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Abstract

We study privacy in a distributed learning framework, where clients collaboratively
build a learning model iteratively through interactions with a server from whom
we need privacy. Motivated by stochastic optimization and the federated learning
(FL) paradigm, we focus on the case where a small fraction of data samples
are randomly sub-sampled in each round to participate in the learning process,
which also enables privacy amplification. To obtain even stronger local privacy
guarantees, we study this in the shuffle privacy model, where each client randomizes
its response using a local differentially private (LDP) mechanism and the server
only receives a random permutation (shuffle) of the clients’ responses without
their association to each client. The principal result of this paper is a privacy-
optimization performance trade-off for discrete randomization mechanisms in this
sub-sampled shuffle privacy model. This is enabled through a new theoretical
technique to analyze the Rényi Differential Privacy (RDP) of the sub-sampled
shuffle model. We numerically demonstrate that, for important regimes, with
composition our bound yields significant improvement in privacy guarantee over
the state-of-the-art approximate Differential Privacy (DP) guarantee (with strong
composition) for sub-sampled shuffled models. We also demonstrate numerically
significant improvement in privacy-learning performance operating point using real
data sets. Despite these advances an open question is to bridge the gap between
lower and upper privacy bounds in our RDP analysis.

1 Introduction

As learning moves towards the edge, there is a need to collaborate to build learning modeleﬂ such
as in federated learning [36} 44/|33]. In this framework, the collaboration is typically mediated by
a server. In particular, we want to collaboratively build a learning model by solving an empirical
risk minimization (ERM) problem (see (2) in Section . To obtain a model parametrized by 6 using
ERM, the commonly used mechanism is Stochastic Gradient Descent (SGD) [12]. However, one
needs to solve this while enabling strong privacy guarantees on local data from the server, while also
obtaining good learning performance, i.e., a suitable privacy-learning performance operating point.

Differential privacy (DP) [18] is the gold standard notion of data privacy that gives a rigorous
framework through quantifying the information leakage about individual training data points from
the observed interactions. Though DP was originally proposed in a framework where data resides
centrally [18], for distributed learning the more appropriate notion is of local differential privacy
(LDP) [|35!/17]. Here, each client randomizes its interactions with the server from whom the data is to
be kept private (e.g., see industrial implementations [23!/31,|16]). However, LDP mechanisms suffer

IThis is because no client has access to enough data to build rich learning models locally and we do not want
to directly share local data.
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from poor performance in comparison with the central DP mechanisms [[17}/35[32]. To overcome
this, a new privacy framework using anonymization has been proposed in the so-called shuffled model
[221125116126}151[151[7118]. In the shuffled model, each client sends her private message to a secure
shuffler that randomly permutes all the received messages before forwarding them to the server.
This model enables significantly better privacy-utility performance by amplifying DP through this
shuffling. Therefore, in this paper we consider the shuffle privacy framework for distributed learning.

In solving (2) using (distributed) gradient descent, each exchange leaks information about the local
data, but we need as many steps as possible to obtain a good model; setting up the tension between
privacy and performance. The goal is to obtain as many such interactions as possible for a given
privacy budget. This is quantified through analyzing the privacy of the composition of privacy
mechanisms. Abadi et al. [1] developed a framework for tighter analysis of such compositions, and
this was later reformulated in terms of Rényi Differential Privacy (RDP) |37], and mapping this back
to DP guarantee [38]. Therefore, studying RDP is important to obtaining strong composition privacy
results, and is the focus of this paper.

In distributed (and federated) learning, a fraction of '

the data samples are sampled; for example, with ran- / I k
dom client participation and stochastic gradient descent .

(SGD), which can be written as ' ;
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where R is the local randomization mechanism and 7 dy d, ds dy ds
are the indices of the sampled data. This is a subsampled
mechanism that enables another privacy amplification Figure 1: An iteration from the CLDP-
opportunity; which, in several cases, is shown to yield a SGD Algorithm, where 3 clients are ran-
privacy advantage proportional to the subsampling rate; domly chosen at each iteration. Each client
see [35][42]. The central technical question addressed sends the private gradient R, (g¢(d;)) to
in this paper is how to analyze the RDP of an arbitrary the shuffler that randomly permutes the
discrete mechanism for the subsampled shuffle privacy ~ gradients before passing them to the server.
model. This enables us to answer the overall question
posed in this paper, which is an achievable privacy-learning performance trade-off point for solving
in the shuffled privacy model for distributed learning (see Figure. Our contributions are:

