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Abstract

Visual systems of primates are the gold standard

of robust perception. There is thus a general be-

lief that mimicking the neural representations that

underlie those systems will yield artificial visual

systems that are adversarially robust. In this work,

we develop a method for performing adversar-

ial visual attacks directly on primate brain activ-

ity. We then leverage this method to demonstrate

that the above-mentioned belief might not be well

founded. Specifically, we report that the biolog-

ical neurons that make up visual systems of pri-

mates exhibit susceptibility to adversarial pertur-

bations that is comparable in magnitude to exist-

ing (robustly trained) artificial neural networks.

1. Introduction

Deep neural networks (DNN) for computer vision are brittle

in that their decisions are sensitive to small image perturba-

tions which are targeted to modifying their outputs (adver-

sarial attacks; (Szegedy et al., 2014; Goodfellow et al., 2015;

Carlini & Wagner, 2017)). This is commonly regarded as an

area for system improvement since similar brittleness has

not been demonstrated in biological vision at comparable

image perturbation strengths. Researchers have produced

significant progress towards defense algorithms which im-

proved the adversarial robustness of vanilla DNNs in stan-

dard computer vision tasks (Qin et al., 2019; Madry et al.,

2018). Adversarial training in particular has been shown

to both increase robustness on the original task (Croce &

Hein, 2020) and to produce internal representations that
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better support transfer learning (Salman et al., 2020; Utrera

et al., 2020) and image synthesis/manipulations (Engstrom

et al., 2019b; Santurkar et al., 2019; Ledig et al., 2017). Yet,

despite this progress, it is still widely believed that even

the best of these networks are less robust than the ’gold

standard’ ± the primate visual system. Is this assumption

correct? In this study, we checked this assumption using

primate neural recordings and ask: are the high level bi-

ological neural representations underlying primate object

recognition truly more robust than existing artificial neural

representations underlying current AI object recognition?

It is has not previously been possible to make robustness

tests of primate visual neural networks comparable to those

in artificial networks because the strongest adversarial at-

tacks approximate the worse-case image perturbations by

relying on detailed knowledge on each artificial network ±

knowledge that is still being developed for the biological

system. Thus when that knowledge is limited, neuroscience

experiments must rely on random sampling of image per-

turbation directions, which ± given the high dimensionality

of images ± is unlikely to yield good estimates of adversar-

ial (i.e. worst case) sensitivity within the time constraints

of typical primate neuroscience experiments. Indeed, prior

neuroscience work measuring the sensitivity of high-level vi-

sual representations in primates has focused on a restrictive

set of image corruptions (i.e. scrambling) (Rust & DiCarlo,

2010) and quantifying invariance to transformations (po-

sition, size, context etc.)(DiCarlo et al., 2012; Logothetis

et al., 1995; Ito et al., 1995; Tovee et al., 1994; Schwartz

et al., 1983; SÂary et al., 1993; Ratan Murty & Arun, 2017).

While informative, that work has not directly investigated

the adversarial sensitivity of those neurons to small changes

in pixel space.

Here we improved upon recent advances in mechanistic

models of primate visual processing (Bashivan et al., 2019;

Yamins et al., 2014; Dapello et al., 2020) to develop an ex-

perimental method to efficiently and iteratively measure the

lower bound adversarial sensitivity of individual neural sites

at the last stage of primate ventral visual processing path-

way, the inferior temporal cortex (IT). Primate IT neurons

are known to individually encode high-level features and to
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Figure 1. We measured the empirical lower-bound on adversarial sensitivity in biological neurons over a range of l2-norm image

perturbations relevant to current robustness research (blue section over the scalebar in C). A. Average normalized adversarial sensitivity

s̃(ϵ) of IT neural sites (blue, mean±s.d.) is compared to that of features obtained from standard training on ResNet50, AT-ResNet50 and

AT-WRN50-4 with l2ϵ = 3 (black, mean±s.d.). Standard deviation of either IT neural or DNN unit responses on clean images is shown

(grey dashed line). The average absolute difference in IT neural responses evoked by a pair of random images is also shown for scale

(blue dashed line). B. Adversarial images for two sample neural recording sites. C. The expanded scale for all feasible l2-norm image

perturbations for primate experiments, and notable perturbation sizes (dark triangles) are shown for reference on the horizontal-axis.

collectively underlie the perception and behavioral report

of visual world latents such as object category and identity

(DiCarlo et al., 2012; Logothetis et al., 1995; Tanaka, 1996;

Miyashita, 1993; Majaj et al., 2015; Hong et al., 2016). For

these reasons, IT can be loosely considered the functional

equivalent of the layer just before the linear soft-max de-

coder in an artificial neural network.

