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Abstract

The multi-armed bandit (MAB) problem is an
active learning framework that aims to select
the best among a set of actions by sequentially
observing rewards. Recently, it has become
popular for a number of applications over
wireless networks, where communication con-
straints can form a bottleneck. Existing works
usually fail to address this issue and can be-
come infeasible in certain applications. In this
paper we address the communication problem
by optimizing the communication of rewards
collected by distributed agents. By providing
nearly matching upper and lower bounds, we
tightly characterize the number of bits needed
per reward for the learner to accurately learn
without suffering additional regret. In partic-
ular, we establish a generic reward quantiza-
tion algorithm, QuBan, that can be applied
on top of any (no-regret) MAB algorithm to
form a new communication-efficient counter-
part, that requires only a few (as low as 3)
bits to be sent per iteration while preserving
the same regret bound. Our lower bound is
established via constructing hard instances
from a subgaussian distribution. Our theory
is further corroborated by numerically experi-
ments.

1 Introduction

Multi-armed bandit (MAB) is an active learning frame-
work that finds applications in diverse domains, includ-
ing recommendation systems, clinical trials, adaptive
routing, and so on [Bouneffouf and Rish, 2019]. In a
MAB problem, a learner interacts with an environment
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by pulling an arm from a set of arms, each of which, if
played, gives a scalar reward, sampled from an unknown
but fixed distribution. The goal of the learner is to find
the arm with the highest mean reward using a mini-
mum number of pulls. The performance of a learner is
measured in terms of regret, that captures the expected
difference between the observed rewards and rewards
drawn from the best arm. Work on MAB algorithms
and their applications spans several decades, cultivat-
ing a rich literature that considers a variety of models
and algorithmic approaches [Lattimore and Szepesvári,
2020]. MAB algorithms include explore-then-commit
[Robbins, 1952, Anscombe, 1963], ǫ-greedy [Auer et al.,
2002], Thomson sampling [Thompson, 1933], and the
upper confidence bound (UCB) [Lai, 1987, Auer et al.,
2002], to name a few. Under some assumptions on
the reward distribution, the explore-then-commit and
ǫ-greedy algorithms achieve a regret bound ∝ O(

√
n),

where n is number of steps the learner plays, for the
worst-case but known minimum reward gap1, while
Thomson sampling and UCB achieve a regret bound
∝ O(

√

n log(n)) without knowledge of the minimum
means gap2. However, all these works assume that
the rewards can be communicated to the learner at
full precision which can be costly in communication
constrained setups. In this paper we ask: is it possible
to perform efficient and effective bandit learning with
only a few bits communicated per reward?

Understanding how many bits of communication are
really needed, is not only interesting from a theoretical
viewpoint, but can also enable the MAB framework
to support learning applications in settings that were
challenging before. Consider, for instance, swarms of
tiny robots (such as RoboBees and RoboFlies [Wood
et al., 2013]), wearable (inside and outside the body)
sensors, backscatterer and RFID networks, IoT and
embedded systems; generally whenever low complexity

1The reward gap is defined to be the difference between
the reward means of the best and second best arm.

2Variants of the UCB [Audibert et al., 2009, Degenne
and Perchet, 2016] can achieve regret ∝ O(

√
n), but can be

worse than UCB in some regimes [Lattimore and Szepesvári,
2020].
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Agrawal, 1995, Auer et al., 2002]. Contextual Thom-
son sampling and LinUCB achieve a regret bounded by
Cd

√
n log(n), where d is the dimension of an unknown

system parameter, and C is a universal constant that
does not depend on n, d [Agrawal and Goyal, 2013b,
Abeille and Lazaric, 2017, Lattimore and Szepesvári,
2020, Dani et al., 2008]. These algorithms assume ac-
cess to a full precision reward at each iteration. Our
goal is not replacing existing MAB algorithms to deal
with quantized rewards; instead, we are interested in
a general quantization framework that can be applied
on top of any existing (or future) MAB algorithm.

Compression for ML and distributed optimization.
There is a number of research results targeting reduc-
ing the communication cost of learning systems using
compression. For instance, compression is applied on
gradient updates [Seide et al., 2014, Alistarh et al.,
2017, Mayekar and Tyagi, 2020]. Recent work has also
looked at compression for classification tasks [Hanna
et al., 2020]. However, compression schemes tailored
to active learning, such as MAB problems, have not
been explored. Our quantization scheme can be un-
derstood as a reward compression scheme that reduces
the communication complexity for MABs. The main
difference between the quantization for MABs and for
distributed learning is that the later targets reducing
the dependency of the number of bits and performance
on the dimensionality of bounded training data, which
can be in the order of tens of millions. In contrast,
the rewards of MABs are scalars. The main challenge
of our setting is to deal with a reward distribution
that is either unbounded or the upper bound on the
reward is much larger than the noise variance, which is
typical in many MAB applications. This can be done
by exploiting the fact that the rewards are more likely
to be picked from the arm that appear to be best. Such
a property is not applicable in the general distributed
optimization setup and comes with new challenges as
will discussed later.

Sample complexity. Compression is related to sample
complexity [Even-Dar et al., 2002, Mannor and Tsitsik-
lis, 2004]: indeed, sending a small number of samples,
reduces the overall communication load. However, the
question we ask is different (and complementary): sam-
ple complexity asks how many (full precision) samples
from each distribution do we need to draw; we are ask-
ing, how many bits of each sample do we really need
to transmit, when we only care to decide the best arm
and not to reconstruct the samples.

Distributed multi-agent MAB. Researchers have ex-
plored the distributed multi-agent MAB problem with
a single [Anantharam et al., 1987] or multiple [Shahram-
pour et al., 2017] decision makers; in these settings,
distributed agents pick arms under some constraints

(all agents pick the same arm [Shahrampour et al.,
2017], at most one agent can pick the same arm at a
time otherwise no reward is given [Anandkumar et al.,
2011] and other constraints [Landgren et al., 2019]).
The agents cooperate to aggregate their observed re-
wards so as to jointly make a more informed decision
on the best arm. Most of the works do not take into
account communication constraints, and rather focus
on cooperation/coordination schemes. Our setup is
different: we have a single learner (central server) and
simple agents who do not learn (do not keep memory)
but simply observe and transmit rewards, one at a time.
Our scheme can be potentially applied to these settings
to reduce communication cost.

Within this previous framework, work considers
“batched” rewards, where agents keep their observed re-
wards in memory and communicate them infrequently,
potentially summarizing their findings and thus re-
ducing the communication load [Perchet et al., 2016,
Esfandiari et al., 2019, Even-Dar et al., 2006]. Such
schemes require agents to be present for the whole
duration of learning, and address a different setup
than ours. Practical cases where our setup fits better
than batched rewards include: (i) agents with very
limited memory/computational power, such as RFIDs;
(ii) agents that can meaningfully implement an action
and report the reward only once (eg., watching a video
advertisement); (iii) mobile agents that do not remain
connected for the duration of learning (eg., passing by
drones directed to perform a manoeuvre) or (iv) agents
simply not willing to invest the resources required to
support a batched MAB learning process.

Independently and in parallel to ours, the work in [Vial
et al., 2020] also considered MAB learning with reduced
number of bits, restricted in their case to UCB policies.
Their main result shows that for rewards supported on
[0, 1], one bit of communication is sufficient; our work
recovers this result using a much simpler approach as a
special case of Section 3. Additionally, our work applies
on top of any MAB algorithm, and for unbounded
rewards.

Paper Organization. Section 2 presents our model
and notation; Section 3 looks at a special case; Sec-
tion 4 describes QuBan; Section 5 presents our main
theorems and Section 6 provides numerical evaluation.

