estimate datamodel parameters for an entire test set of images at once. This significantly reduces the sample
complexity of estimating datamodels but also introduces a correlation between the errors in the estimated parameters.
This correlation is driven by the fact that model outputs are not i.i.d. across inputs—for example, if on a picture of
a dog x a given model has very large output (compared to the “average” model, i.e., if fA(x;Si) − E[fA(x;Si)] is
large), the model is also more likely to have large output on another picture of a dog (as opposed to, e.g., a picture of
a cat).

Parameter estimation in the presence of such correlated outputs is an active area of research in statistics (see
(Daskalakis et al., 2019; Li et al., 2019) and references therein). Applying the corresponding techniques (or mod-
ifications thereof) to datamodels may help calibrate predictions and improve sample-efficiency.

• Confidence intervals for datamodels. In this work we have focused on attaining point estimates for datamodel
parameters via simple linear regression. A natural extension to these results would be to obtain confidence intervals

around the datamodel weights. These could, for example, (a) provide interval estimates for model outputs rather than
simple point estimates; and (b) decide if a training input is indeed a “significant” predictor for a given test input.

• Post-selection inference. Relatedly, the high input-dimensionality of our estimation problem and the sparse nature
of the solutions suggests that a two-stage procedure might improve sample efficiency. In such procedures, one first
selects (often automatically, e.g., via LASSO) a subset of the coefficients deemed to be “significant” for a given test
example, then re-fits a linear model for only these coefficients. This two-stage approach is particularly attractive in
settings where the number of subset-output pairs (Si, fA(x;Si)) is less than the size of the training set |S| being
subsampled.

Unfortunately, using the data itself to perform model selection in this manner—a paradigm known as post-selection

inference—violates the assumptions of classical statistical inference (in particular, that the model class is chosen
independently of the data) and can result in significantly miscalibrated confidence intervals. Applying valid two-stage
estimation to datamodeling would be an area for further improvement upon the protocol presented in our work.

• Improving subset sampling. Recall (cf. Section 2) that our framework uses a distribution over subsets DS to generate
the “datamodel training set.” In this paper, we fixed DS to be random α-subsets of the training set, and used a nearest-
neighbors example (see Figure C.1) to provide intuition around the role of α. While this design choice did yield useful
datamodels, it is unclear whether this class of distributions is optimal. In particular, a long line of literature in causal
inference focuses on intervention design (Eberhardt & Scheines, 2007); drawing upon this line of work may lead to a
better choice of subsampling distribution. Furthermore, one might even go beyond a fixed distribution DS and instead
choose subsets Si adaptively (i.e., based on the datamodels estimated with the previously sampled subsets) in order
to reduce sample complexity.

• Devising better priors. Finally, in this paper we employed simple least-squares regression with ℓ1 regularization
(tuned through a held-out validation set). While the advantage of this rather simple prior—namely, that datamodels are
sparse—is that the resulting estimation methodology is largely data-driven, one may consider incorporating domain-
specific knowledge to design better priors. For instance, one can use structured-sparsity (Huang et al., 2011) to take
advantage of any additional structure.

Datamodels: Predicting Predictions from Training Data

I.2. Studying generalization

Datamodels also present an opportunity to study generalization more broadly:

• Understanding linearity. The key simplifying assumption behind our instantiation of the datamodeling framework
is that we can approximate the final output of training a model on a subset of the training set as a linear function of the
presence of each training point. While this assumption certainly leads to a simple estimation procedure, we have very
little justification for why such a linear model should be able to capture the complexities of end-to-end model training
on data subsets. However, we find that datamodels can accurately predict ground-truth model outputs (cf. Sections 2).
In fact, we find a tight linear correlation between datamodel predictions and model outputs even on out-of-distribution
(i.e., not in the support of DS) counterfactual datasets. Understanding why a simple linearity assumption leads to
effective datamodels for deep neural networks is an interesting open question. Tackling this question may necessitate
a better understanding of the training dynamics and implicit biases behind overparameterized training Bartlett et al.
(2021); Sagawa et al. (2020).

• Using sparsity to study generalization. A recent line of work in machine learning studies the interplay between
learning, overparameterization, and memorization (Feldman, 2019; Chatterjee, 2018; Zhang et al., 2016; Bresler &
Nagaraj, 2020; Zhang et al., 2020). Datamodeling may be a helpful tool in this pursuit, as it connects predictions of
machine learning models directly to the data used to train them. For example, the data support introduced in Section
4.1 provides a quantitative measure of “how memorized” a given test input is.