For context, prior experimental work on IT neurons focused

on much larger image perturbations that were motivated by

the hypothesized computational goals of the primate ventral

stream (e.g. estimate object category invariant of viewing

conditions)(Logothetis et al., 1995; DiCarlo et al., 2012;

Rolls, 2000). Based on such works, we and others in the

field thought it unlikely that IT neurons would be sensitive

to the much smaller, nearly human imperceptible adversarial

perturbations used in current machine learning robustness

research (Figure 1). This assumption has resulted in a gap

in our knowledge of neural response properties within the

local vicinity of any given image. Therefore in this work we

attempted to bridge this gap by directly comparing the adver-

sarial sensitivity of individual IT neural sites with individual

units in state-of-the-art robust deep neural networks.

2. Result

Our primary goal was to measure the sensitivity of the re-

sponse of individual IT sites to worst-case local pixel pertur-

bations of visual stimuli. For each neural site i, we measure

its response ri(x) to clean images x ∼ D, where D is the

ImageNet training set (Deng et al., 2009). We define the

ith site’s image-specific neuronal adversarial sensitivity as

the maximal observed movement that ri(x) makes under

an l2-norm bounded image perturbation δ which is ϵ away

from the original image x:

si(x, ϵ) = max
||δ||<ϵ

|ri(x)− ri(x+ δ)| (1)

Marginalizing the image distribution D, we define the ith

neural site’s absolute adversarial sensitivity as:

si(ϵ) = Ex∼D[si(x, ϵ)] (2)

To be able to compare individual IT neural sites with in-

dividual units in artificial neural networks, we use a di-

mensionless normalized adversarial sensitivity measure

s̃i(ϵ) = si(ϵ)/σi, where σi is the standard deviation of
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the neural site’s response over many different clean images

(see Method). Conceptually, this standard deviation is the

site’s typical dynamic range and because the same response

normalization is applied to each artificial neural site, this al-

lows meaningful quantitative comparison between artificial

network units (original units: arbitrary scalar response) and

biological neural sites (original units: spikes per second).

Lastly we note, while the adversarial sensitivity for units

in artificial networks are measured on white-box attacks,

the attacks for IT neural sites are found using an imperfect

model of those sites. Because of this, the estimated adversar-

ial sensitivity for any IT neural site is strictly a lower bound

on its white-box adversarial sensitivity (see Method).

We now report the main result comparing the average nor-

malized adversarial sensitivity for primate IT neural sites

with the quantitatively comparable measurements of units in

the corresponding feature layer of artificial neural networks

(Figure 1). For clarity, we reserve the experimental details

and the algorithm for empirically lower-bounding the adver-

sarial sensitivity for primate IT neural sites in the method

section (Figure 4).

For reference, we first show the sensitivity of artificial units

from the last layer before the linear soft-max decoder in

a standard ImageNet pre-trained ResNet50 (black crosses,

Figure 1A). The classification performance of this network

is highly sensitive to adversarial attacks (Engstrom et al.,

2019a), and as expected, our measure shows that individual

units from vanilla ResNet50 are highly susceptible to l2
pixel perturbations: the magnitude of response perturbations

are on average over 10-fold larger than each unit’s baseline

response variations across many clean images (grey dashed

line). In comparison with units from ResNet50, we find

that individual IT neural sites are approximately 10-fold

less sensitive to the same magnitude of image perturbations

(blue round markers, n=21, Figure 1A). So far this result

is qualitatively consistent with the standard intuition that

primate vision is more robust than standard DNNs (above).

