
Published as a conference paper at ICLR 2022

MISSINGNESS BIAS IN MODEL DEBUGGING

Saachi Jain1*, Hadi Salman1*, Eric Wong1, Pengchuan Zhang2,
Vibhav Vineet2, Sai Vemprala2, Aleksander Mądry1

1Massachusetts Institute of Technology
2Microsoft Research

1{saachij, hady, wongeric, madry}@mit.edu
2{penzhan, vivineet, sai.vemprala}@microsoft.com

ABSTRACT

Missingness, or the absence of features from an input, is a concept fundamental to
many model debugging tools. However, in computer vision, pixels cannot simply
be removed from an image. One thus tends to resort to heuristics such as blacking
out pixels, which may in turn introduce bias into the debugging process. We
study such biases and, in particular, show how transformer-based architectures
can enable a more natural implementation of missingness, which side-steps these
issues and improves the reliability of model debugging in practice.1

1 INTRODUCTION

Model debugging aims to diagnose a model’s failures. For example, researchers can identify global
biases of models via the extraction of human-aligned concepts (Bau et al., 2017; Wong et al., 2021),
or understand the texture bias by analyzing the models performance on synthetic datasets (Geirhos
et al., 2019; Leclerc et al., 2021). Other approaches aim to highlight local features to debug individ-
ual model predictions (Simonyan et al., 2013; Dhurandhar et al., 2018; Ribeiro et al., 2016a; Goyal
et al., 2019).

A common theme in these methods is to compare the behavior of the model with and without certain
individual features (Ribeiro et al., 2016a; Goyal et al., 2019; Fong & Vedaldi, 2017; Dabkowski
& Gal, 2017; Zintgraf et al., 2017; Dhurandhar et al., 2018; Chang et al., 2019). For example, in-
terpretability methods such as LIME (Ribeiro et al., 2016b) and integrated gradients (Sundararajan
et al., 2017) use the predictions when certain features are removed from the input to attribute differ-
ent regions of the input to the decision of the model. Dhurandhar et al. (2018) find minimal regions
in radiology images that are necessary for classifying a person as having autism. Fong & Vedaldi
(2017) propose learning image masks that minimize a class score to achieve interpretable explana-
tions. Similarly, in natural language processing, model designers often remove individual words to
understand their importance to the output (Mardaoui & Garreau, 2021; Li et al., 2016). The absence
of features from an input, a concept sometimes referred to as missingness (Sturmfels et al., 2020), is
thus fundamental to many debugging tools.

However, there is a problem: while we can easily remove words from sentences, removing objects
from images is not as straightforward. Indeed, removing a feature from an image usually requires
approximating missingness by replacing those pixel values with something else, e.g., black color.
However, these approximations tend not to be perfect (Sturmfels et al., 2020). Our goal is thus to
give a holistic understanding of missingness and, specifically, to answer the question:

How do missingness approximations affect our ability to debug ML models?

*Equal contribution.
1Our code is available at https://github.com/madrylab/missingness.

1



Published as a conference paper at ICLR 2022

(a) Original image (b) Masking the human (c) Masking the dog’s snout

Figure 1: Consider an image of a dog being held by its owner. By removing the owner from the
image, we can study how much our model’s prediction depends on the presence of a human. In
a similar vein, we can identify which aspects of the dog (head, body, paws) are most critical for
classifying the image by ablating these parts.

OUR CONTRIBUTIONS

In this paper, we investigate how current missingness approximations, such as blacking out pixels,
can result in what we call missingness bias. This bias turns out to hinder our ability to debug models.
We then show how transformer-based architectures can enable a more natural implementation of
missingness, allowing us to side-step this bias. More specifically, our contributions include:

Pinpointing the missingness bias. We demonstrate at multiple granularities how simple approxi-
mations, such as blacking out pixels, can lead to missingness bias. This bias skews the overall output
distribution toward unrelated classes, disrupts individual predictions, and hinders the model’s use of
the remaining (unmasked) parts of the image.

Studying the impact of missingness bias on model debugging. We show that missingness bias
negatively impacts the performance of debugging tools. Using LIME—a common feature attribution
method that relies on missingness—as a case study, we find that this bias causes the corresponding
explanations to be inconsistent and indistinguishable from random explanations.