• Theoretical characterization of the role of α. In line with our intuitions in Appendix C, we have observed both
qualitatively (e.g., Figure F.2) and quantitatively (e.g., Appendix C.1) that estimating datamodels using different
values of α identifies correlations at varying granularities. However, despite empirical results around the clear role
of α—Appendix C.1 even isolates its effect on datamodels for simple underdetermined linear regression—we lack a
crisp theoretical understanding of how α affects our estimated datamodels. A better theoretical understanding of the
role of α, even for simple models trained on structured distributions, can provide us with more rigorous intuition for
the phenomena observed here, and can in turn guide the development of better choices of sampling distribution for
datamodeling.

I.3. Applying datamodels

Finally, each of the presented perspectives in Sections 4 and 5 can be taken further to enable even better data and model
understanding. For example:

• Interpreting predictions. For a given test example, the training images corresponding to the largest-magnitude
datamodel weights both (a) share features in common with the test example; and (b) seem to be causally linked to
the test example (in the sense that removing the training images flips the test prediction). This immediately suggests
the potential utility of datamodels as a tool for interpreting test-time predictions in a counterfactual-centric manner.
Establishing them as such requires further evaluation through, for example, human-in-the-loop studies.

• Building data exploration tools. In a similar vein, another opportunity for future work is in building user-friendly
data exploration tools that leverage datamodel embeddings. In this paper we present the simplest such example in the
form of PCA, but leave the vast field of data bias and feature discovery methods (cf. (Carter et al., 2019) and Leclerc
et al. (2021) for a survey) unexplored.

Datamodels: Predicting Predictions from Training Data

J. Connection between Influence Estimation and Datamodels

J.1. Proof of Lemma 1

Lemma 1. Fix a training set S of size n, and a test example x. For i ∈ [m], let Si be a random variable denoting a random

50%-subset of the the training set S. Let winfl ∈ R
n be the estimated empirical influences (18) onto x estimated using

the sets Si. Let wOLS be the least-squares estimator of whether a particular model will get image x correct, i.e.,

wOLS := argmin
w

1

m

m∑

i=1

(
w⊤zi − 1{model trained on Si correct on x}

)2
, where zi = 2 · 1Si

− 1n.

Then, as m → ∞, ‖(1 + 2
n
)wOLS − 1

2winfl‖2 → 0.

Proof. For convenience, we introduce the m× n binary mask matrix A such that Aij is an indicator for whether the j-th
training image was included in Si. Note that A is a random matrix with fixed row sum of n/2. Next, we define the output

vector y ∈ {0, 1}m that indicates whether a model trained on Si was correct on x. Finally, we introduce the count matrix

C = diag(1⊤A), i.e., a diagonal matrix whose entries are the columns sums of A, e.g. the number of times each example
appears across m different masks.

We begin with wOLS . Consider the n × n matrix Σ = 1
m
Z⊤Z = 1

m
(2 · A − 1m×n)

⊤(2 · A − 1m×n). The diagonal
entries of this matrix are Σii = 1 (due to A having constant row sum), while the off-diagonal is

Σab =
1

m

m∑

i=1

{
+1 if training image xa, xb ∈ Si or xa, xb 6∈ Si

−1 otherwise.

Since Σ has bounded entries (|Σab| ≤ 1), we have that for fixed n, limm→∞ Σ = E[Σ], and in particular

Σab → P(xa, xb ∈ Si or xa, xb 6∈ Si)− (1− P(xa, xb ∈ Si or xa, xb 6∈ Si))

P(xa, xb ∈ Si or xa, xb 6∈ Si) = 2 ·

(n
2

n
·

n
2 − 1

n

)
=

1

2
−

1

n

Thus, Σab → −
1

2n
.

Now, using the Sherman-Morrison formula,

Σ
−1 =

n

n+ 2

(
I +

2

n
1n×n

)

By construction, the row sums of Z = 2 ·A− 1m×n are 0, and so 1n×n ·Z⊤ = 0. Thus,

wOLS = (Z⊤Z)−1Z⊤y =
1

m

(
1

m
Z⊤Z

)−1

Z⊤y =
1

m
·

n

n+ 2
Z⊤y.

We now shift our attention to the empirical influence estimator winfl. Using our notation, we can rewrite the (vectorized)
empirical influence estimator (18) as:

winfl = C−1A⊤y − (m · In −C)−1 (1m×n −A)
⊤
y

=
(
C−1 − (m · In −C)−1

)
A⊤y − (m · In −C)−1

1
⊤
m×ny

= m ·C−1 (m · In −C)
−1

A⊤y − (m · In −C)−1
1
⊤
m×ny

= (m · In −C)
−1 (

m ·C−1A⊤ − 1
⊤
m×n

)
y.