But what about the comparison with adversarially trained

(AT) DNNs? Specifically, we tested AT-ResNet50 and AT-

WideResNet50-4 after ImageNet adversarial pre-training

with l2ϵ = 3. Both networks have improved adversar-

ial robustness on ImageNet and outperform the vanilla

ResNet50 on a variety of transfer learning tasks (Salman

et al., 2020). Consistent with this, individual units from

both AT-ResNet50 and AT-WideResNet50-4 (black triangle

and square, Figure 1A) are much less sensitive than units

from vanilla ResNet50. Surprisingly however, when we

compared to IT neural sites, we discovered that units from

both robust DNNs are slightly less sensitive to adversarial

perturbations than IT sites. This is all the more surprising

as our measurements on the biological neurons is an ex-

perimental lower bound on their true adversarial sensitivity

since our attacks are discovered using an approximate model

of IT (see Method and Figure 4). On the other hand, the

adversarial sensitivity for each unit in the DNNs is mea-

sured using white-box PGD-attacks by taking the maximum

over 100 randomly initialized attacks with 250 attack steps

each (see Method). In other words, further experiments on

these IT sites can only lead to the same result ± that current

robust network units are already at least as robust as these

biological network units.

Figure 2. Category preference of individual IT sites can be ad-

versarially attacked. A. Example clean images from preferred

and non-preferred ImageNet categories for a representative IT

neural site shown on the left, and the adversarially perturbed im-

ages at two ϵ values. B. Raw spike rasters associated with clean

preferred images, clean non-preferred images and adversarially

perturbed images at ϵ = 2.5 and 10. C. Adversarial perturbations

on non-preferred images (in blue) are able to drive firing rates

past that of naturally occurring preferred images (red dashed line,

mean ± s.d.) at ϵ = 4.0 ± 1.6 (2.5 for the sample site), and by

ϵ = 10 turn non-preferred images into ºsuper-stimuliº (individual

sites in light blue, average in dark blue n=17).

The ability to adversarially attack biological neurons at such

small perturbations levels can generate some highly counter-

intuitive neurophysiological phenomena. Traditionally, IT

neurons are known to demonstrate category/object selectiv-

ity (Gross et al., 1972). Neurons that respond to images of

human faces, hands or specific animate or inanimate objects

have been reported throughout IT cortex (Kanwisher et al.,

1997; Tsao et al., 2003; Downing et al., 2001; Popivanov

et al., 2014; Kornblith et al., 2013; Bao et al., 2020). Al-

though the field no longer regards individual IT neurons as
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pure object-category detectors, it is still thought that rank-

ordered object-category preference is an important single

unit property that underlie invariant object recognition (Li

et al., 2009). Thus we ask the following simple question,

how stable is ªcategory preferenceº as a defining functional

property of each IT neural site? We used each IT neu-

ral site’s response over many clean images to identify its

most and least preferred ImageNet categories (among 1000

categories), and difference in response between images of

preferred vs. non-preferred categories. An example site

is shown in (Figure 2B) along with two example images

from its most and least preferred categories (Figure 2A top

two rows), and the corresponding spike rasters show the

clear difference in the density of spiking response following

image presentation (preferred clean vs. non-preferred clean

Figure 2B top two plots). Now we take arbitrary images

from the non-preferred category (i.e. dog images for this

example site) and we perform targeted adversarial pertur-

bation on each of those images to change (here, increase)

the neural site’s response. We find that, by this reference

calibration, perturbation slightly over ϵ = 2.5, is on aver-

age sufficient to turn the site response to any non-preferred

image into its same level of response to highly-preferred

images (Figure 2A,B third rows). With a slightly larger

perturbation l22ϵ = 10, we found that we can drive the IT

multi-unit site response to 310±60Hz on average (n=17), ef-

fectively turning arbitrary non-preferred images into ºsuper-

stimuliº for these IT neural sites (Figure 2A,B, last rows).

