


pass over mostly redundant computation. These changes

turn out to vastly speed up inference time for our smoothed

ViTs. In our framework, a forward pass on ImageNet be-

comes up to two orders of magnitude faster than that of

prior certified defenses, and is close in speed to a standard

(non-robust) ResNet.

2. Certified patch defense with smoothing &

transformers

Smoothing methods are a general class of certified de-

fenses that combine the predictions of a classifier over many

variations of an input to create predictions that are certi-

fiably robust [7, 26]. One such method that obtains robust-

ness to adversarial patches is derandomized smoothing [25],

which aggregates a classifier’s predictions on various image

ablations that mask most of the image out.

These approaches typically use CNNs, a common de-

fault model for computer vision tasks, to evaluate the im-

age ablations. The starting point of our approach is to ask:

are convolutional architectures the right tool for this task?

The crux of our methodology is to leverage vision trans-

formers, which we demonstrate are more capable of grace-

fully handling the image ablations that arise in derandom-

ized smoothing.

2.1. Preliminaries

Image ablations. Image ablations are variations of an im-

age where all but a small portion of the image is masked out

[25]. For example, a column ablation masks the entire im-

age except for a column of a fixed width (see Figure 1 for

an example). We focus primarily on column ablations and

explore the more general block ablation in Appendix G.

…

Figure 1. Examples of column ablations for the left-most image

with column width 19px.

For a input h × w sized image x, we denote by Sb(x)
the set of all possible column ablations of width b. A col-

umn ablation can start at any position and wrap around the

image, so there are w total ablations in Sb(x).

Derandomized smoothing. Derandomized smoothing

[25] is a popular approach for certified patch defenses that

constructs a smoothed classifier comprising of two main

components: (1) a base classifier, and (2) a set of image ab-

lations used to smooth the base classifier. Then, the result-

ing smoothed classifier returns the most frequent prediction

of the base classifier over the ablation set Sb(x). Specifi-

cally, for an input image x, ablation set Sb(x), and a base

classifier f , a smoothed classifier g is defined as:

g(x) = argmax
c

nc(x) (1)

where

nc(x) =
∑

x
′∈Sb(x)

I{f(x′) = c}

denotes the number of image ablations that were classi-

fied as class c. We refer to the fraction of images that

the smoothed classifier correctly classifies as standard ac-

curacy.

A smoothed classifier is certifiably robust for an input

image if the number of ablations for the most frequent class

exceeds the second most frequent class by a large enough

margin. Intuitively, a large margin makes it impossible for

an adversarial patch to change the prediction of a smoothed

classifier since a patch can only affect a limited number of

ablations.

Specifically, let ∆ be the maximum number of ablations

in the ablation set Sb(x) that an adversarial patch can si-

multaneously intersect (e.g., for column ablations of size b,

an m×m patch can intersect with at most ∆ = m+ b− 1
ablations). Then, a smoothed classifier is certifiably robust

on an input x if it is the case that for the predicted class c:

nc(x) > max
c′ 6=c

nc′(x) + 2∆. (2)

If this threshold is met, the most frequent class is guaran-

teed to not change even if an adversarial patch compromises

every ablation it intersects. We denote the fraction of pre-

dictions by the smooth classifier that are both correct and

certifiably robust (according to Equation 2) as certified ac-

curacy.

Vision transformers. A key component of our approach

is the vision transformer (ViT) architecture [10]. In contrast

to convolutional architecures, ViTs use self-attention lay-

ers instead of convolutional layers as their primary building

block and are inspired by the success of self-attention in

natural language processing [49]. ViTs process images in

three main stages:

1. Tokenization: The ViTs split the image into p × p

patches. Each patch is then embedded into a position-

ally encoded token.

2. Self-Attention: The set of tokens are then passed

through a series of multi-headed self-attention layers

[49].

3. Classification head: The resulting representation is fed

into a fully connected layer to make predictions for

classification.

15138





Table 1. Summary of our ImageNet results and comparisons to certified patch defenses from the literature: Clipped Bagnet (CBN),

BAGCERT, Derandomized Smoothing (DS), and PatchGuard (PG). Time refers to the inference time for a batch of 1024 images, b is the

ablation size, and s is the ablation stride. An extended version is in Appendix H.

Standard and Certified Accuracy on ImageNet (%)

Standard 1% pixels 2% pixels 3% pixels Time (sec)

Baselines

Standard ResNet-50 76.1 — — — 0.67

WRN-101-2 78.9 — — — 3.1

ViT-S 79.9 — — — 0.4

ViT-B 81.8 — — — 0.95

CBN [63] 49.5 13.4 7.1 3.1 3.05

BAGCERT [32]‡ 45.3 — 22.9 — 8.60

DS [25]* 44.4 17.7 14.0 11.2 149.5

PG [56]† 55.1† 32.3† 26.0† 19.7† 3.05

Smoothed models

ResNet-50 (b = 19) 51.5 22.8 18.3 15.3 149.5

ViT-S (b = 19) 63.5 36.8 31.6 27.9 14.0

WRN-101-2 (b = 19) 61.4 33.3 28.1 24.1 694.5

ViT-B (b = 19) 69.3 43.8 38.3 34.3 31.5

ViT-B (b = 37) 73.2 43.0 38.2 34.1 58.7

ViT-B (b = 19, s = 10) 68.3 36.9 36.9 31.4 3.2

Table 2. Summary of our CIFAR-10 results and comparisons

to certified patch defenses from the literature: Clipped Bagnet

(CBN), Derandomized Smoothing (DS), and PatchGuard (PG).