2 Model and Notation

MAB Framework. We consider a multi-armed ban-
dit (MAB) problem over a horizon of size n [Robbins,
1952]. At each iteration t = 1, ..., n, a learner chooses
an arm (action) At from a set of arms At and re-
ceives a random reward rt distributed according to
an unknown reward distribution with mean µAt

. The
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reward distributions are assumed to be σ2-subgaussian
[Boucheron et al., 2013]. The arm selected at time t
depends on the previously selected arms and observed
rewards A1, r1, ..., At−1, rt−1. The learner is interested
in minimizing the expected regret Rn = E[R′

n], where
R′

n is the regret defined as

R′
n = Σn

t=1(µ
∗
t − rt), (1)

where µ∗
t = maxA∈At

µA. The expected regret cap-
tures the difference between the expected total reward
collected by the learner over n iterations and the re-
ward if we selected the arm with the maximum mean
(optimal arm).

Notation. When the set of arms At is finite and does
not depend on t: we denote the number of arms by k =
|At|, the best arm mean by µ∗, and the gap between the
best arm and the arm-i mean by ∆i := µ∗−µi. If X,Y
are random variables, we refer to the expectation of X,
variance of X, conditional expectation of X given Y ,
and conditional variance of X given Y as E[X], σ2(X),
E[X|Y ], and σ2(X|Y ) respectively.

Popular MAB algorithms for the case where the set of
actions is fixed over time, A = At, and A is finite in-
clude explore-then-commit [Robbins, 1952, Anscombe,
1963], ǫ-greedy [Auer et al., 2002], Thomson sampling
[Thompson, 1933], and UCB [Lai, 1987, Auer et al.,
2002]. In addition to this case we also consider an
important class of bandit problems, contextual bandits
[Langford and Zhang, 2007, Agrawal and Goyal, 2013b].
In this case, before picking an action, the learner ob-
serves a side information, the context. Specifically
we consider the widely used stochastic linear bandits
model [Abe and Long, 1999], where the contexts are
modeled by changing the action set At across time. In
this model, at iteration t, the learner chooses an action
At from a given set At ⊆ R

d and gets a reward

rt = 〈θ∗, At〉+ ηt, (2)

where θ∗ ∈ R
d is an unknown parameter, and ηt

is a noise. Conditioned on A1, A1, r1, ...,At, At, rt,
the noise ηt+1 is assumed to be zero mean and σ2-
subgaussian. Popular algorithms for this case include
LinUCB [Dani et al., 2008], explore-then-commit strat-
egy [Rusmevichientong and Tsitsiklis, 2010], and con-
textual Thomson sampling [Agrawal and Goyal, 2013b].

System Setup. We are interested in a distributed
setting, where a learner asks at each time a potentially
different agent to play the arm At; the agent observes
the reward rt and conveys it to the learner over a com-
munication constrained channel, as depicted in Fig. 1.
In our setup, each agent needs to immediately commu-
nicate the observed reward (with no memory), using a
quantization scheme to reduce the communication cost.

As learning progresses, the learner is allowed to refine
the quantization scheme by broadcasting parameters
to the agents they may need. We do not count these
broadcast (downlink) transmissions in the communi-
cation cost since the learner has no restrictions in its
power. We stress again that the agents cannot store
information of the reward history since they may join
and leave the system at any time. We thus opt to use a
setting where the agents have no memory. This setting
allows to support applications with simple agents (e.g.
RFID applications and embedded systems).

Quantization. A quantizer consists of an encoder
E : R → S that maps R to a countable set S, and a
decoder D : S → R. At each time t, the agent that
observes the reward rt transmits a finite length bi-
nary sequence representing E(rt) to the learner which
in turn decodes it using the decoder D to obtain the
quantized reward r̂t = D(E(rt)). The range of a de-
coder is referred to as the set of quantization levels; the
end-to-end operation of a quantizer maps the reward
to a quantization level. We next describe a specific
quantization module that we will use.

Stochastic Quantization (SQ). A stochastic quan-
tizer that uses quantization levels in a set L, which
is a form of dithering [Gray and Stockham, 1993, Al-
istarh et al., 2017], consists of a randomized encoder
EL and decoder DL modules that can be described as
following. The encoder EL, that uses the set of quanti-

zation levels L = {ℓi}2
B

i=1, takes as input a value x in
[ℓ1, ℓ2B ]; it maps x to a level index described by B bits.
The decoder, that uses the set of quantization levels

L = {ℓi}2
B

i=1, takes as input an index in {1, ..., 2B}, and
outputs the corresponding level value. Precisely,

i(x) = max{j|ℓj ≤ x and j < 2B},

EL(x) =
{

i(x) with probability
ℓi(x)+1−x

ℓi(x)+1−ℓi(x)

i(x) + 1 with probability
x−ℓi(x)

ℓi(x)+1−ℓi(x)

,

DL(j) = ℓj , j ∈ {1, ..., 2B}. (3)

That is, if x is such that ℓi ≤ x < ℓi+1, then the

index i is transmitted with probability ℓi+1−x
ℓi+1−ℓi

(and x

is decoded to be ℓi) while the index i+1 is transmitted
with probability x−ℓi

ℓi+1−ℓi
(and x is decoded to be ℓi+1).

The analysis of bandit algorithms leverages the fact
that conditioned on At, the communicated reward rt
is an unbiased estimate of the mean µAt

. It is not
difficult to see that SQ preserves this property, namely
conditioned on At, it conveys to the learner an unbiased
estimate of µAt

.

Performance Metric Bn, B̄(n). Among the schemes
that achieve a regret matching the unquantized regret,
up to a fixed small constant factor, our performance



Osama A. Hanna, Lin F. Yang, Christina Fragouli

metrics are the instantaneous and average number of
communication bits per reward Bn, and B̄(n) respec-
tively. Let Bt be the number of bits used to transmit
r̂t, and define the average number of bits after n itera-

tions of the algorithm as B̄(n) =
∑n

t=1 Bt

n . Our goal is
to design quantization schemes that achieve expected
regret matching the expected regret of unquantized
communication (up to a small constant factor) while
using a small number of bits Bn, and B̄(n).

3 A Case Where 1 Bit is Sufficient

In this section we consider the special case where the
rewards are supported on [0, 1]. For simplicity, we also
assume that all reward distributions have the same
range and the same variance σ (but different means).

We explore schemes that use exactly one bit per reward;
note that one bit is a trivial lower bound on the number
of bits communicated, since each agent needs to respond
to the learner for each observed reward. In particular,
we use 1-bit Stochastic Quantization (SQ), as in (3).
Assume that rt ∈ [0, 1] and the variance σ2(rt|At) ≈
1/4. The stochastic 1 bit quantizer takes rt as input and
interprets it as probability: outputs 1 with probability
rt and 0 with probability 1− rt. Let r̂t be the (binary)
quantized reward, we then have that

E[r̂t|At] = E[E[r̂t|rt, At]|At] = E[rt|At] = µAt
. (4)

Since r̂t ∈ [0, 1], its variance is upper bounded by 1
4 .

Recall that for bandit algorithms the expected regret
scales linearly with the variance. For example, the UCB
algorithm (c.f., [Lattimore and Szepesvári, 2020]) with
unquantized rewards, achieves Rn ≤ C

√

nk log(n) for
a constant C that does not depend on k, n. It is
not difficult to see that similar to [Auer et al., 2002],
UCB with 1-bit SQ achieves a regret bound Rn ≤
C
√

nk log(n). Simulation results verify that, for rt ∈
[0, 1], 1-bit SQ performs very close to unquantized
rewards (proofs and simulation results are in App. I).