e We analyze the RDP of subsampled mechanisms in the shuffle framework by developing a novel
bound applicable to any discrete ej-LDP mechanism as a function of the RDP order A, subsampling
rate vy, the LDP parameter ¢p, and the number of clients n; see Theorem The bound is explicit
and amenable to numerics, including all constantsEl Furthermore, the bounds are valid for generic
LDP mechanisms and all parameter regimesEl We also provide a lower bound for the RDP in
Theorem We prove our upper bound (Theorem using the following novel analysis techniques:
First, we reduce the problem of computing the RDP of sub-sampled shuffle mechanisms to the
problem of computing ternary |x|*-DP [43] of shuffle (non sub-sampled) mechanisms; see Lemma
Then we reduce the computation of the ternary |x|*-DP of shuffle mechanisms for a generic triple
of neighboring datasets to those that have a special structure (see Theorem — this reduction
step is one of the core technical results of this paper. Then we bound the ternary |x|*-DP of the
shuffle mechanisms for triples of neighboring datasets having special structures by bounding the
Pearson-Vajda divergence [43] using some concentration properties (see Theorem|6).

e Using the core technical result in Theorem we analyze privacy-convergence trade-offs of the
CLDP-SGD algorithm (see Algorithm|[T}) for Lipschitz convex functions in Theorem This partially
resolves an open question posed in [27], to extend their privacy analysis to RDP and significantly
strengthening their privacy guatantees.

e Numerically, we save a factor 14 in privacy (€) over the best known results for approximate
DP for shuffling [24] combined with strong composition [34] for 7' = 10°,y = 0.001,n = 105,
and a factor of 2.5x better than the best known RDP for shuffling bound |29] combined with the
sub-sampling result in [43]. Translating these to privacy-performance operating point in distributed

2As emphasized in [43], “in differential privacy, constants matter”.
3Some of the best known approximate DP bounds for the shuffle model [7][24] are restricted to certain
parameter regimes in terms of n, d, €p, etc.



optimization, over the MNIST data set with /., clipping we numerically show gains: For the same
privacy budget of € = 1.4, we get a test performance of 80% whereas using strong composition
the test performance of [24] is 70%; furthermore, we achieves 90% accuracy with the total privacy
budget € = 2.91, whereas, [24] (with strong composition) achieves the same accuracy with a total
privacy budget of € = 4.82. See Section and the supplementary material for more results.

Related work: We give a more complete literature review in Appendix and focus here on the
works that are closest to the results presented in this paper.

Private optimization in the shuffled model: Recently, [21] and [27!]28] have proposed differentially
private SGD algorithms for federated learning, where at each iteration, each client applies an LDP
mechanism on the gradients with the existence of a secure shuffler between the clients and the central
server. However, the privacy analyses in these works developed approximate DP using advanced
composition theorems for DP (e.g., [20}/34]), which are known to be loose for composition [1]. To
the best of our knowledge, analyzing the private optimization framework using RDP and subsampling
in the shuffled model is new to this paper.

Subsampled RDP: The works [38/43!145] have studied the RDP of subsampled mechanisms without
shuffling. They demonstrated that this provides a tighter bound on the total privacy loss than the
bound that can be obtained using the standard strong composition theorems. The RDP analysis of
subsampled mechanisms in the shuffled privacy framework has not been studied beforeand is new to
this paper. The RDP of the shuffled model was very recently studied in [29], but without incorporating
subsampling, which poses new technical challenges, as directly bounding the RDP of subsampled
shuffle mechanisms is non-trivial. We overcome this by reducing our problem of computing RDP to
bounding the ternary |x|“-DP, and bounding the latter is a core technical contribution of our paper.

Paper organization: We give preliminaries and problem formulation in Section[2] main results (upper
and lower bounds, and privacy-convergence tradeoff) in Section [3] numerical results in Section[4]
proof of the upper bound in Section and proof of the ternary DP of the shuffle model in Section|6)
Omitted details/proofs from this paper are given in the supplementary material.

2 Preliminaries and Problem Formulation

We use several privacy definitions throughout this paper. Among these, the local and central differen-
tial privacy definitions are standard and we defer them to Appendix The other privacy definitions
(Rényi DP and ternary |x|*-DP) are relatively less standard and we define them below.

