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Abstract

The limit of the entropy in the stochastic block model (SBM) has been characterized in the sparse

regime for the special case of disassortative communities Coja-Oghlan et al. (2017) and for the

classical case of assortative communities but in the dense regime Deshpande et al. (2016). The

problem has not been closed in the classical sparse and assortative case. This paper establishes the

result in this case for any SNR besides for the interval (1, 3.513). It further gives an approximation

to the limit in this window.

The result is obtained by expressing the global SBM entropy as an integral of local tree en-

tropies in a broadcasting on tree model with erasure side information. The main technical advance-

ment then relies on showing the irrelevance of the boundary in such a model, also studied with

variants in Kanade et al. (2016), Mossel et al. (2016) and Mossel and Xu (2015). In particular, we

establish the uniqueness of the BP fixed point in the survey model for any SNR above 3.513 or

below 1. This only leaves a narrow region in the plane between SNR and survey strength where the

uniqueness of BP conjectured in these papers remains unproved.

Keywords: stochastic block model, broadcasting on trees with side information, belief propaga-

tion, local algorithms optimality, information-theoretic limits.

1. Introduction

Over the last decade, several works have established a precise picture for the statistical and algo-

rithmic behavior of the stochastic block model (see an account in Abbe (2018)). In particular, the

questions of weak and exact recovery, i.e., whether it is possible (or not) to recover the communities

in the extremal cases of weak and exact accuracy, have been fully closed in the two-community

symmetric SBM by establishing sharp threshold phenomena in terms of appropriate signal-to-noise

(SNR) ratios Massoulié (2014); Mossel et al. (2015, 2018); Abbe et al. (2016). Yet, despite sig-

nificant progress, the more nuanced question of proving how much information or agreement can

be recovered about the communities at any given value of the SNR has remained open even in this

simplest case.

More specifically, for two symmetric communities and in the sparse regime, the expression of

the limiting entropy of the SBM is characterized1 at all SNR for the special case of disassortative

communities (i.e., communities that connect more outside than inside) Coja-Oghlan et al. (2017).

1. Characterizing the limit does not mean obtaining an explicit expression; it refers to an implicit n-independent ex-

pression relying on integrals and fixed point equations for the quantities of interest in all of the papers discussed

here.
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The problem for assortative communities is closed but in the denser regimes, where the vertex

degrees diverge while maintaining a finite SNR Deshpande et al. (2016). However, for the classical

case of assortative communities and in the sparse regime, a complete characterization remains open,

despite significant progress Kanade et al. (2016); Mossel et al. (2016); Mossel and Xu (2015). The

expression of the optimal agreement (rather than the entropy) is known in this case for SNR large

enough, and is related to the problem of robust reconstruction on a tree Mossel et al. (2016). This

result is conjectured to hold all the way down to the optimal threshold of 1, i.e., the threshold until

which the communities can be weakly recovered. We make progress on this question by establishing

the result down to 3.513. Further, we establish new results and improvements of prior results for the

problem of broadcasting on a tree with side information; see Section 1.1.

The SBM entropy. Recall that in the symmetric SBM with two communities, a random variable

X is drawn uniformly at random in {±1}n and an n-vertex graph G is drawn by connecting vertices

having same (resp. different) values in X with probability a/n (resp. b/n).

The SBM mutual information is defined by the limit (if it exists)

I(a, b) := lim
n→∞

1

n
I(X;G), (1)

where I is the mutual information. Note that establishing the existence of this limit is nontrivial.

This was proved in Abbe and Montanari (2015) for the case of a < b, the same case for which the

value of the limit has more recently been established Coja-Oghlan et al. (2017). Note also that due

to the chain rule I(X;G) = H(X)−H(X|G), the SBM mutual information is the complement of

the SBM conditional entropy (called simply the SBM entropy)

H(a, b) := lim
n→∞

1

n
H(X|G). (2)

Informally, the SBM mutual information measures how much information can be recovered about

the communities after observing the graph, and equivalently, the SBM entropy measures how much

uncertainty is left about the communities after observing the graph. More formally, it quantifies the

average number of bits needed to represent the communities after observing the graph; see Abbe

(2016) for formal relations to graph compression.

Note that one may use other measures on the communities signal given the graph, such as the

optimal (normalized) mean square error of reconstructing the n× n rank-2 block matrix (with a/n
in the n/2 × n/2 diagonal blocks and b/n in the off diagonal blocks), or the optimal (normalized)

agreement (Hamming distance) of reconstructing X up to a community relabelling. These can be

explicitly related to each other in the tree models discussed next, and require bounds in the SBM

context; see for instance Deshpande et al. (2016). The conditional entropy allows however for a

direct reduction from the SBM to the tree model with side information, as discussed below.