To motivate our general quantization scheme, we con-
sider a case where 1-bit SQ results in a potentially
large performance loss. Assume that the variance, σ,
is much smaller than the range of rt: rt ∈ [−λ, λ] and
σ = 1, where λ ≫ 1 is a parameter known to the
learner. The 1-bit SQ maps rt to either λ or −λ; it is
not difficult to see that we still have E[r̂t|At] = µAt

,
but Rn ≤ Cλ

√

kn log(n), where C is a constant that
does not depend on n, k [Auer et al., 2002]3. Thus the
expected regret bound grows linearly with λ, which can
be arbitrarily large. In contrast, without quantization

3We note that this bound cannot be improved using
techniques in [Auer et al., 2002], since it is possible that
σ2(r̂t|At) = λ2 (e.g., if rt = 0 almost surely).

UCB still achieves C ′√kn log(n), where C ′ is another
constant of the same order of C. Simulation results (in
App. I) verify that the convergence to the unquantized
case can be slow.

We take away the following observations:
• If the range λ is of the same order as the variance σ,
1-bit SQ is sufficient to preserve the regret bound up
to a small constant factor.
• If the range λ is much larger than σ, 1-bit SQ leads
to a regret penalty proportional to λ

σ ; thus we may
want to only perform stochastic quantization within
intervals of size similar to σ.

In this section we assumed that the rewards rt are
bounded almost surely. This is not true in general;
we would like an algorithm that uses a small average
number of bits even when the reward distributions are
unbounded; QuBan, described next, achieves this.

4 QuBan: A General Quantizer for
Bandit Rewards

In this section, we propose QuBan, an adaptive quan-
tization scheme that can be applied on top of any
MAB algorithm. Our scheme maintains attractive
properties (such that the Markov property, unbiased-
ness, and bounded variance) for the quantized rewards
that enable to retain the same regret bound as unquan-
tized communication for the vast majority of MAB
algorithms, while using a few bits for communication
(simulation results show convergence to ∼ 3 bits per
iteration for n that is sufficiently large, see App. H). We
use ideas that include: (i) centering the quantization
scheme around a value that is believed to be close to
the picked arm mean in the majority of iterations; (iii)
maintaining a quantization error that is conditionally
independent on previously observed rewards given the
arm selection, which is achieved by choosing the quanti-
zation center to be an integer value (illustrated in more
detail in the proof of Theorem 2); (iv) assigning shorter
codes to the values near the quantization center and
otherwise longer codes to maintain a finite expected
number of bits even if the reward distribution has infi-
nite support; and (iv) using stochastic quantization to
convey an unbiased estimate of the reward.

QuBan builds on the following observations. Recall
that at time t the learner selects an action At and needs
to convey the observed reward rt. As we expect rt to be
close to the mean µAt

, we would like to use quantization
levels that are dense around µAt

and sparse in other
areas. Since µAt

is unknown, we estimate it using some
function of the observed rewards that we term µ̂(t); we
can think of µ̂(t) as specifying a “point" on the real line
around which we want to provide denser quantization.
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Figure 2: Illustration of QuBan. In the shown example,
rt is mapped to a value of the red dot (conveyed with
the index It = 4), and stochastically to one of the two
nearest quantization levels depicted on the red line.

4.1 Choices for µ̂(t)

In this work, we analyze the following three choices for
µ̂(t), the first two applying to MAB with a finite fixed
set of arms, while the third to linear bandits.
• Average arm point (Avg-arm-pt): µ̂(t) =
µ̂At

(t − 1). We use µ̂At
(t − 1), the average of the

samples picked from arm At up to time t − 1, as an
estimate of µAt

.

• Average point (Avg-pt): µ̂(t) = 1
t−1

∑t−1
j=1 r̂j (the

average over all observed rewards). Here we can think

of 1
t−1

∑t−1
j=1 r̂j as an estimate of the mean of the best

arm. Indeed, the average reward of a well behaved
algorithm will converge to the best mean reward.

These two choices of µ̂(t) give us flexibility to fit differ-
ent regimes of MAB systems. In particular, we expect
the avg-arm-pt to be a better choice for a small num-
ber of arms k and MAB algorithms that achieve good
estimates of µAt

(explore all arms sufficiently so that
µ̂At

(t− 1) approaches µAt
). However, as our analysis

also shows (see Section 5), if k is large, acquiring good
estimates for all arms may be costly and not what good
algorithms necessarily pursue; instead, the avg-pt has
a simpler implementation, as it only requires to keep
track of a single number, and still enables to distin-
guish well in the neighborhood of the best arm, which
is essentially what we mostly want.
• Contextual bandit choice: µ̂(t) = 〈θt, At〉. Con-
sider the widely used stochastic linear bandits model
in Section 2. We observe that linear bandit algorithms,
such as contextual Thomson sampling and LinUCB,
choose a parameter θt believed to be close to the un-
known parameter θ∗, and pick an action based on θt.
For example, LinUCB [Dani et al., 2008] chooses a
confidence set Ct with center θt believed to contain θ∗
and picks an action At = argmaxa∈At

maxθ∈Ct
〈θ, a〉.

Accordingly, we propose to use µ̂(t) = 〈θt, At〉. We note
that our intuition for the avg-pt choice does not work for
contextual bandits as it relies on that maxa∈At

〈θ∗, a〉
is the same for all t, which might not hold in general.
Likewise, the avg-arm-pt choice will not work as the
set of actions At can be infinite or change with time.

We underline that the estimator µ̂(t) is only maintained
at the learner’s side and is broadcasted to the agents.
As discussed before, this downlink communication is

Algorithm 1 Learner operation with input MAB al-
gorithm Λ

1: Initialize: µ̂(1) = 0
2: for t = 1, ..., n do
3: Choose an action At based on the bandit
4: algorithm Λ and ask the next agent to play it
5: Send Mt

6, µ̂(t) to an agent
6: Receive the encoded reward (bt, It, ELt

(et)) (see
7: Algorithm 2)
8: Decode r̂t:
9: if length(bt)≤ 4 then

10: r̂t can be decoded using a lookup table
11: else
12: Decode the sign, st, of rt from bt
13: Set ℓt to be the It-th element in the set
14: {0, 20, ...}
15: Set Lt = {ℓt, ℓt + 1, ...,max{2ℓt, ℓt + 1}}
16: Let e

(q)
t = DLt

(ELt
(et))

17: r̂t = (st(e
(q)
t +ℓt+3.5)+0.5+⌊µ̂(t)/Mt⌋)Mt

18: Calculate µ̂(t+ 1) (using one of the discussed
19: choices)
20: Update the parameters required by Λ

not counted as communication cost.

4.2 QuBan Components

At iteration t, QuBan centers its quantization around
the value µ̂(t). It then quantizes the normalized re-
ward r̄t = rt/Mt − ⌊µ̂(t)/Mt⌋ to one of the two values
⌊r̄t⌋, ⌈r̄t⌉, where Mt = ǫσXt

4, ǫ is a parameter to con-
trol the regret vs number of bits trade-off as will be
illustrated later in this section, and {Xt}ni=1 are inde-
pendent samples from a 1

4 -subgaussian distribution sat-
isfying |Xt| ≥ 1 almost surely, e.g., we can use Xt = 1
almost surely5. This introduces an error in estimating
r̄t that is bounded by 1, which results in error of at
most Mt in estimating rt = Mt(r̄t + ⌊µ̂(t)/Mt⌋). This
quantization is done in a randomized way to convey an
unbiased estimate of rt.

Rounding of µ̂(t)/Mt: the reason for choosing the
quantization to be centered around ⌊µ̂(t)/Mt⌋ instead
of µ̂(t)/Mt is to guarantee that the distance between rt
and the two closest quantization levels is independent
of µ̂(t)7 (which is dependent on r̂1, ..., r̂t−1). As we dis-
cuss in the following section, this preserves the Markov

4The case where σ is unkown is discussed in App. A.
5For our proofs we set Xt = 1 for simplicity; more

sophisticated choices can further improve the upper bounds
as discussed in App. A.