We say that two datasets D = {d1,...,d,} € X" and D' = {d},...,d]} € X™ are neighboring
(and denoted by D ~ D) if they differ in one data point, i.e., there exists an ¢ € [n] such that d; # d
and for every j € [n], j # i, we have d; = d’.

Definition 1 ((\, €)-RDP (Rényi Differential Privacy) [37]). A randomized mechanism M : X" — )
is said to have e-Rényi differential privacy of order A € (1, 00) (in short, (A, ¢(\))-RDP), if for any
neighboring datasets D, D’ € X, the Rényi divergence of order A\ between M(D) and M(D’) is
upper-bounded by €()), i.e.,

A
DA(M(D)||IM(D")) = /\i 1 log <E9NM(D/) [(m) ]) < e(N), (1)

where M(D)(0) denotes the probability that M on input D generates the output 6.

Definition 2 (¢-Ternary |x|*-differential privacy [43]). A randomized mechanism M : X™ — ) is
said to have (-ternary-|x|*-DP, if for any triple of mutually adjacent datasets D, D', D" € X™ (i.e.,
they mutually differ in the same location), the ternary-|x|® divergence of M (D), M(D’), M(D’) is
upper-bounded by (¢ () for all &« > 1 (where ( is a function from R* to RT), i.e.,

Diyje (M(D), M(D')[|[M(D")) := E vy HW

*One naive approach is to plug in the RDP analysis of shuffle model [29] into the results of [43]; however,
our direct analysis of subsampled mechanisms yields better results in several interesting regimes; see Section

i < (C(a))°.




The ternary |x|*-DP was proposed in [43] to characterize the RDP of the sub-sampled mechanism
without shuffling. In this work, we analyze the ternary |x|*-DP of the shuffled mechanism to bound
the RDP of the sub-sampled shuffle model.

We can use the following result for converting the RDP guarantees of a mechanism to its central DP
guarantees. To the best of our knowledge, this result gives the best conversion.

Lemma 1 (From RDP to DP [13}/4]). Suppose for any \ > 1, a mechanism M is (X, e (\))-RDP.
Then, the mechanism M is (€,0)-DP, where § > 0 is arbitrary and € is given by

) log (1/6) + (A —1)log (1 —1/X) —log (\)
e:m/\ln(e()\)—i— 1 >

Problem formulation: We consider a distributed private learning setup comprising a set of n clients,
where the ith client has a data point d; drawn from a universe X for ¢ € [n]; see also Figure Let
D = (dy,...,dy) denote the entire training dataset. The clients are connected to an untrusted server
in order to solve the following empirical risk minimization (ERM) problem

n

min (F(@,D) = %Zf(@,di)), 2)

6eC
€ i=1

where C C R? is a closed convex set, and f : C x D — R is the loss function. Our goal is to
construct a global learning model # via stochastic gradient descent (SGD) while preserving privacy
of individual data points in the training dataset D by providing strong DP guarantees.

We revisit the CLDP-SGD al- -
; Algorithm 1 : CLDP-SGD
gorithm presented in [27] and gorithm 1 Aqq,

described in Algorithm to Input: Datasets D = (dy,...,d,), LDP privacy parameter ¢,
solve the ERM ' In each gradient norm bound C, and learning rate schedule {7 }.

step of CLDP-SGD, we choose 1. Initialize: 6, € C

uniformly at random a set U 2: for ¢ € [T] do

of k < n clients out of n 3.  Client sampling: A random set I/, of % clients is chosen.

clients. Each elient i € U 4 for clients i € U, do

computes and clips t}l?;p-;())fm 5 Compute gradient: g (d;) < Vg, f (04, d;)

of the gradient Vg, 1, d;) to ) , L~ _ ) llgt(di)llp
apply the LDP mechanism R, 6: Clip gradient: g, (d;) < g (d;) / max {1, o }
where R, : BI — {0,1}0 7 Client i sends Ry, (8: (d;)) to the shuffler.

is an €o-LDP mechanism when 8:  end for

inputs come from an £,-norm 9 Shuffling: The shuffler sends random permutation of
ball. In [27], the authors pro- {Rp (&t (di)) : i € Us} to the server.

posed different e¢g-LDP mecha- 10:  Aggregate: g, < % Zieut Rp (8 (dy))

nisms for general £,-norm balls. 11:  Descent Step: 0,1 < []. (¢: — 7:8;), where [ ], is the
After that, the shuffler randomly projection operator onto the set C.

permutes the received k gra- 12: end for

dients {R;, (8¢ (di))}icu, and  Qutput: The model A and the privacy parameters e, 4.

sends them to the server. Finally,
the server takes the average of the received gradients and updates the parameter vector. Our main
contribution in this work is to present a stronger privacy analysis of the CLDP-SGD algorithm by
characterizing the RDP of the sub-sampled shuffle model.

