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Abstract

Traditionally, federated learning (FL) aims to train a single global model while
collaboratively using multiple clients and a server. Two natural challenges that
FL algorithms face are heterogeneity in data across clients and collaboration
of clients with diverse resources. In this work, we introduce a quantized and
personalized FL algorithm QuPeD that facilitates collective (personalized model
compression) training via knowledge distillation (KD) among clients who have
access to heterogeneous data and resources. For personalization, we allow clients
to learn compressed personalized models with different quantization parameters
and model dimensions/structures. Towards this, first we propose an algorithm
for learning quantized models through a relaxed optimization problem, where
quantization values are also optimized over. When each client participating in
the (federated) learning process has different requirements for the compressed
model (both in model dimension and precision), we formulate a compressed
personalization framework by introducing knowledge distillation loss for local
client objectives collaborating through a global model. We develop an alternating
proximal gradient update for solving this compressed personalization problem,
and analyze its convergence properties. Numerically, we validate that QuPeD
outperforms competing personalized FL methods, FedAvg, and local training of
clients in various heterogeneous settings.

1 Introduction

Federated Learning (FL) is a learning procedure where the aim is to utilize vast amount of data
residing in numerous (in millions) edge devices (clients) to train machine learning models without
collecting clients’ data [26]. Formally, if there are n clients and fi denotes the local loss function at
client i, then traditional FL learns a single global model by minimizing

argmin
w∈Rd

(
f(w) :=

1

n

n∑

i=1

fi(w)
)
. (1)

It has been realized lately that a single model may not provide good performance to all the clients in
settings where data is distributed heterogeneously. This leads to the need for personalized learning,
where each client wants to learn its own model [7, 8]. Since a locally learned client model may not
generalize well due to insufficient data, in personalized FL process, clients maintain personalized
models locally and utilize other clients’ data via a global model. Resource diversity among clients,
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which is inherent to FL as the participating edge devices may vary widely in terms of resources, is
often overlooked in personalized FL literature. This resource diversity may necessitate clients to learn
personalized models with different precision as well as different dimension/architecture. Systemati-
cally studying both these resource heterogeneity together with data heterogeneity in personalized FL
is the primary objective of this paper.

In this work, we propose a model compression framework1 for personalized FL via knowledge
distillation (KD) [14] that addresses both data and resource heterogeneity in a unified manner. Our
framework allows collaboration among clients with different resource requirements both in terms of
precision as well as model dimension/structure, for learning personalized quantized models (PQMs).
Motivated by FL, where edge devices are resource constrained when actively used (e.g. when several
applications are actively running on a battery powered smartphone) and available for training when
not in use (e.g., while charging and on wi-fi), we do training in full precision for learning compressed
models to be deployed for inference time. For efficient model compression, we learn the quantization
parameters for each client by including quantization levels in the optimization problem itself. First,
we investigate our approach in a centralized setup, by formulating a relaxed optimization problem and
minimizing it through alternating proximal gradient steps, inspired by [3]. To extend this to FL for
learning PQMs with different dimensions/architectures, we employ our centralized algorithm locally
at clients and introduce KD loss for collaboration of personalized and global models. Although there
exist empirical works where KD is used in personalized FL [20], we formalize it as an optimization
problem, solve it using alternating proximal updates, and analyze its convergence.

Contributions. Our contributions can be summarized as follows:

• In the centralized case, we propose a novel relaxed optimization problem that enables optimization
over quantization values (centers) as well as model parameters. We use alternating proximal
updates to minimize the objective and analyze its convergence properties.

• More importantly, our work is the first to formulate a personalized FL optimization problem where
clients may have different model dimensions and precision requirements for their personalized
models. Our proposed scheme combines alternating proximal updates with knowledge distillation.

• For optimizing a non-convex objective, in the centralized setup, we recover the standard conver-
gence rate of O(1/T) (despite optimizing over quantization centers), and for federated setting, we
recover the standard convergence rate of O(1/

√
T) (despite learning PQMs with different preci-

sions/dimensions). In the federated setting, our convergence bound has an error term that depends
on multiplication of two terms averaged over clients: one characterizing client’s local model
smoothness and the other data heterogeneity with respect to overall data distribution.2

• We perform image and text classification experiments on multiple datasets in various resource and
data heterogeneity settings, and compare performance of QuPeD against Per-FedAvg [8], pFedMe
[7], FedAvg [26], and local training of clients. We observe that QuPeD in full precision outperforms
all these methods on all the datasets that we considered for our experiments. Further, our results
show that even with quantization, QuPeD outperforms the other methods in full precision on
multiple settings and datasets, demonstrating the effectiveness of our scheme for FL settings.

Our work should not be confused with works in distributed/federated learning, where models/gradients
are compressed for communication efficiency [2, 17]. We also achieve communication efficiency
through local iterations, but the main goal of our work is personalized quantization for inference.

Related work. To the best of our knowledge, this is the first work in personalized federated
learning where the aim is to learn quantized and personalized models potentially having different
dimensions/structures for inference. Our work can be seen in the intersection of personalized federated
learning and learning quantized models; we also employ knowledge distillation for collaboration.