Using vision transformers to implement a more natural form of missingness. The token-
centric nature of vision transformers (ViT) (Dosovitskiy et al., 2021) facilitates a more natural im-
plementation of missingness: simply drop the corresponding tokens of the image subregion we want
to remove. We show that this simple property substantially mitigates missingness bias and thus
enables better model debugging.

2 MISSINGNESS

Removing features from the input is an intuitive way to understand how a system behaves (Sturmfels
et al., 2020). Indeed, by comparing the system’s output with and without specific features, we can
infer what parts of the input led to a specific outcome (Sundararajan et al., 2017)—see Figure 1. The
absence of features from an input is sometimes referred to as missingness (Sturmfels et al., 2020).

The concept of missingness is commonly leveraged in machine learning, especially for tasks such
as model debugging. For example, several methods for feature attribution quantify feature impor-
tance by studying how the model behaves when those features are removed (Sturmfels et al., 2020;
Sundararajan et al., 2017; Ancona et al., 2017). One commonly used method, LIME (Ribeiro et al.,
2016a), iteratively turns image subregions on and off in order to highlight its important parts. Simi-
larly, integrated gradients (Sundararajan et al., 2017), a typical method for generating saliency maps,
leverages a “baseline image” to represent the “absence” of features in the input. Missingness-based
tools are also often used in domains such as natural language processing (Mardaoui & Garreau,
2021; Li et al., 2016) and radiology (Dhurandhar et al., 2018).

Challenges of approximating missingness in computer vision. While ignoring parts of an image
is simple for humans, removing image features is far more challenging for computer vision models
(Sturmfels et al., 2020). After all, convolutional networks require a structurally contiguous image
as an input. We thus cannot leave a “hole" in the image where the model should ignore the input.

2



Published as a conference paper at ICLR 2022

ResNet-50: flatworm 
ViT-S: flatworm 

ResNet-50: crossword 
ViT-S: flatworm

ResNet-50: jigsaw puzzle 
ViT-S: flatworm 

Original

ResNet-50: cliff dwelling 
ViT-S: sea slug

GT
: fl

at
wo

rm

Random Least Salient Most Salient

Figure 2: Given an image of a flatworm, we remove various regions of the original image; mask-
ing for ResNet, and dropping tokens for ViT. (Section 2.1): Irrespective of what subregions of the
image are removed (least salient, most salient, or random), a ResNet-50 outputs the wrong class
(crossword, jigsaw puzzle, cliff dwelling). Taking a closer look at the randomly
masked image of Figure 2, we notice that the predicted class (crossword puzzle) is not totally
unreasonable given the masking pattern. The model seems to be relying on the masking pattern to
make the prediction, rather than the remaining (unmasked) portions of the image. (Section 2.2):
The ViT-S on the other hand either maintains its original prediction or predicts a reasonable label
given remaining image subregions.

Consequently, practitioners typically resort to approximating missingness by replacing these pixels
with other, intended to be “meaningless”, pixels.

Common missingness approximations include replacing the region of the image with black color, a
random color, random noise, a blurred version of the region, and so forth (Sturmfels et al., 2020;
Ancona et al., 2017; Smilkov et al., 2017; Fong & Vedaldi, 2017; Zeiler & Fergus, 2014; Sundarara-
jan et al., 2017). However, there is no clear justification for why any of these choices is a good
approximation of missingness. For example, blacked out pixels are an especially popular baseline,
motivated by the implicit heuristic that near zero inputs are somehow neutral for a simple model (An-
cona et al., 2017). However, if only part of the input is masked or the model includes additive bias
terms, the choice of black is still quite arbitrary. In (Sturmfels et al., 2020), the authors found that
saliency maps generated with integrated gradients are quite sensitive to the chosen baseline color,
and thus can change significantly based on the (arbitrary) choice of missingness approximation.

2.1 MISSINGNESS BIAS

What impact do these various missingness approximations have on our models? We find that current
approximations can cause significant bias in the model’s predictions. This causes the model to make
errors based on the “missing” regions rather than the remaining image features, rendering the masked
image out-of-distribution.

Figure 2 depicts an example of these problems. If we mask a small portion of the image, irrespective
of which part of the image that is, convolutional networks (CNNs) output the wrong class. In fact,
CNNs seem to be relying on the masking pattern to make the prediction, rather than the remaining
(unmasked) portions of the image. This type of behavior can be especially problematic for model
debugging techniques, such as LIME, that rely on removing image subregions to assign importance
to input features. Further examples can be found in Appendix C.1.

