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Abstract

To improve model generalization, model design-
ers often restrict the features that their models
use, either implicitly or explicitly. In this work,
we explore the design space of leveraging such
feature priors by viewing them as distinct per-
spectives on the data. Specifically, we find that
models trained with diverse sets of feature priors
have less overlapping failure modes, and can thus
be combined more effectively. Moreover, we
demonstrate that jointly training such models on
additional (unlabeled) data allows them to cor-
rect each other’s mistakes, which, in turn, leads
to better generalization and resilience to spurious
correlations. 2

1. Introduction

The driving force behind deep learning’s success is its abil-
ity to automatically discover predictive features in complex
high-dimensional datasets. These features can generalize
beyond the specific task at hand, thus enabling models to
transfer to other (similar) tasks (Donahue et al., 2014). At
the same time, the set of features that the model learns has
a large impact on the model’s performance on unseen in-
puts, especially in the presence of distribution shift (Ponce
et al., 2006; Torralba & Efros, 2011; Sagawa et al., 2020) or
spurious correlations (Heinze-Deml & Meinshausen, 2017;
Beery et al., 2018; Meinshausen, 2018).

Motivated by this, recent work focuses on encouraging spe-
cific modes of behavior by preventing the models from re-
lying on certain features. Examples include suppressing
texture features (Geirhos et al., 2019; Wang et al., 2019),
avoiding £,-non-robust features (Tsipras et al., 2019; En-
gstrom et al., 2019), or utilizing different parts of the fre-
quency spectrum (Yin et al., 2019).
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At a high level, these methods can be thought of as ways
of imposing a feature prior on the learning process, so as
to bias the model towards acquiring features that generalize
better. This makes the choice of the feature prior to impose
a key design decision. The goal of this work is thus to
explore the underlying design space of feature priors and,
specifically, to understand:

How can we effectively harness the diversity of feature
priors?

Our contributions

In this paper, we cast diverse feature priors as different per-
spectives on the data and study how they can complement
each other. In particular, we aim to understand whether
training with distinct priors result in models with non-
overlapping failure modes and how such models can be
combined to improve generalization. This is particularly
relevant in settings where the data is unreliable—e.g, when
the training data contains a spurious correlation. From this
perspective, we focus our study on two priors that arise nat-
urally in the context of image classification, shape and tex-
ture, and investigate the following:

Feature diversity. We demonstrate that training models
with diverse feature priors results in them making mistakes
on different parts of the data distribution, even if they per-
form similarly in terms of overall accuracy. Further, one
can harness this diversity to build model ensembles that
are more accurate than those based on combining models
which have the same feature prior.

Combining feature priors on unlabeled data. When
learning from unlabeled data, the choice of feature prior
can be especially important. For strategies such as self-
training, sub-optimal prediction rules learned from sparse
labeled data can be reinforced when pseudo-labeling the
unlabeled data. We show that, in such settings, we can
leverage the diversity of feature priors to address these is-
sues. By jointly training models with different feature pri-
ors on the unlabeled data through the framework of co-
training (Blum & Mitchell, 1998), we find that the models
can correct each other’s mistakes to learn prediction rules
that generalize better.
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Learning in the presence of spurious correlations.
Finally, we want to understand whether combining diverse
priors during training, as described above, can prevent
models from relying on correlations that are spurious, i.e.,
correlations that do not hold on the actual distribution of
interest. To model such scenarios, we consider a setting
where a spurious correlation is present in the training data
but we also have access to (unlabeled) data where this
correlation does not hold. In this setting, we find that
co-training models with diverse feature priors can actually
steer them away from such correlations and thus enable
them to generalize to the underlying distribution.

Overall, our findings highlight the potential of incorporat-
ing distinct feature priors into the training process. We be-
lieve that further work along this direction will lead us to
models that generalize more reliably.

2. Background: Feature Priors in Computer
Vision

When learning from structurally complex data, such as im-
ages, relying on raw input features alone (e.g., pixels) is
not particularly useful. There has thus been a long line
of work on extracting input patterns that can be more ef-
fective for prediction. While early approaches, such as
SIFT (Lowe, 1999) and HOG (Dalal & Triggs, 2005),
leveraged hand-crafted features, these have been by now
largely replaced by features that are automatically learned
in an end-to-end fashion (Krizhevsky, 2009; Ciregan et al.,
2012; Krizhevsky et al., 2012).

Nevertheless, even when features are learned, model de-
signers still tune their models to better suit a particular task
via changes in the architecture or training methodology.
Such modifications can be thought of as imposing feature
priors, i.e., priors that bias a model towards a particular set
of features. One prominent example is convolutional neural
networks, which are biased towards learning a hierarchy of
localized features (Fukushima, 1980; LeCun et al., 1989).
Indeed, such a convolutional prior can be quite powerful: it
is sufficient to enable many image synthesis tasks without
any training (Ulyanov et al., 2017).

More recently, there has been work exploring the impact
of explicitly restricting the set of features utilized by the
model. For instance, Geirhos et al. (2019) demonstrate that
training models on stylized inputs (and hence suppressing
texture information) can improve model robustness to com-
mon corruptions. In a similar vein, Wang et al. (2019)
penalize the predictive power of local features to learn
shape-biased models that generalize better between image
styles. A parallel line of work focuses on training models
to be robust to small, worst-case input perturbations using,

for example, adversarial training (Goodfellow et al., 2015;
Madry et al., 2018) or randomized smoothing (Lecuyer
et al., 2019; Cohen et al., 2019). Such methods bias these
models away from non-robust features (Tsipras et al., 2019;
Ilyas et al., 2019; Engstrom et al., 2019), which tends to
result in them being more aligned with human percep-
tion (Tsipras et al., 2019; Kaur et al., 2019), more re-
silient to certain input corruptions (Ford et al., 2019; Kireev
et al., 2021), and better suited for transfer to downstream
tasks (Utrera et al., 2020; Salman et al., 2020).

3. Feature Priors as Different Perspectives

As we discussed, the choice of feature prior can have a
large effect on what features a model relies on and, by ex-
tension, on how well it generalizes to unseen inputs. In
fact, one can view such priors as distinct perspectives on
the data, capturing different information about the input.
In this section, we provide evidence to support this view;
specifically, we examine a case study on a pair of feature
priors that arise naturally in the context of image classifica-
tion: shape and texture.

3.1. Training shape- and texture-biased models

In order to train shape- and texture-biased models, we ei-
ther pre-process the model input or modify the model ar-
chitecture as follows:

Shape-biased models. To suppress texture information,
we pre-process our images by applying an edge detection
algorithm. We consider two canonical methods: the Canny
algorithm (Ding & Goshtasby, 2001) which produces a bi-
nary edge mask, and the Sobel algorithm (Sobel & Feld-
man, 1968) which provides a softer edge detection, hence
retaining some texture information (see Figures 1b and 1c¢).

Texture-biased models. To prevent the model from rely-
ing on the global structure of the image, we utilize a variant
of the BagNet architecture (Brendel & Bethge, 2019). A
BagNet deliberately limits the model’s receptive field, thus
forcing it to rely on local features (see Figure 1d).

We visualize all of these priors in Figure 1 and provide im-
plementation details in Appendix A.

3.2. Diversity of feature-biased models

After training models with shape and texture biases as out-
lined above, we evaluate whether these models indeed cap-
ture complementary information about the input. Specif-
ically, we train models on a small subset (100 examples
per class) of the CIFAR-10 (Krizhevsky, 2009) and STL-
10 (Coates et al., 2011) datasets, and measure the correla-
tion between which test examples they correctly classify.
We consider the full CIFAR-10 dataset, as well as simi-
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Table 2: Correlation (Pearson coefficient) of correct predictions on the test set between different pairs of models. The
diagonal entries correspond to models trained with the same prior but from different random initializations. While the
two shape-biased models (Sobel and Canny) are more aligned with each other, they are both quite different from the

texture-biased model (BagNet).

CIFAR-10 STL-10
Standard Canny Sobel BagNet | Standard Canny Sobel BagNet
Standard 0.598 0.237  0.259 0.38 0.554 0.305  0.385 0.357
Canny 0.545 0.324 0.143 0.523  0.392 0.212
Sobel 0.594 0.173 0.649 0.262
BagNet 0.655 0.486

(c) Canny

(d) BagNet

Figure 1: Visualizing different feature priors: (a) an im-
age from the STL-10 dataset; (b) Sobel edge detection; (c)
Canny edge detection; (d) the limited receptive field of a
BagNet.

lar experiments on ImageNet (Deng et al., 2009) in Ap-
pendix B.6.