3 Main Results

In this section, we present our main results. First, we characterize the RDP of the subsampled shuffle
mechanism by presenting an upper bound in Theoremand a lower bound in Theorem We then
present the privacy-convergence trade-offs of the CLDP-SGD Algorithm in Theorem

Consider an arbitrary ¢p-LDP mechanism R, whose range is a discrete set [B] = {1,..., B} for
some B € N := {1,2,3,...}. Here, [B] could be the whole of N. Let M(D) be a subsampled
shuffle mechanism defined as follows: First subsample & < n clients of the n clients (without
replacement), where v = % denotes the sampling parameter. Each client ¢ out of the k selected



clients applies R on d; and sends R(d;) to the shufﬂer who randomly permutes the received k
inputs and outputs the result. To formalize this, let Hy, : Yk — Y* denote the shuffling operation
that takes k inputs and outputs their uniformly random permutation. Let samp}, : ™ — X * denote
the sampling operation for choosing a random subset of k elements from a set of n elements. We
define the subsampled-shuffle mechanism as

M (D) := Hy osampy (R (d1),...,R(dy)). (3)

Observe that each iteration of Algorithm|[T]can be represented as an output of the subsampled shuffle
mechanism M. Thus, to analyze the privacy of Algorithm it is sufficient to analyze the privacy of
a sequence of identical 7" subsampled shuffle mechanisms, and then apply composition theorems.

Histogram notation. It will be useful to define the following notation. Since the output of Hy, is a
random permutation of the & outputs of R (subsampling is not important here), the server cannot
associate the & messages to the clients; and the only information it can use from the messages is the
histogram, i.e., the number of messages that give any particular output in [B]. We define a set A%, as

B
Ak:{h:(hla7hB)ZhJ:k}’ (4)
Jj=1

to denote the set of all possible histograms of the output of the shuffler with & inputs. Therefore, we
can assume, without loss of generality (w.l.0.g.), that the output of M is a distribution over A%.

Our main results for the RDP of the subsampled shuffled mechanism (defined in (3)) are given below.
Our first result provides an upper bound (stated in Theoremand proved in Section|5) and the second
result provides a lower bound (stated in Theoremand proved in Appendix @

Theorem 1 (Upper Bound). Foranyn € N, k < n, ¢g > 0, and any integer A\ > 2, the RDP of the
subsampled shuffle mechanism M (defined in (3)) is upper-bounded by

2\ 4/2
1 A\ e —1)% /A o [2(eP0 —1)
< log [ 1+4(7 )2 —2L iir (j/2) | —L Y
€N < g log | 1+ (2)7 — +; )T | S +71],

wherek = |51 +1, v = £ and T (2) = [;° 2*~'e~"du is the Gamma function. The term Y is

ven by T = ( (14yE0=1)" _1 - pyeot) -t
gwvenby I = + 7% o € 80,

Theorem 2 (Lower Bound). Foranyn € N, k < n, ¢g > 0, and any integer A\ > 2, the RDP of the
subsampled shuffle mechanism M (defined in (3) is lower-bounded by

j .
1 A\ ale —1)% SN AY [ (20 —1) A%
> log | 1 28— i(—) E(m-
cWz zqloe |1+ (2)7 ke<o +j§ i) Feeo M y1) |

where expectation is taken w.r.t. the binomial r.v. m ~ Bin (k, p) with parameter p =

_1
e0+1°

Our CLDP-SGD algorithm and its privacy-convergence trade-offs (stated in Theorembelow) are
given for a general local randomizer R,, (whose inputs comes from an £,,-ball for any p € [1, cc]) that
satisfies the following conditions: (i) The randomized mechanism R, is an €-LDP mechanism. (ii)
The randomized mechanism R, is unbiased, i.e., E [R, (x) |x] = x for all x € B,(a), where a is the
radius of the ball 5,,. (iii) The output of the randomized mechanism R, can be represented using B €
N* bits. (iv) The randomized R,, has a bounded variance: supyep, (o) ElIR, (x) — x5 < G} (a),

where Gf) is a function from Rt to RT.