This exceeds the average response of these neurons to their

’most-preferred’ image categories (216± 60 Hz). Interest-

ingly, upon visual inspection, the super-stimulus do not usu-

ally even conform to the semantic categories from the clean

preferred categories. This suggests that single-neuron’s ’cat-

egory/object selectivity’ is not a locally stable functional

property and highlights the insufficiency of concepts such

as ’object detectors’ and ’category selectivity’ in building

an accurate understanding of higher-level visual encoding.

It is surprising that primate IT neurons, which are approxi-

mately six anatomical stages of visual processing deep in

the brain, were responsive to perturbations as small as ϵ = 1,

a barely noticeable change for humans (see Appendix 2)

and smaller in magnitude than changing a single pixel from

black to white (ϵ = 1.73) (Figure 1). Are all IT neurons sus-

ceptible to adversarial attacks, or could the average results

above be due to just a few strongly modulated neurons? We

found that, while the sensitivity level varied, all recorded

IT sites were similarly sensitive to adversarial attacks and

each has a significantly positive slope between ϵ = 1 to 10
(Figure 3A). We also analyzed the image-specific sensitiv-

ity, si(x, ϵ), by recording additional trials (10 repeats) to

obtain a cleaner estimate on a subset of 100 images for three

neural sites. We illustrate those results by showing sensi-

tivity curves for each of 50 starting images for one typical

IT neural site (Figure 3B). Here again, while the sensitivity

curves for individual images varied, we found that most had

significantly positive slopes measured between ϵ = 1 to 10.

Taken together, our results suggest that adversarial images

can be readily found on all recorded IT sites and can be

found very close to any clean image in the ambient image

space (i.e. adversarial samples for biological neurons are

dense in the image space similar to that of artificial neural

networks (Szegedy et al., 2014)).

Figure 3. All tested individual IT neural sites are comparably sen-

sitive to these image perturbations, and successfully perturbing

images can be found near any starting (clean) image. A. Neural

site-specific sensitivity curves (light blue) and the average over all

sites, reproduced from figure 1 (dark blue). B. Image-specific sen-

sitivity curves for a single example IT site. Each line (light blue) is

the site’s measured sensitivity to perturbations near a starting clean

image (for visibility, 50 of 100 randomly selected starting clean

images are shown). The dark blue line shows the average over all

images tested for this site (i.e. one of of the light blue lines in A)

3. Method

3.1. Measuring adversarial sensitivity of IT neural sites

Measuring adversarial sensitivity si(ϵ) for each IT neural

site i requires us to maximize the observed |ri(x)− ri(x+
δi)| by finding better and better neuron-specific perturbation

δi on every image x (Figure 4). To do so, we start with

perturbations generated from a random baseline model of IT,

and iteratively fit the model to observed IT attack responses

until convergence. We performed extensive experiments

to screen for the best baseline model of the IT sites (see

Appendix 1 for details on our screening procedure). We

found the best baseline model is an adversarially pre-trained

ImageNet model AT-ResNet50 (l2ϵ = 2) that is linearly-

mapped with channel-factorized weights from layer 4.0

to a 21 dimensional output layer to model the IT neural

sites (Figure 4 box 0. The model parameters θt at t = 0
includes the pre-trained model parameters ω and the linear

IT mapping weights ψ. Linear IT mapping weights ψ are

factorized and initialized as channel weight wc ∼ N(0, 1)
and spatial weights ws ∼ N(0, 1) (Klindt et al., 2017).

Using this randomly mapped baseline model, we optimize

attack images independently for each model neuron us-

ing PGD with random starts, 100 steps and step size=ϵ/3
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Figure 4. Adversarial training with primate IT neural recordings in the loop allows us to produce a robust functional copy of IT neural

sites (box 0-3) and measure the lower-bound on each IT neural site’s adversarial sensitivity (box 4)

(Figure 4 box 1). The clean images used on day 0, Xt=0,

consist of 1000 clean images sampled from one of each of

the 1000 ImageNet classes from the clean training set. Be-

cause for each neuron, the perturbation can either increase or

decrease its firing rate, we perform PGD for both loss func-

tions MSE(ri(x + δi), 1000) or MSE(ri(x + δi),−1000)
and pick whichever one resulted in the largest predicted

magnitude of neural perturbation.