6If Xt is chosesn to be 1, then sending Mt is not required.
7As will be shown in App. B, centering the quantiza-

tion around any integer value implies that the two closest
quantization levels to rt

Mt
are ⌊ rt

Mt
⌋, ⌈ rt

Mt
⌉.
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Algorithm 2 Distributed Agent Operation

1: Inputs: rt, µ̂(t) and Mt

2: Set L = {⌊r̄t⌋, ⌈r̄⌉}, ˆ̄rt = DL(EL(r̄t))
3: Set bt with three bits to distinguish between the 8

cases: ˆ̄rt < −2, ˆ̄rt > 3, ˆ̄rt = i, i ∈ {−1, 0, 1, 2}.
4: if |ˆ̄rt| > |a| and ˆ̄rta > 0, a ∈ {−2, 3} then
5: Augment bt with an extra one bit to indicate if

|ˆ̄rt| = |a|+ 1 or |ˆ̄rt| > |a|+ 1.
6: if |ˆ̄rt| > |a|+ 1 then
7: Let L′ = {0, 20, ...}
8: Set ℓt = max{j ∈ L|j ≤ |r̄t| − |a|}
9: Encode ℓt by It − 1 zeros followed by a one

10: (unary coding), where It is the index of ℓt
11: in the set L′.
12: Let et = |r̄t| − |a| − ℓt
13: Set Lt = {ℓt, ℓt + 1, ...,max{2ℓt, ℓt + 1}}
14: Encode et using SQ to get ELt

(et)

15: Transmit (bt, It, ELt
(et))

property (given At, the quantized reward r̂t is condition-
ally independent on the history A1, r̂1, ..., At−1, r̂t−1), a
property that is exploited in the analysis of bandit algo-
rithms to guarantee that |∑n

t=1 r̂t − µAt
/n| approaches

zero in some probabilistic sense as n increases.

The precise learner and agent operations used for
QuBan are presented in pseudo-code in Algorithms 1
and 2 (see Fig. 2 for an example), respectively, and
discussed in detail in App. A, C. The learner at each
iteration broadcasts µ̂(t) and asks one of the agents
available at time t to play an action At. Initially, since
we have no knowledge about µi, the learner assumes
that µ̂(0) = 0. The agent that plays the action uses
the observed rt together with µ̂(t) it has received to
transmit three values we term (bt, It, et), to the learner,
as described in Algorithm 2 using O(log(|r̄t|)) bits.

5 Main Results

Our main results provide an upper and lower bound
on the number of bits required to achieve the same
unquantized regret up to a small constant factor. In
particular, we show that 2.2 bits per reward are re-
quired to achieve a sub-linear regret and a quantization
error, r̂t − rt, that is (σ2 )

2 subgaussian8. These con-
ditions imply a regret within a factor of 1.5 from the
unquantized regret. We also show that, on the average,
3.4 bits are sufficient to maintain a (σ2 )

2-subgaussian
quantization error, and achieve a regret within a factor
of 1.5 from the unquantized regret. Before stating the
results, we state our assumptions.

8The subgaussian condition is required for the standard
analysis techniques of many algorithms, which is why we
want to satisfy this property for the quantized rewards.

Assumption 1. We assume that all the codes are pre-
fix free [Cover, 1999]9 and that we are given:
(i) a MAB instance with σ2-subgaussian10 rewards
where the Markov property holds: conditioned on the
action at time t, the current reward is conditionally
independent on the history (past actions and rewards).
(ii) a MAB algorithm Λ such that for any instance
with σ2-subgaussian rewards, and time horizon n, the
algorithm’s expected regret (with unquantized rewards)
is upper-bounded by RU

n .

The following proposition gives an upper bound on the
regret after quantization showing that for ǫ = 1, the
regret is within a factor of 1.5 from the regret of the
unquantized case. The proof is provided in App. B.

Proposition 1. Suppose Assumption 1 holds. Then,
when we apply QuBan, the following hold:
1. Conditioned on At, the quantized reward r̂t is
((1 + ǫ

2 )σ)
2-subgaussian, conditionally independent on

the history A1, r̂1, ..., At−1, r̂t−1 (Markov property), and
satisfies E[r̂t|At] = µAt

, |r̂t − rt| ≤ Mt almost surely
(t = 1, . . . , n).
2. The expected regret Rn is bounded as Rn ≤ (1+ ǫ

2 )R
U
n ,

where ǫ is a parameter to control the regret vs number
of bits trade-off.

In the following we provide upper bound on the ex-
pected average number of bits. We also provides a
high-probability upper bound on the instantaneous
number of bits. For simplicity we only consider the
case where ǫ = 1 and discuss the other case in App. C.
The proof is given in App. C.

Theorem 1. Suppose Assumption 1 holds. Let ǫ = 1.
There is a universal constant C such that:
1. For QuBan with µ̂(t) = µ̂At

(t − 1) (avg-arm-pt),
the average number of bits communicated satisfies that
E[B̄(n)] ≤ 3.4 + (C/n)

∑k
i=1 log(1 + |µi|/σ) + C/

√
n.

2. For QuBan with µ̂(t) = 1
t−1

∑t−1
j=1 r̂j

(avg-pt), the average number of bits com-
municated satisfies E[B̄(n)] ≤ 3.4 +
C
n

(

1 + log(1 + |µ∗|
σ ) + Rn

σ +
∑n−1

t=1
Rt

(σt)

)

+ C/
√
n.

3. For QuBan with µ̂(t) = 〈θt, At〉 (stochas-
tic linear bandit), the average number of
bits communicated satisfies that E[B̄](n) ≤
3.4 + CE[

∑n
t=1 |〈θt − θ∗, At〉|]/(σn).

In App. C we also provide almost surely bounds
on the asymptotic average number of bits, namely,
limn→∞(1/n)

∑n
t=1 Bt≤3.4 almost surely.

9A similar analysis can be carried out for non-singular
codes [Cover, 1999].

10This is a standard assumption used for simplicity but
is not required for our main results.



Solving Multi-Arm Bandit Using a Few Bits of Communication

In the following we provide a high probability bound on
the number of bits that QuBan uses in each iteration.
We analyze the performance for avg-arm-pt only; the
other choices for µ̂(t) can be handled similarly.

Theorem 2. For a MAB instance with σ2-subgaussian
rewards, QuBan with ǫ = 1, µ̂(t) = µ̂At

(t − 1) (avg-
arm-pt), satisfies that for t with Tt(At) > 0, where Tt(i)
is the number of pulls for arm i prior to iteration t,
with probability at least 1− 1

n it holds that ∀t ≤ n:

Bt ≤ 4 + ⌈log(4 log(n))⌉+ ⌈log log(4 log(n))⌉. (5)

The proof is provided in App. D.

Remark 1. Using the previous theorem we can modify
QuBan to have that (5) is satisfied almost surely, by
sending a random 1 bit when (5) is not satisfied. This

will only add at most n
∑k

i=1 ∆i regret with probability
at most 1

n . Hence, the expected regret is increased by
at most a factor of 2.

5.1 Lower Bound

In this subsection we provide a lower bound showing
that an average number of 2.2 bits per iteration are
required to maintain a sublinear regret and a (σ2 )

2-
subgaussian quantization error, r̂t − rt. We also show
that the instantaneous number of bits cannot be almost
surely bounded by a constant.

Theorem 3. For any memoryless algorithm that only
uses quantized rewards, prefix-free encoding and satisfies
that for any MAB instance with subgaussian rewards:
i. Rn is sublinear in n,
ii. Conditioned on rt, r̂t − rt is (σ2 )

2-subgaussian
(t = 1, . . . , n),
we have that there exist σ2-subgaussian reward distri-
butions for which:
1. (∀b ∈ N) (∃t, δ > 0) such that P[Bt > b] > δ.
2. (∀t > 0) (∃n > t) such that E[B̄(n)] ≥ 2.2 bits.