We find that pairs consisting of a shape-biased model and
a texture-biased model (i.e., Canny and BagNet, or Sobel
and BagNet) indeed have the least correlated predictions—
cf. Table 2. In other words, the mistakes that these models
make are more diverse than those made by identical models
trained from different random initializations. At the same
time, different shape-biased models (Sobel and Canny) are
relatively well-correlated with each other, which corrobo-
rates the fact that models trained on similar features of the
input are likely to make similar mistakes.

Model ensembles. Having shown that training models
with these feature priors results in diverse prediction rules,
we examine if we can now combine them to improve our
generalization. The canonical approach for doing so is to
incorporate these models into an ensemble.

We find that the diversity of models trained with differ-

ent feature priors directly translates into improved perfor-
mance when combining them into an ensemble—cf. Ta-
ble 3. Indeed, we find that the ensemble’s performance
is tightly connected to the prediction similarity of its con-
stituents (as measured in Table 2), i.e., more diverse ensem-
bles tend to perform better. For instance, the best ensem-
ble for the STL-10 dataset combines a shape-biased model
(Canny) and a texture-biased model (BagNet) which were
the models with the least aligned predictions.

4. Combining Diverse Priors on Unlabeled
Data

In the previous section, we saw that training models with
different feature priors (e.g., shape- and texture-biased
models) can lead to prediction rules with less overlapping
failure modes—which, in turn, can lead to more effec-
tive model ensembles. However, ensembles only combine
model predictions post hoc and thus cannot take advantage
of diversity during the training process.

In this section, we instead focus on utilizing diversity
during training. In particular, we leverage the diver-
sity introduced through feature priors in the context of
self-training (Lee et al., 2013)—a framework commonly
used when the labeled data is insufficient to learn a well-
generalizing model. This framework utilizes unlabeled
data, which are then pseudo-labeled using an existing
model and used for further training. While such methods
can often improve the overall model performance, they face
a significant drawback: models tend to reinforce subopti-
mal prediction rules even when these rules do not general-
ize to the underlying distribution (Arazo et al., 2020).

Our goal is thus to leverage diverse feature priors to ad-
dress this exact shortcoming. Specifically, we will jointly
train models with different priors on the unlabeled data
through the framework of co-training (Blum & Mitchell,
1998). Since these models capture complementary infor-
mation about the input (cf. Table 2), we expect them to
correct each other’s mistakes and improve their prediction
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Table 3: Ensemble accuracy when combining models trained with a diverse set of feature priors (models with the same prior
are trained from different random initialization). Notice how models trained with different priors lead to ensembles with
better performance. Moreover, when the accuracy of the two base models is comparable, models that are more diverse (as
measured in Table 2) result in better ensembles. We describe the different methods of combining models in Appendix A.4
and provide the full results in Appendix B.2.

Feature Priors Model 1 Model 2 Ensemble
Standard + Standard  52.54 £ 0.86 51.82 £0.86 54.02 4+ 0.80
Same Sobel + Sobel 5194 £0.84 53.694+0.82 54.68 +0.83
BagNet + BagNet 4222 +0.88 4256 £0.80 43.49 +0.83
Standard + Sobel 5254 +£083 51944+0.83 58.21 +0.82
Different  Standard + BagNet 5254 +£084 42224+0.84 53.03 +£0.81
Sobel + BagNet 51.94+£090 4222 +0.84 55.144+0.81
(a) CIFAR-10
Feature Priors Model 1 Model 2 Ensemble
Standard + Standard  53.73 £0.91 5538 £ 0.88 57.06 & 0.91
Same Canny + Canny 5629 £0.96 5499 £0.96 58.23 +0.93
BagNet + BagNet 52.04 £098 5034 4+094 53.42 +0.93
Standard + Canny 53.73 £0.95 56.29+091 60.96 & 0.96
Different  Standard + BagNet 5373 £098 52.044+090 57.17 +£0.90
Canny + BagNet 5629 £091 52.044+095 61.42+0.92
(b) STL-10

rules. As we will see in this section, this approach can in-
deed have a significant impact on the performance of the re-
sulting model, outperforming ensembles that combine such
models only at evaluation time—see summary in Figure 4.

Setup. We base our analysis on the CIFAR-10 and STL-
10 datasets. Specifically, we treat a small fraction of the
training set as labeled examples (100 examples per class),
another fraction as our validation set for tuning hyperpa-
rameters (10% of the total training examples), and the rest
as unlabeled data. We report our results on the standard
test set of each dataset. (See Appendix A for experimen-
tal details, and Appendix B.7 for experiments with varying
levels of labeled data.)

4.1. Self-training and ensembles

Before outlining our method for jointly training models
with multiple priors, we first describe the standard ap-
proach to self-training a single model. At a high level, the
predictions of the model on the unlabeled data are treated
as correct labels and are then used to further train the same
model (Lee et al., 2013; Iscen et al., 2019; Zou et al., 2019;
Xie et al., 2020). The underlying intuition is that the clas-
sifier will predict the correct labels for that data better than
chance, and thus these pseudo-labels can be used to expand

the training set.

In practice, however, these pseudo-labels tend to be noisy.
Thus, a common approach is to only use the labels to
which the model assigns the highest probability (Lee et al.,
2013). This process is repeated, self-training on increas-
ingly larger fractions of the unlabeled data until all of it is
used. We refer to each training phase as an era.

Ensembles of diverse self-trained models. Similarly to
our results in Table 3, we find that ensembles comprised of
self-trained models with diverse feature priors outperform
those using same prior from different random initializations
(see Figure 4 for a summary and Appendix B.3 for the full
results). This indicates that, after self-training, these mod-
els continue to capture complementary information about
the input that can be leveraged to improve performance.

4.2. Co-training models with different feature priors

Moving beyond self-training with a single feature prior, our
goal in this section is to leverage multiple feature priors by
jointly training them on unlabeled data. This idea naturally
fits into the framework of co-training: a method used to
learn from unlabeled data when inputs correspond to mul-
tiple independent sets of features (Blum & Mitchell, 1998).
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Figure 4: Test accuracy of pre-trained, self-trained, and co-trained models selecting the best feature prior for each (full
results in Table 3, Appendix Table 13, and Table 5 respectively). Notice how combinations of models with different feature
priors consistently outperform combinations of models with the same feature prior.

Concretely, we first train a model for each feature prior.
Then, we collect the pseudo-labels on the unlabeled data
that were assigned the highest probability for each model—
including duplicates with potentially different labels—to
form a new training set which we use for further training.
As in the self-training regime, we repeat this process over
several eras, increasing the fraction of the unlabeled dataset
used at each era. Intuitively, this iterative process allows the
models to bootstrap off of each other’s predictions, learning
correlations that they might fail to learn from the labeled
data alone. At the end of this process, we are left with two
models, one for each prior, which we combine into a sin-
gle classifier by training a standard model from scratch on
the combined pseudo-labels. We provide a more detailed
explanation of the methodology in Appendix A.5.

Co-training performance. We find that co-training with
shape- and texture-based priors can significantly improve
test accuracy compared to self-training with any of the pri-
ors alone (Table 5). This is despite the fact that, when us-
ing self-training alone, the standard model outperforms all
other models (Column 4, Table 5). Moreover, co-training
models with diverse priors improves upon simply combin-
ing them in an ensemble (Appendix B.3).

In Appendix B.5, we report the performance of co-training
with every pair of priors. We find that co-training with
shape- and texture-based priors (Canny + BagNet for STL-
10 and Sobel + BagNet for CIFAR-10) outperforms every
other prior combination. Note that this differs from the
setting of ensembling models with different priors, where
Standard + Sobel is consistently the best performing pair
for CIFAR-10 (c.f Table 3 and Appendix B.3). These re-
sults indicate that the diversity of shape- and texture-biased
models allows them to improve each other over training.

Additionally, we find that, even when training a single
model on the pseudo-labels of another model, prior di-

versity can still help. Specifically, we compare the per-
formance of a standard model trained from scratch using
pseudo-labels from various self-trained models (Column
5, Table 5). In this setting, using a self-trained shape- or
texture-biased model for pseudo-labeling outperforms us-
ing a self-trained standard model. This is despite the fact
that, in isolation, the standard model has higher accuracy
than the shape- or texture-biased ones (Column 4, Table 5).