After the attack images are found, we show both clean and at-

tack images to a fixating monkey with two 99-channel Utah

arrays (1.5mm, 400 pitch, Iridium Oxide coated electrodes)

implanted in anterior and central IT (Blackrock Neurotech,

Salt Lake City, UT). The visual stimuli are presented 8 de-

grees over the visual field for 100ms followed by a 100ms

grey mask as in a standard rapid serial visual presentation

(RSVP) task. The presentation order for all images (clean

and perturbed) are shuffled across the experiment, which

lasts for 5 hours on average. Given this design and the

number of images, the average temporal separation between

a clean image and its perturbed pair is 25 minutes. Thus

image-specific response adaptation is unlikely to explain

any aspects of these results. A minimum of two repetitions

are shown for each image. For Figure 1A, we report IT sen-

sitivity from the last day of experiment, which sampled 882

unique images per perturbation ϵ (i.e. 42 images per neural

site). For each neural site i, we measure the total number

of spikes between 70ms-170ms after image presentation for

both the clean ri(x) and perturbed ri(x+ δi) trials (Figure

4 box 2).

At the end of the first recording session, we use both

(x, r⃗(x)) and (x+δi, r⃗(x+δi)), x ∈ Xt=0, to train f⃗(x, θt)
end-to-end with gradient descent and update θt+1 (Figure

4 box 3). After this, a new batch of clean images is queued

for the next day (Xt+1) and we repeat step 1 to 3 over a

Figure 5. Normalized adversarial sensitivity lower bound improves

over a number of days (blue) and is better than model-free per-

turbations such as Gaussian noise (green) or Linear-interpolation

(orange). Sensitivity curve from day 0 where no mapping has

occurred is not shown. Model-free measurements are measured

as normalized root-mean-squared values which upper bounds the

mean absolute differences.

total of 6 days. As the model of IT f⃗(x) improves, the ad-

versarial attack δi solved for each neuron i should become

better and better at generating larger perturbations in IT

|ri(x)− ri(x+ δi)| (Figure 4 box 4). Indeed, we tracked

the measured neural perturbation magnitude and saw an

consistent improvement over days (Figure 5). This sug-

gests that the l2ϵ = 1 attacks from the model IT improved

and transferred successfully onto real IT neurons. We note

the perturbations achieved with our model is significantly

larger than that achieved with a model-free method (Gaus-

sian noise or linear interpolation to another image class),

which confirms our intuition outlined in the introduction and
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explains why the field has systematically underestimated the

sensitivity of neurons to local image perturbations. At the

smallest perturbation ϵ = 1, between the second (day 1: 20k

samples for model tuning) and the sixth day of experiment

(day 5: 100k samples for model tuning) there was a 2.7

fold increase in realized perturbation size. We report the

normalized estimate s̃i(ϵ) from the last day of experiment

in all other figures as it is the highest lower bound we could

obtain.

Lastly, in the case of biological neurons we use a negatively

biased estimator for the average absolute neural response

movement to avoid overstating the sensitivity of IT neurons.

For xj where j = 0, 1, ...,M , out of M number of images:

Ej [|ri(xj)−ri(xj+δi,j)|] =
1

M

∑
j sign(ri(xj)−ri(xj+

δi,j))(ri(xj) − ri(xj + δi,j) ≥ 1

M

∑
j sign(fi(xj , θ) −

fi(xj + δi,j , θ))(ri(xj) − ri(xj + δi,j). In the presence

of measurement noise, taking the average of the absolute

value of response change will result in a positive bias. There-

fore, the last equation is used for the estimation of average

absolute neural response movement over images for each

site. This estimator becomes unbiased if the model of IT site

fi(x, θ) from the previous day predicted all the directions

of neural movement correctly.

3.2. Measuring adversarial sensitivity of individual

artificial neurons

In the context of robust machine learning, evaluation of

the sensitivity of a network is usually done by quantifying

the accuracy of a model on adversarially perturbed images.