Girgis et al. [27] proposed unbiased ep-LDP mechanisms R, for several values of norms p € [1, o]
that require b = O (log (d)) bits of communication and satisfy the above conditions. In this paper,
achieving communication efficiency is not our goal (though we also achieve that since the ¢y-LDP
mechanism R, that we use takes values in a discrete set), as our main focus is on analyzing the RDP
of the subsampled shuffle mechanism. If we use the ¢g-LDP mechanism R, from [27], we would
also get similar gains in communication as were obtained in [27].

The privacy-convergence trade-off of our algorithm Agqp is given below.

>With a slight abuse of notation, in this paper we write R(d;) to denote that R takes as its input the gradient
computed on d; using the current parameter vector.
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Figure 2: Comparison of several bounds on the Approximate (e, §)-DP for composition of a sequence of
subsampled shuffle mechanisms for § = 10™%: (i) Approximate DP obtained from our upper bound on the
RDP in Theorem (blue); (ii) Approximate DP obtained from our lower bound on the RDP in Theorem
(red); (iii) Approximate DP obtained from the upper bound on the RDP given in [29] with RDP amplification
by subsampling from [43] (black); and (iv) Applying the strong composition theorem [34] after getting the
Approximate DP of the shuffled model given in |24] with subsampling [42] (magenta).

Theorem 3 (Privacy-Convergence tradeoffs). Let the set C be convex with diameter D and the
function f (0;.) : C x D — R be convex and L-Lipschitz continuous with respect to the {,-norm,
which is the dual of the {,-norm. Let 6* = arg mingec F (6) denote the minimizer of the problem .

For v = % if we run Algorithm Aqqgp over T iterations, then we have
1. Privacy: Augp is (€,0)-DP, where § > 0 is arbitrary and € is given by

log (1/6 A—1log (1 —1/A) —log (A
 min (e () . B/ O 1) log (1=1/) —log () 5
A A—-1
where € () is the RDP of the subsampled shuffle mechanism given in Theorem
2
2. Convergence: If we run Acap with 1 = GL\/Z’ where G% = max{dl_% J1PL? + L) e get

n
E[F (6r)] - F(0*) <O (M> .

vT

The proof outline of Theorem(3|is as follows: Note that .Aqp is an iterative algorithm, where in each
iteration we use the subsampled shuffle mechanism as defined in (3), for which we have computed
the RDP guarantees in Theorem [I| Now, for the privacy analysis of A4, we use the adaptive
composition theorem from [37/ Proposition 1] and then use the RDP to DP conversion given in
Lemma For the convergence analysis, we use a standard non-private SGD convergence result and
compute the required parameters for that. See Appendixfor a complete proof of Theorem

Remark 1. Note that our convergence bound is affected by the variance of the €g-LDP mechanism R ,.
For example, when f is L-Lipschitz continuous w.r.t. the /5-norm, we can use the LDP mechanism R

proposed in [11] that has variance G3(L) = 14L%d ( el+l )2; and when f is L-Lipschitz continuous

e0—1
w.r.t. the £1-norm or £,.-norm, we can use the LDP mechanisms R, or R, respectively, proposed

in [27] that have variances G% (L) = L?d*( gjfjj;)z and G3(L) = L2d( Zegﬂ)2, respectively. By
plugging these variances G;(L) (for p = 1,2, 0c0) into Theorem|3| we get the convergence rate of the

L-Lipschitz continuous loss function w.r.t. the £,-norm (for p =00, 2, 1).

Remark 2. The privacy parameter in (5) is not in a closed form expression and could be obtained
by solving an optimization problem. However, we numerically compute it for several interesting
regimes of parameters in our numerical experiments; see Section for more details.

4 Numerical Results

In this section, we present numerical experiments to show the performance of our bounds on RDP
of the subsampled shuffle mechanism and its usage for getting approximate DP of Algorithm[T]for
training machine learning models.