Model alignment over co-training. To further explore the
dynamics of co-training, we evaluate how the correlation
between model predictions evolves as the eras progress in
Figure 6 (using the prediction alignment measure of Ta-
ble 2). We find that shape- and texture-biased models ex-
hibit low correlation at the start of co-training, but this cor-
relation increases as co-training progresses. This is in con-
trast to self-training each model on its own, where the cor-
relation remains relatively low. It is also worth noting that
the correlation appears to plateau at a lower value when co-
training models with distinct feature priors as opposed to
co-training two standard models.

Finally, we find that a standard model trained on the
pseudo-labels of other models correlates well with the
models themselves (see Appendix B.8). Overall, these
findings indicate that models trained on each other’s
pseudo-labels end up behaving more similarly.

5. Using Co-Training to Avoid Spurious
Correlations

A major challenge when training models for real-world de-
ployment is avoiding spurious correlations: associations
which are predictive on the training data but not valid for
the actual task. Since models are typically trained to max-
imize train accuracy, they are quite likely to rely on such
spurious correlations (Gururangan et al., 2018; Beery et al.,
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Table 5: Test accuracy of self-training and co-training methods on STL-10 and CIFAR-10. For each model, we report the
original accuracy when trained only labeled data (Column 3) as well as the accuracy after being trained on pseudo-labeled
data (Column 4). (Recall that, for the case of co-training, pseudo-labeling is performed by combining the predictions of
both models.) Finally, we report the performance of a standard model trained from scratch on the resulting pseudo-labels
(Column 5). We provide 95% confidence intervals computed via bootstrap with 5000 iterations.

. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard 52.54 +0.81 63.65 + 0.78 64.02 + 0.79
Self-training  Sobel 51.94 + 0.90 63.05 + 0.85 64.77 + 0.81
BagNet 42.22 + 0.81 53.92 £ 0.84 54.21 + 0.81
Standard 52.54 +£0.83 65.06 + 0.78
Co-trainin +Standard  51.82 4+ 0.79 64.93 + 0.83 65.10 +0.79
€  “Sobel 51.94 4+ 0.82 71.88 + 0.76 74.25 4 075
+BagNet 42.22 +0.80 73.91 + 0.73 ) ’
(a) CIFAR-10
. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard 53.73 £ 0.94 59.92 £0.93 60.52 + 0.91
Self-training  Canny 56.29 £ 0.92 58.40 + 0.89 62.19 £ 091
BagNet 52.04 +0.92 57.80 4+ 0.99 61.69 + 0.96
Standard 53.73 £ 0.94 58.05 £ 0.95
Co-trainin +Standard  55.38 4+ 0.92 60.44 + 0.92 61.16 + 0.94
g Canny 56.29 + 0.94 62.21 + 0.93 67.33 - 0.89
+BagNet 52.04 4+ 1.00 66.74 + 0.94 ) ’
(b) STL-10

2018; Geirhos et al., 2020; Xiao et al., 2020).

In this section, our goal is to leverage diverse feature pri-
ors to control the sensitivity of the training process to such
spurious correlations. Specifically, we will assume that
the spurious correlation does not hold on the unlabeled
data (which is likely since unlabeled data can often be col-
lected at a larger scale). Without this assumption, the un-
labeled data contains no examples that could (potentially)
contradict the spurious correlation (we investigate the set-
ting where the unlabeled data is also similarly skewed in
Appendix B.11). As we will see, if the problematic corre-
lation is not easily captured by one of the priors, the corre-
sponding model generates pseudo-labels that are inconsis-
tent with this correlation, thus steering other models away
from this correlation during co-training.

Setup. We study spurious correlations in two settings.
First, we create a synthetic dataset by tinting each image
of the STL-10 labeled dataset in a class-specific way. The
tint is highly predictive on the training set, but not on the
test set (where this correlation is absent). Second, simi-

lar to Sagawa et al. (2020), we consider a gender classifi-
cation task based on CelebA (Liu et al., 2015) where hair
color (“blond” vs. “non-blond”) is predictive on the labeled
data but not on the unlabeled and test data. While gender
and hair color are independent attributes on the unlabeled
dataset, the labeled dataset consists only of blond females
and non-blond males. Similarly to the synthetic case, the
labeled data encourages a prediction rule based only on hair
color. See Appendix A.1 for details.

Performance on datasets with spurious features. We
find that, when trained only on the labeled data (where the
correlation is fully predictive), both the standard and Bag-
Net models generalize poorly in comparison to the shape-
biased models (see Table 7). This behavior is expected:
the spurious attribute in both datasets is color-related and
mostly suppressed by the edge detection algorithms used
to train shape-based models. Even after self-training on the
unlabeled data (where the correlation is absent), the per-
formance of the standard and BagNet models does not im-
prove significantly. Finally, simply ensembling self-trained
models post hoc does not improve their performance. In-
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Figure 6: Correlation between the correct predictions of shape- and texture-biased models over the course of co-training
for STL-10 and CIFAR-10. For comparison, we also plot the correlation between the predictions when the models induced
by these priors are individually self-trained, as well as the correlation of two standard models when co-trained together.

Table 7: Test accuracy of self-training and co-training on tinted STL-10 and CelebA, two datasets with spurious features
(table structure is identical Table 5). In both datasets, the spurious correlation is more easily captured by the BagNet and
Standard models over the shape-based ones. Nevertheless, when co-trained with a shaped-biased model, BagNets are able
to significantly improve their performance, indicating that they rely less on this spurious correlation. CI: 95% bootstrap.

. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard  13.99 +£ 0.66 17.56 + 0.70 17.81 £0.74
Self-trainin Canny 55.95 +0.92 57.31 + 0.89 57.81 £0.92
£ Sobel 55.11 £ 091 56.12 £0.92 57.16 £ 091
BagNet 13.10 £ 0.64 13.53 £ 0.62 14.65 £ 0.66
Canny 55.95 £ 0.90 57.74 £+ 0.90
Co-trainin +BagNet 13.10 £0.65 55.33 £ 0.92 3785 %095
£ “Sobel 55.11 £0.95 57.71 £ 0.90 57.60 & 0.94
+BagNet 13.10 £ 0.62 54.61 £0.94 ’ ’
(a) Tinted STL-10
. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard  67.07 £ 0.58 71.57 £0.53 71.89 £0.53
Self-trainin Canny 80.90 + 0.47 85.73 £ 0.40 86.55 £ 0.42
£ Sobel 82.94 + 045 85.42 +0.43 84.96 £+ 0.43
BagNet 69.35 £ 0.55 64.89 + 0.59 66.15 + 0.58
Canny 80.90 & 0.46 89.64 £+ 0.36
Co-trainin +BagNet 69.35 £ 0.55 91.44 £0.33 91.99 4 0.31
i £ “Sobel 82.94 £ 0.44 90.64 £ 0.35 90.99 &+ 034
+BagNet 69.35 £ 0.57 88.72 £ 0.39 ' ’
(b) CelebA

deed as the texture-biased and standard models are signif-
icantly less accurate than the shape-biased one, they lower

the overall accuracy of the ensemble (see Appendix B.9).

In contrast, when we co-train shape- and texture- biased
models together, the texture-biased model improves sub-
stantially. When co-trained with a Canny model, the Bag-
Net model improves over self-training by 42% on the tinted
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STL-10 dataset and 27% on the CelebA dataset. This im-
provement can be attributed to the fact that the predictions
of the shape-biased model are inconsistent with the spuri-
ous correlation on the unlabeled data. By being trained on
pseudo-labels from that model, the BagNet model is forced
to rely on alternative, non-spurious features.

Moreover, particularly on CelebA, the shape-biased model
also improves when co-trained with a texture-biased model.
This indicates that even though the texture-biased model
relies on the spurious correlation, it also captures non-
spurious features that, during co-training, improve the per-
formance of the shape-based model. In Appendix B.10,
we find that these improvements are concentrated on inputs
where the spurious correlation does not hold.

6. Additional Related Work

In Section 2, we discussed the most relevant prior work on
implicit or explicit feature priors. Here, we discuss addi-
tional related work and how it connects to our approach.

Shape-biased models. Several other methods aim to
bias models towards shape-based features: input styliza-
tion (Geirhos et al., 2019; Somavarapu et al., 2020; Li
et al., 2021), penalizing early layer predictiveness (Wang
et al., 2019), jigsaw puzzles (Carlucci et al., 2019; Asadi
et al., 2019), dropout (Shi et al., 2020), or data augmenta-
tion (Hermann et al., 2020). While, in our work, we choose
to suppress texture information via edge detection algo-
rithms, any of these methods can be substituted to generate
the shape-based model for our analysis.