Our lower bound is established by proving necessary
properties for the set of quantization schemes that
satisfy i, ii which include that E[r̂t|rt] = rt and that
the distance between the quantization levels cannot be
too large. We then show that 2.2 bits are needed to
satisfy the proved properties for a Gaussian distribution.
The proof is given in App. E.

5.2 Application to UCB, ǫ-greedy, and
LinUCB

We here leverage Theorem 1 to derive bounds for three
widely used MAB algorithms. We highlight that al-
though the regret bounds hide constant factors, these
constants are within 1.5 of the unquantized constants
according to Theorem 1. The proofs are in App. F for
Corollaries 2 and 3 and in App. G for Corollary 4.

Corollary 2. Assume we use QuBan with avg-pt on
top of UCB [Auer et al., 2002] with σ2-subgaussian
reward distributions and worst case gap ∆i. Then
there is a constant C that does not depend on n and
k such that Rn ≤ Cσ

√

nk log(n), E[B̄(n)] ≤ 3.4 +

C
√

k log(n)/n.

Corollary 3. Assume we use QuBan with avg-pt on
top of ǫ-greedy [Auer et al., 2002] with σ2-subgaussian
reward distributions and constant gaps ∆i ∀i. Let ǫt =
min{1, Ck/(t∆2

min
)}, where ∆min = mini{∆i|∆i > 0}

and C > 0 is a sufficiently large universal constant.
Then there exists a constant C ′ that does not depend on
n and k such that Rn ≤ C ′σk log(1+n/k), E[B̄(n)] ≤
3.4 + C ′(k log2(n)/n+ 1/

√
n).

To simplify the expressions, we include the dependency
on µ∗ and ∆i in the constant C for Corollary 2 and
respectively C ′ for Corollary 3.

Corollary 4. Assume we use QuBan on top of Lin-

UCB [Dani et al., 2008], then there is a constant
C that does not depend on n and d such that Rn ≤
Cd

√
n log(n), E[B̄(n)] ≤ 3.4 + C d log(n)√

n
.

6 Numerical Evaluation

We here present representatives of our numerical results;
additional plots are included in App. H.

Quantization Schemes. We compare QuBan
against the baseline schemes described next.
Unquantized. Rewards are conveyed using the standard
32 bits representation.
r-bit SQ. We implement r-bit stochastic quantization,
by using the quantizer described in Section 2, with 2r

levels uniformly dividing a range [−λ, λ].
QuBan. We implement QuBan with ǫ = Xt = 1.

MAB Algorithms. We use quantization on top of:
(i) the UCB implementation in [Lattimore and
Szepesvári, 2020, chapter 8]. The UCB exploration
constant is chosen to be σq, an estimate of the stan-
dard deviation of the quantized reward distribution.
(ii) the ǫ-greedy algorithm in [Lattimore and Szepesvári,
2020, chapter 6], where ǫt is set to be ǫt =

min{1, Cσqk

t∆2
min

}.
(iii) the LinUCB algorithm for stochastic linear bandits
in [Lattimore and Szepesvári, 2020, chapter 19].

Synthetic Dataset:

MAB Setup. We simulate three cases. In each case
we average over 10 runs of each experiment.
• Setup 1: (Figs 3(a)). We use k = 100, λ =
100, C = 10, the arms’ means are picked from a Gaus-
sian distribution with mean 0 and standard deviation 10
and the reward distributions are conditionally Gaussian
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A Discussion On the Quantization Scheme

In this appendix we discuss some aspects of QuBan.
Description of the algorithm:
At iteration t, QuBan centers its quantization around the value µ̂(t). It then quantizes the normalized reward
r̄t = rt/Mt − ⌊µ̂(t)/Mt⌋ to one of the two values ⌊r̄t⌋, ⌈r̄t⌉, where Mt = ǫσXt, ǫ is a parameter to control the
regret vs number of bits trade-off as will be illustrated later in this section, and {Xt}ni=1 are independent samples
from a 1

4 -subgaussian distribution satisfying |Xt| ≥ 1 almost surely, e.g., we can use Xt = 1 almost surely. If Xt

is allowed to take larger values, it will make the quantization coarser with some probability, as will be described
next, resulting in less number of bits. For example, if Xt has Gaussian tail, the average number of bits can be
improved to ≈ 2.2 bits. The quantization introduces an error in estimating r̄t that is bounded by 1, which results
in error of at most Mt in estimating rt = Mt(r̄t + ⌊µ̂(t)/Mt⌋). This quantization is done in a randomized way
to convey an unbiased estimate of rt. More precisely, the agent that pulls the arm at time t does the following
operations. If −3 ≤ r̄t ≤ 4, the agent quantizes r̄t to ⌈r̄t⌉ with probability r̄t−⌊(⌋r̄t), and to ⌊r̄t⌋ with probability
⌈r̄t⌉ − r̄t. It then transmits 3 bits to distinguish between the 8 cases: (a) −2 ≤ r̄t ≤ 3 and ˆ̄rt = i), i ∈ {−2, .., 3};
(b) (a) does not hold and r̄t > 0; (c) (a) does not hold and r̄t < 0. If (b) holds, the agent transmits one bit to
distinguish between the two cases: ˆ̄rt = 4, r̄t > 4. If (c) holds, the agent transmits one bit to distinguish between
the two cases: ˆ̄rt = −3, r̄t < −3. If r̄t > 4 or r̄t < −3 the agent quantizes r̄′ = |r̄t| − |a| as follows, where a = 4
if r̄t > 4, a = −3 if r̄t < −3. The agent conveys the greatest power of 2 below r̄′t, call it 2It (an extra bit is
transmitted to separate the case where |r̄t| ≤ 1, and 2It is assumed to be 0 in that case). Then, it quantizes
|r̄t| − 2It using SQ with levels that are 1 distance apart in the interval [0, 2It ]11 (see Fig. 2 for an example) (if
|r̄t| ≤ 1, SQ is used in the interval [0, 1]). The agent then transmits It with unary coding by transmitting It zeros
followed by 1 one12. This uses O(log(r̄t)) bits. The SQ output is transmitted using O(log(r̄t)) bits. An estimated

value of rt is obtained from the quantized r̄t by a proper shift and scaling. We recall that µ̂(t)
σ is believed to be

close to rt
σ in the majority of iterations resulting in small values for log(r̄t). Algorithms 1 and 2 describe the

operation of QuBan.

Sending the least power of 2 below r̄t:
For simplicity we consider the case where r̄t ≥ 0. We note that since it is possible for the decoded reward to take
any value in the set {⌊ µ̂

σ ⌋, ⌊
µ̂
σ ⌋+ 1, ⌊ µ̂

σ ⌋+ 2...} (to guarantee the uniform upper bound on |r̂t − rt|), every value in

that set needs to be encoded. A good encoding strategy assigns shorter codes to the levels that are close to ⌊ µ̂
σ ⌋ as

they are expected to occur more often. Hence, the best we can hope for is to encode rt using O(log( rtσ −⌊ µ̂
σ ⌋) bits

as it is quantized to either ⌊ rt
σ ⌋ or ⌈ rt

σ ⌉ and the quantization level at ⌊ rt
σ ⌋ is encoded using the largest number

of bits among the levels in the set {⌊ µ̂
σ ⌋, ⌊

µ̂
σ ⌋+ 1, ⌊ µ̂

σ ⌋+ 2..., ⌊ rt
σ ⌋}. As can be seen in Appendix C, sending the

greatest power of 2 below r̄t then quantizing the difference using SQ gives that rt is encoded using O(log( rtσ −⌊ µ̂
σ ⌋)

bits. This is achieved since It is O(log( rtσ − ⌊ µ̂
σ ⌋) and the SQ uses 2It + 1 quantization levels.

Alternatives to unary coding:
An alternative way to decode It is recursively applying our scheme by using unary coding to transmit the largest

I
(2)
t with 2I

(2)
t ≤ It and then encode the difference It − 2I

(2)
t using log(1 + 2I

(2)
t ) bits noting that It − 2I

(2)
t ≤ 2I

(2)
t .

