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Abstract

To improve model generalization, model design-

ers often restrict the features that their models

use, either implicitly or explicitly. In this work,

we explore the design space of leveraging such

feature priors by viewing them as distinct per-

spectives on the data. Specifically, we find that

models trained with diverse sets of feature priors

have less overlapping failure modes, and can thus

be combined more effectively. Moreover, we

demonstrate that jointly training such models on

additional (unlabeled) data allows them to cor-

rect each other’s mistakes, which, in turn, leads

to better generalization and resilience to spurious

correlations. 2

1. Introduction

The driving force behind deep learning’s success is its abil-

ity to automatically discover predictive features in complex

high-dimensional datasets. These features can generalize

beyond the specific task at hand, thus enabling models to

transfer to other (similar) tasks (Donahue et al., 2014). At

the same time, the set of features that the model learns has

a large impact on the model’s performance on unseen in-

puts, especially in the presence of distribution shift (Ponce

et al., 2006; Torralba & Efros, 2011; Sagawa et al., 2020) or

spurious correlations (Heinze-Deml & Meinshausen, 2017;

Beery et al., 2018; Meinshausen, 2018).

Motivated by this, recent work focuses on encouraging spe-

cific modes of behavior by preventing the models from re-

lying on certain features. Examples include suppressing

texture features (Geirhos et al., 2019; Wang et al., 2019),

avoiding ℓp-non-robust features (Tsipras et al., 2019; En-

gstrom et al., 2019), or utilizing different parts of the fre-

quency spectrum (Yin et al., 2019).
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At a high level, these methods can be thought of as ways

of imposing a feature prior on the learning process, so as

to bias the model towards acquiring features that generalize

better. This makes the choice of the feature prior to impose

a key design decision. The goal of this work is thus to

explore the underlying design space of feature priors and,

specifically, to understand:

How can we effectively harness the diversity of feature

priors?

Our contributions

In this paper, we cast diverse feature priors as different per-

spectives on the data and study how they can complement

each other. In particular, we aim to understand whether

training with distinct priors result in models with non-

overlapping failure modes and how such models can be

combined to improve generalization. This is particularly

relevant in settings where the data is unreliable—e.g, when

the training data contains a spurious correlation. From this

perspective, we focus our study on two priors that arise nat-

urally in the context of image classification, shape and tex-

ture, and investigate the following:

Feature diversity. We demonstrate that training models

with diverse feature priors results in them making mistakes

on different parts of the data distribution, even if they per-

form similarly in terms of overall accuracy. Further, one

can harness this diversity to build model ensembles that

are more accurate than those based on combining models

which have the same feature prior.

Combining feature priors on unlabeled data. When

learning from unlabeled data, the choice of feature prior

can be especially important. For strategies such as self-

training, sub-optimal prediction rules learned from sparse

labeled data can be reinforced when pseudo-labeling the

unlabeled data. We show that, in such settings, we can

leverage the diversity of feature priors to address these is-

sues. By jointly training models with different feature pri-

ors on the unlabeled data through the framework of co-

training (Blum & Mitchell, 1998), we find that the models

can correct each other’s mistakes to learn prediction rules

that generalize better.
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Learning in the presence of spurious correlations.

Finally, we want to understand whether combining diverse

priors during training, as described above, can prevent

models from relying on correlations that are spurious, i.e.,

correlations that do not hold on the actual distribution of

interest. To model such scenarios, we consider a setting

where a spurious correlation is present in the training data

but we also have access to (unlabeled) data where this

correlation does not hold. In this setting, we find that

co-training models with diverse feature priors can actually

steer them away from such correlations and thus enable

them to generalize to the underlying distribution.

Overall, our findings highlight the potential of incorporat-

ing distinct feature priors into the training process. We be-

lieve that further work along this direction will lead us to

models that generalize more reliably.

2. Background: Feature Priors in Computer

Vision

When learning from structurally complex data, such as im-

ages, relying on raw input features alone (e.g., pixels) is

not particularly useful. There has thus been a long line

of work on extracting input patterns that can be more ef-

fective for prediction. While early approaches, such as

SIFT (Lowe, 1999) and HOG (Dalal & Triggs, 2005),

leveraged hand-crafted features, these have been by now

largely replaced by features that are automatically learned

in an end-to-end fashion (Krizhevsky, 2009; Ciregan et al.,

2012; Krizhevsky et al., 2012).

Nevertheless, even when features are learned, model de-

signers still tune their models to better suit a particular task

via changes in the architecture or training methodology.

Such modifications can be thought of as imposing feature

priors, i.e., priors that bias a model towards a particular set

of features. One prominent example is convolutional neural

networks, which are biased towards learning a hierarchy of

localized features (Fukushima, 1980; LeCun et al., 1989).

Indeed, such a convolutional prior can be quite powerful: it

is sufficient to enable many image synthesis tasks without

any training (Ulyanov et al., 2017).

More recently, there has been work exploring the impact

of explicitly restricting the set of features utilized by the

model. For instance, Geirhos et al. (2019) demonstrate that

training models on stylized inputs (and hence suppressing

texture information) can improve model robustness to com-

mon corruptions. In a similar vein, Wang et al. (2019)

penalize the predictive power of local features to learn

shape-biased models that generalize better between image

styles. A parallel line of work focuses on training models

to be robust to small, worst-case input perturbations using,

for example, adversarial training (Goodfellow et al., 2015;

Madry et al., 2018) or randomized smoothing (Lecuyer

et al., 2019; Cohen et al., 2019). Such methods bias these

models away from non-robust features (Tsipras et al., 2019;

Ilyas et al., 2019; Engstrom et al., 2019), which tends to

result in them being more aligned with human percep-

tion (Tsipras et al., 2019; Kaur et al., 2019), more re-

silient to certain input corruptions (Ford et al., 2019; Kireev

et al., 2021), and better suited for transfer to downstream

tasks (Utrera et al., 2020; Salman et al., 2020).

3. Feature Priors as Different Perspectives

As we discussed, the choice of feature prior can have a

large effect on what features a model relies on and, by ex-

tension, on how well it generalizes to unseen inputs. In

fact, one can view such priors as distinct perspectives on

the data, capturing different information about the input.

In this section, we provide evidence to support this view;

specifically, we examine a case study on a pair of feature

priors that arise naturally in the context of image classifica-

tion: shape and texture.

3.1. Training shape- and texture-biased models

In order to train shape- and texture-biased models, we ei-

ther pre-process the model input or modify the model ar-

chitecture as follows:

Shape-biased models. To suppress texture information,

we pre-process our images by applying an edge detection

algorithm. We consider two canonical methods: the Canny

algorithm (Ding & Goshtasby, 2001) which produces a bi-

nary edge mask, and the Sobel algorithm (Sobel & Feld-

man, 1968) which provides a softer edge detection, hence

retaining some texture information (see Figures 1b and 1c).

Texture-biased models. To prevent the model from rely-

ing on the global structure of the image, we utilize a variant

of the BagNet architecture (Brendel & Bethge, 2019). A

BagNet deliberately limits the model’s receptive field, thus

forcing it to rely on local features (see Figure 1d).

We visualize all of these priors in Figure 1 and provide im-

plementation details in Appendix A.

3.2. Diversity of feature-biased models

After training models with shape and texture biases as out-

lined above, we evaluate whether these models indeed cap-

ture complementary information about the input. Specif-

ically, we train models on a small subset (100 examples

per class) of the CIFAR-10 (Krizhevsky, 2009) and STL-

10 (Coates et al., 2011) datasets, and measure the correla-

tion between which test examples they correctly classify.