Avoiding spurious correlations. Other methods to avoid
learning spurious correlations include: learning represen-
tations that are optimal across domains (Arjovsky et al.,
2019), enforcing robustness to group shifts (Sagawa et al.,
2020), and utilizing multiple data points corresponding
to a single physical entity (Heinze-Deml & Meinshausen,
2017). Similar in spirit to our work, these methods encour-
age prediction rules that are supported by multiple views of
the data. However, we do not rely on annotations or mul-
tiple sources and instead impose feature priors through the
model architecture and input preprocessing.

Pseudo-labeling. Since the initial proposal of pseudo-
labeling for neural networks (Lee et al., 2013), there
has been a number of more sophisticated pseudo-labeling
schemes aimed at improving the accuracy and diversity of
the labels (Iscen et al., 2019; Augustin & Hein, 2020; Xie
et al., 2020; Rizve et al., 2021; Huang et al., 2021). In our
work, we focus on the simplest scheme for self-labeling—
i.e., confidence based example selection. Nevertheless,
most of these schemes can be directly incorporated into our
framework to potentially improve its overall performance.

A recent line of work explores self-training by analyzing
it under different assumptions on the data (Mobahi et al.,
2020; Wei et al., 2021; Allen-Zhu & Li, 2020; Kumar et al.,
2020). Closest to our work, Chen et al. (2020b) show that
self-training on unlabeled data can reduce reliance on spu-
rious correlations under certain assumptions. In contrast,
we demonstrate that by leveraging diverse feature priors,
we can avoid spurious correlations even if a model heavily
relies on them.

Consistency regularization. Consistency regularization,
where a model is trained to be invariant to a set of input
transformations, is another canonical technique for leverag-
ing unlabeled data. These transformations might stem from
data augmentations and architecture stochasticity (Laine &
Aila, 2017; Berthelot et al., 2019; Chen et al., 2020a; Sohn
et al., 2020; Prabhu et al., 2021) or using adversarial exam-
ples (Miyato et al., 2018).

Ensemble diversity. While the standard recipe for creat-
ing model ensembles is based on training multiple identi-
cal models from different random initializations (Lakshmi-
narayanan et al., 2017), there do exist other methods for
introducing diversity. Examples include training models
with different hyperparameters (Wenzel et al., 2020), data
augmentations (Stickland & Murray, 2020), input transfor-
mations (Yeo et al., 2021), or model architectures (Zaidi
et al., 2020). Note that, in contrast to our work, none of
these approaches incorporate this diversity into training it-
self.

Co-training. One line of work studies co-training from
a theoretical perspective (Nigam & Ghani, 2000; Balcan
et al., 2005; Goldman & Zhou, 2000). Other work aims to
improve co-training by either expanding the settings where
it can be applied (Chen et al., 2011) or by improving its
stability (Ma et al., 2020; Zhang & Zhou, 2011). Finally,
a third line of work applies co-training to images. Since
images cannot be separated into disjoint feature sets, one
would apply co-training by training multiple models (Han
et al., 2018), either regularized to be diverse through ad-
versarial examples (Qiao et al., 2018) or each trained us-
ing a different method (Yang et al., 2020). Our method is
complementary to these approaches as it relies on explicit
feature priors to obtain different views.

7. Conclusion

In this work, we explored the benefits of combining feature
priors with non-overlapping failure modes. By capturing
complementary perspectives on the data, models trained
with diverse feature priors can offset each other’s mis-
takes when combined through methods such as ensembles.
Moreover, in the presence of unlabeled data, we can lever-
age prior diversity by jointly boostrapping models with dif-
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ferent priors through co-training. This allows the models to
correct each other during training, thus improving pseudo-
labeling and controlling for correlations that do not gener-
alize well.

We believe that our work is only the first step in exploring
the design space of creating, manipulating, and combin-
ing feature priors to improve generalization. In particular,
our framework is quite flexible and allows for a number
of different design choices, such as choosing other fea-
ture priors (cf. Sections 2 and 6), using other methods
for pseudo-label selection (e.g., using uncertainty estima-
tion (Lee et al., 2018; Rizve et al., 2021)), and combin-
ing pseudo-labels via different ensembling methods. More
broadly, we believe that exploring the synthesis of explicit
feature priors in new applications is an exciting avenue for
further research.
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A. Experimental Details
A.1. Datasets

For our first set of experiments (Section 4), we focus on a canonical setting where a small portion of the training set if
labeled and we have access to a pool of unlabeled data.

STL-10. The STL-10 (Coates et al., 2011) dataset contains 5,000 training and 8,000 test images of size 96x96 from 10
classes. We designate 1,000 of the 5,000 (20%) training examples to be the labeled training set, 500 (10%) to be the
validation set, and the rest are used as unlabeled data.

CIFAR-10. The CIFAR-10 (Krizhevsky, 2009) dataset contains 50,000 training and 8,000 test images of size 3232 from
10 classes. We designate 1,000 of the 50,000 (2%) training examples to be the labeled training set, 5000 (10%) to be the
validation set, and the rest as unlabeled data.

In both cases, we report the final performance on the standard test set of that dataset. We also create two datasets that each
contain a different spurious correlation.

Tinted STL-10. We reuse the STL-10 setup described above, but we add a class-specific tint to each image in the (labeled)
training set. Specifically, we hand-pick a different color for each of the 10 classes and then add this color to each of the
pixels (ensuring that each RGB channel remains within the valid range)—see Figure 8 for examples. This tint is only
present in the labeled part of the training set, the unlabeled and test parts of the dataset are left unaltered.

o

(a) Original

(b) Tinted

Figure 8: Tinted STL-10 images. The tint is class-specific and thus models can learn to predict based mostly on that tint.

Biased CelebA. We consider the task of predicting gender in the CelebA (Liu et al., 2015) dataset. In order to create a
biased training set, we choose a random sample of 500 non-blond males and 500 blond females. We then use a balanced
unlabeled dataset consisting of 1,000 random samples for each of: blond males, blond females, non-blond males, and
non-blond females. We use the standard CelebA test set which consists of 12.41% blond females, 48.92% non-blond
females, 0.90% blond males, and 37.77% non-blond males. (Note that a classifier predicting purely based on hair color
with have an accuracy of 50.18% on that test set.)

All of the datasets that we use are freely available for non-commercial research purposes. Moreover, to the best of our
knowledge, they do not contain offensive content or identifiable information (other than publicly available celebrity photos).

A.2. Model architectures and input preprocessing

For both the standard model and the models trained on images processed by edge detection algorithm, we use a standard
model architecture—namely, VGG16 (Simonyan & Zisserman, 2015) with the addition of batch normalization (Ioffe &
Szegedy, 2015) (often referred to as VGG16-BN). We describe the exact edge detection process as well as the architecture
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of the BagNet model (texture prior) below. We visualize these priors in Figure 10.

Canny edge detection. Given an image, we first smooth it with a 5 pixel bilateral filter (Tomasi & Manduchi, 1998), with
filter o in the coordinate and color space set to 75. After smoothing, the image is converted to gray-scale. Finally, a Canny
filter (Canny, 1986) is applied to the image, with hysteresis thresholds 100 and 200, to extract the edges.

Sobel edge detection. Given an image, we first upsample it to 128 x 128 pixels. Then we convert it to gray-scale and apply
a Gaussian blur (kernel size=5, ¢ = 5). The image is then passed through a Sobel filter (Sobel & Feldman, 1968) with a
kernel size of 3 in both the horizontal and the vertical direction to extract the image gradients.

BagNet. For our texture-biased model, we use a slimmed down version of the BagNet architecture from Brendel & Bethge
(2019). The goal of this architecture is to limit the receptive field of the model, hence forcing it to make predictions based
on local features. The exact architecture we used is shown in Figure 9. Intuitively, the top half of the network—i.e., the
green and blue blocks—construct features on patches of size 20 x20 for 9696 images and 10x 10 for 32x32 images. The
rest of the network consists only of 1x1 convolutions and max-pooling, hence not utilizing the image’s spatial structure.