This results in using O(log(log( rtσ − ⌊ µ̂
σ ⌋)) bits to encode It. We keep the unary coding for It for simplicity and

since it does not dominate the average number of bits.

Preserving regret bounds:
The main reasons QuBan preserves existing regret bounds is that it does not destroy the Markov property (as
we prove in Appendix C) and it provides that |r̂t − rt| is uniformly upper bound. The later property implies that
if given At, rt is conditionally integrable, sub-exponential, sub-gaussian, or almost surely bounded, then given At,
r̂t is conditionally integrable, sub-exponential, sub-gaussian, or almost surely bounded respectively. A widely
used assumption is that given At, rt is conditionally sub-gaussian.

Unknown σ:
Throughout the paper, we assume a known upper bound on the noise variance. However, it is not difficult to
see that a variance estimate within a constant factor would suffice. Running QuBan with an estimate σ′ that is
possibly different from the true σ results in a degradation in the regret by a factor of max{1, σ′

σ } and increase in

11Note that 0 ≤ |r̄t| − 2It ≤ 2It .
12Alternative (to unary) coding techniques that can result in a smaller number of bits are discussed later in this appendix.
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the communication by 2 log( σ
σ′
) bits. An optimistic estimate of the noise σ′ < σ results in finer quantization,

hence, no degradation in the regret at the cost of increasing the communication by 2 log( σ
σ′
) bits.

B Proof of Proposition 1

Proof. We start by proving that r̂t is an unbiased estimate of µAt
. If −3 ≤ rt ≤ −4, we have that r̂t takes the

value ⌈rt⌉ with probability rt − ⌊rt⌋, and the value ⌊rt⌋ with probability ⌈rt⌉ − rt. Hence, E[r̂t|rt] = rt. For all
the other cases we have that

E[r̂t|rt] = E[Mt(ste
(q)
t + ⌊ µ̂(t)

Mt
⌋+ stℓt)|rt]

= E[MtE[ste
(q)
t + ⌊ µ̂(t)

Mt
⌋+ stℓt|rt, µ̂(t),Mt]|rt]

(i)
= E[Mt(

rt
Mt

− (⌊ µ̂(t)
Mt

⌋+ sℓt) + ⌊ µ̂(t)
Mt

⌋+ sℓt)|rt]

= rt, (6)

where (i) follows from the fact that the stochastic quantization (SQ) that we use gives an unbiased estimate of
the input. Hence, in all cases we have that

E[r̂t|At] = E[E[r̂t|rt, At]|At] = E[E[r̂t|rt]|At] = E[rt|At] = µAt
(7)

The bound on |rt − r̂t| follows from the fact that the distance between the quantization levels for which we use
the randomized quantization is 1, hence, in all cases we have that

1 ≥ |ste(q)t − (
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − stℓt)| =
|r̂t − rt|

Mt
. (8)

We note that this implies

E[|r̂t − µAt
|2|At] = E[|r̂t − rt + rt − µAt

|2|At]

= E[|r̂t − rt|2|At] + E[|rt − µAt
|2|At] + 2E[(rt − µAt

)(r̂t − rt)|At]

≤ (1 + ǫ2)σ2 + 2E[(rt − µAt
)E[(r̂t − rt)|At, rt]|At]

= (1 + ǫ2)σ2. (9)

To see that conditioned on At, r̂t is conditionally independent on the history A1, r̂1, ..., At−1, r̂t−1, we notice

that since we replace µ̂(t)
Mt

by an integer, ⌊ µ̂(t)
Mt

⌋ and since the distance between the quantization levels is 1, we
have that the two nearest quantization levels to rt

Mt
are at ⌊ rt

Mt
⌋, ⌈ rt

Mt
⌉. Hence, conditioned on Mt, r̂t takes the

value Mt⌈ rt
Mt

⌉ with probability rt
Mt

− ⌊ rt
Mt

⌋, and the value Mt⌊ rt
Mt

⌋ with probability ⌈ rt
Mt

⌉ − rt
Mt

. This shows that
despite the fact that the encoding of r̂t is a function of r1, ..., rt, the value of r̂t is a function of rt only, since Mt

is generated independently of the history. As a result, given At, r̂t is conditionally independent on the history
A1, r̂1, ..., At−1, r̂t−1.

The fact that r̂t is subgaussian can be proven by Cauchy-Schwarz

E[eλ(r̂t−µAt
)|At] = E[eλ(r̂t−rt+rt−µAt

)|At]

≤ E[epλ(r̂t−rt)|At]
1
pE[e(1−p)λ(rt−µAt

)|At]
1

1−p

≤ eλ
2 σ2(1+ ǫ

2
)2

2 , (10)

where p = 1 + 2
ǫ . To bound the expected regret after quantization we observe that Rn =

∑n
t=1 E(µ

∗
t − rt) =

∑n
t=1 E(µ

∗
t − r̂t) = (1+ ǫ

2 )
∑n

t=1 E(
µ∗

t−r̂t
1+ ǫ

2
). We have that r̂t

(1+ ǫ
2 )

is σ2-subgaussian. Applying the bandit algorithm

using r̂t
(1+ ǫ

2 )
results in

∑n
t=1 E(

µ∗

t−r̂t
(1+ ǫ

2 )
) ≤ RU

n ({∆i/(1 +
ǫ
2 )}), hence

Rn ≤ (1 +
ǫ

2
)RU

n ({∆i/(1 +
ǫ

2
)}). (11)



Solving Multi-Arm Bandit Using a Few Bits of Communication

C Proof of Theorem 1

Proof. We have that Bt can be bounded as

Bt ≤ 3 + 1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 3] + 1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 2]

+ 2(1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 4]⌈log( rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − 3)⌉)

+ 2(1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 3]⌈log(⌊ µ̂(t)
Mt

⌋ − rt
Mt

− 2)⌉)

≤ 3 + 1[| rt
Mt

− µ̂(t)

Mt
| > 2] + 2(1[| rt

Mt
− µ̂(t)

Mt
| > 3])

+ 2(1[| rt
Mt

− µ̂(t)

Mt
| > 3]log(| rt

Mt
− µ̂(t)

Mt
| − 2)). (12)

Hence for each δ > 0, we have

Bt ≤ 3 + 1[|rt − µAt

σ
| > 2(1− δ)] + 1[|µAt

− µ̂(t)

σ
| > 2δ]

+ 2(1[|rt − µAt

σ
| > 3(1− δ)] + 1[|µAt

− µ̂(t)

σ
| > 3δ])

+ 2(1[|rt − µAt

σ
| > 3])log(|rt − µ̂(t)

σ
| − 2). (13)

Taking the expectation of both sides, we get that

E[Bt] ≤ 3 + P[|rt − µAt

σ
| > 2(1− δ)] + P[|µAt

− µ̂(t)

σ
| > 2δ]

+ 2(P[|rt − µAt

σ
| > 3(1− δ)] + P[|µAt

− µ̂(t)

σ
| > 3δ])

+ 2E[(1[|rt − µAt

σ
| > 3])log(|rt − µ̂(t)

σ
| − 2)]. (14)

Hence, there are universal constants C, C ′ such that

E[Bt] ≤ 3.32 + C ′
E[|µAt

− µ̂(t)

σ
|] + 2E[1[| rt

Mt
− µ̂(t)

Mt
| > 3](| rt

Mt
− µ̂(t)

Mt
| − 3)]

≤ 3.32 + C ′
E[|µAt

− µ̂(t)

σ
|] + 2E[1[|rt − µAt

σ
| > 3(1− δ)]||rt − µAt

σ
| − 3|]

+ 2E[1[|µAt
− µ̂(t)

σ
| > 3δ]||rt − µAt

σ
| − 3|] + 2E[|µAt

− µ̂(t)