There seems to be an inherent bias accompanying missingness approximations, which we refer to as
the missingness bias. In Section 3, we systematically study how missingness bias can affect model
predictions at multiple granularities. Then in Section 4, we find that missingness bias can cause
undesirable effects when using LIME by causing its explanations to be inconsistent and indistin-
guishable from random explanations.

2.2 A MORE NATURAL FORM OF MISSINGNESS VIA VISION TRANSFORMERS

The challenges of missingness bias raises an important question: what constitutes a correct notion of
missingness? Since masking pixels creates biases in our predictions, we would ideally like to remove
those regions from consideration entirely. Because convolutional networks slide filters across the

3



Published as a conference paper at ICLR 2022

image, they require spatially contiguous input images. We are thus limited to replacing pixels with
some baseline value (such as blacking out the pixels), which leads to missingness bias.

Vision transformers (ViTs) (Dosovitskiy et al., 2021) use layers of self-attention instead of convo-
lutions to process the image. Attention allows the network to focus on specific sub-regions while
ignoring other parts of the input (Vaswani et al., 2017; Xu et al., 2015); this allows ViTs to be more
robust to occlusions and perturbations (Naseer et al., 2021). These aspects make ViTs especially
appealing for countering missingness bias in model debugging.

In particular, we can leverage the unique properties of ViTs to enable a far more natural implementa-
tion of missingness. Unlike CNNs, ViTs operate on sets of image tokens, each of which correspond
to a positionally encoded region of the image. Thus, in order to remove a portion of the image, we
can simply drop the tokens that correspond to the regions of the image we want to “delete.” Instead
of replacing the masked region with other pixel values, we can modify the forward pass of the ViT
to directly remove the region entirely.

We will refer to this implementation of missingness as dropping tokens throughout the paper (see
Appendix B for further details). As we will see, using ViTs to drop image subregions will allow us
to side-step missingness bias (see Figure 2), and thus enable better model debugging2.

3 THE IMPACTS OF MISSINGNESS BIAS

Section 2.1 featured several qualitative examples where missingness approximations affect the
model’s predictions. Can we get a precise grasp on the impact of such missingness bias? In this
section, we pinpoint how missingness bias can manifest at several levels of granularity. We fur-
ther demonstrate how, by enabling a more natural implementation of missingness through dropping
tokens, ViTs can avoid this bias.

Setup. To systematically measure the impacts of missingness bias, we iteratively remove subre-
gions from the input and analyze the types of mistakes that our models make. See Appendix A for
experimental details. We perform an extensive study across various: architectures (Appendix C.3),
missingness approximations (Appendix C.4), subregion sizes (Appendix C.5), subregion shapes:
patches vs superpixels (Appendix C.6), and datasets (Appendix E).

Here we present our findings on a single representative setting: removing 16 × 16 patches from
ImageNet images through blacking out (ResNet-50) and dropping tokens (ViT-S). The other settings
lead to similar conclusions as shown in Appendix C. Our assessment of missingness bias, from the
overall class distribution to individual examples, is guided by the following questions:

To what extent do missingness approximations skew the model’s overall class distribution?
We find that missingness bias affects the model’s overall class distribution (i.e the probability of
predicting any one class). In Figure 3, we measure the shift in the model’s output class distribution
before and after image subregions are randomly removed. The overall entropy of output class dis-
tribution degrades severely. In contrast, this bias is eliminated when dropping tokens with the ViT.
The ViT thus maintains a high class entropy corresponding to a roughly uniform class distribution.
These findings hold regardless of what order we remove the image patches (see Appendix C.2).

Does removing random or unimportant regions flip the model’s predictions? We now take
closer look at how missingness approximations can affect individual predictions. In Figure 4, we
plot the fraction of examples where removing a portion of the image flips the model’s prediction. We
find that the ResNet rapidly flips its predictions even when the less relevant regions are removed first.
This degradation is thus more likely due to missingness bias rather than the removal of individual
regions. In contrast, the ViT maintains its original predictions even when large parts of the image
are removed.

Do remaining unmasked regions produce reasonable predictions? When removing regions
of the image with missingness, we would hope that the model makes a “best-effort” prediction

2Unless otherwise specified, we drop tokens for the vision transformers when analyzing missingness bias
on ViTs. An analysis of the missingness bias for ViTs when blacking out pixels can be found in Appendix C.7.