Personalized federated learning: Recent works adopted different approaches for learning personalized
models: (i) Combine global and local models throughout the training [6, 12, 25]; (ii) first learn a
global model and then personalize it locally [8]; (iii) consider multiple global models to collaborate
among only those clients that share similar personalized models [9, 25, 31, 34]; (iv) augment the

1Model compression (MC) allows inference time deployment of a compressed model. Though MC is
a generic term comprising different methods, we will focus on its quantization (number of bits per model
parameter) aspect.

2An error term depending on data heterogeneity is commonly observed in personalized FL algorithms [7, 8].
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traditional FL objective via a penalty term that enables collaboration between global and personalized
models [7, 11, 12].

Learning quantized models: There are two kinds of approaches for training quantized networks
that are of our interest. The first one approximates the hard quantization function by using a soft
surrogate [5, 10, 24, 32], while the other one iteratively projects the model parameters onto the fixed
set of centers [1, 15, 19, 33]. Each approach has its own limitation; see Section 2.1 for a discussion.
While the initial focus in learning quantized networks was on achieving good empirical performance,
there are some works that analyzed convergence properties [1, 21, 33], but only in the centralized
case. Among these, [1] analyzed convergence for a relaxed/regularized loss function using proximal
updates.

Knowledge distillation (KD): KD [14] is a framework for transfer learning that is generally used to
train a small student network using the soft labels generated by a deep teacher network. It can also
be used to train two or more networks mutually by switching teacher and students in each iteration
[35]. KD has been employed in FL settings as an alternative to simple aggregation which is not
feasible when clients have models with different dimensions [23]. [20] used KD in personalized
FL by assuming existence of a public dataset. [27] used KD in combination with quantization in a
centralized case for model compression; in contrast, we do not use KD for model compression but for
collaboration between personalized and global model. Unlike the above works which are empirical,
our paper is the first to formalize an optimization problem for personalized FL training with KD and
analyze its convergence properties. Our proposed scheme yields personalized client models with
different precision/dimension through local alternating proximal updates; see Section 2.2 for details.

Paper organization: In Section 2, we formulate the optimization problem to be minimized. In
Sections 3 and 4, we describe our algorithms along-with the main convergence results for the
centralized and personalized settings, respectively. Section 5 provides extensive numerical results.
Omitted proofs/details and additional experiments are provided in supplementary material.

2 Problem Formulation

Our goal in this paper is for clients to collaboratively learn personalized quantized models (with
potentially different precision and model sizes/types). To this end, below, we first state our final
objective function that we will end up optimizing in this paper for learning personalized quantized
models, and then in the rest of this section we will describe the genesis of this objective.

Recall from (1), in the traditional FL setting, the local loss function at client i is denoted by fi. For
personalized compressed model training, we define the following augmented loss function at client i:

Fi(xi, ci,w) := (1− λp)
(
fi(xi) + fi(Q̃ci

(xi))
)
+ λR(xi, ci)

+ λp

(
fKD
i (xi,w) + fKD

i (Q̃ci
(xi),w)

)
.

(2)

Here, w ∈ R
d denotes the global model, xi ∈ R

di denotes the personalized model of dimension di
at client i, ci ∈ R

mi denotes the model quantization centers (where mi is the number of centers),

Q̃ci
denotes the soft-quantization function with respect to (w.r.t.) the set of centers ci, R(xi, ci)

denotes the distance function, fKD
i denotes the knowledge distillation (KD) loss [14] between the

two input models on client i’s dataset, λ is a design parameter for enforcing quantization (large λ
forces weights to be close to respective centers), and λp controls the weighted average of regular loss
and KD loss functions (higher λp can be used when client data is limited). We will formally define
the undefined quantities later in this section. Consequently, our main objective becomes:

min
w∈R

d,{xi∈R
di ,ci∈R

mi :i=1,...,n}

(
F (w, {xi}, {ci}) :=

1

n

n∑

i=1

Fi(xi, ci,w)
)
. (3)

Thus, our formulation allows different clients to have personalized models x1, . . . ,xn with different
dimensions d1, . . . , dn and architectures, different number of quantization levels m1, . . . ,mn (larger
the mi, higher the precision), and different quantization values in those quantization levels. Note that
there are two layers of personalization, first is due to data heterogeneity, which is reflected in clients
learning different models x1, . . . ,xn, and second is due to resource diversity, which is reflected in
clients learning models with different sizes, both in terms in dimension as well as precision.
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In Section 2.1, we motivate how we came up with the first three terms in (2), which are in fact about a
centralized setting because the function fi and the parameters involved, i.e., xi, ci, are local to client
i; and then, in Section 2.2, we motivate the use of the last two terms containing fKD

i in (2).

2.1 Model Compression in the Centralized Setup

Consider a setting where an objective function f : Rd+m → R (which could be a neural network
loss function) is optimized over both the quantization centers c ∈ R

m and the assignment of model
parameters (or weights) x ∈ R

d to those centers. There are two ways to approach this problem, and
we describe these approaches, their limitations, and the possible resolutions below.