σ
|]

≤ 3.32 + (C ′ + 2)E[|µAt
− µ̂(t)

σ
|] + 2

∞
∑

i=3

|i(1− δ)− 3|P[|µAt
− µ̂(t)

σ
| > i(1− δ)]

+ 2E[1[|µAt
− µ̂(t)

σ
| > 3δ]]E[||rt − µAt

σ
| − 3|] + 2E[|µAt

− µ̂(t)

σ
|]

≤ 3.4 + CE[|µAt
− µ̂(t)

σ
|] (15)

From (13), E[|rt − µAt
|2|At] ≤ σ2, Markov property and the strong law of large numbers for martingales, we also

have that there is a universal constant C such that

lim
n→∞

1

n

n
∑

t=1

Bt ≤ 3.4 + lim
n→∞

C

n

n
∑

t=1

|µAt
− µ̂(t)

σ
| almost surely. (16)

It then remains to analyze |µAt
− µ̂(t)| for the three proposed choices of µ̂(t).
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• avg-pt (µ̂(t) = 1
t−1

∑t−1
j=1 r̂j):

We have that for t > 1

|µAt
− µ̂(t)|
σ

≤ |µAt
− µ∗|
σ

+
|µ∗ − µ̂(t)|

σ

=
∆At

σ
+ |
∑t−1

j=1 µ
∗ − µAj

+ µAj
− r̂j

(t− 1)σ
|

≤ ∆At

σ
+ |
∑t−1

j=1 µ
∗ − µAj

(t− 1)σ
|+ |

∑t−1
j=1 µAj

− r̂j

(t− 1)σ
|

=
∆At

σ
+

∑k
i=1 ∆iTi(t− 1)

(t− 1)σ
+ |
∑t−1

j=1 µAj
− r̂j

(t− 1)σ
|. (17)

For t = 1 we have

|µAt
− µ̂(t)|
σ

≤ |µAt
− µ∗|
σ

+
|µ∗ − µ̂(t)|

σ

=
∆A1

σ
+

|µ∗|
σ

. (18)

We then have that

1

n

n
∑

t=1

log(1+|µAt
− µ̂(t)

σ
|) ≤ log(1 + |µ∗|

σ )

nσ
+

1

n

n
∑

t=1

log(1 +
∆At

σ
)

+
1

n

n
∑

t=2

log(1 +

∑k
i=1 ∆iTi(t− 1)

(t− 1)σ
) + log(1 + |

∑t−1
j=1 µAj

− r̂j

(t− 1)σ
|)

≤ log(1 + |µ∗|
σ )

nσ
+

1

n

(

∑k
i=1 ∆iTi(n)

σ
+

n−1
∑

t=1

∑k
i=1 ∆iTi(t)

tσ
+ |
∑t

j=1 µAj
− r̂j

tσ
|
)

. (19)

We have that since E[|rt − µAt
|2|At] ≤ σ2, and Markov property, then by the strong law of large numbers for

martingales limt→∞

∑t−1
j=1 µAj

−r̂j

(t−1)σ = 0 almost surely. We then have that if the limit of average regret is 0 almost

surely (or in probability), then from (16) and (19) we get that

lim
n→∞

1

n

n
∑

t=1

Bt≤3.4 almost surely (or in probability). (20)

By observing that we can generate a long sequence of rewards from each arm before the process starts and since
E[|rt − µAt

|2|At] ≤ σ2, then by the triangle inequality we have that

1

n

n
∑

t=1

E[|
∑t−1

j=1 µAj
− r̂j

(t− 1)σ
|]

(i)

≤ 2

n

n
∑

t=1

1√
t

=
2

n

n
∑

t=1

1√
t

≤ 2

n
(1 +

∫ n

t=1

1√
t
dt)

≤ 4√
n
, (21)

where (i) follows from the fact that µAj
− r̂j , µAi

− r̂i are uncorrelated for all i < j since

E[(µAj
− r̂j)(µAi

− r̂i)] = E[E[(µAj
− r̂j)(µAi

− r̂i)|Aj , Ai, r̂i]] = 0. (22)
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We conclude that there is a universal constant C such that

B̂(n) ≤ 3.4 + (C/n)

(

1 + log(1 + |µ∗|/σ) +Rn/σ +

n−1
∑

t=1

Rt/(σt)

)

+ C/
√
n (23)

• avg-arm-pt (µ̂(t) = µ̂At
(t− 1)):

We have that for TAt
(t− 1) > 0

|µAt
− µ̂(t)|
σ

= |
∑t−1

j=1(µAt
− r̂j)1(Aj = At)

TAt
(t− 1)σ

|. (24)

For TAt
(t− 1) = 0, we have that µ̂(t) = 0. Then

1

n

n
∑

t=1

E[log(1 +
|µAt

− µ̂(t)|
σ

)]
(i)

≤ 1

n

k
∑

i=1

log(1 +
|µi|
σ

) +
2

n

n
∑

t=1

1√
t

(ii)

≤ 1

n

k
∑

i=1

log(1 +
|µi|
σ

) +
4√
n

(25)

where (ii) is as in (21), and (i) can be seen by observing that we can generate a long sequence of rewards from
each arm before the process starts, from the fact that r̂j − µAj

, r̂i − µAi
are uncorrelated for all i 6= j and since

E[|rt − µAt
|2|At] ≤ σ2.

We conclude that there is a universal constant C such that

B̂(n) ≤ 3.4 +
C

n

k
∑

i=1

log(1 +
|µi|
σ

) +
C√
n
. (26)

The fact that limn→∞
1
n

∑n
t=1 Bt≤3.4 almost surely, can be seen using the strong law of large numbers by

observing that we can generate a long sequence of rewards from each arm before the process starts, the number
of arms is finite, and if limn→∞ Ti(n) < ∞ then the contribution of arm i in the number of bits decays to zero
almost surely as n → ∞.

• stochastic linear bandits (µ̂(t) = 〈θt, At〉):
The results follow directly from (13), (15), (16) and choice of µ̂(t).

For the case where ǫ 6= 1, it is easy to see that for small values of ǫ, the number of transmitted bits increases by
2 log( 1ǫ ) bits. This can be further decreased to log( 1ǫ ) + log(log( 1ǫ )) bits using the encoding in App. A.

D Proof of the High Probability Bound

From App.A, we have that

Bt ≤ 3 + 1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 3] + 1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 2]

+ 1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 4]

(

⌈log( rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − 3)⌉+ ⌈log(log( rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − 3))⌉
)

+ 1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 3]

(

⌈log(⌊ µ̂(t)
Mt

⌋ − rt
Mt

− 2)⌉+ ⌈log(log(⌊ µ̂(t)
Mt

⌋ − rt
Mt

− 2))⌉
)

≤ 4 + log(
µ̂(t)

σ
− rt

σ
− 2) + log(log(

µ̂(t)

σ
− rt

σ
− 2)). (27)

Let the event G be that ∀t ∈ {1, ..., n} : |rt − µAt
| ≤ σ

√

4 log(n). From the subgaussian assumption and applying
the union bound we have that

P[G] > 1−
n
∑

t=1

e−2 log(n). (28)

We have that if G holds then for t with Tt(At) > 0, we have that |µ̂(t) − µAt
| ≤ σ, |rt − µAt

| ≤ σ. Hence,
|µ̂(t)− rt| ≤ 2σ. Substituting in (27), we get the desired result.
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E Proof of Lower Bound (Theorem 3)

Proof. To simplify notations, we omit the time index t and only mention it when it is necessary. Normalizing the
rewards by σ, it suffices to consider the case where σ = 1. We will also consider quantization schemes where
the set of quantization boundaries is deterministic and fixed over time. The case where the set of quantization
boundaries is random follows by similar arguments, while the case where the set of quantization boundaries
changes over time follows by observing that the proved properties will hold except for a sublinear number of
iterations. We start by showing that to satisfy (i), it suffices to consider unbiased quantization schemes, i.e.,
quantization schemes that satisfy:
(iii) E[r̂|r] = r.