Here, b is the column ablation size out of 32 pixels. An extended

version is in Appendix H.

Standard and Certified Accuracy on CIFAR-10 (%)

Standard 2× 2 4× 4

Baselines

CBN [63] 84.2 44.2 9.3

DS [25]* 83.9 68.9 56.2

PG [56]† 84.7† 69.2† 57.7†

Smoothed models

ResNet-50 (b = 4) 86.4 71.6 59.0

ViT-S (b = 4) 88.4 75.0 63.8

WRN-101-2 (b = 4) 88.2 73.9 62.0

ViT-B (b = 4) 90.8 78.1 67.6

3.1. ViTs outperform ResNets on image ablations.

We first isolate the effect of using a ViT instead of a

ResNet as the base classifier for derandomized smoothing.

Specifically, we keep all smoothing parameters fixed and

only vary the base classifier. Following [25], we use col-

umn ablations of width b = 4 for CIFAR-10 and b = 19 for

ImageNet for both training and certification.

Ablation accuracy. The performance of derandomized

smoothing entirely depends on whether the base classifier

can accurately classify ablated images. We thus measure

the accuracy of ViTs and ResNets at classifying column ab-

lated images across a range of evaluation ablation sizes as

shown in Figure 3. We find that ViTs are significantly more

accurate on these ablations than comparably sized ResNets.

For example, on ImageNet, ViT-S has up to 12% higher ac-

curacy on ablations than ResNet-50.

Certified patch robustness. We next measure the effect

of improved ablation accuracy on certified accuracy. We

find that using a ViT as the base classifier in derandomized

smoothing substantially boosts certified accuracy compared

*We found that ResNets could achieve a significantly higher certified

accuracy than was reported by [25] if we use early stopping-based model

selection. We elaborate further in Appendix A.
†The PatchGuard defense uses a specific mask size that guarantees ro-

bustness to patches smaller than the mask, and provides no guarantees for

larger patches. In this table, we report their best results: each patch size

corresponds to a separate model that achieves 0% certified accuracy against

larger patches. Comparisons across the individual models can be found in

Appendix H.
‡No code was available, so we extracted the numbers from the paper.
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against a specific patch size, and achieves no robustness at

all against patches that are even slightly larger than the one

considered.

Empirical methods: attacks and defenses. Another line

of work studies empirical approaches for generating adver-

sarial patches and designing empirical defenses. Adversar-

ial patches have been developed for downstream tasks such

as image classification [20], object detection [5, 13, 30], and

facial recognition [3, 44, 45]. Several of these attacks work

in the physical domain [4, 5, 13], and can successfully target

tasks such as traffic sign recognition [5, 13]. Heuristic de-

fenses to these attacks include watermarking [16] and gradi-

ent smoothing [35]; however, these defenses were shown to

be vulnerable adaptive attacks [6]. More recently, [39] pro-

posed an adversarial training approach and [34] proposed a

robust attention module to improve empirical robustness to

patch attacks.

Vision transformers. Our work leverages the vision

transformer (ViT) architecture [10], which adapts the pop-

ular attention-based model from the language setting [49]

to the vision setting. Recent work [47] has released more

efficient training methods as well as pre-trained ViTs that

have made these architectures more accessible to the wider

research community.

6. Conclusion

We demonstrate how applying visual transformers

(ViTs) within the smoothing framework leads to signifi-

cantly improved certified robustness to adversarial patches

while maintaining standard accuracies that are on par with

regular (non-robust) models. Further, we put forth changes

to the ViT architecture and the corresponding smoothing

procedure that greatly speed up the resulting inference times

over previous smoothing approaches by up to two orders of

magnitude—they end up being only 2-5x slower than that

of a regular ResNet. We believe that these improvements fi-

nally establish models that are certifiably robust to adversar-

ial patches as a viable alternative to standard (non-robust)

models.

Limitations. Similarly to other certified defenses, our

method specifically focuses on patch attacks and does not

guarantee robustness to attacks that fall outside of this

threat model. Furthermore, although our approach is vastly

faster than other smoothed models, smoothed ViTs are still

slightly slower than standard (non-robust) models. Finally,

the standard accuracy of our models may suffer if the pre-

dictive signal in an image comes only from a small region

of the image, as that region might not be present in many

image ablations.

Potential negative impact. A possible negative impact of

our work is that it might instill overconfidence in the model.

At test time, our robustness guarantees ensure that the pre-

diction is stable but might be not necessarily correct, lead-

ing to a false sense of confidence. Additionally, users may

erroneously extrapolate other forms of robustness from our

guarantees of patch robustness. The guarantees presented

in this paper are robustness guarantees and not correctness

guarantees, in the sense that our models can guarantee that

a prediction is stable if a certain region of the image is ma-

nipulate, but it cannot guarantee that the prediction will be

correct. Therefore, we encourage users to be aware of these

subtleties before using our technique.
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