Composition of a sequence of subsampled shuffle models: In Figure we plot several bounds
on the approximate (¢, d)-DP for a composition of 7' mechanisms (M, ..., M), where M is



a subsampled shuffle mechanism for ¢ € [T]. In all our experiments reported in Figure [2| we fix
§ = 1078, We observe that our new bound on the RDP of the subsampled shuffle mechanism achieves
a significant saving in total privacy e compared to the state-of-the-art. For example, we save a factor
of 14x compared to the bound on DP [24] with strong composition theorem [34] and 2.5x compared
to the bound on the RDP given in [29] with subsampled RDP [43] in computing the overall privacy
parameter ¢ for number of iterations 7' = 10°, subsampling parameter v = 0.001, LDP parameter
€0 = 2, and number of clients n = 10%. We observe in Figurethat the bound given in [24] with
the strong composition theorem [34] behaves better than the bound on the RDP [29] with subsampled
RDP bound [43] when the number of subsampled clients per iteration is equal to k = yn = 10%;
however, our bound beats both of themﬂln Fi gure we fix the number of subsampled clients per
iteration to be k = yn = 102, and hence, the subsampling parameter -y varies with n.

Distributed private learning: We numerically evaluate the proposed privacy-learning performance
on training machine learning models. We consider the standard MNIST handwritten digit dataset that
has 60, 000 training images and 10, 000 test images. We train a simple neural network that was also
used in [21}/39] and described in Table This model has d = 13, 170 parameters and achieves an
accuracy of 99% for non-private, uncompressed vanilla SGD. We assume that we have n = 60, 000
clients, where each client has one sample. At each step of the Algorithm we choose uniformly at
random 10, 000 clients, where each client clips the /~.-norm of the gradient with clipping parameter
C = 1/100 and applies the R €9-LDP mechanism proposed in [27] with ¢ = 1.5. We run
Algorithmwith § = 1075 for 200 epochs, with learning rate 7 = 0.3 for the first 70 epochs, and

then decrease it to 0.18 in the remaining epochs.

90 1
804
| Layer | Parameters | ol
= 3 = >
Convolution 16 filters of 8 x &, Stride 2 g 604
Max-Pooling 2x2 S
Convolution 32 filters of 4 x 4, Stride 2 ;
. 40 4
Max-Pooling 2x2 P
. 301 —— Mean via RDP (upper bound)
Fully ConneCted 32 un%ts —— Mean via Clones[FMT20]+strong composition[KOV15]
Softmax 10 units 20 STD via RDP (upper bound)
104 / STD via Clones[FMT20]+strong composition[KOV15]
Table 1: Model architecture for MNIST M 1 7 T . <

£

Figure 3: Privacy-Utility trade-offs on the
MNIST dataset with ¢,-norm clipping.

Figureplots the mean and the standard deviation of privacy-accuracy trade-offs averaged over 10
runs. For our privacy analysis, the total privacy budget is computed by optimizing over RDP order A
using our upper bound given in Theorem For privacy analysis of [24], we first compute the privacy
amplification by shuffling numerically given in [24]; then we compute its privacy obtained when
amplified via subsampling [42]; and finally we use the strong composition theorem [34] to obtain the
central privacy parameter .

We observe that we achieve an accuracy of 80%(=+1.8) with a total privacy budget of € = 1.4 using
our new privacy analysis, whereas, [24] achieves an accuracy of only 70.7%(42.1) with the same
privacy budget of € = 1.4 using the standard composition theorems. Furthermore, we can see that
we achieves accuracy 90%(=4-0.5) with total privacy budget € = 2.91 using our new privacy analysis,
whereas, [24] (together with the standard strong composition theorem) achieves the same accuracy
with a total privacy budget of € = 4.82.

5 Proof of Theorem[1} Upper Bound

For any dataset D, = (dy, .. .,d;) € X* containing of k data points, we define a shuffle mechanism
M (D) as follows:

Msh(Dk) =H; ('R(dl),...,R(dk)), (6)

®1n fact, there are several parameter regimes of great practical interest for which the results of [24] are not
even valid; see Appendixfor more details on this, and also for more numerical comparisons.



where H, takes k inputs and outputs a uniformly random permutation of them. Recall from (3), for
any dataset D,, = (dy,...,d,) € X™ containing n data points, the subsampled-shuffle mechanism
is defined as M (D) := Hy, o samp} (R (d1), ..., R (dn)).

The proof of Theoremconsists of two steps. First, we bound the ternary-|x|*-DP of the shuffle
mechanism M, (see Theorem, which is the main technical contribution in this proof. Then, using
this, we bound the RDP of the subsampled shuffle mechanism M.