Let P, P ′ denote reward distributions with means µ1, µ2 respectively. We have that, for any given algorithm,
either: Case 1: ∀P, P ′ with µ1 6= µ2, we have that EP [r̂] 6= EP ′ [r̂]; or Case 2: ∃P, P ′ with µ1 6= µ2, and
EP [r̂] = EP ′ [r̂].

For any algorithm that satisfies the property of Case 1, we will show that we can create another algorithm that
satisfies (iii) and achieves the same performance as the original algorithm. In particular, we will prove that, for any
algorithm satisfying Case 1, the function that maps xi to EPxi

[xi] has to be of the form EPxi
[xi] = c1xi+c2 for some

constants c1, c2, and thus, by a proper shift and scaling, the quantization algorithm can be modified to be unbiased
without affecting the number of transmitted bits or the performance. To do so, we first construct distributions P
and P ′ as follows. Consider the set of distributions {Px}x∈R, where Px represents the random variable that takes

the value x almost surely. Let {xi, pi, p
′
i}3i=1 be real values such that xi 6= xj∀i 6= j,

∑3
i=1 pi =

∑3
i=1 p

′
i = 1 and

pi, p
′
i ≥ 0∀i ∈ {1, 2, 3}. We design P to be the distribution of a random variable that takes the value xi with

probability pi, and P ′ be the distribution of a random variable that takes the value xi with probability p′i.

Note that, for the condition of Case 1 to be satisfied, we want to have that EP [r̂] = EP ′ [r̂] only if
∑3

i=1 pixi =
∑3

i=1 p
′
ixi. Hence, we need

∑3
i=1(pi−p′i)EPxi

[xi] = 0 only if
∑3

i=1(pi−p′i)xi = 0. This implies that the null space
of the matrix [EPx1

[x1],EPx2
[x2],EPx3

[x3]; 1, 1, 1] is the same as the null space of the matrix [x1, x2, x3; 1, 1, 1].
Equivalently, the function that maps xi to EPxi

[xi] is a linear function. By replacing x3 with arbitrary x, it is
easy to see that the function that maps xi to EPxi

[xi] is the same for all chosen values of {xi}. This completes
the proof in this case.

For Case 2, if we consider a MAB instance with two arms with distributions P, P ′ that witness the property
in Case 2, then even if we have infinite samples from the quantization scheme we cannot achieve better than
O(|µ1 − µ2|n) regret.

This shows that it suffices to consider quantization schemes that satisfy (iii). We also note that: (iv) for any
δ > 0, the maximum distance between any consecutive quantization levels cannot exceed 1 + δ, lest there is a
reward r, that is in the middle of the two quantization levels, mapped to r̂ with |r̂ − r| ≥ 1+δ

2 which violates (ii).

We are now ready to prove 1. Suppose towards a contradiction that ∃b, t such that P[Bn ≤ b] = 1∀n > t. Pick n
arbitrary large, we have that b can describe at most 2b quantization levels. As shown previously, we have that
the maximum distance between quantization levels is bounded by a value 1 + δ for any δ > 0. Hence, either the
interval (−∞,−2(2b + 1)] or the interval [2(2b + 1),∞) will have no quantization levels. We assume without loss
of generality that the interval [2(2b + 1),∞) has no quantization levels. Hence, all the values in that interval
will be mapped to values in (−∞, 2(2b + 1)). If the distribution of the reward is Gaussian for example, then the
interval (−∞, 2(2b + 1)) will have non-zero probability. This contradicts (iii).

To prove 2 we consider a gaussain reward distribution with zero mean and unit variance. We start by showing
that to minimize the expected number of bits while satisfying i, ii, iii, the distance between the quantization
levels need to be 1 with one quantization level at 0. Let a ∈ Q be the quantization level that is represented with
the least number of bits, where Q is the set of quantization levels. We note that to minimize the average number
of bits, we need to maximize the probability of transmitting a quantization level represented by a small number
of bits. Pick r > a such that r − a < 1, and Q+ = {q ∈ Q|q > r}, Q− = {q ∈ Q|q ≤ r, q 6= a}. To satisfy (iii) we
need r = E[r̂|r] = apa +

∑

q∈Q qpq, where pq is the probability of quantizing r to q. Hence,

pa =

∑

q∈Q+(q − r)pq −
∑

q∈Q−(r − q)pq

r − a
. (29)

Thus, to maximize pa, we maximize q for q ∈ Q+ and choose pq = 0 for q ∈ Q−. From (iv) this happens when
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the distance between the quantization levels in Q+ is 1. Applying the same argument for r < a, we get that to
maximize pa, we need the distance between the quantization levels in Q− to be 1. Moreover, due to (ii) the
optimal choice for a is 0, lest from the fact that the density of a Gaussian distribution increases as we approach
the mean, we can replace values that are mapped to a with higher probabilities with values that are closer to 0
(hence having higher densities), thus increasing pa. Applying the same logic, to optimize the probability of a′,
the quantization level represented by the second minimum number of bits, we require the distance between the
quantization levels to be 1 and a′ = 1. The same logic can be applied for the quantization level represented by the
k-th minimum number of bits showing that the optimal set of quantization levels is the set of integer numbers.

Pick r ∈ R, and let p
(r)
z be the probability of quantizing r to z. Let pz denote the probability of transmitting the

quantization level at z. Then, pz =
∫∞
−∞ p

(x)
z

1√
2π

e−x2/2dx. By observing that for x > z
2 , e−x2/2 is decays at least

as e−z2/8, while for x ≤ z
2 we have that p

(x)
z decays at least as e−z2/8 due to (ii), we get that pz is exponentially

decaying in z. Hence, the optimal prefix-free encoding for levels is to assign 1 bit for the quantized value 0, 2 bits
for the value 1, 3 bits for the value −1 and so on [Cover, 1999]. Note that in this proof/theorem, as well as in the
upper bound, we consider prefix-free codes, yet very similar arguments provide arguments for non-prefix free
codes as well.

By solving (iii) and
∑∞

z=−∞ p
(r)
z = 1 together we get that p

(r)
⌊r⌋ = ⌈r⌉− r+

∑∞
i=2(i− 1)p

(r)
⌈r⌉+i −

∑∞
i=2(i− 1)p

(r)
⌊r⌋−i.

Due to (ii) we can bound the quantization levels’ probabilities as

Pi ≥
∫ i

i−1

(|x− i| −
∞
∑

i=1

ie−2(⌈x⌉+i)2)
1√
2π

e−x2/2dx+

∫ i+1

i

(|x− i| −
∞
∑

i=1

ie−2(⌊x⌋−i)2)
1√
2π

e−x2/2dx. (30)

By computing this bound for p−3, ...p3, we get that average number of bits lower bounded by 2.5 bits.

F Proofs of Corollaries 2, 3

The expected regret bounds follow directly from Theorem 1. To bound the average number of bits used for the
avg-pt, we only need to bound the decay rate of 1

n

∑n−1
t=1

Rt

σt .

Corollary 2:
From Theorem 1 and [Auer et al., 2002], we have that for QuBan with UCB, there is a constant C such that
Rn ≤ Cσ

√

kn log(n). Then,

1

n

n−1
∑

t=1

Rt

σt
≤ C

1

n

n
∑

t=1

√

kt log(t)

t

≤ C
√

k log(n)

n

n
∑

t=1

1√
t

≤ C
√

k log(n)

n
(1 +

∫ n

t=1

1√
t
)

≤ C
√

k log(n)n. (31)

Corollary 3:
From Theorem 1 and [Auer et al., 2002], we have that for QuBan with ǫ-greedy, there is a constant C such that