4











Published as a conference paper at ICLR 2022

Goyal et al., 2019; Fong & Vedaldi, 2017; Dabkowski & Gal, 2017; Zintgraf et al., 2017; Dhurandhar
et al., 2018; Chang et al., 2019; Hendricks et al., 2018; Singla et al., 2021). They focus on the change
in classifier outputs with respect to images where some parts are masked and replaced with various
references such as random noise, mean pixel values, blur, outputs of generative models, etc.
Evaluating feature attribution methods. It is important for feature attribution methods to truly
reflect why the model made a decision. Unfortunately, evaluating this is hard since we lack the
ground truth of what parts of the input are important. Several works showed that visual assessment
fails to evaluate attribution methods (Adebayo et al., 2018; Hooker et al., 2018; Kindermans et al.,
2017; Lin et al., 2019; Yeh et al., 2019; Yang & Kim, 2019; Narayanan et al., 2018), and instead
proposed several qualitative tests as replacements. Samek et al. (2016) proposed the region pertur-
bation method which removes pixels according to the ranking provided by the attribution maps, and
measures how the prediction changes i.e., how the class encoded in the image disappears when we
progressively remove information from the image. Later on, Hooker et al. (2018) proposed remove
and retrain (ROAR) which showed that in order for region perturbation method to be more informa-
tive, the model has to be trained with those perturbations. Kindermans et al. (2017) posit that feature
attribution methods should fulfill invariance with respect to some set of transformations, e.g. adding
a constant shift to the input data. Adebayo et al. (2018) proposed several sanity checks that feature
attribution methods should pass. For example, a feature attribution method should produce different
attributions when evaluated on a trained model and a randomly initialized model. Zhou et al. (2021)
proposed a modifying datasets such that a model must rely on a set of known and well-defined
features to achieve high performance, thus offering a ground truth for feature attribution methods.
The notion of missingness. The notion of missingness is commonly used in machine learning,
especially for tasks such as feature attribution (Sturmfels et al., 2020; Sundararajan et al., 2017;
Hooker et al., 2018; Ancona et al., 2017). Practitioners leverage missingness in order to quantify
the importance of specific features, by evaluating the model when removing the feature in the input
(Ribeiro et al., 2016a; Goyal et al., 2019; Fong & Vedaldi, 2017; Dabkowski & Gal, 2017; Zintgraf
et al., 2017; Dhurandhar et al., 2018; Chang et al., 2019; Sundararajan et al., 2017; Carter et al.,
2021; Covert et al., 2021). For example, in natural language processing, model designers often
remove tokens to assign importance to individual words (Mardaoui & Garreau, 2021; Li et al.,
2016). In computer vision, missingness is foundational to several interpretability methods. For
example, LIME (Ribeiro et al., 2016a) iteratively turns image features on and off in order to learn
the importance of each image subregion. Similarly, integrated gradients (Sundararajan et al., 2017)
requires a “baseline image” that is used to represent “absence” of feature in the input. It is thus
important to study missingness and how to properly approximate it for computer vision applications.
Vision transformers. Our work leverages the vision transformer (ViT) architecture, which was
first proposed by Dosovitskiy et al. (2021) as a direct adaptation of the popular transformer architec-
ture used in NLP applications (Vaswani et al., 2017) for computer vision. In particular, ViTs do not
include any convolutions, instead they tokenize the image into patches which are then passed through
several full layers of multi-headed self-attention. These help the transformer globally share infor-
mation between all image regions at every layer. While convolutions must iteratively expand their
receptive fields, vision transformers can immediately share information between patches throughout
the entire network. ViTs recently got a lot of attention in the research community from works rang-
ing from efficient methods for training ViTs (Touvron et al., 2020) to studying the properties of ViTs
(Shao et al., 2021; Mahmood et al., 2021; Naseer et al., 2021; Salman et al., 2021). The work of
Naseer et al. (2021) is especially related to our work as it studies the robustness of ViTs to a number
of input modifications including occlusions. They find that the overall accuracy of CNNs degrades
more quickly than ViTs when large regions of the input is masked. These findings complement our
intuition that ResNets can experience bias when pixels are replaced with a variety of missingness
approximations.