Approach 1. A natural approach is to explicitly put a constraint that weights belong to the set of
centers, which suggests solving the following problem: minx,c f(x) + δc(x), where δc denotes

the indicator function for c ∈ R
m, and for any c ∈ R

m,x ∈ R
d, define δc(x) := 0 if ∀ j ∈ [d],

xj = c for some c ∈ {c1, . . . , cm}, otherwise, define δc(x) := ∞. However, the discontinuity of
δc(x) makes minimize this objective challenging. To mitigate this, like recent works [1, 33], we
can approximate δc(x) using a distance function R(x, c) that is continuous everywhere (e.g., the
ℓ1-distance, R(x, c) := min{ 1

2‖z− x‖1 : zi ∈ {c1, · · · , cm}, ∀i}).3 This suggests solving:

min
x,c

f(x) + λR(x, c). (4)

The centers are optimized to be close to the mean or median (depending on R) of the weights; however,
there is no guarantee that this will help minimizing objective f . We believe that modeling the direct
effect that centers have on the loss is crucial for a complete quantized training (see Appendix E for
empirical verification of this fact), and our second approach is based on this idea.

Approach 2. We can embed the quantization function into the loss function itself, thus solving the
problem: minx,c (h(x, c) := f(Qc(x))), where for every x ∈ R

d, c ∈ R
m, the (hard) quantization

function is defined as Qc(x)i := ck, where k = argminj∈[m]{|xi − cj |}, which maps individual

weights to the closest centers. Note that Qc(x) is actually a staircase function for which the derivative
w.r.t. x is 0 almost everywhere, which discourages the use of gradient-based methods to optimize the

above objective. To overcome this, similar to [10, 32], we can use a soft quantization function Q̃c(x)
that is differentiable everywhere with derivative not necessarily 0. For e.g., element-wise sigmoid or
tanh functions, used by [32] and [10], respectively.4 This suggests the following relaxation:

min
x,c

(h(x, c) := f(Q̃c(x))). (5)

Though we can observe the effect of centers on neural network loss in (5); however, the gradient

w.r.t. x is heavily dependent on the choice of Q̃c and optimizing over x might deviate too much from

optimizing the neural network loss function. For instance, in the limiting case when Q̃c(x) → Qc(x),
gradient w.r.t. x is 0 almost everywhere; hence, every point becomes a first order stationary point.

Our proposed objective for model quantization. Our aim is to come up with an objective function
that would not diminish the significance of both x and c in the overall procedure. To leverage the
benefits of both, we combine both optimization problems (4) and (5) into one problem:

min
x,c

(Fλ(x, c) := f(x) + f(Q̃c(x)) + λR(x, c)). (6)

Here, the first term preserves the connection of x to neural network loss function, and the second
term enables the optimization of centers w.r.t. the neural network training loss itself. As a result, we
obtain an objective function that is continuous everywhere, and for which we can use Lipschitz tools
in the convergence analysis – which previous works did not exploit. In fact, we compute the Lipschitz

parameters for a specific soft quantization function Q̃c(x) based on sigmoid in Appendix A.

Remark 1. It is important to note that with this new objective function, we are able to optimize not
only over weights but also over centers. This allows us to theoretically analyze how the movements of
the centers affect the convergence. As far as we know, this has not been the case in the literature of
quantized neural network training. Moreover, we observe numerically that optimizing over centers
improves performance of the network; see Appendix E.

3[1] and [33] proposed to approximate the indicator function δc(x) using a distance function Rc(x), where
c is fixed, and unlike ours, it is not a variable that the loss function is optimized over.

4In their setup, the quantization centers are fixed. In contrast, we are also optimizing over these centers.
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2.2 Towards Personalized Quantized Federated Learning: Knowledge Distillation

Note that the objective function defined in (6) can be used for learning a quantized model locally
at any client. There are multiple ways to extend that objective for learning personalized quantized
models (PQMs) via collaboration. For example, when all clients want to learn personalized models
with the same dimension (but with different quantization levels), then one natural approach is to
add an ℓ2 penalty term in the objective that would prevent local models from drifting away from
the global model and from simply fitting to local data. This approach, in fact, has been adopted in
previous works [7, 12, 22] for learning personalized models in FL, though not quantized ones.5

In this paper, since we allow clients to learn PQMs with potentially different dimensions, the above
approach of adding a ℓ2 penalty term in the objective is not feasible. Observe that, the purpose of
incorporating a ℓ2 penalty in the objective is to ensure that the personalized models do not have
significantly different output class scores compared to the global model which is trained using the data
generated at all clients; this does not, however, require the global model to have the same dimension
as that of local models and can be satisfied by augmenting the local objective (6) with a certain knowl-
edge distillation (KD) loss. In our setting, since clients’ goal is to learn personalized models with
different dimensions that may also have different quantization levels, we augment the local objective

(6) with two separate KD losses: fKD
i (xi,w) and fKD

i (Q̃ci
(xi),w), where the first one ensures

that the behavior of xi ∈ R
di is not very different from that of w ∈ R

d, and the second one ensures
the same for the quantized version of xi and w. Formally, we define them using KL divergence as fol-

lows: fKD
i (xi,w) := DKL(s

w
i (w)‖si(xi)) and fKD

i (Q̃ci
(xi),w) := DKL(s

w
i (w)‖si(Q̃ci

(xi))),
where swi and si denote functions whose inputs are global and personalized models, respectively –
and data samples implicitly – and outputs are the softmax classification probabilities of the network.