Theorem 4 ({-ternary-|x|*-DP of the shuffle mechanism My,). For any integer k > 2, eg > 0, and
all a« > 2, the (-ternary-|x|“-DP of the shuffle mechanism Mgy, is bounded by:

4(@50—1)2 + (ego _ e—eo)aefgﬁ%é ifoa=2,

keco
2(e?0 1)

((a)* < o/2 ko
al’ (a/2) (ke?o) + (ef0 —e )% 50 otherwise,

)

where k = |51 + 1and T (2) = [°

. x*~Ye~%dx is the Gamma function.
2ec0 0

Theorem [@]is one of the core technical results of this paper, and we prove it in Section|[6]

It was shown in [43] Proposition 16] that if a mechanism obeys (-ternary-|x|*-DP, then its subsampled
version (with subsampling parameter ) will obey ~(-ternary-|y|%-DP. Using that result, the authors
then bounded the RDP of the subsampled mechanism in [43] Eq. (9)]. Adapting that result to our
setting, we have the following lemma.

Lemma 2 (From (-ternary-|x|*-DP to subsampled RDP). Suppose the shuffle mechanism Mgy,
obeys (-ternary-|x|*-DP. For any XA > 2,k < n, RDP of the subsampled shuffle mechanism M (with

subsampling parameter -y = k/n) is bounded by: €(\) < 1= log (1 + 23:2 (i)vag(a)a).

Lemma can be seen as a corollary to [43] Proposition 16 and Eq. (9)]. However, for completeness,
we prove it in Appendix Substituting the bound on {(«) from Theorem|4|into Lemma together
with some algebraic manipulation gives proves Theorem|1} see Appendix [E.2|for details.

6 Proof of Theorem[d} Ternary |y|*-DP of the Shuffle Model

The proof has two main steps. In the first step, we reduce the problem of deriving ternary divergence
for arbitrary neighboring datasets to the problem of deriving the ternary divergence for specific
neighboring datasets, D ~ D’ ~ D", where all elements in D are the same and D’, D" differ from D
in one entry. In the second step, we derive the ternary divergence for the special neighboring datasets.

The specific neighboring datasets to which we reduce our general problem has the following form:
o .=4{D,,D.,,, D) :Dy=(d,...,dd) X" D, =(d,...,dd)eX™, and
D! =(d,...,d,d")eX™, whered,d d’' € X}, 8)

Consider arbitrary neighboring datasets D = (du,...,dk—1,di), D' = (di,...,dx_1,d}), and
D" = (di,...,dx—1,d}), each having k elements. Forany m € {0, ..., k—1}, we define new neigh-
boring datasets D) | = (df,....d}, dy), DI = (df,....d}, d},), and DY) = (dY,....d}),
each having m + 1 elements. Observe that (Dxff_)l, D;fﬁzl, Df,’f ll) eDr ..

The first step of the proof is given in the following theorem.

Theorem 5 (Reduction to the Special Case). Let ¢ = 630 . We have:

BheeMan (D) [ M.n(D")(h)
’Mshwf?’;"ﬂ)(h) — M (D)) (R)
M (Do) (h)

]E 11(k)

< EppnBin(k—1,q) h~ M (DY)

] -

We know (by Chernoff bound) that the binomial r.v. is concentrated around its mean, which
implies that the terms in the RHS of (9) that correspond to m < (1 — 7)g(k — 1) (we
will take 7 = 1/2) will contribute in a negligible amount. Then we show that E,, :=




(e

E Man (DY) (W)= Man (D)) ()
h~ M. (D4)) M (D) (h)
vation together imply that the RHS in @ is approximately equal to E(; _7y4(k—1)-

is a non-increasing function of m. These obser-

Since E,, is precisely what is required to bound the ternary DP for the specific neighboring datasets,
we have reduced the problem of computing the ternary DP for arbitrary neighboring datasets to the
problem of computing ternary DP for specific neighboring datasets. The second step of the proof
bounds E(;_)¢(n—1)> Which follows from the result below that holds for any m € N.

Theorem 6 (|x|“-DP for special case). For any m € N, integer o > 2, and (D)}, D.,,, Dp,) € DI

same’

/ 7 a 4(660—1)2 o — 92
E |: MSh(Dm)(h) - MSh(Dm)(h) :| me€o /2 lfOé — 4
~ 5 m 626 12\ ¢ .
M (D) M1,(Dr) (h) al(a/2) (%) otherwise.