We consider the full CIFAR-10 dataset, as well as simi-
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Table 3: Ensemble accuracy when combining models trained with a diverse set of feature priors (models with the same prior

are trained from different random initialization). Notice how models trained with different priors lead to ensembles with

better performance. Moreover, when the accuracy of the two base models is comparable, models that are more diverse (as

measured in Table 2) result in better ensembles. We describe the different methods of combining models in Appendix A.4

and provide the full results in Appendix B.2.

Feature Priors Model 1 Model 2 Ensemble

Same

Standard + Standard 52.54 ± 0.86 51.82 ± 0.86 54.02 ± 0.80

Sobel + Sobel 51.94 ± 0.84 53.69 ± 0.82 54.68 ± 0.83

BagNet + BagNet 42.22 ± 0.88 42.56 ± 0.80 43.49 ± 0.83

Different

Standard + Sobel 52.54 ± 0.83 51.94 ± 0.83 58.21 ± 0.82

Standard + BagNet 52.54 ± 0.84 42.22 ± 0.84 53.03 ± 0.81

Sobel + BagNet 51.94 ± 0.90 42.22 ± 0.84 55.14 ± 0.81

(a) CIFAR-10

Feature Priors Model 1 Model 2 Ensemble

Same

Standard + Standard 53.73 ± 0.91 55.38 ± 0.88 57.06 ± 0.91

Canny + Canny 56.29 ± 0.96 54.99 ± 0.96 58.23 ± 0.93

BagNet + BagNet 52.04 ± 0.98 50.34 ± 0.94 53.42 ± 0.93

Different

Standard + Canny 53.73 ± 0.95 56.29 ± 0.91 60.96 ± 0.96

Standard + BagNet 53.73 ± 0.98 52.04 ± 0.90 57.17 ± 0.90

Canny + BagNet 56.29 ± 0.91 52.04 ± 0.95 61.42 ± 0.92

(b) STL-10

rules. As we will see in this section, this approach can in-

deed have a significant impact on the performance of the re-

sulting model, outperforming ensembles that combine such

models only at evaluation time—see summary in Figure 4.

Setup. We base our analysis on the CIFAR-10 and STL-

10 datasets. Specifically, we treat a small fraction of the

training set as labeled examples (100 examples per class),

another fraction as our validation set for tuning hyperpa-

rameters (10% of the total training examples), and the rest

as unlabeled data. We report our results on the standard

test set of each dataset. (See Appendix A for experimen-

tal details, and Appendix B.7 for experiments with varying

levels of labeled data.)

4.1. Self-training and ensembles

Before outlining our method for jointly training models

with multiple priors, we first describe the standard ap-

proach to self-training a single model. At a high level, the

predictions of the model on the unlabeled data are treated

as correct labels and are then used to further train the same

model (Lee et al., 2013; Iscen et al., 2019; Zou et al., 2019;

Xie et al., 2020). The underlying intuition is that the clas-

sifier will predict the correct labels for that data better than

chance, and thus these pseudo-labels can be used to expand

the training set.

In practice, however, these pseudo-labels tend to be noisy.

Thus, a common approach is to only use the labels to

which the model assigns the highest probability (Lee et al.,

2013). This process is repeated, self-training on increas-

ingly larger fractions of the unlabeled data until all of it is

used. We refer to each training phase as an era.

Ensembles of diverse self-trained models. Similarly to

our results in Table 3, we find that ensembles comprised of

self-trained models with diverse feature priors outperform

those using same prior from different random initializations

(see Figure 4 for a summary and Appendix B.3 for the full

results). This indicates that, after self-training, these mod-

els continue to capture complementary information about

the input that can be leveraged to improve performance.

4.2. Co-training models with different feature priors

Moving beyond self-training with a single feature prior, our

goal in this section is to leverage multiple feature priors by

jointly training them on unlabeled data. This idea naturally

fits into the framework of co-training: a method used to

learn from unlabeled data when inputs correspond to mul-

tiple independent sets of features (Blum & Mitchell, 1998).
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Table 5: Test accuracy of self-training and co-training methods on STL-10 and CIFAR-10. For each model, we report the

original accuracy when trained only labeled data (Column 3) as well as the accuracy after being trained on pseudo-labeled

data (Column 4). (Recall that, for the case of co-training, pseudo-labeling is performed by combining the predictions of

both models.) Finally, we report the performance of a standard model trained from scratch on the resulting pseudo-labels

(Column 5). We provide 95% confidence intervals computed via bootstrap with 5000 iterations.

Methods Prior(s) Labeled Only
+Unlabeled

Self/Co-Training

+ Standard model

with Pseudo-labels

Self-training

Standard 52.54 ± 0.81 63.65 ± 0.78 64.02 ± 0.79

Sobel 51.94 ± 0.90 63.05 ± 0.85 64.77 ± 0.81

BagNet 42.22 ± 0.81 53.92 ± 0.84 54.21 ± 0.81

Co-training

Standard 52.54 ± 0.83 65.06 ± 0.78
65.10 ± 0.79

+Standard 51.82 ± 0.79 64.93 ± 0.83

Sobel 51.94 ± 0.82 71.88 ± 0.76
74.25 ± 0.75

+BagNet 42.22 ± 0.80 73.91 ± 0.73

(a) CIFAR-10

Methods Prior(s) Labeled Only
+Unlabeled

Self/Co-Training

+ Standard model

with Pseudo-labels

Self-training

Standard 53.73 ± 0.94 59.92 ± 0.93 60.52 ± 0.91

Canny 56.29 ± 0.92 58.40 ± 0.89 62.19 ± 0.91

BagNet 52.04 ± 0.92 57.80 ± 0.99 61.69 ± 0.96

Co-training

Standard 53.73 ± 0.94 58.05 ± 0.95
61.16 ± 0.94

+Standard 55.38 ± 0.92 60.44 ± 0.92

Canny 56.29 ± 0.94 62.21 ± 0.93
67.33 ± 0.89

+BagNet 52.04 ± 1.00 66.74 ± 0.94

(b) STL-10

2018; Geirhos et al., 2020; Xiao et al., 2020).

In this section, our goal is to leverage diverse feature pri-

ors to control the sensitivity of the training process to such

spurious correlations. Specifically, we will assume that

the spurious correlation does not hold on the unlabeled

data (which is likely since unlabeled data can often be col-

lected at a larger scale). Without this assumption, the un-

labeled data contains no examples that could (potentially)

contradict the spurious correlation (we investigate the set-

ting where the unlabeled data is also similarly skewed in

Appendix B.11). As we will see, if the problematic corre-

lation is not easily captured by one of the priors, the corre-

sponding model generates pseudo-labels that are inconsis-

tent with this correlation, thus steering other models away

from this correlation during co-training.

Setup. We study spurious correlations in two settings.

First, we create a synthetic dataset by tinting each image

of the STL-10 labeled dataset in a class-specific way. The

tint is highly predictive on the training set, but not on the

test set (where this correlation is absent). Second, simi-

lar to Sagawa et al. (2020), we consider a gender classifi-

cation task based on CelebA (Liu et al., 2015) where hair

color (“blond” vs. “non-blond”) is predictive on the labeled

data but not on the unlabeled and test data. While gender

and hair color are independent attributes on the unlabeled

dataset, the labeled dataset consists only of blond females

and non-blond males. Similarly to the synthetic case, the

labeled data encourages a prediction rule based only on hair

color. See Appendix A.1 for details.