Now, as m → ∞ for fixed n, the random variable mC−1 converges to 2 · I with probability 1. Thus,

m ·AC−1 − 1m×n → 2 ·A− 1m×n,

and the empirical influence estimator winfl →
2
m
Z⊤y, which completes the proof.

Datamodels: Predicting Predictions from Training Data

Algorithm # models (m) Output type Spearman r MSE AUC Difference

Diff. of means 25,000 Correctness 0.028 N/A 0.529
Diff. of means 100,000 Correctness 0.053 N/A 0.555 Under → Over-determined
Diff. of means 100,000 Margin 0.213 2.052 0.653 Output type

LASSO 100,000 Margin 0.320 1.382 0.724 Explicit datamodel

Table J.1: Disentangling the effect of different factors in datamodel performance. Each row shows a different estimator
for datamodels. We begin with the empirical influence (or difference of means) on correctness computed with 25,000
models, which is in the overparameterized regime (as there are d = 50, 000 variables). Then, we increase the number of
models to an underparamterized regime. Next, we change the output type from correctness to margins. Lastly, we change
the estimation algorithm from difference of means (which is approximately equivalent to OLS, as shown in Appendix J.1)
to LASSO. Each of these changes brings about significant gains in the signal captured by datamodels, as measured by
Spearman rank correlation, MSE, or AUC.

J.2. Evaluating influence estimates as datamodels

Lemma 1 suggests that we can re-cast empirical influence estimates as (rescaled) datamodels fit with least-squares loss.
Under this view, (i.e., ignoring the difference in conceptual goal), we can differentiate between explicit datamodels and
those arising from empirical influences along three axes:

• Estimation algorithm: Most importantly, datamodels explicitly minimize the squared error between true and pre-
dicted model outputs. Furthermore, datamodels as instantiated here use (a) a sparsity prior and (b) a bias term which
may help generalization.

• Scale: Driven by their intended applications (where one typically only needs to estimate the highest-influence training
points for a given test point), empirical influence estimates are typically computed with relatively few samples (i.e.,
m < d, in our setting) (Feldman & Zhang, 2020). In contrast, we find that for datamodel loss to plateau, one needs to
estimate parameters using a much larger set of models.

• Output type: Finally, datamodels do not restrict to prediction of a binary correctness variable—in this paper, for
example, for deep classification models we find that correct-class margin was best both heuristically and in practice.

In this section, we thus ask: how well do the rescaled datamodels that arise from empirical influence estimates predict
model outputs? We address this question in the context of the three axes of variation described above. In order to make
results comparable across different outputs types (e.g., correctness vs. correct-class margin), we measure correlation (in the
sense of Spearman (1904)) between the predicted and true model outputs, in addition to MSE where appropriate. To ensure
a conservative comparison, we also measure performance as a predictor of correctness. In particular, we treat w⊤

1Si
as a

continuous predictor of the binary variable 1{model trained on Si is correct on x}, and compute the AUC of this predictor
(intuitively, this should favor empirical influence estimates since they are computed using correctnesses directly).

In Table J.1 we show the difference between empirical influence estimates (first row) and our final datamodel estimates
(last row), while disentangling the effect of the three axes above using the rows in between. As expected, there is a vast
difference in terms of correlation between the original empirical influence estimates and explicit datamodels. We further
illustrate this point in Figure J.1, where we show how the correlation, MSE, and AUC vary with m for both empirical
influence estimates and datamodels, as well as an intermediate estimator that uses the estimation procedure of empirical
influence estimates but replaces correctness with margin.

J.3. Testing Lemma 1 empirically

In this section, we visualize the performance of empirical influence estimates ((Feldman & Zhang, 2020)) as datamodels.
In Figures J.2a and J.2b we plot the distributions of w⊤

infl1Si
|yi for different CIFAR-10 test examples; Figure J.2a shows

these “conditional prediction distributions” for subsets Si that were used to estimate the empirical influence, while Figure
J.2b shows the corresponding distributions on held-out (unseen) subsets Si. The figures suggest that (i) indeed, empirical
influences are somewhat predictive of the correctness yi, (ii) their predictiveness increases as number of samples m → ∞

Datamodels: Predicting Predictions from Training Data

J.4. View of empirical influences as a Taylor approximation

Lemma 1 shows that we can interpret empirical influences as (rescaled) estimates of the weights of a linear datamodel.
Here, we give an alternative intuition for why this is the case, even though the definition of empirical influence does
not explicitly assume linearity anywhere: we show that the influences define a first-order Taylor approximation of the
multilinear extension f of our target function F of interest, where the influences (approximately) correspond to first-order
derivatives of f .