We need to train xi and w mutually. Identifying the limitations of existing approaches for theoretical
analysis (as mentioned in related work in Section 1), we use reverse KL updates (i.e., taking gradient
steps w.r.t. the first parameter in DKL(·, ·)) to train the teacher network w from the student network xi.
This type of update can be shown to converge and also empirically outperforms [29] (see Section 5).
We want to emphasize that though there are works [20, 23] that have used KD in FL and studied its
performance (only empirically), ours is the first work that carefully formalizes it as an optimization
problem (that also incorporate quantization) which is necessary to analyze convergence properties.

3 Centralized Model Quantization Training

Algorithm 1 Centralized Model Quantization

Input: Regularization parameter λ; initialize the
full precision model x0 and quantization cen-
ters c0; a penalty function enforcing quantization

R(x, c); a soft quantizer Q̃c(x); and learning rates
η1, η2.

1: for t = 0 to T − 1 do
2: Compute gt = ∇xtf(xt)+∇xtf(Q̃ct(xt))

3: xt+1 = proxη1λRc
t
(xt − η1g

t)

4: Compute ht = ∇ctf(Q̃ct(xt+1))
5: ct+1 = proxη2λR

x
t+1

(ct − η2h
t)

6: end for

Output: Quantized model x̂T = QcT (xT )

In this section, we propose a centralized train-
ing scheme (Algorithm 1) for minimizing (6)
by optimizing over x ∈ R

d (the model parame-
ters) and c ∈ R

m (quantization values/centers).
During training, we keep x full precision and
learn the optimal quantization parameters c. The
learned quantization values are then used to
hard-quantize the personalized models to get
quantized models for deployment in a memory-
constrained setting.

Description of the algorithm. We optimize (6)
through alternating proximal gradient descent.
The model parameters and the quantization vec-
tor are initialized to random vectors x0 and c0.
The objective in (6) is composed of two parts:

the loss function f(x) + f(Q̃c(x)) and a quan-
tization inducing term R(x, c), which we control by a regularization coefficient λ. At each t, we
compute gradient gt of the loss function w.r.t. xt (line 2), and then take the gradient step followed
by prox step for updating xt to xt+1 (line 3). For the centers, we similarly take a gradient step
and follow it by a prox step for updating ct to ct+1 (line 4-5). These update steps ensure that we

5We also analyze this approach in our setting (for learning PQMs but having the same dimension), and we
call this version QuPeL; see Appendix D for problem setup and convergence results of QuPeL. In Section 5, we
demonstrate that QuPeD (for the same task but using KD as opposed to the ℓ2 penalty) outperforms QuPeL.
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learn the model parameters and quantization vector tied together through proximal6 mapping of the
regularization function R. Finally, we quantize the full-precision model xT using QcT (line 7).

Assumptions. We make the following assumptions on f :

A.1 (Finite lower bound of f ): f(x) > −∞, ∀x ∈ R
d, which implies Fλ(x, c) > −∞ for any

x ∈ R
d, c ∈ R

m, λ ∈ R.

A.2 (Smoothness of f ): f is L-smooth, i.e., for all x,y ∈ R
d, we have f(y) ≤ f(x) +

〈∇f(x),y − x〉+ L
2 ‖x− y‖2.

A.3 (Bounded gradients of f ): ‖∇f(x)‖2 ≤ G < ∞, ∀x ∈ R
d.

A.1 and A.2 are standard assumptions for convergence analysis of smooth objectives; and A.3 is
commonly used for non-convex optimization, e.g., for personalized FL in [8]. To make the composite

function f(Q̃c(x)) smooth, we need additional assumptions on the soft quantization function Q̃c(x).

Our choice of Q̃c(x) (see Appendix A) naturally satisfies these assumptions.

A.4 (Smoothness of the soft quantizer): We assume that Q̃c(x) is lQ1
-Lipschitz and LQ1

-smooth w.r.t.

x, i.e., for c ∈ R
m: ∀ x,y ∈ R

d: ‖Q̃c(x)− Q̃c(y)‖ ≤ lQ1
‖x−y‖ and ‖∇xQ̃c(x)−∇yQ̃c(y)‖ ≤

LQ1
‖x− y‖. We also assume Q̃c(x) is lQ2

-Lipschitz and LQ2
-smooth w.r.t. c, i.e., for x ∈ R

d: ∀
c,d ∈ R

m: ‖Q̃c(x)− Q̃d(x)‖ ≤ lQ2‖c− d‖ and ‖∇cQ̃c(x)−∇dQ̃d(x)‖ ≤ LQ2‖c− d‖.

A.5 (Bound on partial gradients of soft quantizer): There exists constants GQ1
, GQ2

< ∞ such that:

‖∇xQ̃c(x)‖F = ‖∇Q̃c(x)1:d,:‖F ≤ GQ1
and ‖∇cQ̃c(x)‖F = ‖∇Q̃c(x)d+1:d+m,:‖F ≤ GQ2

,
where Xp:q,: denotes sub-matrix of X with rows between p and q, and ‖ · ‖F is the Frobenius norm.

Convergence result. Now we state our main convergence result (proved in Appendix B) for
minimizing Fλ(x, c) in (6) w.r.t. (x, c) ∈ R

d+m via Algorithm 1. This provides first-order guarantees
for convergence of (x, c) to a stationary point and recovers the O (1/T) convergence rate of [1, 3].