Missing details of how Theorem[4]follows from Theorems5][6]can be found in Appendix[C.4|

Proof sketch of Thwrem Let p;,i € [k], p., p), denote the distributions of R when the input data
point is d;, d}, dy, respectively. The main idea of the proof is the observation that each p; can be
written as a mixture distribution p; = e% Dy + (1 — e%)) D;, where p; is defined in terms of p;, p},.
So, instead of client ¢ € [k — 1] mapping its data point d; according to p,, we can view it as the client
i maps d; according to pj, with probability (w.p.) 1/e0 and according to p; w.p. (1 — 1/e0). As a
result, the number of clients that sample from the distribution p} follows a binomial distribution
Bin(k — 1, 1/ec0). This allows us to write the distribution of M s, when clients map their data points
according to py, . .., Py, P}, P}, as a convex combination of the distribution of M when clients map
their data points according to Py, ..., Pj_1, Py, Pj, Pj; see Lemma4| Then using a joint convexity
argument (see Lemma, we write the ternary divergence between the original triple of distributions
of M, in terms of the same convex combination of the ternary divergence between the resulting
triples of distributions of My, as in Lemma Using a monotonicity argument (see Lemma(5)), we
can remove the effect of clients that do not sample from the distribution p} without decreasing the
ternary divergence. By this chain of arguments, we have reduced the problem to the one involving the
computation of ternary divergence only for the special form of neighboring datasets (as in Theorem@),
which proves Theorem See Appendixfor a complete proof. ]
Proof sketch of Theorem|[6] Consider (D)), D.,,, Dy,) € DI as in the statement of Theorem @
First we observe that for any « > 1 and any three distributions p, g, r over the same domain, we can

write E,. Up%qu} <2071 (E, [|2 —1|"] + E, [|¢ — 1|™]). This is a straight-forward application

of the standard inequality |z + y|* < 2~ !(|2|* + |y|%) which holds for all z,y € R and o > 1.
Now, by taking p = M, (D.,), ¢ = Msp (D), and 7 = Mgy (D,y,), we reduce the problem of
computing the ternary |x|*-divergence (which we need to bound) to the problem of computing the

Pearson-Vajda divergence [43], which we can write in terms of the a-th absolute moment of the r.v.

X : A — R, defined as X (h) := (354 E 0L — 1) for all h € AP (where D' € {D},, Dy })
and distributed according to X (h) ~ M, (D,,)(h). In [29], the authors have bounded the absolute
moments of the r.v. X (h) by showing that X (h) is sub-Gaussian r.v. and using standard concentration

results. See Appendix|C.3|for a complete proof. [ |

7 Discussion

In this paper, we analyzed the Rényi differential privacy of the subsampled shuffle model by bounding
the ternary |x|*-DP of the shuffle model. We numerically demonstrated the importance of our
proposed bound, where we obtain a significant improvement over using the state-of-the-art in
practical regimes. Furthermore, we used our privacy analysis to study the privacy-accuracy trade-offs
on the MNIST dataset, where we obtained 90% accuracy with total privacy budget of € = 2.91, which
is an improvement over an analysis yielding 4.82, using standard strong composition theorem.

Closing the gap (shown numerically) between our lower bound in Theoremand the achievable
upper bound in Theorem is an important unresolved question. Another direction to explore would
be to analyze the RDP of the subsampled shuffle model for different sub-sampling techniques such as
Poisson subsampling [45]], random check-in [9], or client self-sampling [30].



Societal Impact. Collaborative learning comes with significant societal risks of privacy violations,
which is the main topic addressed in this paper. However, such learning is only as good as the data
used for training, and if the data is not unbiased, this could lead to significant issues related to fairness
and could also lead to societally undesirable outcomes. Such an issue is exacerbated when privacy
is guaranteed on the data used for training, making a-priori fairness checks on data infeasible. This
can be ameliorated by properly testing models finally obtained against fairness criteria and rejecting
models that fail the test. This paper did not consider the issue of robustness to security, and this could
also be an important societal issue in collaborative learning, where a small subset of users could insert
malicious inputs to disrupt the learning process or worse bias the learned model covertly. This could
also lead to negative outcomes. This issue of robustness to malicious participants has been studied in
several papers, and incorporating this into the framework of the paper is an important future research
topic.
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