Recall that we want to learn some output of interest F : 2T → R, say the probability of correctness on a test example z,
as a function of the examples S ⊂ T included in the training set. We first extend this function continuously so that we can
take its derivatives. The multilinear extension (Owen, 1972) of set function F to the domain [0, 1]n (|T | = n) is given by:

f(x) =
∑

S⊆T

F (S)
∏

i∈S

xi

∏

i 6∈S

(1− xi) (19)

f(x) also has an intuitive interpretation: it is the expected value of F (S) when S is chosen by including each xi in the
input with probability xi.

Next, we take the derivative of f w.r.t. to the input xi:

∂f

∂xi

=
∑

S⊆T,i∈S

F (S)
∏

j∈S,j 6=i

xj

∏

j 6∈S

(1− xj)

︸ ︷︷ ︸
E

sj∼Bern(xj),si=1
F (S)

−
∑

S⊆T,i 6∈S

F (S)
∏

j∈S

xj

∏

j 6∈S,j 6=i

(1− xj)

︸ ︷︷ ︸
E

sj∼Bern(xj),si=0
F (S)

Note that because f is multilinear, the derivative w.r.t. to xi is constant in xi, but not w.r.t. to other xj . Now, observe that
the above expression evaluated at xj = α, ∀xj corresponds approximately21 to α-subsampled influence θi, of i on F : the
first term corrresponds (using our earlier interpretation) to the expectation of F (S) conditional on S including i, and the
second to that conditional on S excluding i.

Finally, the first-order Taylor approximation of f around an x is given as:

f(x) ≈ F (∅) +
∑

i

∂f

∂xi

· xi ≈ F (∅) +
∑

i

θi · xi

where θi are the empirical influences.

The role of α. The above perspective provides an alternative way to think the role of the sampling fraction α. The weights
θi depend on the regime we are interested in; if we use α-subsampled influences, then we are effectively taking a local
linear approximation of f in the regime around ~x = α ·~1.

Remark. Though we include the exposition above for completeness, this is a classical derivation that has appeared in
similar form in prior works (Owen, 1972). Another connection is that Shapley value is equivalent to the integral of f along
the “main diagonal” of the hypercube; it is effectively empirical influences averaged uniformly over the choice of α.

21There are two sources of approximation here. First, the α-subsampling used in our datamodel definition is defined globally (e.g. α
fraction of entire train set), which is different from the i.i.d. Bern(α) sampling that is considered here. Second, we only observe noisy
versions of F (S).

	Introduction and Setup
	Roadmap and contributions

	Constructing (Linear) Datamodels
	Predicting Outputs with Datamodels
	Implementation details
	Linear datamodels predict deep network training

	Use Case: Counterfactual Prediction
	Measuring brittleness of individual predictions to training data removal
	Predicting data counterfactuals

	Other Use Cases
	Train-test similarity
	Feature embedding

	Related Work
	Conclusion
	Appendix
	
	Experimental Setup
	Datasets
	Models and hyperparameters
	Training infrastructure

	Selecting Output Function to Model
	The Role of the Subsampling fraction alpha
	Linear Regression Simulation

	Regression
	Computing datamodels for training examples.
	Solver details
	Additional analyses

	Datamodels for Counterfactual Prediction
	General setup
	Baselines
	Removed sets for counterfactual evaluation
	Data support estimation
	Brittleness to mislabeling
	Comparing raw effect sizes
	Effect of training stochasticity
	Transfer to different architecture
	Stress testing
	Additional plots for different values

	Datamodels for Train-Test Similarity
	Finding similar training examples
	Identifying train-test leakage

	Datamodels as a Feature Embedding
	Spectral clustering with datamodel embeddings
	Analyzing datamodel embeddings with PCA
	FMoW

	Related work
	Connecting datamodeling to empirical influence estimation
	Other connections

	Future work
	Improving datamodel estimation
	Studying generalization
	Applying datamodels

	Connection between Influence Estimation and Datamodels
	Proof of Lemma 1
	Evaluating influence estimates as datamodels
	Testing Lemma 1 empirically
	View of empirical influences as a Taylor approximation