Theorem 1. Consider running Algorithm 1 for T iterations for minimizing (6) with η1 =
1/2(L+GLQ1

+GQ1
LlQ1

) and η2 = 1/2(GLQ2
+GQ2

LlQ2
). For any t ∈ [T ], define Gt :=

[∇xt+1Fλ

(
xt+1, ct

)T
,∇ct+1Fλ

(
xt+1, ct+1

)T
]T . Then, under A.1-A.5 and for Lmin =

min{ 1
η1
, 1
η2
}, Lmax = max{ 1

η1
, 1
η2
}, we have:

1

T

T−1∑

t=0

‖Gt‖22 = O(
L2
max

(
Fλ

(
x0, c0

)
−Fλ(x

T , cT )
)

LminT
).

Remark 2. In Theorem 1, we see that gradient norm decays without any constant error terms. The

convergence rate depends on Lipschitz smoothness constants of f and f(Q̃c(.)) through Lmax and

Lmin. Choosing a smoother Q̃c(.) would speed up convergence; however, if chosen too small, this
could result in an accuracy loss when hard-quantizing the parameters at the end of the algorithm.

Remark 3 (Number of centers and convergence). The number of quantization levels m has a direct

effect on convergence through the soft quantization function Q̃c(x) and Lipschitz constants. Note

that as m → ∞, we have Q̃c(x) → x, ∀x. In this case, Q̃c(x) is 0-smooth and 1-Lipschitz w.r.t. all
parameters. As a result, we would have Lmin = L and Lmax = 2L. Note that the ratio L2

max/Lmin

increases as the quantization becomes more aggressive, and consequently, affects the convergence.

4 Personalized Quantization for FL via Knowledge Distillation

We now consider the FL setting where we aim to learn quantized and personalized models for each
client with different precision and model dimensions in heterogeneous data setting. Our proposed
method QuPeD (Algorithm 2), utilizes the centralized scheme of Algorithm 1 locally at each client to
minimize (3) over ({xi, ci}ni=1,w). Here, xi, ci, denote the model parameters and the quantization
vector (centers) for client i, and w denotes the global model that facilitates collaboration among
clients which is encouraged through the knowledge distillation (KD) loss in the local objectives (2).

6As a short notation, we use proxη1λR
c
t

to denote proxη1λR(·,ct), and proxη2λR
x
t+1

for proxη2λR(xt+1,·).
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Algorithm 2 QuPeD: Quantized Personalization via Distillation

Input: Regularization parameters λ, λp; synchronization gap τ ; for client i ∈ [n], initialize full preci-

sion personalized models x0
i , quantization centers c0i , local model w0

i , learning rates η
(i)
1 , η

(i)
2 , η3;

quantization enforcing penalty function R(x, c); soft quantizer Q̃c(x); number of clients to be
sampled K.

1: for t = 0 to T − 1 do
2: if τ divides t then
3: On Server do:

Choose a subset of clients Kt ⊆ [n] with size K
4: Broadcast wt to all Clients
5: On Clients i ∈ Kt to n (in parallel) do:
6: Receive wt from Server; set wt

i = wt

7: end if
8: On Clients i ∈ Kt to n (in parallel) do:

9: Compute gt
i := (1 − λp)(∇xt

i
fi(x

t
i) + ∇xt

i
fi(Q̃ct

i
(xt

i))) + λp(∇xt
i
fKD
i (xt

i,w
t
i) +

∇xt
i
fKD
i (Q̃ct

i
(xt

i),w
t
i))

10: xt+1
i = prox

η
(i)
1 λR

c
t
i

(xt
i − η

(i)
1 gt

i)

11: Compute ht
i := (1− λp)∇ct

i
fi(Q̃ct

i
(xt+1

i )) + λp∇ct
i
fKD
i (Q̃ct

i
(xt+1

i ),wt
i))

12: ct+1
i = prox

η
(i)
2 λR

x
t+1
i

(cti − η
(i)
2 ht

i)

13: wt+1
i = wt

i − η3λp(∇wt
i
fKD
i (xt+1

i ,wt
i) +∇wt

i
fKD
i (Q̃

c
t+1
i

(xt+1
i ),wt

i))

14: if τ divides t+ 1 then
15: Clients send wt

i to Server

16: Server receives {wt
i}; computes wt+1 = 1

K

∑n

i∈Kt
wt

i

17: end if
18: end for
19: x̂T

i = QcT
i
(xT

i ) for all i ∈ [n]