Here we wish to compare the sensitivity of neurons in IT

to sensitivity of units within an deep neural networks. The

adversarial sensitivity of a single network unit i is defined

as:

si(x, ϵ) = max
||δ||<ϵ

|hi(x)− hi(x+ δ)| (3)

where x is a given image, hi the activation of the ith network

unit of the penultimate layer (i.e. average pooling layer in

ResNet50s). We use this layer in particular as this is the

layer typically used for transfer learning and insofar contains

a high-level representation of the pixel input learned by the

network.

Besides taking the best out of 100 independent runs for

solving the adversarial images for each unit, we also intro-

duced multiple methods to drastically improve convergence

beyond the basic PGD typically used for solving adversarial

images:

• Optimizing max||δ||<ϵ hi(x) − hi(x + δ) and

max||δ||<ϵ hi(x+ δ)− hi(x) separately significantly

reduces the chances to be stuck at saddle point. In most

cases the latter one produces better solutions but we

always attempt both.

• We observed that solving for larger ϵ converges faster.

Therefore, for our evaluation we perform 250 steps of

projected gradient descent first with a ball of radius

2ϵ and finally with one of radius ϵ. The relaxation of

the first phase dramatically improves exploration of the

search space and produces higher quality perturbations.

• For each optimization loop of 250 steps, we perform

simulated annealing with restarts: we begin with steps

of size ϵ and reduce them by 10% every time no

progress is made. This schedule is repeated up to 4

times.

4. Related Works

Only a small number of studies have explored adversar-

ial phenomena in human and non-human primate (Elsayed

et al., 2018; Yuan et al., 2020; Zhou & Firestone, 2019).

None of these directly measured adversarial sensitivity of

neural representations in the regime studied by robustness

research in the computer vision and machine learning com-

munities (l2ϵ < 10). Yuan et al. attempted to adversarially

attack neural and behavioral response in a two-way clas-

sification task in the primate using a vanilla ResNet101

(Yuan et al., 2020); however, the range of perturbations

used in that study was between l2 = [21.4, 43], all of which

are clearly visible to humans and substantially higher than

what we explore here. Another study attempted to use an

ensemble of non-robust networks to transfer attack time-

limited human behavior on a three-way classification task

using linf = 32/255 perturbation, which is equivalent to

l2ϵ = 48.7 (Elsayed et al., 2018). As noted by Tramer et al.,

l2 budgets greater than 19 fail to measure semantic similarity

in images, and as they demonstrate, generating adversarial

attacks to fool human behavior with an l2 budget above 20
is trivially feasible by pasting in a target object without the

aid of any behaviorial or neural models to guided the attack

(Tramer et al., 2020).

This is also the first paper where a robust neural network is

utilized for biological neural control under a limited budget

(Figure 2). All existing works used vanilla networks, DNN

or GAN, to synthesize images for single neuron or popula-

tion control in V4 or IT (Bashivan et al., 2019; Ponce et al.,

2019; Walker et al., 2019). The benefit of robust neural

networks for biological neural control is that no additional

image level prior needs to be manually enforced via addi-

tional loss functions. Relying on the network itself allows

us to leverage additional data to discover the correct image

level prior for neural/behavior control. This is possibly why

we are able to control neurons with far less image perturba-

tion budget, when all prior work used effectively unlimited

budget for image manipulation.
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5. Discussion

Here we provided the first experimental demonstration of

adversarial sensitivity in biological neurons in a high-order

brain area involved in visual object recognition. We find

that the representations learned by adversarially trained ar-

tificial neural networks have already exceeded that of the

corresponding biological neural representation in terms of

their individual unit level adversarial robustness. Our results

suggest that adversarial examples exist for all IT neural sites

and that they are dense in the image space (i.e. nearby any

starting image). Moreover, we demonstrated l2-norm per-

turbations as small as ϵ = 2.5 could completely alter the

category selectivity of recorded units, casting into doubt a

traditional approach that vision scientists have relied on for

decades for interpreting and cataloging functional neuronal

types in IT.