6 CONCLUSION

In this paper, we investigate how current missingness approximations result in missingness bias.
We also study how this bias interferes with our ability to debug models. We demonstrate how
transformer-based architectures are one possible solution, as they enable a more natural (and thus
less biasing) implementation of missingness. Such architectures can indeed side-step missingness
bias and are more reliable to debug in practice.

9



Published as a conference paper at ICLR 2022

7 ACKNOWLEDGEMENTS

Work supported in part by the NSF grants CCF-1553428 and CNS-1815221. This material is based
upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001120C0015.

Research was sponsored by the United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or im-
plied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. Slic superpixels. Technical report, 2010.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. In Neural Information Processing Systems (NeurIPS), 2018.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104,
2017.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Computer Vision and Pattern
Recognition (CVPR), 2017.

Emanuel Ben-Baruch, Tal Ridnik, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lihi
Zelnik-Manor. Asymmetric loss for multi-label classification. arXiv preprint arXiv:2009.14119,
2020.

Brandon Carter, Siddhartha Jain, Jonas W Mueller, and David Gifford. Overinterpretation reveals
image classification model pathologies. Advances in Neural Information Processing Systems, 34,
2021.

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image clas-
sifiers by counterfactual generation. In International Conference on Learning Representations
(ICLR), 2019.

Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. Journal of Machine Learning Research, 22(209):1–90, 2021.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Neural
Information Processing Systems (NeurIPS), 2017.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. arXiv preprint arXiv:1802.07623, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations (ICLR), 2021.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Ex-
ploring the landscape of spatial robustness. In International Conference on Machine Learning
(ICML), 2019.

Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful pertur-
bation. In International Conference on Computer Vision (ICCV), 2017.

10



Published as a conference paper at ICLR 2022

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations
(ICLR), 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual
explanations. arXiv preprint arXiv:1904.07451, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding visual expla-
nations. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 264–279,
2018.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. In International Conference on Learning Representations
(ICLR), 2019.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretabil-
ity methods in deep neural networks. arXiv preprint arXiv:1806.10758, 2018.

Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robustness against
unforeseen adversaries. In ArXiv preprint arxiv:1908.08016, 2019.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning (ICML), 2018.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency methods. In arXiv preprint
arXiv:1711.00867, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, 2009.

Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav Vineet, Kai
Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, et al. 3db: A framework for debugging
computer vision models. In arXiv preprint arXiv:2106.03805, 2021.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models
in nlp. In Proceedings of NAACL-HLT, pp. 681–691, 2016.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision (ECCV), 2014.

Zhong Qiu Lin, Mohammad Javad Shafiee, Stanislav Bochkarev, Michael St Jules, Xiao Yu Wang,
and Alexander Wong. Do explanations reflect decisions? a machine-centric strategy to quantify
the performance of explainability algorithms. arXiv preprint arXiv:1910.07387, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations (ICLR), 2018.

Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk. On the robustness of vision transformers
to adversarial examples. 2021.

Dina Mardaoui and Damien Garreau. An analysis of lime for text data. In International Conference
on Artificial Intelligence and Statistics, 2021.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 1995.

11



Published as a conference paper at ICLR 2022

Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman, and Finale Doshi-Velez.
How do humans understand explanations from machine learning systems? an evaluation of the
human-interpretability of explanation. arXiv preprint arXiv:1802.00682, 2018.

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz
Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. arXiv preprint
arXiv:2105.10497, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In International Conference on Knowledge Discovery and Data
Mining (KDD), 2016a.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”: Explaining
the predictions of any classifier. In International Conference on Knowledge Discovery and Data
Mining (KDD), 2016b.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. In International Journal of Computer
Vision (IJCV), 2015.

Hadi Salman, Saachi Jain, Eric Wong, and Aleksander Mądry. Certified patch robustness via
smoothed vision transformers. arXiv preprint arXiv:2110.07719, 2021.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. Evaluating the visualization of what a deep neural network has learned. IEEE transactions
on neural networks and learning systems, 28(11):2660–2673, 2016.

Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial robust-
ness of visual transformers. 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding failures
of deep networks via robust feature extraction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12853–12862, 2021.

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. SmoothGrad: removing noise by
adding noise. In ICML workshop on visualization for deep learning, 2017.

Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution
baselines. Distill, 2020. doi: 10.23915/distill.00022. https://distill.pub/2020/attribution-baselines.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning (ICML), 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations (ICLR), 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Computer Vision and Pattern Recog-
nition (CVPR), 2016.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

12



Published as a conference paper at ICLR 2022

Ross Wightman. Pytorch image models. https://github.com/rwightman/

pytorch-image-models, 2019.

Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for debug-
gable deep networks. In International Conference on Machine Learning (ICML), 2021.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning, pp. 2048–2057. PMLR, 2015.

Mengjiao Yang and Been Kim. Benchmarking attribution methods with relative feature importance.
arXiv preprint arXiv:1907.09701, 2019.

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K Ravikumar. On the
(in) fidelity and sensitivity of explanations. Advances in Neural Information Processing Systems,
32:10967–10978, 2019.

Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and Julie Shah. Do feature attribution methods
correctly attribute features? arXiv preprint arXiv:2104.14403, 2021.

Zhuotun Zhu, Lingxi Xie, and Alan Yuille. Object recognition without and without objects. In
International Joint Conference on Artificial Intelligence, 2017.

Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network
decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

13



Published as a conference paper at ICLR 2022

A EXPERIMENTAL DETAILS.

A.1 MODELS AND ARCHITECTURES

We use two sizes of vision transformers: ViT-Tiny (ViT-T) and ViT-Small (ViT-S) (Wightman, 2019;
Dosovitskiy et al., 2021). We compare to residual networks of similar size: ResNet-18 and ResNet-
50 (He et al., 2016), respectively. These architectures and their corresponding number of parameters
are summarized in Table 1.

Table 1: A collection of neural network architectures we use in our paper.

Architecture ViT-T ResNet-18 ViT-S ResNet-50
Params 5M 12M 22M 26M

A.2 TRAINING DETAILS

We train our models on ImageNet (Russakovsky et al., 2015), with a custom (research,
non-commercial) license, as found here https://paperswithcode.com/dataset/

imagenet. For all experiments in this paper, we consider 10,000 image subset of the original
ImageNet validation set (we take every 5th image).

1. For ResNets, we train using SGD with batch size of 512, momentum of 0.9, and weight
decay of 1e-4. We train for 90 epochs with an initial learning rate of 0.1 that drops by a
factor of 10 every 30 epochs.

2. For ViTs, we use the same training scheme as used in Wightman (2019).

Note that we use the same (basic) data-augmentation techniques for both ResNets and ViTs. Specif-
ically, we only use random resized crop and random horizontal flip (no RandAug, CutMix, MixUp,
etc.).

We attach all our model weights to the submission.

Models trained with missingness augmentations. In Sections 3 and 4, we also consider models
that were augmented with missingness approximations during training (inspired by ROAR (Hooker
et al., 2018), see Appendix F for further discussion). We retrain our models by randomly removing
50% of the patches (by blacking out for ResNet and dropping the respective tokens for ViT). The
other training hyperparameters are maintained the same as the standard models above.

Infrastructure and computational time. For ImageNet, we train our models on 4 V100 GPUs
each, and training took around 12 hours for ResNet-18 and ViT-T, and around 20 hours for ResNet-
50 and ViT-S.

For CIFAR-10, we fine-tune pretrained ViTs and ResNets on a single V100 GPU. Fine-tuning ViT-T
and ResNet-18 took around 1 hours, and fine-tuning ViT-S and ResNet-50 took around 1.5 hours.

All of our analysis can be run on a single 1080Ti GPU, where the time for one forward pass with
batch size of 128 is reported in Table 2.

Table 2: A collection of neural network architectures we use in our paper.

Architecture ViT-T ResNet-18 ViT-S ResNet-50
Inference time (sec) 0.031± 0.018 0.033± 0.013 0.041± 0.016 0.039± 0.015

A.3 EXPERIMENTAL DETAILS FOR SECTION 3

For the experiments in Section 3, we iteratively remove subregions from the input. In the main
paper, we consider removing 16 × 16 patches: we black out patches for the ResNet-50 and drop

14



Published as a conference paper at ICLR 2022

the corresponding token for the ViT-S. We consider other patch sizes as well as superpixels in Ap-
pendix C.