Performance on datasets with spurious features. We

find that, when trained only on the labeled data (where the

correlation is fully predictive), both the standard and Bag-

Net models generalize poorly in comparison to the shape-

biased models (see Table 7). This behavior is expected:

the spurious attribute in both datasets is color-related and

mostly suppressed by the edge detection algorithms used

to train shape-based models. Even after self-training on the

unlabeled data (where the correlation is absent), the per-

formance of the standard and BagNet models does not im-

prove significantly. Finally, simply ensembling self-trained

models post hoc does not improve their performance. In-
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STL-10 dataset and 27% on the CelebA dataset. This im-

provement can be attributed to the fact that the predictions

of the shape-biased model are inconsistent with the spuri-

ous correlation on the unlabeled data. By being trained on

pseudo-labels from that model, the BagNet model is forced

to rely on alternative, non-spurious features.

Moreover, particularly on CelebA, the shape-biased model

also improves when co-trained with a texture-biased model.

This indicates that even though the texture-biased model

relies on the spurious correlation, it also captures non-

spurious features that, during co-training, improve the per-

formance of the shape-based model. In Appendix B.10,

we find that these improvements are concentrated on inputs

where the spurious correlation does not hold.

6. Additional Related Work

In Section 2, we discussed the most relevant prior work on

implicit or explicit feature priors. Here, we discuss addi-

tional related work and how it connects to our approach.

Shape-biased models. Several other methods aim to

bias models towards shape-based features: input styliza-

tion (Geirhos et al., 2019; Somavarapu et al., 2020; Li

et al., 2021), penalizing early layer predictiveness (Wang

et al., 2019), jigsaw puzzles (Carlucci et al., 2019; Asadi

et al., 2019), dropout (Shi et al., 2020), or data augmenta-

tion (Hermann et al., 2020). While, in our work, we choose

to suppress texture information via edge detection algo-

rithms, any of these methods can be substituted to generate

the shape-based model for our analysis.

Avoiding spurious correlations. Other methods to avoid

learning spurious correlations include: learning represen-

tations that are optimal across domains (Arjovsky et al.,

2019), enforcing robustness to group shifts (Sagawa et al.,

2020), and utilizing multiple data points corresponding

to a single physical entity (Heinze-Deml & Meinshausen,

2017). Similar in spirit to our work, these methods encour-

age prediction rules that are supported by multiple views of

the data. However, we do not rely on annotations or mul-

tiple sources and instead impose feature priors through the

model architecture and input preprocessing.

Pseudo-labeling. Since the initial proposal of pseudo-

labeling for neural networks (Lee et al., 2013), there

has been a number of more sophisticated pseudo-labeling

schemes aimed at improving the accuracy and diversity of

the labels (Iscen et al., 2019; Augustin & Hein, 2020; Xie

et al., 2020; Rizve et al., 2021; Huang et al., 2021). In our

work, we focus on the simplest scheme for self-labeling—

i.e., confidence based example selection. Nevertheless,

most of these schemes can be directly incorporated into our

framework to potentially improve its overall performance.

A recent line of work explores self-training by analyzing

it under different assumptions on the data (Mobahi et al.,

2020; Wei et al., 2021; Allen-Zhu & Li, 2020; Kumar et al.,

2020). Closest to our work, Chen et al. (2020b) show that

self-training on unlabeled data can reduce reliance on spu-

rious correlations under certain assumptions. In contrast,

we demonstrate that by leveraging diverse feature priors,

we can avoid spurious correlations even if a model heavily

relies on them.

Consistency regularization. Consistency regularization,

where a model is trained to be invariant to a set of input

transformations, is another canonical technique for leverag-

ing unlabeled data. These transformations might stem from

data augmentations and architecture stochasticity (Laine &

Aila, 2017; Berthelot et al., 2019; Chen et al., 2020a; Sohn

et al., 2020; Prabhu et al., 2021) or using adversarial exam-

ples (Miyato et al., 2018).

Ensemble diversity. While the standard recipe for creat-

ing model ensembles is based on training multiple identi-

cal models from different random initializations (Lakshmi-

narayanan et al., 2017), there do exist other methods for

introducing diversity. Examples include training models

with different hyperparameters (Wenzel et al., 2020), data

augmentations (Stickland & Murray, 2020), input transfor-

mations (Yeo et al., 2021), or model architectures (Zaidi

et al., 2020). Note that, in contrast to our work, none of

these approaches incorporate this diversity into training it-

self.

Co-training. One line of work studies co-training from

a theoretical perspective (Nigam & Ghani, 2000; Balcan

et al., 2005; Goldman & Zhou, 2000). Other work aims to

improve co-training by either expanding the settings where

it can be applied (Chen et al., 2011) or by improving its

stability (Ma et al., 2020; Zhang & Zhou, 2011). Finally,

a third line of work applies co-training to images. Since

images cannot be separated into disjoint feature sets, one

would apply co-training by training multiple models (Han

et al., 2018), either regularized to be diverse through ad-

versarial examples (Qiao et al., 2018) or each trained us-

ing a different method (Yang et al., 2020). Our method is

complementary to these approaches as it relies on explicit

feature priors to obtain different views.

7. Conclusion

In this work, we explored the benefits of combining feature

priors with non-overlapping failure modes. By capturing

complementary perspectives on the data, models trained

with diverse feature priors can offset each other’s mis-

takes when combined through methods such as ensembles.

Moreover, in the presence of unlabeled data, we can lever-

age prior diversity by jointly boostrapping models with dif-
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ferent priors through co-training. This allows the models to

correct each other during training, thus improving pseudo-

labeling and controlling for correlations that do not gener-

alize well.

We believe that our work is only the first step in exploring

the design space of creating, manipulating, and combin-

ing feature priors to improve generalization. In particular,

our framework is quite flexible and allows for a number

of different design choices, such as choosing other fea-

ture priors (cf. Sections 2 and 6), using other methods

for pseudo-label selection (e.g., using uncertainty estima-

tion (Lee et al., 2018; Rizve et al., 2021)), and combin-

ing pseudo-labels via different ensembling methods. More

broadly, we believe that exploring the synthesis of explicit

feature priors in new applications is an exciting avenue for

further research.
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of the BagNet model (texture prior) below. We visualize these priors in Figure 10.

Canny edge detection. Given an image, we first smooth it with a 5 pixel bilateral filter (Tomasi & Manduchi, 1998), with

filter σ in the coordinate and color space set to 75. After smoothing, the image is converted to gray-scale. Finally, a Canny

filter (Canny, 1986) is applied to the image, with hysteresis thresholds 100 and 200, to extract the edges.

Sobel edge detection. Given an image, we first upsample it to 128×128 pixels. Then we convert it to gray-scale and apply

a Gaussian blur (kernel size=5, σ = 5). The image is then passed through a Sobel filter (Sobel & Feldman, 1968) with a

kernel size of 3 in both the horizontal and the vertical direction to extract the image gradients.

BagNet. For our texture-biased model, we use a slimmed down version of the BagNet architecture from Brendel & Bethge

(2019). The goal of this architecture is to limit the receptive field of the model, hence forcing it to make predictions based

on local features. The exact architecture we used is shown in Figure 9. Intuitively, the top half of the network—i.e., the

green and blue blocks—construct features on patches of size 20×20 for 96×96 images and 10×10 for 32×32 images. The

rest of the network consists only of 1×1 convolutions and max-pooling, hence not utilizing the image’s spatial structure.