Output: Quantized personalized models {x̂T
i }ni=1

Description of the algorithm. Since clients perform local iterations, apart from maintaining xt
i, c

t
i

at each client i ∈ [n], it also maintains a model wt
i that helps in utilizing other clients’ data via

collaboration. We call {wt
i}ni=1 local copies of the global model at clients at time t. At each iteration t

server samples a subset of all indices Kt ⊆ [n] with K ≤ n elements. Client i updates wt
i in between

communication rounds based on its local data and synchronizes that with the server which aggregates
them to update the global model. Note that the local objective in (2) can be split into the weighted

average of loss functions (1−λp)(fi(xi)+ fi(Q̃ci
(xi)))+λp(f

KD
i (xi,wi)+ fKD

i (Q̃ci
(xi),wi))

and the term enforcing quantization λR(xi, ci). At any iteration t that is not a communication round
(line 3), if i ∈ Kt, client i first computes the gradient gt

i of the loss function w.r.t. xt
i (line 4) and then

takes a gradient step followed by the proximal step using R (line 5) to update from xt
i to xt+1

i . Then
it computes the gradient ht

i of the loss function w.r.t. cti (line 6) and updates the centers followed by

the proximal step (line 7). Finally, it updates wt
i to wt+1

i by taking a gradient step of the loss function
at wt

i (line 8). Thus, the local training of xt
i, c

t
i also incorporates knowledge from other clients’ data

through wt
i . When t is divisible by τ , sampled clients upload {wt

i} to the server (line 10) which
aggregates them (line 15) and broadcasts the updated global model (line 16) to all the clients. At the
end of training, clients learn their personalized models {xT

i }ni=1 and quantization centers {cTi }ni=1.

Finally, client i quantizes xT
i using QcT

i
(line 19).

Assumptions. In addition to assumptions A.1 - A.5 (with A.3 and A.5 modified to have client specific

gradient bounds {G(i), G
(i)
Q1

, G
(i)
Q2

} as they have different model dimensions7), we assume:

A.6 (Bounded diversity): At any t ∈ {0, · · · , T − 1} and any client i ∈ [n], the variance of the local
gradient (at client i) w.r.t. the global gradient is bounded, i.e., there exists κi < ∞, such that for every

{xt+1
i ∈ R

d, ct+1
i ∈ R

mi : i ∈ [n]} and wt ∈ R
d generated according to Algorithm 2, we have:

7We keep smoothness constants to be the same across clients for notational simplicity, however, our result
can easily be extended to that case.
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‖∇wtFi(x
t+1
i , ct+1

i ,wt)− 1
n

∑n

j=1 ∇wtFj(x
t+1
j , ct+1

j ,wt)‖2 ≤ κi. This assumption is equivalent

to the bounded diversity assumption in [7, 8]; see Appendix A.

A.7 (Smoothness of fKD): We assume fKD
i (x,w) is LD1

-smooth w.r.t. x, LD2
-smooth w.r.t. w for

all i ∈ [n]; as a result it is LD-smooth w.r.t. [x,w] where LD = max{LD1
, LD2

}. Furthermore, we

assume fKD
i (Q̃c(x),w) is LDQ1

-smooth w.r.t. x, LDQ2
-smooth w.r.t. c and LDQ3

-smooth w.r.t.w
for all i ∈ [n]; as a result it is LDQ-smooth w.r.t. [x, c,w] where LDQ = max{LDQ1 , LDQ2 , LDQ3}.
In Appendix A we discuss how this assumption can actually be inferred from previous assumptions.

Convergence result. In Theorem 2 we present the convergence result when there is full client
participation, i.e. K = n, in Appendix C we discuss the modification in convergence result under
client sampling. The following result (proved in Appendix C) achieves a rate of O (1/

√
T) for finding

a stationary point within an error that depends on the data heterogeneity, matching result in [7]:

Theorem 2. Under assumptions A.1-A.7, consider running Algorithm 2 for T iterations for

minimizing (3) with τ ≤
√
T , η

(i)
1 = 1/2(λp(2+LD1

+LDQ1
)+(1−λp)(L+G(i)LQ1

+G
(i)
Q1

LlQ1
)), η

(i)
2 =

1/2(λp(1+LDQ2
)+(1−λp)(G

(i)LQ2
+G

(i)
Q2

LlQ2
)), and η3 = 1/4(λpLw

√
CL

√
T ) where Lw = LD2

+ LDQ3
.

Let Gt
i:=[∇

x
t+1
i

Fi(x
t+1
i , cti,w

t)T ,∇
c
t+1
i

Fi(x
t+1
i ,ct+1

i ,wt)T ,∇wtFi(x
t+1
i ,ct+1

i ,wt)T ]T . Then

1

T

T−1∑

t=0

1

n

n∑

i=1

∥∥Gt
i

∥∥2 = O
(
τ2κ+∆F√

T
+ τ2κ

(
C1

T
+

C2

T
3
2

)
+ κ

)
,

for some constants C1, C2, where ∆F = 1
n

∑n

i=1(L
(i)
max)2

(
Fi(x

0
i , c

0
i ,w

0
i )− Fi(x

T
i , c

T
i ,w

T
i )

)
, κ =

1
n

∑n

i=1(L
(i)
max)2κi, CL = 1 +

1
n

∑n
i=1(L

(i)
max)

2

(mini{L(i)
max})2

, and L
(i)
max depends on the smoothness parameters

and the gradient bound at client i – the expression can be found in Appendix C.