The BOTS entropy. Consider the following problem of broadcasting on a tree with side infor-

mation (BOTS). This will be later defined on general trees and with general side information, but

consider for simplicity the case of regular trees (where each vertex has exactly d descendants)

and erasure side information. In this model, a random bit is attached to the root of the tree and

broadcasted down the tree by flipping its value independently with probability δ on each edge (for

convenience we call θ = 1 − 2δ). We denote by σρ the root bit, by σLk
the dk-dimensional vector

of the leaf bits at generation k, and by ωε
Tk

the side information up to depth k: these are the vertices
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labelled that are revealed in the tree (besides the root) independently with probability 1− ε. We call

this side information the “survey”. Note that this is the type of side information used in our con-

nection between BOTS and SBM entropies, but other types of side information are of independent

interest. In this paper we devote attention to general (but symmetric with respect to the spin flip)

observation model of the nodes, which we refer to as the BMS channel W .

We are now interested in two quantities:

1. the limiting entropy of the root bit after observing the leaf bits and the survey, i.e.2,

h̄(d, θ, ε) := lim
k→∞

H(σρ|σLk
, ωε

Tk
),

2. the same quantity without the leaf bits being observed, i.e.,

h(d, θ, ε) := lim
k→∞

H(σρ|ωε
Tk
).

We now give a rather direct method to express the SBM entropy in terms of BOTS entropies.

SBM to BOTS entropy reduction. The relation obtained between the SBM and BOTS condi-

tional entropy is as follows: if for some range of parameters d, θ, we can establish that

h = h̄, ∀ε ∈ (0, 1),

i.e., if the boundary is irrelevant, then we can characterize H as an integral of h̄ using the parameter

correspondence d = (a+ b)/2 and θ = a−b
a+b

(see Theorem 1).

Our starting point to such a reduction is an area-theorem or interpolation trick that is com-

monly used in coding theory Richardson and Urbanke (2001) and related statistical physics litera-

ture Mézard and Montanari (2009).

The idea is to express the entropy in the SBM H(X|G) as the integral

1

n
H(X|G) =

∫ 1

0

1

n

∂

∂ε
H(X|G, Y ε)dε, (3)

where, similarly as before, Y ε is an erasure survey that reveals the community of each vertex in X
independently with probability 1− ε. We then use the fact that 1

n
∂
∂ε
H(X|G, Yε) = H(X1|G, Y ε

∼1),
where 1 is an arbitrary vertex in the graph and Y ε

∼1 denotes the erasure survey on all vertices exclud-

ing vertex 1. Since conditioning reduces entropy, one can upper bound H(X1|G, Y ε
∼1) by consid-

ering only the information in the vertex 1 neighborhood, and due to the local tree-like topology of

SBMs, this gives an upper bound with the BOTS entropy without leaf information. Moreover, one

can add the leaf information in the conditioning to cut-off the graph beyond a local neighborhood,

using the Markovianity3 of the model, obtaining as well a lower bound from the BOTS entropy but

this time with the leaf information, cf. (17).

Different kind of reductions from SBMs to tree models have long been known and leveraged in

the SBM in Coja-Oghlan et al. (2017); Mossel et al. (2016); Alaoui and Montanari (2019); we refer

to Section 1.1 for further discussions on these.

We now turn to the crux of the analysis, i.e., the establishment of h = h̄.

2. Note that in these tree models, the limits can be proved to always exist.

3. Strict Markovanity does not hold in the SBM due to the weak effect of non-edges, and this requires a technical

lemma; see proof of Theorem 1. This technicality can also be avoided by considering the related Censored Block

Model (CBM), rather than the SBM, for which strict Markovianity holds.
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Uniqueness of BP fixed point for BOTS. Our main contribution is to show that in a wide range

of parameters and side information models, the BOTS associated distributional fixed point equation

(known as BP fixed point) has a unique solution. This automatically has several implications.

First, this establishes the desired “Boundary Irrelevance” property for BEC survey, i.e., h = h̄:

lim
k→∞

H(σρ|σLk
, ωε

Tk
) = lim

k→∞
H(σρ|ωε

Tk
). (4)

This implies

lim
ε→1

lim
k→∞

H(σρ|ωε
Tk
) = lim

k→∞
H(σρ|σLk

) . (5)

Indeed, one only needs to notice that limε→1 limk→∞H(σρ|σLk
, ωε

Tk
) = supε,k H(σρ|σLk

, ωε
Tk
)

and that for every k the latter quantity is continuous in ε ∈ [0, 1] including at the boundary.

Further, the presence of the survey allows to convert the absence of leaf information into the

presence of noisy leaf information, thereby obtaining the robust reconstruction property in the pres-

ence and in the absence of the survey Mossel et al. (2016).