CBR, 1x1, 128 
CBR, 5x5, 128 

rf: 5, img size: 96

CBR, 1x1, 128 
MaxPool (2) 

rf: 6, img size 48

CBR, 1x1, 256 
CBR, 3x3, 256 

rf: 10, img size 48

CBR, 1x1, 256 
Max Pool (2) 

rf: 12, img size 24
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CBR, 3x3, 512 

rf 20: img size 24

CBR, 1x1, 1024 
Max Pool (2) 

CBR, 1x1, 1024 
Max Pool (2) 
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Max Pool (6) 
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Linear, 10

Custom BagNet20 Custom BagNet10

Figure 9: The customized BagNet architecture used for training texture-biased models. The basic building block consists

of a convolutional layer, followed by batch normalization and finally a ReLU non-linearity (denoted collectively as CBR).
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A.3. Training setup

A.3.1. BASIC TRAINING

We train all our models using stochastic gradient descent (SGD) with momentum (a coefficient of 0.9) and a decaying

learning rate. We add weight decay regularization with a coefficient of 10−4. In terms of data augmentation, we apply

random cropping with a padding of 4 pixels, random horizontal flips, and a random rotation of ±2 degrees. These trans-

formations are applied after the edge detection processing. We train all models with a batch size of 64 for 96×96-sized

images and 128 for 32×32-sized images for a total of 300 epochs. All our experiments are performed using our internal

cluster which mainly consists of NVIDIA 1080 Ti GTX GPUs.

Hyperparameter tuning. To ensure a fair comparison across feature priors, we selected the hyperparameters for each

dataset-prior pair separately, using the held-out validation set (separate from the final test used for reporting performance).

Specifically, we performed a grid search choosing the learning rate (LR) from [0.1, 0.05, 0.02, 0.01, 0.005], the number of

epochs between each learning rate drop (K) from [50, 100, 300] and the factor with which the learning rate is multiplied (γ)

from [0.5, 1]. The parameters chosen are shown in Table 11. We found that all models achieved near-optimal performance

strictly within the range of each hyperparameters. Thus, we did not consider a wider grid.

Dataset Prior LR γ K

STL-10

Standard 0.01 0.5 100

Canny 0.01 0.5 100

Sobel 0.005 0.5 100

BagNet 0.05 0.5 100

CIFAR-10

Standard 0.01 0.5 100

Canny 0.01 0.5 100

Sobel 0.01 0.5 100

BagNet 0.01 0.1 100

CelebA

Standard 0.005 0.5 50

Canny 0.005 0.1 100

Sobel 0.01 0.5 50

BagNet 0.02 0.5 100

Table 11: Hyperparameters chosen through grid search for each dataset-prior pair (we used the STL-10 hyperparameters

for the tinted STL-10 dataset). LR corresponds to the learning rate, γ to the factor used to decay the learning rate at each

drop, and K to the train epochs between each learning rate drop.

A.4. Ensembles

In order to leverage prior diversity, we ensemble models trained with (potentially) different priors. We use the following

ensembles:

1. Take Max: Predict based on the model assigning the highest probability on this example.

2. Average: Average the (softmax) output probabilities of the models, predict the class assigned the highest probability.

3. Rank: Each model ranks all test examples based on the probability assigned to their predicted labels. Then, for each

example, we predict using the model which has a lower rank on this example.

We then report the maximum of these ensemble methods in Table 3. We separately examine a more complex ensembling

method (stacked ensembling) in Appendix B.4.

A.5. Self-training and co-training schemes

In the setting that we are focusing on, we are provided with a labeled dataset X and an unlabeled dataset U, where typically

there is much more unlabeled data (|U| ≫ |X|). We are then choosing a set of (one or more) feature priors each of which
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corresponds to a different way of training a model (e.g., using edge detection preprocessing).

General methodology. We start by training each of these models on the labeled dataset. Then, we combine the predictions

of these models to produce pseudo-labels for the unlabeled dataset. Finally, we choose a fraction of the unlabeled data and

train the models on that set using the produced pseudo-labels (in additional to the original labeled set X). This process is

repeated using increasing fractions of the unlabeled dataset until, eventually, models are trained on its entirety. We refer to

each such phase as an era. We include an additional 5% of the unlabeled data per era, resulting in a total of 20 eras. During

each era, we use the training process described in Appendix A.3.1 without re-initializing the models (warm start). After

completing this process, we train a standard model from scratch using both the labeled set and resulting pseudo-labels. The

methodology used for choosing and combining pseudo-labels is described below for each scheme.

Self-training. Since we are only training one model, we only need to decide how to choose the pseudo-labels to use for

each era. We do this in the simplest way: at ear t, we pick the subset Ut ⊆ U of examples that are assigned the highest

probability on their predicted label. We attempt to produce a class-balanced training set by applying this process separately

on each class (as predicted by the model). The pseudocode for the method is provided in Algorithm 1.

Algorithm 1 Self-Training

Params: Number of eras T . Fraction added per era k.

Input: Labeled data X with n classes, unlabeled data U, model trained on X.

for era t ∈ 1...T do

forward-pass U through model to create pseudo-labels;

Ut = [];
for each class c do

Select the
kt|U|

n
most confident examples from U predicted by the model as class c;

Add those examples to Ut with class c;

end for

Re-train (warm start) the model on X ∪Ut until convergence;

end for

Train a standard model from scratch on X ∪UT.
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Standard co-training. Here, we train multiple models (in our experiments two) based on a common pool of pseudo-

labeled examples in each era. In each era t, each model labels the unlabeled dataset U. Then, for each class, we alternate

between models, adding the next most confident example predicted as that class for that model to Ut, until we reach a fixed

number of unique examples have been added for that class (5% of the size of the unlabeled dataset per era). Note that this

process allows both conflicts and duplicates: if multiple models are confident about a specific example, that example may

be added more than once (potentially with a different label each time). Finally, we train each model (without re-initializing)

on X ∪Ut. The pseudocode for this method can be found in Algorithm 2.

Algorithm 2 Standard Co-Training

Params: Number of eras T . Fraction added per era k.

Input: Labeled data X with n classes, unlabeled data U, models trained on X.

for era t ∈ 1...T do

forward-pass U through each model to create pseudo-labels;

Ut = [];
for each class c do

U
(c)
t

= [];

while the # of unique examples in U
(c)
t

<
kt|U|

n
do

for each model m do

Add the next most confident example predicted by m as class c to U
(c)
t

;

end for

end while

Add U
(c)
t

to Ut;

end for

Re-train (warm start) each model on X ∪Ut until convergence;

end for

Train a standard model from scratch on X ∪UT.
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B. Additional Experiments

B.1. Experiment organization

We now provide the full experimental results used to create the plots in the main body as well as additional analysis.

Specifically, in Appendix B.2 and B.3 we present the performance of individual ensemble schemes for pre-trained and

self-trained models respectively. Then, in Appendix B.5 we present the performance of co-training for each combination

of feature priors. In Appendix B.8 we analyse the effect that co-training has on model similarity after training. Finally, in

Appendix B.9 we evaluate model ensembles on datasets with spurious correlations and in Appendix B.10 we breakdown

the performance of co-training on the skewed CelebA dataset according to different input attributes.

B.2. Full Pre-Trained Ensemble Results

In Table 3, we reported the best ensemble method for each pair of models trained with different priors on the labeled data.