Custom BagNet20 Custom BagNet10
CBR, 1x1, 128 CBR, 1x1, 256
CBR, 5x5, 128 CBR, 5x5, 256

rf: 5, img size: 96

rf: 5, img size: 32

A 4

A 4

CBR, 1x1, 128
MaxPool (2)
rf: 6, img size 48

CBR, 1x1, 256
MaxPool (2)
rf: 6, img size 16

A 4

A 4

CBR, 1x1, 256
CBR, 3x3, 256
rf: 10, img size 48

CBR, 1x1, 512
CBR, 3x3, 512
rf: 10, img size 16

A 4

A 4

CBR, 1x1, 256 CBR, 1x1, 1024
Max Pool (2) Max Pool (2)
rf: 12, img size 24 CBR, 1x1, 1024

Max Pool (2)
v CBR, 1x1, 1024
CBR, 1x1, 512 ,,.'V}‘;‘," ,f’n‘;"'s,?;‘g 1
CBR, 3x3, 512 -
rf 20: img size 24
v
v CBR, 1x1, 512
CBR, 1x1, 1024 OB, Tl DI
CBR, 1x1, 256
Max Pool (2) CBR, 1x1, 128
CBR, 1x1, 1024 Linear. 10
Max Pool (2) 4
CBR, 1x1, 1024
Max Pool (6)

rf:20, img size 1

A 4

CBR, 1x1, 512
CBR, 1x1, 512
CBR, 1x1, 256
CBR, 1x1, 128
Linear, 10

Figure 9: The customized BagNet architecture used for training texture-biased models. The basic building block consists
of a convolutional layer, followed by batch normalization and finally a ReLU non-linearity (denoted collectively as CBR).
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(a) Original (b) Sobel (c) Canny (d) BagNet

Figure 10: Further visualizations of the different feature priors we introduce. For each original image (a), we visualize the
output of both edge detection algorithms—Sobel (b) and Canny (c)—as well as the receptive field of the BagNet model.
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A.3. Training setup
A.3.1. BASIC TRAINING

We train all our models using stochastic gradient descent (SGD) with momentum (a coefficient of 0.9) and a decaying
learning rate. We add weight decay regularization with a coefficient of 10~%. In terms of data augmentation, we apply
random cropping with a padding of 4 pixels, random horizontal flips, and a random rotation of £2 degrees. These trans-
formations are applied after the edge detection processing. We train all models with a batch size of 64 for 96 x96-sized
images and 128 for 32x32-sized images for a total of 300 epochs. All our experiments are performed using our internal
cluster which mainly consists of NVIDIA 1080 Ti GTX GPUs.

Hyperparameter tuning. To ensure a fair comparison across feature priors, we selected the hyperparameters for each
dataset-prior pair separately, using the held-out validation set (separate from the final test used for reporting performance).
Specifically, we performed a grid search choosing the learning rate (LR) from [0.1,0.05,0.02,0.01, 0.005], the number of
epochs between each learning rate drop (K) from [50, 100, 300] and the factor with which the learning rate is multiplied ()
from [0.5, 1]. The parameters chosen are shown in Table 11. We found that all models achieved near-optimal performance
strictly within the range of each hyperparameters. Thus, we did not consider a wider grid.

Dataset Prior LR v K

Standard  0.01 0.5 100
Canny 0.01 05 100

STL-10 Sobel 0.005 0.5 100
BagNet 005 05 100
Standard  0.01 0.5 100
Canny 0.01 0.5 100
CIFAR-10 Sobel 0.01 05 100
BagNet 0.01 0.1 100
Standard  0.005 0.5 50
CelebA Canny 0.005 0.1 100

Sobel 001 05 50
BagNet 0.02 05 100

Table 11: Hyperparameters chosen through grid search for each dataset-prior pair (we used the STL-10 hyperparameters
for the tinted STL-10 dataset). LR corresponds to the learning rate, y to the factor used to decay the learning rate at each
drop, and K to the train epochs between each learning rate drop.

A.4. Ensembles

In order to leverage prior diversity, we ensemble models trained with (potentially) different priors. We use the following
ensembles:

1. Take Max: Predict based on the model assigning the highest probability on this example.
2. Average: Average the (softmax) output probabilities of the models, predict the class assigned the highest probability.

3. Rank: Each model ranks all test examples based on the probability assigned to their predicted labels. Then, for each
example, we predict using the model which has a lower rank on this example.

We then report the maximum of these ensemble methods in Table 3. We separately examine a more complex ensembling
method (stacked ensembling) in Appendix B.4.
A.5. Self-training and co-training schemes

In the setting that we are focusing on, we are provided with a labeled dataset X and an unlabeled dataset U, where typically
there is much more unlabeled data (|U| >> |X]). We are then choosing a set of (one or more) feature priors each of which
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corresponds to a different way of training a model (e.g., using edge detection preprocessing).

General methodology. We start by training each of these models on the labeled dataset. Then, we combine the predictions
of these models to produce pseudo-labels for the unlabeled dataset. Finally, we choose a fraction of the unlabeled data and
train the models on that set using the produced pseudo-labels (in additional to the original labeled set X). This process is
repeated using increasing fractions of the unlabeled dataset until, eventually, models are trained on its entirety. We refer to
each such phase as an era. We include an additional 5% of the unlabeled data per era, resulting in a total of 20 eras. During
each era, we use the training process described in Appendix A.3.1 without re-initializing the models (warm start). After
completing this process, we train a standard model from scratch using both the labeled set and resulting pseudo-labels. The
methodology used for choosing and combining pseudo-labels is described below for each scheme.

Self-training. Since we are only training one model, we only need to decide how to choose the pseudo-labels to use for
each era. We do this in the simplest way: at ear ¢, we pick the subset Uy C U of examples that are assigned the highest
probability on their predicted label. We attempt to produce a class-balanced training set by applying this process separately
on each class (as predicted by the model). The pseudocode for the method is provided in Algorithm 1.

Algorithm 1 Self-Training

Params: Number of eras 7. Fraction added per era k.
Input: Labeled data X with n classes, unlabeled data U, model trained on X.
forerat € 1.. T do
forward-pass U through model to create pseudo-labels;
Uy = H,
for ecach class c do
Select the XY most confident examples from U predicted by the model as class c;
Add those examples to Uy with class c;
end for
Re-train (warm start) the model on X U Uy until convergence;
end for
Train a standard model from scratch on X U Ur.
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Standard co-training. Here, we train multiple models (in our experiments two) based on a common pool of pseudo-
labeled examples in each era. In each era ¢, each model labels the unlabeled dataset U. Then, for each class, we alternate
between models, adding the next most confident example predicted as that class for that model to Uy, until we reach a fixed
number of unique examples have been added for that class (5% of the size of the unlabeled dataset per era). Note that this
process allows both conflicts and duplicates: if multiple models are confident about a specific example, that example may
be added more than once (potentially with a different label each time). Finally, we train each model (without re-initializing)
on X U Uyg. The pseudocode for this method can be found in Algorithm 2.

Algorithm 2 Standard Co-Training

Params: Number of eras 7. Fraction added per era k.
Input: Labeled data X with n classes, unlabeled data U, models trained on X.
forerat € 1.. T do
forward-pass U through each model to create pseudo-labels;
Ug = H,
for each class c do
U = s
while the # of unique examples in U§°) < @ do
for each model m do
Add the next most confident example predicted by m as class c to UEC);
end for
end while
Add U to Ug;
end for
Re-train (warm start) each model on X U Uy until convergence;
end for
Train a standard model from scratch on X U Ur.
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B. Additional Experiments

B.1. Experiment organization

We now provide the full experimental results used to create the plots in the main body as well as additional analysis.
Specifically, in Appendix B.2 and B.3 we present the performance of individual ensemble schemes for pre-trained and
self-trained models respectively. Then, in Appendix B.5 we present the performance of co-training for each combination
of feature priors. In Appendix B.8 we analyse the effect that co-training has on model similarity after training. Finally, in
Appendix B.9 we evaluate model ensembles on datasets with spurious correlations and in Appendix B.10 we breakdown
the performance of co-training on the skewed CelebA dataset according to different input attributes.

B.2. Full Pre-Trained Ensemble Results

In Table 3, we reported the best ensemble method for each pair of models trained with different priors on the labeled data.
In Table 12, we report the full results over the individual ensembles.