Remark 4 (Resource and data heterogeneity.). Firstly, our observation from Remark 3 holds here as

well. Aggressive quantization has a scaling effect on all the terms through L
(i)
max. Now the interesting

question is: how does having different model structures across clients affect the convergence rate
of Theorem 2? Note that in Assumptions A.3, A.5, we assume clients have different client-specific

gradient bounds; this results in client specific L
(i)
max, and consequently κ, which couples resource

and data heterogeneity across clients. Here we make an important first observation regarding the
coupled effect of data and resource heterogeneity on the convergence rate. Suppose data distributions
are fixed across clients (i.e., κi’s are fixed) and we need to choose models for each client in the
federated ecosystem. Then, for a fast convergence, for the clients that have local data that is not
a representative of the general distribution (large κi), it is critical to choose models with small
smoothness parameter (e.g., choosing a less aggressive quantization); whereas, clients with data that
is representative of the overall data distribution (small κi) can tolerate having a less smooth model.

5 Experiments

In this section, we first briefly compare numerical results for our underlying model quantization
scheme (Algorithm 1) in a centralized case against related works [1, 33]. For a major part of the
section, we then compare QuPeD (Algorithm 2) against other personalization schemes [7, 8, 29] for
data heterogeneous clients and demonstrate its effectiveness in resource heterogeneous environments.
Additional experimental results on a language task are provided in Appendix E. Implementation
details, and further experiments with modifications to settings in this section, are also in Appendix E.

Centralized Training: We compare Algorithm 1 with [1, 33] for ResNet-20 and ResNet-32 [13]
models trained on CIFAR-10 [18] dataset.

Table 1 Test accuracy (in %) on CIFAR-10.

Method ResNet-20 ResNet-32

Full Precision (FP) 92.05 92.95
ProxQuant [1] (1bit) 90.69 91.55
BinaryRelax [33] (1bit) 87.82 90.65
Algorithm1 (1bit) 91.17 92.20
Algorithm1 (2bits) 91.45 92.47

While both [1, 33] are limited to binary
quantization, [1] can be seen as a spe-
cific case of our centralized method where
the centers do not get updated. From Ta-
ble 1, we see that updating centers (Algo-
rithm 1) significantly improves the perfor-
mance (0.48% increase in test accuracy).
Allowing quantization with 2 bits instead of 1bit for Algorithm 1 further increases the test accuracy.
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Table 2 Test accuracy (in %) for CNN1 model at all clients.7

Method FEMNIST CIFAR-10

FedAvg (FP) 94.92± 0.04 61.40± 0.29
Local Training (FP) 94.86± 0.93 71.57± 0.28
Local Training (2 Bits) 93.95± 0.23 70.87± 0.15
Local Training (1 Bit) 93.00± 0.50 69.05± 0.13
QuPeD (FP) 97.31± 0.12 75.06± 0.40
QuPeD (2 Bits) 96.73± 0.27 74.58± 0.44
QuPeD (1 Bit) 95.15± 0.21 71.20± 0.33
QuPeL (2 Bits) 96.10± 0.14 73.52± 0.51
QuPeL (1 Bits) 94.06± 0.28 71.01± 0.32
pFedMe (FP) [7] 96.60± 0.37 73.66± 0.65
Per-FedAvg (FP) [8] 97.16± 0.21 74.15± 0.41
Federated ML (FP) [29] 96.32± 0.32 74.34± 0.30
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Figure 1 Test Acc. vs epoch (CIFAR-10)

Personalized Training: We consider an image classification task on FEMNIST [4] and CIFAR-10
[18] datasets. We consider two CNN architectures: (i) CNN1 (used in [26]): has 2 convolutional and
3 fully connected layers, (ii) CNN2: this is CNN1 with an additional convolutional layer with 32
filters and 5× 5 kernel size. For CIFAR-10 we choose a batch size of 25. For FEMNIST, we choose
variable batch sizes to have 60 iterations for all clients per epoch. We train each algorithm for 250
epochs on CIFAR-10 and 30 epochs on FEMNIST. For quantized training, as standard practice [28],
we let the first and last layers of networks to be in full precision. We use last 50 epochs on CIFAR-10,
and 5 epochs on FEMNIST for the fine-tuning phase.

Data Heterogeneity (DH): We consider n = 50 clients for CIFAR-10 and n = 66 for FEMNIST. To
simulate data heterogeneity on CIFAR-10, similar to [26], we allow each client to have access to data
samples from only 4 randomly chosen classes. Thus, each client has 1000 training samples and 200
test samples. On FEMNIST, we use a subset of 198 writers from the dataset and distribute the data
so that each client has access to data samples written by 3 randomly chosen writers. The number
of training samples per client varies between 203-336 and test samples per client varies between
25-40. Test samples are sampled from the same class/writer that training samples are sampled from,
in parallel with previous works in heterogeneous FL.

Table 3 Test accuracy (in %) for CNN1 model at all clients, with client sampling.

Method MNIST (K
n

= 0.1) FEMNIST(K
n

= 1
3 )

FedAvg (FP) 92.87± 0.05 91.30± 0.43
QuPeD (FP) 98.17± 0.32 94.93± 0.25
QuPeD (2 Bits) 98.01± 0.15 94.56± 0.18
QuPeD (1 Bit) 97.58± 0.23 92.52± 0.64
pFedMe (FP) [7] 97.79± 0.03 93.70± 0.39
Per-FedAvg (FP) [8] 95.80± 0.29 92.10± 0.22
Federated ML (FP) [29] 98.03± 0.31 92.73± 0.36

Resource Heterogeneity (RH): To simulate resource heterogeneity for QuPeD, we consider 4 settings:
(i) half of the clients have CNN1 in full precision (FP) and the other half CNN2 in FP, (ii) half of the
clients have CNN1 in 2 bits and the other half CNN2 in FP, (iii) half of the clients have CNN1 in 2
bits and the other in FP, (iv) half of the clients have CNN1 in 2 bits and the other half CNN2 in 2 bits.