In Table 12, we report the full results over the individual ensembles.

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 52.54 ± 0.85 51.82 ± 0.85 53.98 ± 0.83 54.02 ± 0.85 53.98 ± 0.83 54.02 ± 0.82
Sobel + Sobel 51.94 ± 0.88 53.69 ± 0.86 54.62 ± 0.83 54.68 ± 0.86 54.61 ± 0.85 54.68 ± 0.83
Canny + Canny 45.48 ± 0.84 44.19 ± 0.88 46.46 ± 0.82 46.48 ± 0.86 46.70 ± 0.83 46.70 ± 0.79
BagNet + BagNet 42.22 ± 0.80 42.56 ± 0.83 43.32 ± 0.82 43.49 ± 0.82 43.33 ± 0.85 43.49 ± 0.84

Standard + Sobel 52.54 ± 0.79 51.94 ± 0.82 58.14 ± 0.82 58.21 ± 0.88 58.12 ± 0.82 58.21 ± 0.90
Standard + Canny 52.54 ± 0.87 45.48 ± 0.81 55.18 ± 0.82 55.49 ± 0.83 54.41 ± 0.81 55.49 ± 0.83
Standard + BagNet 52.54 ± 0.85 42.22 ± 0.80 52.89 ± 0.84 53.03 ± 0.89 50.69 ± 0.81 53.03 ± 0.85
Sobel + Canny 51.94 ± 0.82 45.48 ± 0.85 53.81 ± 0.84 53.95 ± 0.80 53.18 ± 0.91 53.95 ± 0.85
Sobel + BagNet 51.94 ± 0.86 42.22 ± 0.82 54.42 ± 0.84 55.14 ± 0.83 53.50 ± 0.82 55.14 ± 0.84
Canny + BagNet 45.48 ± 0.78 42.22 ± 0.79 49.95 ± 0.84 50.57 ± 0.82 49.64 ± 0.81 50.57 ± 0.84

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 53.73 ± 0.86 55.38 ± 1.00 56.95 ± 0.94 57.06 ± 0.91 56.94 ± 0.97 57.06 ± 0.91
Sobel + Sobel 55.49 ± 0.94 55.64 ± 0.98 56.71 ± 0.92 56.83 ± 0.90 56.66 ± 0.89 56.83 ± 0.94
Canny + Canny 56.29 ± 0.92 54.99 ± 0.96 58.04 ± 0.94 58.23 ± 0.94 57.95 ± 0.89 58.23 ± 0.93
BagNet + BagNet 52.04 ± 0.92 50.34 ± 0.90 53.40 ± 0.98 53.42 ± 0.91 53.29 ± 0.96 53.42 ± 0.98

Standard + Sobel 53.73 ± 0.94 55.49 ± 0.95 59.01 ± 0.90 59.08 ± 0.91 58.94 ± 0.96 59.08 ± 0.95
Standard + Canny 53.73 ± 1.00 56.29 ± 0.94 60.90 ± 0.94 60.96 ± 0.94 60.85 ± 0.87 60.96 ± 0.94
Standard + BagNet 53.73 ± 0.95 52.04 ± 0.90 56.99 ± 0.94 57.17 ± 0.92 57.04 ± 0.91 57.17 ± 0.94
Sobel + Canny 55.49 ± 0.91 56.29 ± 0.94 59.92 ± 0.95 60.02 ± 0.97 59.77 ± 0.91 60.02 ± 0.91
Sobel + BagNet 55.49 ± 0.94 52.04 ± 0.95 59.17 ± 0.94 59.76 ± 0.96 59.08 ± 0.89 59.76 ± 0.87
Canny + BagNet 56.29 ± 0.96 52.04 ± 0.95 61.09 ± 0.92 61.42 ± 0.94 60.68 ± 0.92 61.42 ± 0.93

(b) Ensemble Baselines for STL-10

Table 12: Full results for ensembles of pre-trained models.
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B.3. Ensembling Self-Trained Models

In Table 13, we report the best ensemble method for pairs of self-trained models with different priors. In Table 14, we

report the full results over the individual ensembles. We find that, similar to the ensembles of models trained on the labeled

data, models with diverse priors gain more from ensembling. However, co-training models with diverse priors together still

outperforms ensembling self-trained models.

Feature Priors Model 1 Model 2 Ensemble

Same

Standard + Standard 59.92 ± 0.95 59.34 ± 0.88 62.25 ± 0.93

Canny + Canny 58.40 ± 0.94 57.69 ± 0.94 60.38 ± 0.92

BagNet + BagNet 57.80 ± 0.96 58.11 ± 0.85 60.52 ± 0.90

Different

Standard + Canny 59.92 ± 0.90 58.40 ± 0.95 64.44 ± 0.90

Standard + BagNet 59.92 ± 0.94 57.80 ± 0.96 63.19 ± 0.87

Canny + BagNet 58.40 ± 0.94 57.80 ± 0.96 64.80 ± 0.91

(a) STL-10

Feature Priors Model 1 Model 2 Ensemble

Same

Standard + Standard 63.65 ± 0.81 61.95 ± 0.82 64.85 ± 0.79

Sobel + Sobel 63.05 ± 0.81 66.01 ± 0.80 66.25 ± 0.82

BagNet + BagNet 53.92 ± 0.82 52.90 ± 0.91 55.00 ± 0.83

Different

Standard + Sobel 63.65 ± 0.81 63.05 ± 0.83 67.52 ± 0.77

Standard + BagNet 63.65 ± 0.81 53.92 ± 0.88 64.10 ± 0.79

Sobel + BagNet 63.05 ± 0.83 53.92 ± 0.89 65.68 ± 0.79

(b) CIFAR-10

Table 13: Ensemble performance when combining self-trained models with Standard, Canny, Sobel, and BagNet priors.

When two models of the same prior are ensembled, the models are trained with different random initializations.
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Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 63.65 ± 0.81 61.95 ± 0.87 64.84 ± 0.77 64.85 ± 0.76 64.83 ± 0.83 64.85 ± 0.79
Sobel + Sobel 63.05 ± 0.87 66.01 ± 0.82 66.19 ± 0.81 66.25 ± 0.79 66.17 ± 0.81 66.25 ± 0.83
BagNet + BagNet 53.92 ± 0.87 52.90 ± 0.83 54.86 ± 0.87 55.00 ± 0.83 54.87 ± 0.82 55.00 ± 0.87

Standard + Sobel 63.65 ± 0.79 63.05 ± 0.80 67.42 ± 0.79 67.52 ± 0.79 67.38 ± 0.79 67.52 ± 0.77
Standard + Canny 63.65 ± 0.90 51.82 ± 0.88 63.70 ± 0.81 63.91 ± 0.81 63.02 ± 0.83 63.91 ± 0.82
Standard + BagNet 63.65 ± 0.81 53.92 ± 0.82 64.05 ± 0.85 64.10 ± 0.79 62.69 ± 0.80 64.10 ± 0.86
Sobel + Canny 63.05 ± 0.81 51.82 ± 0.80 61.43 ± 0.80 61.42 ± 0.80 60.66 ± 0.81 61.43 ± 0.83
Sobel + BagNet 63.05 ± 0.78 53.92 ± 0.83 65.45 ± 0.85 65.68 ± 0.82 64.65 ± 0.80 65.68 ± 0.82
Canny + BagNet 51.82 ± 0.81 53.92 ± 0.79 59.60 ± 0.81 59.79 ± 0.83 60.24 ± 0.82 60.24 ± 0.81