Feature Priors Model 1 Model 2 Max Conlf. Avg Conlf. Rank Best

Standard + Standard  52.54 £0.85 51.82+0.85 5398 £0.83 54.02+0.85 53.98+0.83 54.02+£0.82
Sobel + Sobel 51.94 £0.88 53.69+0.86 54.62+0.83 54.68£0.86 54.61 £0.85 54.68+0.83
Canny + Canny 4548 £0.84 44.19+0.88 46.46+0.82 4648 £0.86 46.70 £0.83 46.70 +0.79
BagNet + BagNet 4222 £0.80 42.56+0.83 4332+0.82 4349+0.82 43.33+0.85 43.49+0.84
Standard + Sobel 5254 £0.79 5194+0.82 58.14+0.82 5821 +0.88 58.12+0.82 58.21+0.90
Standard + Canny 5254 £0.87 4548 +0.81 55.18+0.82 5549+0.83 5441+0.81 5549+0.83
Standard + BagNet ~ 52.54 £0.85 4222 +0.80 52.89 £0.84 53.03£0.89 50.69+0.81 53.03+0.85
Sobel + Canny 5194 £0.82 45484+0.85 53.81+0.84 5395+0.80 53.18+091 53.95+0.85
Sobel + BagNet 5194 £0.86 42.22+0.82 54424084 55.144+0.83 53.50+£0.82 55.14+0.84
Canny + BagNet 4548 £0.78 42.224+0.79 4995+ 0.84 50.57 £0.82 49.64 £0.81 50.57 +0.84

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 53.73 £0.86 5538 £1.00 56.95+0.94 57.06+£091 56.94+097 57.064+ 091
Sobel + Sobel 5549 £094 55.64+0.98 56.71+092 56.83£090 56.66=+0.89 56.83+0.94
Canny + Canny 56.29 +0.92 5499 +096 58.04+094 5823+094 57.95+£0.89 58.23+0.93
BagNet + BagNet 52.04£092 50.34+0.90 53404098 5342+091 5329+0.96 53.4240.98
Standard + Sobel 5373 £094 5549 +0.95 59.01 090 59.08+£091 58.94+0.96 59.08+0.95
Standard + Canny 5373 £1.00 56.29 £0.94 60.90+0.94 60.96+094 60.85=+0.87 60.96 + 0.94
Standard + BagNet ~ 53.73 £0.95 52.04 £090 56.99 £0.94 57.17+0.92 57.04+091 57.17+0.94
Sobel + Canny 5549 £091 56.29£0.94 59924095 60.02+£097 59.77+£0.91 60.02+0.91
Sobel + BagNet 5549 +£094 52.04+095 59.17+094 59.76 £0.96 59.08 £0.89 59.76 £ 0.87
Canny + BagNet 5629 £0.96 52.04£0.95 61.09+092 61.42+£094 60.68+0.92 61.42+0.93

(b) Ensemble Baselines for STL-10

Table 12: Full results for ensembles of pre-trained models.
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B.3. Ensembling Self-Trained Models

In Table 13, we report the best ensemble method for pairs of self-trained models with different priors. In Table 14, we
report the full results over the individual ensembles. We find that, similar to the ensembles of models trained on the labeled
data, models with diverse priors gain more from ensembling. However, co-training models with diverse priors together still

outperforms ensembling self-trained models.

Feature Priors Model 1 Model 2 Ensemble
Standard + Standard  59.92 095 59.34 £ 0.88 62.25 +0.93
Same Canny + Canny 5840+ 094 57.69£094 60.38 +£0.92
BagNet + BagNet 57.80 £096 58.11 £0.85 60.52 +0.90
Standard + Canny 59.92 +£090 5840+0.95 64.44 1+ 0.90
Different  Standard + BagNet 5992+094 57.80£096 63.19 +£0.87
Canny + BagNet 5840+ 094 57.80+096 64.80 = 0.91
(a) STL-10
Feature Priors Model 1 Model 2 Ensemble
Standard + Standard  63.65 £0.81 61.95+0.82 64.85+0.79
Same Sobel + Sobel 63.05+£0.81 66.01 =080 66.25 +0.82
BagNet + BagNet 53924082 5290+0.91 55.004+0.83
Standard + Sobel 63.65 +0.81 63.05+0.83 67.52+0.77
Different  Standard + BagNet 63.65 081 53924+0.88 64.10+0.79
Sobel + BagNet 63.05+£0.83 53.92+0.89 65.68+0.79

Table 13: Ensemble performance when combining self-trained models with Standard, Canny, Sobel, and BagNet priors.
When two models of the same prior are ensembled, the models are trained with different random initializations.

(b) CIFAR-10
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Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard  63.65 £ 0.81 61.95+0.87 64.84 £0.77 64.85+£0.76 64.83 £0.83 64.85+0.79
Sobel + Sobel 63.05 £ 0.87 66.01 £0.82 66.19 +£0.81 6625+0.79 66.17£0.81 66.25+ 0.83
BagNet + BagNet 53.92 £ 0.87 5290+0.83 54.86+0.87 55.00+0.83 54.87+0.82 55.00+£0.87
Standard + Sobel 63.65 £ 0.79 63.05+0.80 6742+0.79 6752+0.79 6738£0.79 67.52£0.77
Standard + Canny 63.65 £ 090 51.82+0.88 63.70+0.81 6391 +0.81 63.02+0.83 63.91+£0.82
Standard + BagNet ~ 63.65 £0.81 53.92+£0.82 64.05+£0.85 64.10+0.79 62.69+0.80 64.10+0.86
Sobel + Canny 63.05 £ 0.81 51.82+0.80 61.43+0.80 61.424+0.80 60.66=+0.81 61.43+0.83
Sobel + BagNet 63.05 £ 0.78 53.92+0.83 6545+085 6568+0.82 64.65+0.80 65.68+0.82
Canny + BagNet 51.82+£0.81 5392+£0.79 59.60+0.81 59.79+0.83 60.24 £0.82 60.24 + 0.81

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard  59.92 £0.92 5934 £0.99 62.18 £0.92 62.25+096 62.16+0.88 62.25+0.94
Canny + Canny 58.40 £0.95 57.69£0.89 60.30+0.95 60.36+0.92 60.38+091 60.38+ 0.95
BagNet + BagNet 57.80 £0.89 58.11 £094 6042+090 60.46+098 60.52+0.93 60.52+0.90
Standard + Sobel 59.92 £0.92 57.86+091 6249 +0.89 62.69+091 62.66+0.89 62.69+0.94
Standard + Canny 59.92£094 58404095 6429+095 6444+£089 64.34+0.95 64.44+0.95
Standard + BagNet ~ 59.92 £0.89 57.80+0.97 63.01 £0.93 63.10£0.89 63.19+0.88 63.19 + 0.88
Sobel + Canny 57.86 £ 091 5840+093 6220+092 62.14+092 6222+090 62.22+091
Sobel + BagNet 57.86 £095 57.80+095 6224+094 6258+090 63.52£091 63.52+0.88
Canny + BagNet 5840+ 093 57.80+095 6438+0.89 64.64+092 6480090 64.80+L0.92

(b) Ensemble Baselines for STL-10

Table 14: Full results for ensembles of self-trained models.
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B.4. Stacked Ensembling

Here we consider an ensembling technique that leverages a validation set. We implement stacking (also called blending)
(Toscher et al., 2009; Sill et al., 2009), which takes in the outputs of the member models as input, and then trains a second
model to produce the final layer. Here, we take the logits of each model in the ensemble, and train the secondary model
using logistic regression on the validation set for the dataset. We report accuracies of the ensemble on the test set below.
‘We again find that prior diversity is important for the performance of the ensemble.

‘ Pre-trained ‘ Self-trained

Feature Priors Model 1 Model 2 Stacked Model 1 Model 2 Stacked
Ensemble Ensemble

Standard + Standard | 52.54 £ 0.85 51.82+0.85 54.13+0.88 | 63.65 £ 0.81 61.95+0.82 65.13 +0.82
Sobel + Sobel 51.94 £0.88 53.69+0.86 54461092 | 63.05+0.81 66.01 +0.80 66.35=+0.80
BagNet + BagNet 4222 +£0.80 42.56+0.83 4428 +£0.83 | 53.92£0.82 5290+ 091 5494 +0.84
Standard + Sobel 5254 £0.79 51.94+0.82 57.42+0.84 | 63.65+0.81 63.05+0.83 67.01=+0.79
Standard + BagNet | 52.54 £ 0.85 42.22+0.80 53.65+0.85 | 63.65 £ 0.81 53.92+0.88 64.61 +£0.81
Sobel + BagNet 5194 +£0.86 42.22+0.82 55.75+0.83 | 63.05+0.83 53.92+0.89 65.67+0.82

Table 15: Performance of ensembling pre-trained and self-trained models with stacked ensembling on CIFAR-10