We consider removing patches in three orders: random, most salient, and least salient. We use
saliency as a rough heuristic for relevance to the image (typically, more salient regions tend to be in
the foreground and less salient regions in the background). For all models, we determine the salience
of an image subregion as the mean value of that subregion for a standard ResNet-50’s saliency map
(the order of patches removed is thus the same for both the ResNet and the ViT).

A.4 EXPERIMENTAL DETAILS FOR SECTION 4

Overview on LIME. Local interpretable model-agnostic explanations (LIME) Ribeiro et al.
(2016b) is a common method for feature attribution. Specifically, LIME proceeds by generating
perturbations of the image, where in each perturbation the subregions are randomly turned on or
off. For ResNets, we turn off subregions by masking them with some baseline color, while for ViTs
we drop the associated tokens. After evaluating these perturbations with the model, we fit classifier
using Ridge Regression to predict the value of the logit of the original predicted class given the
presence of each subregion. The LIME explanation is then the weight of each subregion in the ridge
classifier (these are often referred to as LIME scores). We perform LIME with 1000 perturbations,
and include an implementation of LIME in our attached code.

Implementation details for LIME consistency plots. For the experiment in Figure 8, we evaluate
LIME using 8 different baseline colors (the colors are generated by setting the R, G, and B values
as either 0 or 1). Then, for each pair of colors, we measure the similarity of their top-k feature
sets according to their LIME scores for varying k (using Jaccard similarity) averaged over 10,000
examples. We plot the average over the 28 pairs of colors.

15



Published as a conference paper at ICLR 2022

B IMPLEMENTING MISSINGNESS BY DROPPING TOKENS IN VISION

TRANSFORMERS

As described in Section 2.2, the token-centric nature of vision transformers enables a more natural
implementation of missingness: simply drop the tokens that correspond to the removed image sub-
regions. In this section, we provide a more detailed description of dropping tokens, as well as a few
implementation considerations.

Recall that a ViT has two stages when processing an input image x.

• Tokenization: x is split into 16× 16 patches and positionally encoded into tokens.

• Self-Attention: The set of tokens is passed through several self-attention layers and pro-
duces a class label.

After the initial tokenization step, the self-attention layers of the transformer deal solely with sets of
tokens, rather than a constructed image. This set is not constrained to a specific size. Thus, after the
patches have all be tokenized, we can remove the tokens that correspond to removed regions of the
input before passing the reduced set to the self-attention layers. The remaining tokens retain their
original positional encodings.

Our attached code includes an implementation of the vision transformer which takes in an optional
argument of the indices of tokens to drop. Our implementation can also handle varying token lengths
in a batch (we use dummy tokens and then mask the self-attention layers appropriately).

Dropping tokens for superpixels and other patch sizes In the main body of the paper, we deal
with 16× 16 image subregions, which aligns nicely with the tokenization of vision transformers. In
Appendix C, we consider other patch sizes that do not align along the token boundaries, as well as
irregularly shaped superpixels. In these cases, we conservatively drop the token if any portion of the
token was supposed to be removed (we thus remove a slightly larger subregion).

16



Published as a conference paper at ICLR 2022

C ADDITIONAL EXPERIMENTS (SECTION 3)

C.1 ADDITIONAL EXAMPLES OF THE BIAS (SIMILAR TO FIGURE 2).

In Figure 11, we display more examples that qualitatively demonstrate the missingness bias.