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 59.92 ± 0.92 59.34 ± 0.99 62.18 ± 0.92 62.25 ± 0.96 62.16 ± 0.88 62.25 ± 0.94
Canny + Canny 58.40 ± 0.95 57.69 ± 0.89 60.30 ± 0.95 60.36 ± 0.92 60.38 ± 0.91 60.38 ± 0.95
BagNet + BagNet 57.80 ± 0.89 58.11 ± 0.94 60.42 ± 0.90 60.46 ± 0.98 60.52 ± 0.93 60.52 ± 0.90

Standard + Sobel 59.92 ± 0.92 57.86 ± 0.91 62.49 ± 0.89 62.69 ± 0.91 62.66 ± 0.89 62.69 ± 0.94
Standard + Canny 59.92 ± 0.94 58.40 ± 0.95 64.29 ± 0.95 64.44 ± 0.89 64.34 ± 0.95 64.44 ± 0.95
Standard + BagNet 59.92 ± 0.89 57.80 ± 0.97 63.01 ± 0.93 63.10 ± 0.89 63.19 ± 0.88 63.19 ± 0.88
Sobel + Canny 57.86 ± 0.91 58.40 ± 0.93 62.20 ± 0.92 62.14 ± 0.92 62.22 ± 0.90 62.22 ± 0.91
Sobel + BagNet 57.86 ± 0.95 57.80 ± 0.95 62.24 ± 0.94 62.58 ± 0.90 63.52 ± 0.91 63.52 ± 0.88
Canny + BagNet 58.40 ± 0.93 57.80 ± 0.95 64.38 ± 0.89 64.64 ± 0.92 64.80 ± 0.90 64.80 ± 0.92

(b) Ensemble Baselines for STL-10

Table 14: Full results for ensembles of self-trained models.
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B.4. Stacked Ensembling

Here we consider an ensembling technique that leverages a validation set. We implement stacking (also called blending)

(Töscher et al., 2009; Sill et al., 2009), which takes in the outputs of the member models as input, and then trains a second

model to produce the final layer. Here, we take the logits of each model in the ensemble, and train the secondary model

using logistic regression on the validation set for the dataset. We report accuracies of the ensemble on the test set below.

We again find that prior diversity is important for the performance of the ensemble.

Pre-trained Self-trained

Feature Priors Model 1 Model 2
Stacked

Ensemble
Model 1 Model 2

Stacked

Ensemble

Standard + Standard 52.54 ± 0.85 51.82 ± 0.85 54.13 ± 0.88 63.65 ± 0.81 61.95 ± 0.82 65.13 ± 0.82

Sobel + Sobel 51.94 ± 0.88 53.69 ± 0.86 54.46 ± 0.92 63.05 ± 0.81 66.01 ± 0.80 66.35 ± 0.80

BagNet + BagNet 42.22 ± 0.80 42.56 ± 0.83 44.28 ± 0.83 53.92 ± 0.82 52.90 ± 0.91 54.94 ± 0.84

Standard + Sobel 52.54 ± 0.79 51.94 ± 0.82 57.42 ± 0.84 63.65 ± 0.81 63.05 ± 0.83 67.01 ± 0.79

Standard + BagNet 52.54 ± 0.85 42.22 ± 0.80 53.65 ± 0.85 63.65 ± 0.81 53.92 ± 0.88 64.61 ± 0.81

Sobel + BagNet 51.94 ± 0.86 42.22 ± 0.82 55.75 ± 0.83 63.05 ± 0.83 53.92 ± 0.89 65.67 ± 0.82

Table 15: Performance of ensembling pre-trained and self-trained models with stacked ensembling on CIFAR-10

Pre-trained Self-trained

Feature Priors Model 1 Model 2
Stacked

Ensemble
Model 1 Model 2

Stacked

Ensemble

Standard + Standard 53.73 ± 0.86 55.38 ± 1.00 56.01 ± 0.94 59.92 ± 0.95 59.34 ± 0.88 60.54 ± 0.91

Canny + Canny 56.29 ± 0.92 54.99 ± 0.96 57.70 ± 0.90 58.40 ± 0.94 57.69 ± 0.94 59.23 ± 0.99

BagNet + BagNet 52.04 ± 0.92 50.34 ± 0.90 52.35 ± 0.97 57.80 ± 0.96 58.11 ± 0.85 59.48 ± 0.98

Standard + Canny 53.73 ± 1.00 56.29 ± 0.94 59.24 ± 0.88 59.92 ± 0.90 58.40 ± 0.95 63.42 ± 0.89

Standard + BagNet 53.73 ± 0.95 52.04 ± 0.90 56.03 ± 0.98 59.92 ± 0.94 57.80 ± 0.96 62.59 ± 0.91

Canny + BagNet 56.29 ± 0.96 52.04 ± 0.95 59.98 ± 0.91 58.40 ± 0.94 57.80 ± 0.96 63.22 ± 0.94

Table 16: Performance of ensembling pre-trained and self-trained models with stacked ensembling on STL-10
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B.5. Self-Training and Co-Training on STL-10 and CIFAR-10

Methods Prior(s) Labeled Only
+Unlabeled

Self/Co-Training

+ Standard model

with Pseudo-labels

Self-training

Standard 52.54 ± 0.86 63.65 ± 0.76 64.02 ± 0.82

Canny 45.48 ± 0.90 51.82 ± 0.82 55.59 ± 0.80

Sobel 51.94 ± 0.88 63.05 ± 0.84 64.77 ± 0.80

BagNet 42.22 ± 0.82 53.92 ± 0.89 54.21 ± 0.85

Co-training

Standard 52.54 ± 0.91 65.06 ± 0.76
65.10 ± 0.84

+Standard 51.82 ± 0.86 64.93 ± 0.80

Canny 45.48 ± 0.85 51.15 ± 0.79
55.74 ± 0.80

+Canny 44.19 ± 0.82 51.65 ± 0.81

Sobel 51.94 ± 0.86 67.18 ± 0.80
68.47 ± 0.74

+Sobel 53.69 ± 0.89 67.35 ± 0.77

Canny 45.48 ± 0.79 58.66 ± 0.81
65.34 ± 0.81

+Sobel 51.94 ± 0.80 64.87 ± 0.79

Canny 45.48 ± 0.85 59.19 ± 0.85
67.59 ± 0.74

+BagNet 42.22 ± 0.85 67.92 ± 0.79

Sobel 51.94 ± 0.81 71.88 ± 0.73
74.25 ± 0.74

+BagNet 42.22 ± 0.82 73.91 ± 0.71

BagNet 42.22 ± 0.79 55.94 ± 0.83
56.05 ± 0.77

+BagNet 42.56 ± 0.86 55.26 ± 0.88

Canny 45.48 ± 0.85 59.23 ± 0.81
67.21 ± 0.77

+Standard 52.54 ± 0.87 66.92 ± 0.82

Sobel 51.94 ± 0.83 71.44 ± 0.76
73.83 ± 0.76

+Standard 52.54 ± 0.85 73.59 ± 0.72

Standard 52.54 ± 0.88 66.67 ± 0.83
66.77 ± 0.75

+BagNet 42.22 ± 0.80 67.12 ± 0.75

Table 17: Performance of self-training and co-training on CIFAR-10 for each prior combination.
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Methods Prior(s) Labeled Only
+Unlabeled