‘ Pre-trained ‘ Self-trained
Feature Priors Model 1 Model 2 Stacked Model 1 Model 2 Stacked
Ensemble Ensemble
Standard + Standard | 53.73 £ 0.86 5538 & 1.00 56.01 0.94 | 59.92 £ 095 59.34 £0.88 60.54 £ 0.91
Canny + Canny 56.29 £0.92 5499 £0.96 57.70£0.90 | 58.40 £0.94 57.69 £0.94 59.23 +£0.99

BagNet + BagNet 52.04 £092 5034+090 52354097 | 57.80£096 58.11+0.85 59.48 +0.98
Standard + Canny 53.73 £1.00 56.29 +0.94 59.24 +0.88 | 59.92 £0.90 58.40+0.95 63.42+ 0.89
Standard + BagNet | 53.73 £0.95 52.04 £090 56.03 +£0.98 | 59.92 +£0.94 57.80+0.96 62.59 +0.91
Canny + BagNet 5629 £0.96 52.04+0.95 59.98+091 | 58.40+0.94 57.80+£096 63.22+0.94

Table 16: Performance of ensembling pre-trained and self-trained models with stacked ensembling on STL-10
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B.5. Self-Training and Co-Training on STL-10 and CIFAR-10

. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard  52.54 + 0.86 63.65 = 0.76 64.02 + 0.82
Selftraining CANNY 45.48 + 0.90 51.82 + 0.82 55.59 + 0.80
“TANNg g hel 51.94 + 0.88 63.05 + 0.84 64.77 + 0.80
BagNet 4222 +0.82 53.92 + 0.89 54.21 + 0.85
Standard  52.54 + 0.91 65.06 = 0.76
+Standard  51.82 + 0.86 64.93 + 0.80 65.10 + 0.84
Canny 45.48 £ 0.85 51.15 £ 0.79
+Canny  44.19 £ 0.82 51.65 + 0.81 5574 £ 0.80
Sobel 51.04 + 0.86 67.18 = 0.80
+Sobel 53.69 + 0.89 67.35 + 0.77 68.47 4+ 0.74
Canny 45.48 £ 0.79 58.66 & 0.81
+Sobel 51.94 + 0.80 64.87 + 0.79 65.34 £ 081
Canny 4548 £ 0.85 59.19 + 0.85
Coutraining _tBagNet 4222+ 0.85 67.92 + 0.79 67.59 +0.74
€ “Sobel 51.94 + 0.81 71.88 £ 0.73 7425 1 0.74
+BagNet  42.22 +0.82 73.91 + 0.71 : .
BagNet 4222 £0.79 55.04 + 0.83
+BagNet  42.56 + 0.86 55.26 + 0.88 56.05 +0.77
Canny 4548 £ 0.85 59.23 F 0.81
+Standard ~ 52.54 + 0.87 66.92 + 0.82 67.21 0.7
Sobel 51.94 £ 0.83 71.44 £ 0.76
+Standard ~ 52.54 + 0.85 73.59 + 0.72 73.83 4 0.76
Standard 5254 + 0.88 66.67 £ 0.83
+BagNet  42.22 & 0.80 67.12 + 0.75 66.77 +0.75

Table 17: Performance of self-training and co-training on CIFAR-10 for each prior combination.



Combining Diverse Feature Priors

. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard 53.73 £0.95 59.92 + 091 60.52 4+ 0.94
Self-trainin Canny 56.29 + 0.96 58.40 £ 0.91 62.19 £ 0.92
£ Sobel 55.49 £0.96 57.86 £ 0.98 60.92 £ 0.89
BagNet 52.04 £0.96 57.80 £0.99 61.69 £ 0.95
Standard 53.73 £0.95 58.05 + 0.92
+Standard  55.38 4+ 0.96 60.44 £ 0.95 61.16 4095
Canny 56.29 £ 0.92 60.22 £ 0.91
+Canny 54.99 £ 0.94 59.56 £ 0.94 63.24 £ 0.92
Sobel 55.49 £0.96 58.93 £0.91
+Sobel 55.64 £0.95 59.23 +0.90 60.68 £ 0.94
Canny 56.29 £ 0.95 62.40 + 0.99
+Sobel 55.49 £0.92 64.11 £0.91 65.53 +0.84
Canny 56.29 £ 0.92 62.21 £0.89
Co-trainin +BagNet  52.04 +0.94 66.74 £ 0.87 67.33 + 0.8
£ “Sobel 55.49 + 0.92 62.72 £ 0.94 65.79 L 0.94
+BagNet  52.04 &+ 1.00 65.44 £ 091 ' ’
BagNet 52.04 £0.89 59.85 + 0.89
+BagNet  50.34 +0.91 60.16 £ 0.89 60.84 £ 0.95
Canny 56.29 £ 0.94 62.16 £ 0.92
+Standard  53.73 £ 0.92 64.22 £ 091 65.67 4093
Sobel 55.49 £0.95 61.15 + 0.89
+Standard  53.73 4+ 0.92 61.74 £0.93 63.08 £ 091
Standard 53.73 £ 0.94 61.99 £ 0.88
+BagNet  52.04 +0.91 62.31 £1.00 62.34 +0.89

Table 18: Performance of self-training and co-training on STL-10 for each prior combination.
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B.6. Additional Results for Ensembling Diverse Feature Priors (Full CIFAR-10, ImageNet)

In Figures 19 and 20, we perform an analysis of using an ensemble to combine models trained on the full CIFAR-10
and the ImageNet (96x96) dataset respectively. We find that models with different feature priors still have less correlated
predictions than those of the same feature prior, and thus have less overlapping failure modes. Ensembles of models with
diverse priors provide a significant boost over the performance of individual models, higher than that of combining models
trained with the same prior. It is worth noting that, in these settings, the specific feature priors we introduce result in
models with accuracy significantly lower than that of a standard model. Designing better domain-specific priors is thus an

important avenue for future work.

Standard Sobel Canny BagNet
Standard | 0.583 0369 0.242 0473
Sobel 0.597 0.358 0.295
Canny 0.594 0.212
BagNet 0.594

(a) Correlation of correct predictions (cf. Table 2)

Standard Sobel BagNet
Standard | 0.6528 0.4925 0.5613
Sobel 0.6384 0.4529
BagNet 0.6517

Feature Priors Model 1 Model 2 Ensemble

Standard + Standard 91.73 +£0.44 9197 +0.46 92.83 + 0.44
Sobel + Sobel 86.18 = 0.58 86.21 £0.58 87.43 4+ 0.59
BagNet + BagNet 90.47 £0.49 90.85+0.49 91.69 + 0.48
Standard + Sobel 91.73 £0.44 86.18 =0.58 92.23 + 0.44
Standard + BagNet  91.73 £ 0.44 90.47 + 0.49 93.01 +£0.42
Sobel + BagNet 86.18 = 0.58 90.47 £0.49 9227 £0.44

(b) Ensemble accuracy (cf. Table 3).
Table 19: Full CIFAR-10 dataset

Feature Priors Model 1 Model 2 Ensemble

Standard + Standard 60.34 + 0.38 60.30 = 0.38 63.36 + 0.36
Sobel + Sobel 51.87 £0.36 51.62+0.39 54.90 + 0.35
BagNet + BagNet 52.57 £0.36 52.38 +0.38 55.42 +0.38
Standard + Sobel 60.34 £ 0.37 51.87 £0.36 62.86 +=0.37
Standard + BagNet  60.34 £+ 0.38 52.57 + 0.36 62.00 & 0.36
Sobel + BagNet 51.87 £0.36 52.57 £0.36 59.41 +0.36

(a) Correlation of correct predictions (cf. Table 2)

Table 20: ImageNet dataset.

(b) Ensemble accuracy (cf. Table 3).
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B.7. Co-Training with varying amounts of labeled data.

In Table 21, we study how the efficacy of combining diverse priors through cotraining changes as the number of labeled
examples increase for STL-10. As one might expect, when labeled data is sparse, the feature priors learned by the models
alone are relatively brittle: thus, leveraging diverse priors against each other on unlabeled data improves generalization. As
the number of labeled examples increases, the models with single feature priors learn more reliable prediction rules that
can already generalize, so the additional benefit of combining feature priors diminishes. However, even in settings with
plentiful data, combining diverse feature priors can aid generalization if there is a spurious correlation in the labeled data
(see Section 5.)