Results (DH): We compare QuPeD against FedAvg [26], local training of clients (without any
collaboration), and personalized FL methods: pFedMe [7], Per-FedAvg [8], Federated Mutual
Learning [29], and QuPeL (Footnote 5). For all methods, if applicable, we set τ = 10 local iterations,
use learning rate decay 0.99 and use weight decay of 10−4; we fine tune the initial learning rate for
each method independently, see Appendix E for details. The results are provided in Table 2 with full
client participation (K = n), plotted in Figure 1 for CIFAR-10, and in Table 3 with client sampling
where we state average results over 3 runs; all clients train CNN1 (see Appendix E for CNN2) and
quantization values are indicated in parenthesis. Thus, we only consider model personalization for

7Here QuPeD (FP) corresponds to changing alternating proximal gradient updates with SGD update on
model parameters in Algorithm 2, Local Training (FP) corresponds to SGD updates without communication.
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Table 4 Test accuracy (in %) on FEMNIST and CIFAR-10 for heterogeneous resource distribution among clients.

Resource Heterogeneity FEMNIST CIFAR-10

Local Training QuPeD Local Training QuPeD

CNN1(FP) + CNN2(FP) 93.41± 0.82 97.44± 0.14 72.81± 0.03 75.50± 0.25
CNN1(2 Bits)+CNN2(FP) 92.70± 1.09 97.01± 0.05 72.42± 0.17 75.08± 0.18
CNN1(2 Bits)+CNN1(FP) 93.56± 0.38 96.96± 0.15 71.23± 0.08 74.84± 0.30

CNN1(2 Bits)+CNN2(2 Bits) 91.11± 0.23 96.64± 0.31 72.15± 0.47 74.64± 0.27

data heterogeneity. In Table 2, we observe that full precision QuPeD consistently outperforms all
other methods for both datasets. Furthermore, we observe QuPeD with 2-bit quantization is the
second best performing method on CIFAR-10 (after QuPeD (FP)) and third best performing method
on FEMNIST despite the loss due to quantization. Hence, QuPeD is highly effective for quantized
training in data heterogeneous settings. Since QuPeD outperforms QuPeL, we can also (empirically)
claim that considering KD loss to encourage collaboration is superior to ℓ2 distance loss. Lastly, we
observe from Table 3 that QuPeD continues to outperform other methods under client sampling.

Results (DH+RH): We now discuss personalized FL setting with both data and resource heterogeneity
across clients. Note that since FedAvg, pFedMe, and Per-FedAvg cannot work in settings where
clients have different model dimensions, we only provide comparisons of QuPeD with local training
(no collaboration) to demonstrate its effectiveness. The results are given in Table 4. We observe that
QuPeD (collaborative training) significantly outperforms local training in all cases (about 3.5% or
higher on FEMNIST and 2.5% or higher on CIFAR-10) and works remarkably well even in cases
where clients have quantized models without any significant loss in performance.

6 Discussion

In this work, we introduced QuPeD: an algorithm for training of quantized and personalized models
in heterogeneous Federated Learning (FL) settings. Our proposed scheme tackles two of the major
problems in practical FL applications: resource and data heterogeneity among participating clients.
QuPeD allows clients to learn personalized models based on their local data distributions while
simultaneously allowing these models to be different in architecture and weight precision. This is
unlike existing personalized FL algorithms in literature which only consider the data heterogeneity
aspect of FL. Our theoretical results on the convergence rates recovers previous results, which are in
simpler settings, when the clients have identical resources, i.e., same model size and precision. When
clients have distinct resources, our result ties convergence speed to combination of resource and
data heterogeneity revealing additional insights. Our experimental results demonstrate that QuPeD
delivers superior empirical performance even under aggressive quantization.

Convergence results stated in Theorems 1, 2, use bounded gradients assumptions A.3, A.5 for non-
convex objectives considered in this paper. Incorporating recent progress on weakening gradient
assumptions in convergence analyses for FL (e.g., [16, 30] and references therein) into our framework
is part of future work. We remark that our current assumptions are fairly standard and applicable
to our new optimization formulation to tackle data and resource heterogeneity of the clients, which
is the principal focus and contribution of our work. Simulations consisting of tens of thousands (or
more) of clients and lower client sampling ratios are also crucial, and are left for potential future
investigations that can shed further light on our methods at massive scale.

Societal Impact: This paper considers collaborative personalization in learning, which can signif-
icantly improve learning performance. However, such personalization is only as good as the data
used for training, and if not used properly could lead to information bubbles and disjointed views
for each client, e.g., clustering methods that put together clients with similar data statistics. We
ameliorate that by not clustering similar data and models, but this is an aspect that might need
more examination for social consequences. We explicitly consider diverse resources in our designs,
potentially enabling clients with fewer resources (devices with less capabilities) to benefit from richer
resources; potentially a positive impact in using resources more equitably.
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