Self/Co-Training

+ Standard model

with Pseudo-labels

Self-training

Standard 53.73 ± 0.95 59.92 ± 0.91 60.52 ± 0.94

Canny 56.29 ± 0.96 58.40 ± 0.91 62.19 ± 0.92

Sobel 55.49 ± 0.96 57.86 ± 0.98 60.92 ± 0.89

BagNet 52.04 ± 0.96 57.80 ± 0.99 61.69 ± 0.95

Co-training

Standard 53.73 ± 0.95 58.05 ± 0.92
61.16 ± 0.95

+Standard 55.38 ± 0.96 60.44 ± 0.95

Canny 56.29 ± 0.92 60.22 ± 0.91
63.24 ± 0.92

+Canny 54.99 ± 0.94 59.56 ± 0.94

Sobel 55.49 ± 0.96 58.93 ± 0.91
60.68 ± 0.94

+Sobel 55.64 ± 0.95 59.23 ± 0.90

Canny 56.29 ± 0.95 62.40 ± 0.99
65.53 ± 0.84

+Sobel 55.49 ± 0.92 64.11 ± 0.91

Canny 56.29 ± 0.92 62.21 ± 0.89
67.33 ± 0.88

+BagNet 52.04 ± 0.94 66.74 ± 0.87

Sobel 55.49 ± 0.92 62.72 ± 0.94
65.79 ± 0.94

+BagNet 52.04 ± 1.00 65.44 ± 0.91

BagNet 52.04 ± 0.89 59.85 ± 0.89
60.84 ± 0.95

+BagNet 50.34 ± 0.91 60.16 ± 0.89

Canny 56.29 ± 0.94 62.16 ± 0.92
65.67 ± 0.93

+Standard 53.73 ± 0.92 64.22 ± 0.91

Sobel 55.49 ± 0.95 61.15 ± 0.89
63.08 ± 0.91

+Standard 53.73 ± 0.92 61.74 ± 0.93

Standard 53.73 ± 0.94 61.99 ± 0.88
62.34 ± 0.89

+BagNet 52.04 ± 0.91 62.31 ± 1.00

Table 18: Performance of self-training and co-training on STL-10 for each prior combination.
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B.6. Additional Results for Ensembling Diverse Feature Priors (Full CIFAR-10, ImageNet)

In Figures 19 and 20, we perform an analysis of using an ensemble to combine models trained on the full CIFAR-10

and the ImageNet (96x96) dataset respectively. We find that models with different feature priors still have less correlated

predictions than those of the same feature prior, and thus have less overlapping failure modes. Ensembles of models with

diverse priors provide a significant boost over the performance of individual models, higher than that of combining models

trained with the same prior. It is worth noting that, in these settings, the specific feature priors we introduce result in

models with accuracy significantly lower than that of a standard model. Designing better domain-specific priors is thus an

important avenue for future work.

Standard Sobel Canny BagNet

Standard 0.583 0.369 0.242 0.473

Sobel 0.597 0.358 0.295

Canny 0.594 0.212

BagNet 0.594

(a) Correlation of correct predictions (cf. Table 2)

Feature Priors Model 1 Model 2 Ensemble

Standard + Standard 91.73 ± 0.44 91.97 ± 0.46 92.83 ± 0.44

Sobel + Sobel 86.18 ± 0.58 86.21 ± 0.58 87.43 ± 0.59

BagNet + BagNet 90.47 ± 0.49 90.85 ± 0.49 91.69 ± 0.48

Standard + Sobel 91.73 ± 0.44 86.18 ± 0.58 92.23 ± 0.44

Standard + BagNet 91.73 ± 0.44 90.47 ± 0.49 93.01 ± 0.42

Sobel + BagNet 86.18 ± 0.58 90.47 ± 0.49 92.27 ± 0.44

(b) Ensemble accuracy (cf. Table 3).

Table 19: Full CIFAR-10 dataset

Standard Sobel BagNet

Standard 0.6528 0.4925 0.5613

Sobel 0.6384 0.4529

BagNet 0.6517

(a) Correlation of correct predictions (cf. Table 2)

Feature Priors Model 1 Model 2 Ensemble

Standard + Standard 60.34 ± 0.38 60.30 ± 0.38 63.36 ± 0.36

Sobel + Sobel 51.87 ± 0.36 51.62 ± 0.39 54.90 ± 0.35

BagNet + BagNet 52.57 ± 0.36 52.38 ± 0.38 55.42 ± 0.38

Standard + Sobel 60.34 ± 0.37 51.87 ± 0.36 62.86 ± 0.37

Standard + BagNet 60.34 ± 0.38 52.57 ± 0.36 62.00 ± 0.36

Sobel + BagNet 51.87 ± 0.36 52.57 ± 0.36 59.41 ± 0.36

(b) Ensemble accuracy (cf. Table 3).

Table 20: ImageNet dataset.
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B.7. Co-Training with varying amounts of labeled data.

In Table 21, we study how the efficacy of combining diverse priors through cotraining changes as the number of labeled

examples increase for STL-10. As one might expect, when labeled data is sparse, the feature priors learned by the models

alone are relatively brittle: thus, leveraging diverse priors against each other on unlabeled data improves generalization. As

the number of labeled examples increases, the models with single feature priors learn more reliable prediction rules that

can already generalize, so the additional benefit of combining feature priors diminishes. However, even in settings with

plentiful data, combining diverse feature priors can aid generalization if there is a spurious correlation in the labeled data

(see Section 5.)

Number of Labeled Examples Standard + Standard Canny + BagNet

1000 61.16 ± 0.94 67.33 ± 0.89

2000 68.24 ± 1.12 72.76 ± 1.08

3000 74.88 ± 0.97 75.76 ± 1.04

4000 78.85 ± 0.99 77.44 ± 1.00

Table 21: Performance of co-training approaches with different amounts of training data for STL-10.
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B.8. Correlation between the individual feature-biased models and the final standard model

CIFAR-10 STL-10

Method Prior Before After Before After

Self-training

Standard 0.598 0.813 0.554 0.728

Canny 0.237 0.622 0.305 0.519

Sobel 0.259 0.76 0.385 0.621

BagNet 0.38 0.752 0.357 0.516

Co-training

Canny 0.237 0.595 0.305 0.496

+BagNet 0.38 0.664 0.357 0.538

Sobel 0.259 0.719 0.385 0.581

+BagNet 0.38 0.716 0.357 0.554

Table 22: Similarity between models before and after training on pseudo-labeled data. Our measure of similarity is the

(Pearson) correlation between which test examples are correctly predicted by each model. In Columns 3 and 5 we report

that notion of similarity between the pre-trained feature-biased models and the pre-trained standard model (the numbers

are reproduced from Table 2). Then, in columns 4 and 6 we report the similarity between the feature-biased models at

the end of self- or co-training and the standard model trained on their (potentially combined) pseudo-labels. We observe

that through this process of training a standard model on the pseudo-labels of different feature-biased models, the former

behaves more similar to the latter.
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B.9. Ensembles for Spurious Datasets

In Table 23 (full table in Table 24), we ensemble the self-trained priors for the Tinted STL-10 dataset and the CelebA

dataset as in Section 5. Both of these datasets have a spurious correlation base on color, which results in a weak Standard

and BagNet model. As a result, the ensembles with the Standard or BagNet models do not perform well on the test set.

However, in Section 7, we find that co-training in this setting allows the BagNet model to improve when jointly trained

with a shape model, thus boosting the final performance.