This result confronts us with an apparent paradox: How

is it that primate visual perception seems so robust yet its

fundamental units of computation are far more sensitive

than expected? One distinct possibility is that visual object

recognition behavior in primate is actually not robust. This

could be potentially explored with an iterative adversarial

psychophysics experiment, similar to what we have done

here for IT neurons. An alternative explanation is that there

is an unknown error-correction mechanism at the population

level in IT or in a down-stream area that decodes object

identity. These hypotheses can be tested in subsequent

experiments. We believe the current line of work could

potentially lead to biologically-inspired solutions in ML

robustness research, provide fundamental insights into the

nature of adversarial phenomena in biological cognition, and

perhaps provide new avenues to precisely modulate internal

brain states without disrupting daily visual behavior.
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6. Appendix

6.1. Optimizing the adversarial base network for

modeling IT

The training ϵ and layer for the base model of IT are chosen

by three independent criteria: A. global representational

similarity to IT as measured by CKA, B. cross-validated

linear predictivity for IT responses, and C. how well does

perturbations targeted toward a model layer transfers to IT

neurons without any explicit mapping between the two sys-

tems. A and B are both performed on a separate set of

neural recordings consisting of 12k images from the Ima-

geNet training set. The best base models as measured by

the three independent criteria are in complete agreement,

which is layer 4.0 from ϵ = 2 trained adversarial ResNet50.

The resolution of detecting the best model appears to be

better using the perturbation test of adversarial stimuli. Ad-

ditionally we make the interesting observation that with

AT-ResNet50s, adversarial training generally shifts the layer

that is most similar to IT down to the deeper parts of the

network with larger and larger training ϵ.

6.2. Perceptual discrimination of adversarial stimuli for

IT neural sites

In a balanced experimental design where we ask subjects

to detect the presence of adversarial perturbations designed

for IT neural sites. We find that the accuracy of detecting a

perturbation of ϵ = 1 to be 51%, close to a chance level of

50% of random guessing in our design. Below we describe

the detailed experimental protocol for this behavior result.

Briefly, Human subjects (n=50) were recruited on Ama-

zon’s Mechanical Turk Platform to conduct our behavioral

experiments (n=13,8096 behavioral trials total) following

COUHES guidelines. Subjects were free to do as many

sessions as they liked (median number of trials per worker

= 1,638 trials).

At the beginning of each session, subjects were given writ-

ten instructions on how to successfully complete a single

trial: first, two images were presented successively (100

msec durations each, with a 100 msec delay in between

presentations in which a solid gray background was shown).

Then subjects were instructed to report whether the two

images were completely identical, or not (up to 10 seconds

to respond). Images were presented on a neutral gray back-

grounds, at approximately 8 degrees of visual field (based on

assumptions of typical monitor sizes and viewing distances).

Trials in which the subject failed to make a response within

10 seconds were discarded from our analysis.

On any given session (which consisted of 100 experimental

trials), we balanced the number of positive trials and nega-

tive trials. Specifically, for any given perturbed image, we

included 4 trials: perturbed-clean, clean-perturbed, clean-

clean, and perturbed-perturbed. Such a scheme ensured

that perturbed images showed up in all positions (first and

second frame) and at the same rate as its original version,

and that random guessing or choice biases would lead to an

average accuracy of 50%. Thus, in each session, we were

able to obtain an empirical estimate of the true detection

rate and false detection rate with respect to 25 perturbed

images.

By collecting data over many such sessions over many im-

ages, we were able to obtain subject-averaged estimates of

detection rates (corrected for bias) for all of the perturbed

images used in this experiment. We were then able to aver-

age these estimates by the perturbation ϵ values associated

with each of the perturbed images.

We also included ’catch’ trials in which two different base

images were presented in sequence (leading to an ’obvious’

choice of the two images being different), every 10 trials.

By doing so, we could estimate a lower bound on the rate

at which subjects were attending to the task (non-attending

subjects would have 50% accuracy on catch trials) over

the course of the session. On such catch trials, subjects

had an average accuracy of 97.4% (0.95-CI: [97.1, 97.7]),

suggesting the data we collected reflected subjects who

understood the instructions and were highly attentive to

the task (i.e. were not randomly guessing throughout the

session).
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Figure 6. Selecting the layer (vertical-axis) and adversarial training ϵ (horizontal-axis) for the base mapping model of IT. Black asterisks

denote the best layer/training ϵ combination selected using each of the three metric.