Number of Labeled Examples  Standard + Standard Canny + BagNet

1000 61.16 £ 0.94 67.33 £ 0.89
2000 68.24 £ 1.12 72.76 = 1.08
3000 74.88 £0.97 75.76 = 1.04
4000 78.85 + 0.99 77.44 £ 1.00

Table 21: Performance of co-training approaches with different amounts of training data for STL-10.
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B.8. Correlation between the individual feature-biased models and the final standard model

CIFAR-10 STL-10
Method Prior Before After Before After
Standard 0.598 0.813 0.554 0.728
Self-training Canny 0.237 0.622 0.305 0.519
Sobel 0.259 0.76 0.385 0.621
BagNet 0.38 0.752 0.357 0.516
Canny 0.237 0.595 0.305 0.496
Co-training +BagNet 0.38 0.664 0.357 0.538
Sobel 0.259 0.719 0.385 0.581
+BagNet 0.38 0.716 0.357 0.554

Table 22: Similarity between models before and after training on pseudo-labeled data. Our measure of similarity is the
(Pearson) correlation between which test examples are correctly predicted by each model. In Columns 3 and 5 we report
that notion of similarity between the pre-trained feature-biased models and the pre-trained standard model (the numbers
are reproduced from Table 2). Then, in columns 4 and 6 we report the similarity between the feature-biased models at
the end of self- or co-training and the standard model trained on their (potentially combined) pseudo-labels. We observe
that through this process of training a standard model on the pseudo-labels of different feature-biased models, the former
behaves more similar to the latter.
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B.9. Ensembles for Spurious Datasets

In Table 23 (full table in Table 24), we ensemble the self-trained priors for the Tinted STL-10 dataset and the CelebA
dataset as in Section 5. Both of these datasets have a spurious correlation base on color, which results in a weak Standard
and BagNet model. As a result, the ensembles with the Standard or BagNet models do not perform well on the test set.
However, in Section 7, we find that co-training in this setting allows the BagNet model to improve when jointly trained
with a shape model, thus boosting the final performance.

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 17.56 £0.73 57.31 £0.96 44.31 +£0.90
Standard + Sobel 17.56 £ 0.71 56.12 +£0.90 46.06 + 0.95
Standard + BagNet 17.56 + 0.73 13.53 £ 0.66 16.64 £ 0.66
Canny + BagNet 5731 £096 13.53+0.64 48.30+0.89
Sobel + BagNet 56.12 £ 091 13.53 £0.69 49.05+0.98

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 71.57 £0.53 8573 £0.40 84.05+0.42
Standard + Sobel 71.57 £0.55 8542 +043 82.10+£045
Standard + BagNet 71.57 +0.53 64.89 £ 0.56 69.66 + 0.55
Canny + BagNet 85.73 £ 042 6489 +£056 84.06+0.45
Sobel + BagNet 85.42 043 64.89 +0.57 82.89 +0.44

(b) CelebA

Table 23: Performance of ensembles consisting of models trained with different priors.

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny  17.56 £0.70 57.31 £0.95 4431 +£098 4348+094 42.124+095 4431+094
Standard + Sobel 17.56 £ 0.66 56.12+0.98 46.06 =094 4471 £091 39.39+0.95 46.06 £ 0.99
Standard + BagNet 17.56 £0.71 13.53 £0.64 16.59 £0.69 16.64 +0.71 16.14+0.74 16.64 £+ 0.66
Canny + BagNet 57.31 £ 091 13.53+0.62 48.09+096 4830+ 1.01 39.92+0.92 48.30+0.95
Sobel + BagNet 56.12+0.94 1353 +0.64 49.00£0.95 49.05+£0.95 37.67+£091 49.05+0.93

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny  71.57 £0.53 85.73 £ 0.43 83.96 +£0.44 84.05+043 84.00+0.46 84.05+0.43
Standard + Sobel 71.57 £0.57 8542+ 041 82.06+045 82.10+0.45 78.01=+0.51 82.10+£0.49
Standard + BagNet 71.57 £ 0.56 64.89 +0.56 69.66 £ 0.54 69.66 +0.54 68.01 +0.58 69.66 £ 0.54
Canny + BagNet 85.73 £ 042 64.89 +0.57 84.06+ 044 84.06+ 045 72.79+0.51 84.06+£0.44
Sobel + BagNet 8542 £0.39 64.89 £0.55 82.89+0.46 8289+£046 71.65+0.57 82.89+0.43

(b) CelebA

Table 24: Performance of individual ensembles on datasets with spurious correlations.
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B.10. Breakdown of test accuracy for co-training on CelebA

Female Female Male Male
Method Prior(s) Blond Not Blond Blond Not Blond
(N=2480) (N=9767) (N=180) (N=7535)
Standard 97.78 £ 0.52 47.06 £0.83 5556 +6.11 9594 + 0.37
Self-trainin Canny 9444 +£0.81 7727 +£0.69 7833+5.00 96.19+0.36
& Sobel 9597 £0.60 7343+£0.78 70.56+£5.56 96.63 + 0.37
BagNet 97.26 £ 0.60 3544 £0.80 41.67£6.67 96.30+£ 0.40
. Canny 004 4056 86.69+0.56 79.44+5.00 9753+ 031
Co-training +BagNet
Sobel 96.81 £0.56 84.41+0.63 79.44+5.00 97.89 + 0.29
+BagNet

Table 25: Accuracy of predicting gender on different subpopulations of the CelebA dataset. We show the accuracy of
standard models trained on the pseudo-labels produced by different self- or co-training schemes. Recall that in the training
set all females are blond and all males are non-blond (while the unlabeled dataset is balanced). It is thus interesting to
consider where this correlation is reversed. We observe that, in these cases, both the standard and BagNet models perform
quite poorly, even after being self-trained on the unlabeled dataset where this correlation is absent. At the same time,
co-training steers the models away from this correlation, resulting in improved performance. 95% confidence intervals
computed via bootstrap are shown.



Combining Diverse Feature Priors

B.11. What if the unlabeled data also contained the spurious correlation?

In Section 5, we assume that the unlabeled data does not contain the spurious correlation present in the labeled data. This
is often the case when unlabeled data can be collected through a more diverse process than labeled data (for example, by
scraping the web large scales or by passively collecting data during deployment). This assumption is important: in order
to successfully steer models away from the spurious correlation during co-training, the process needs to surface examples
which contradict the spurious correlation. However, if the unlabeled data is also heavily skewed, such examples might be
rare or non-existent.

What happens if the unlabeled data is as heavily skewed as the labeled data? We return the setting of a spurious association
between hair color and gender in CelebA. However, unlike in Section 5, we use an unlabeled dataset that also perfectly
correlates hair color and gender — it contains 2000 non-blond males and 2000 blond females. The unlabeled data thus has
the same distribution as the labeled data, and contains no examples that reject the spurious correlation (blond males or
non-blond females).

. +Unlabeled + Standard model
Methods Prior(s) Labeled Only Self/Co-Training with Pseudo-labels
Standard  67.07 £ 0.57 73.32 £0.55 69.13 £+ 0.58
Self-training Canny 80.90 + 0.49 80.47 £ 0.48 76.61 £ 0.52
BagNet 69.35 £ 0.55 69.21 £ 0.53 71.34 £ 0.54
.. Canny 80.90 + 0.49 82.17 + 0.47
Co-training b Net  69.35+055  76.52 + 0.50 78.53 4 049

Table 26: Performance of Self-Training and Co-Training techniques when the unlabeled data also contains a complete
skew toward hair color (as in the labeled data). 95% confidence intervals computed via bootstrap are shown.

Self-Training: Since the unlabeled data follows the spurious correlation between hair color and gender, the standard and
BagNet models almost perfectly pseudo-label the unlabeled data. Thus, they are simply increasing the number of examples
in the training dataset but maintaining the same overall distribution. Self-training thus does not change the accuracy for
models with these priors significantly. In contrast, in the setting in Section 5, there were examples in the unlabeled data
which did not align with the spurious correlation (blond males and non-blond females). Since they relied mostly on
hair color, the standard and BagNet models actively mislabeled these examples (i.e, by labeling a blond male as female).
Training on these erroneous pseudo-labels actively suppressed any features that were not hair color, causing the standard
and Bagnet models to perform worse after self-training.

Co-Training: In contrast, when performing co-training with the Canny and BagNet priors, the Canny model (which cannot
detect hair color) will make mistakes on the unlabeled dataset. These mistakes help are inconsistent with a reliance on hair
color: due to this regularization, the BagNet’s accuracy improves from 69.35% to 76.52%. Overall, though the gain is
not as significant as the setting with a balanced unlabeled dataset, the Canny + BagNet co-trained model can mitigate the
pitfalls of the BagNet’s reliance on hair color and outperform even the canny self-trained model.
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