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 17.56 ± 0.73 57.31 ± 0.96 44.31 ± 0.90

Standard + Sobel 17.56 ± 0.71 56.12 ± 0.90 46.06 ± 0.95

Standard + BagNet 17.56 ± 0.73 13.53 ± 0.66 16.64 ± 0.66

Canny + BagNet 57.31 ± 0.96 13.53 ± 0.64 48.30 ± 0.89

Sobel + BagNet 56.12 ± 0.91 13.53 ± 0.69 49.05 ± 0.98

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 71.57 ± 0.53 85.73 ± 0.40 84.05 ± 0.42

Standard + Sobel 71.57 ± 0.55 85.42 ± 0.43 82.10 ± 0.45

Standard + BagNet 71.57 ± 0.53 64.89 ± 0.56 69.66 ± 0.55

Canny + BagNet 85.73 ± 0.42 64.89 ± 0.56 84.06 ± 0.45

Sobel + BagNet 85.42 ± 0.43 64.89 ± 0.57 82.89 ± 0.44

(b) CelebA

Table 23: Performance of ensembles consisting of models trained with different priors.

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny 17.56 ± 0.70 57.31 ± 0.95 44.31 ± 0.98 43.48 ± 0.94 42.12 ± 0.95 44.31 ± 0.94
Standard + Sobel 17.56 ± 0.66 56.12 ± 0.98 46.06 ± 0.94 44.71 ± 0.91 39.39 ± 0.95 46.06 ± 0.99
Standard + BagNet 17.56 ± 0.71 13.53 ± 0.64 16.59 ± 0.69 16.64 ± 0.71 16.14 ± 0.74 16.64 ± 0.66
Canny + BagNet 57.31 ± 0.91 13.53 ± 0.62 48.09 ± 0.96 48.30 ± 1.01 39.92 ± 0.92 48.30 ± 0.95
Sobel + BagNet 56.12 ± 0.94 13.53 ± 0.64 49.00 ± 0.95 49.05 ± 0.95 37.67 ± 0.91 49.05 ± 0.93

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny 71.57 ± 0.53 85.73 ± 0.43 83.96 ± 0.44 84.05 ± 0.43 84.00 ± 0.46 84.05 ± 0.43
Standard + Sobel 71.57 ± 0.57 85.42 ± 0.41 82.06 ± 0.45 82.10 ± 0.45 78.01 ± 0.51 82.10 ± 0.49
Standard + BagNet 71.57 ± 0.56 64.89 ± 0.56 69.66 ± 0.54 69.66 ± 0.54 68.01 ± 0.58 69.66 ± 0.54
Canny + BagNet 85.73 ± 0.42 64.89 ± 0.57 84.06 ± 0.44 84.06 ± 0.45 72.79 ± 0.51 84.06 ± 0.44
Sobel + BagNet 85.42 ± 0.39 64.89 ± 0.55 82.89 ± 0.46 82.89 ± 0.46 71.65 ± 0.57 82.89 ± 0.43

(b) CelebA

Table 24: Performance of individual ensembles on datasets with spurious correlations.
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B.10. Breakdown of test accuracy for co-training on CelebA

Method Prior(s)

Female

Blond

(N=2480)

Female

Not Blond

(N=9767)

Male

Blond

(N=180)

Male

Not Blond

(N=7535)

Self-training

Standard 97.78 ± 0.52 47.06 ± 0.83 55.56 ± 6.11 95.94 ± 0.37

Canny 94.44 ± 0.81 77.27 ± 0.69 78.33 ± 5.00 96.19 ± 0.36

Sobel 95.97 ± 0.60 73.43 ± 0.78 70.56 ± 5.56 96.63 ± 0.37

BagNet 97.26 ± 0.60 35.44 ± 0.80 41.67 ± 6.67 96.30 ± 0.40

Co-training

Canny

+BagNet
96.94 ± 0.56 86.69 ± 0.56 79.44 ± 5.00 97.53 ± 0.31

Sobel

+BagNet
96.81 ± 0.56 84.41 ± 0.63 79.44 ± 5.00 97.89 ± 0.29

Table 25: Accuracy of predicting gender on different subpopulations of the CelebA dataset. We show the accuracy of

standard models trained on the pseudo-labels produced by different self- or co-training schemes. Recall that in the training

set all females are blond and all males are non-blond (while the unlabeled dataset is balanced). It is thus interesting to

consider where this correlation is reversed. We observe that, in these cases, both the standard and BagNet models perform

quite poorly, even after being self-trained on the unlabeled dataset where this correlation is absent. At the same time,

co-training steers the models away from this correlation, resulting in improved performance. 95% confidence intervals

computed via bootstrap are shown.



Combining Diverse Feature Priors

B.11. What if the unlabeled data also contained the spurious correlation?

In Section 5, we assume that the unlabeled data does not contain the spurious correlation present in the labeled data. This

is often the case when unlabeled data can be collected through a more diverse process than labeled data (for example, by

scraping the web large scales or by passively collecting data during deployment). This assumption is important: in order

to successfully steer models away from the spurious correlation during co-training, the process needs to surface examples

which contradict the spurious correlation. However, if the unlabeled data is also heavily skewed, such examples might be

rare or non-existent.

What happens if the unlabeled data is as heavily skewed as the labeled data? We return the setting of a spurious association

between hair color and gender in CelebA. However, unlike in Section 5, we use an unlabeled dataset that also perfectly

correlates hair color and gender – it contains 2000 non-blond males and 2000 blond females. The unlabeled data thus has

the same distribution as the labeled data, and contains no examples that reject the spurious correlation (blond males or

non-blond females).

Methods Prior(s) Labeled Only
+Unlabeled

Self/Co-Training

+ Standard model

with Pseudo-labels

Self-training

Standard 67.07 ± 0.57 73.32 ± 0.55 69.13 ± 0.58

Canny 80.90 ± 0.49 80.47 ± 0.48 76.61 ± 0.52

BagNet 69.35 ± 0.55 69.21 ± 0.53 71.34 ± 0.54

Co-training
Canny 80.90 ± 0.49 82.17 ± 0.47

78.53 ± 0.49
+BagNet 69.35 ± 0.55 76.52 ± 0.50

Table 26: Performance of Self-Training and Co-Training techniques when the unlabeled data also contains a complete

skew toward hair color (as in the labeled data). 95% confidence intervals computed via bootstrap are shown.

Self-Training: Since the unlabeled data follows the spurious correlation between hair color and gender, the standard and

BagNet models almost perfectly pseudo-label the unlabeled data. Thus, they are simply increasing the number of examples

in the training dataset but maintaining the same overall distribution. Self-training thus does not change the accuracy for

models with these priors significantly. In contrast, in the setting in Section 5, there were examples in the unlabeled data

which did not align with the spurious correlation (blond males and non-blond females). Since they relied mostly on

hair color, the standard and BagNet models actively mislabeled these examples (i.e, by labeling a blond male as female).

Training on these erroneous pseudo-labels actively suppressed any features that were not hair color, causing the standard

and Bagnet models to perform worse after self-training.

Co-Training: In contrast, when performing co-training with the Canny and BagNet priors, the Canny model (which cannot

detect hair color) will make mistakes on the unlabeled dataset. These mistakes help are inconsistent with a reliance on hair

color: due to this regularization, the BagNet’s accuracy improves from 69.35% to 76.52%. Overall, though the gain is

not as significant as the setting with a balanced unlabeled dataset, the Canny + BagNet co-trained model can mitigate the

pitfalls of the BagNet’s reliance on hair color and outperform even the canny self-trained model.
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