ViT-S: daddy long legs 
ResNet-50: daddy long legs

ViT-S: daddy long legs 
ResNet-50: crossword

ViT-S: daddy long legs 
ResNet-50: chainlink

ViT-S: flatworm 
ResNet-50: flatworm

ViT-S: flatworm 
ResNet-50: crossword

ViT-S: flatworm 
ResNet-50: jigsaw puzzle

ViT-S: catamaran 
ResNet-50: schooner

ViT-S: catamaran 
ResNet-50: crossword

ViT-S: catamaran 
ResNet-50: wing

ViT-S: volcano 
ResNet-50: volcano

ViT-S: volcano 
ResNet-50: maze

ViT-S: volcano 
ResNet-50: church

ViT-S: buckeye 
ResNet-50: buckeye

ViT-S: buckeye 
ResNet-50: maze

ViT-S: buckeye 
ResNet-50: maze

Or
ig

in
al

Ra
nd

om
Le

as
t S

al
ie

nt

ViT-S: daddy long legs 
ResNet-50: hook

M
os

t S
al

ie
nt

ViT-S: sea slug 
ResNet-50: cliff dwelling

ViT-S: catamaran 
ResNet-50: jigsaw puzzle

ViT-S: colobus monkey 
ResNet-50: scoreboard

ViT-S: volcano 
ResNet-50: envelope

GT: daddy long legs GT: flatworm GT: schooner GT: volcano GT: buckeye

Figure 11: Further examples of removing 75 16 × 16 patches from ImageNet images. The im-
ages are blacked out for ResNet-50, and the corresponding tokens are dropped for ViT-S. While
ResNet-50 skews toward classes that are unrelated to the remaining image features (i.e crossword,
jigsaw puzzle), the ViT-S either maintains its original prediction or predicts a reasonable label given
remaining image features.

17

























Published as a conference paper at ICLR 2022

F RELATIONSHIP TO ROAR

Here, we present more details about the ROAR experiment of Section 3.

F.1 OVERVIEW ON ROAR

Evaluating feature attribution methods requires the ability to remove features from the input to assess
how important these features are to the model’s predictions. To do so properly, Hooker et al. (2018)
argue that re-training (with removing pixels) is required so that images with removed features stay
in-distribution. Their argument holds since machine learning models typically assume that the train
and the test data comes from a similar distribution.

So, they propose RemOve and Retrain (ROAR) where new models (of the exact same architecture)
are retrained such that random pixels are blacked out during training. The intuition is that this way,
removing pixels do not render images out-of-distribution. Overall, they were able to better assess
how much removing information from the image affects the predictions of the model using those
retrained surrogate models.

The authors of ROAR list several downsides for their approach though. In particular, retraining
models can be computationally expensive. More pressingly, the retrained model is not the same
model that they analyze, but instead a surrogate with a substantially different training procedure:
any feature attribution or model debugging result inferred from the retrained model might not hold
for the original model. Given these downsides, is retraining always necessary?

F.2 VITS DO NOT REQUIRE RETRAINING

Here, we show that retraining is not always necessary: indeed for ViTs, we do not need to retrain-
ing to be able to properly evaluate feature attribution methods. While ROAR in (Hooker et al.,
2018) dealt with blacking out features on a per-pixel level, we adapt their approach for masking out
larger contiguous regions (like patches). If we apply missingness approximations during training as
in ROAR, missingness approximations are now in-distribution, and thus would likely mitigate the
observed biases.

We retrain a ResNet-50 and a ViT-S by randomly removing 50% of patches during training (through
blacking out pixels for the ResNet-50 and dropping tokens for the ViT-S). Our goal is to compare
the behavior of each model to its retrained counterpart. If retraining does not change the model’s
behavior when missingness approximations are applied, retraining would be unnecessary, and we
can instead confidently use the original model. In Figure 5, we measure the fraction of images
where the model changes its prediction as we remove image features for both the standard and
retrained models. We find that, while there is a significant gap in behavior between the standard and
retrained CNNs, the standard and retrained ViTs behave largely the same..

This result indicates that, while retraining is important when analyzing CNNs, it is unnecessary for
ViTs: we can instead intervene on the original model. We thus avoid the expense of training the
augmented models, and can perform feature attribution on the actual model instead of a proxy.

29


	Introduction
	Missingness
	Missingness bias
	A more natural form of missingness via vision transformers

	The impacts of missingness bias
	Missingness bias in practice: a case study on LIME
	Related work
	Conclusion
	Acknowledgements
	Experimental details.
	Models and architectures
	Training Details
	Experimental Details for Section 3
	Experimental Details for Section 4

	Implementing missingness by dropping tokens in vision transformers
	Additional experiments (Section 3)
	Additional examples of the bias (Similar to Figure 2).
	Bias for removing patches in various orders
	Results for different architectures
	ViT-T and ResNet-18
	ViT-S and Robust ResNet-50
	ViT-S and InceptionV3
	ViT-S and VGG-16

	Results for different missingness approximations
	Using differently sized patches
	Using superpixels instead of patches
	Comparison of dropping tokens vs blacking out pixels for ViTs

	Additional experiments (Section 4)
	Examples of LIME
	Top-k ablation test with superpixels.
	Effects of Missingness Bias on Learned Masks

	Other Datasets
	MS-COCO
	CIFAR-10

	Relationship to ROAR
	Overview on ROAR
	ViTs do not require retraining