Property (5) is also known in the SBM literature as the condition for “optimality of local algo-

rithms”, and was investigated in Kanade et al. (2016); Mossel and Xu (2015). These works build

on the crucial contribution of Mossel et al. (2016), which shows uniqueness of BP fixed point for

BOT without survey and dθ2 > C, where C is “large enough” (see Appendix D for our estimates of

how large). Note that since the conditional entropy in (5) can be sandwiched between H(σρ|σLk
)

and H(σρ|ωε
Lk
), the result of Mossel et al. (2016) implies (5), as indeed observed in (Kanade et al.,

2016, Prop. 3). However, Kanade et al. (2016) derives result for the case where ε → 1, relying

on Mossel et al. (2016) for large enough C. It also conjectures the more general (4) (for all d, θ, ε
and BEC survey), and our paper validates this conjecture in a wide range of parameters (see Fig. 1),

including for all values of the dθ2 6∈ (1, 3.513).
Finally, subsequent work Mossel and Xu (2015) focuses on the case of BSCε rather than BECε

survey, and also conjectured (4) for all d, θ, ε. They demonstrate the uniqueness of the BP fixed

point in this setting for some range of parameters (which as ε → 1/2 reduces to dθ2 > C for

some large enough C). Although the method of Mossel and Xu (2015) is an extension of Mossel

et al. (2016), the authors make the remark “We note however that the paper Mossel et al. (2016)

did not consider side information and the adaptation of the proof is far from trivial.” This is further

expanded in the current paper.

1.1. Novelty and comparison to the literature

We believe that our proof technique offers the following improvements compared to Mossel et al.

(2016); Mossel and Xu (2015): (a) it is much shorter; (b) we do not need to consider large θ, small

d and small d large θ cases separately; (c) it works simultaneously for dθ2 < 1 and dθ2 > 3.513;

(d) it works simultaneously with and without side information, and the side information can be any

BMS, rather than specifically the BEC or BSC; (e) it closes the entire low-SNR case dθ2 < 14, and

to the best of our knowledge it yields the state-of-the-art threshold for the high-SNR case.

Our main innovation is the information-theoretic point of view: we consider BOTS with or

without leaf observations as two binary input symmetric channels (BMSs) which are related to

4. There are, however, two related low-SNR results. (Mossel and Xu, 2015, Theorem 4.2) shows uniqueness of fixed

point for dθ < 1 via a simple contractivity of Fθ function in the BP recursion (27).(Kanade et al., 2016, Theorem 3)

shows (5) for dθ2 < 1 as an application of information contraction from Evans et al. (2000).
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each other by a property known as degradation. This implies a certain inequality between the log-

likelihood ratios (LLRs), cf. (31), which we exploit in the application of the potential method. These

key ideas are the content of the Prop. 2. On the more technical side, another innovation is the choice

of the potential function as φ(r) = e−
1

2
r.

Concerning the reduction from SBM to BOTs, we note first that the reduction in Mossel et al.

(2016) is obtained for the agreement metric. It is easy to navigate between agreement and entropy

once on the tree models, but in the SBM, the entropy allows for the chain rule and other properties

that lead to the direct reduction detailed previously. On the other hand, Mossel et al. (2016), rely

on a black-box algorithms that solves weak recovery in order to bring the noisy leaves. Therefore,

we are trading the noisy leaves with the survey. In turn, we can exploit the survey to obtain tighter

conditions for the boundary irrelevance that lead to part (ii) of Theorem 1.

Finally, Coja-Oghlan et al. (2017) uses a reduction to trees for the entropy that does also not

rely on the erasure side information as described above. In particular, the computation of the SBM

entropy is linked to an optimization problem (Theorem 2.2 therein), whose solution corresponds to

the dominant BP fixed point on a Galton-Watson tree (Theorem 2.4).

2. Results: Boundary Irrelevance and SBM Entropy

Broadcasting on Trees with Survey (BOTS). We start with the standard broadcasting on trees

(BOT) setting. Let T be an infinite tree rooted at ρ. Let σρ ∼ Unif({±1}) be the root bit and

assume that it is broadcast through each edge independently with flip probability δ ∈ (0, 12 ]. For

simplicity we use notation θ = 1− 2δ. Let Lk denote the set of nodes at level k, and Tk denote the

set of nodes at level ≤ k (where the root is at level 0). Reconstruction on such models consists of

recovering the root bit after observing the leaves bits at large depth (Evans et al. (2000)).

We consider a slightly different problem, where we have access to some node side information,

or “survey”. Specifically, let W be a fixed BMS channel, and for each node u we observe ωu ∼
W (σu). We call (T, ρ, θ,W ) a broadcasting instance with survey. We will also denote by ∆W

the ∆-component of the BMS W (see Section 4 for background on BMS channels). This setting

includes the one in Mossel and Xu (2015), where W = BSCα, i.e., for each node u, P[ωu = σu] =
1 − P[ωu = −σu] = 1 − α; and the one in Kanade et al. (2016), where W = BECε, i.e., for each

node the survey reveals the correct label with probability 1 − ε and an erasure symbol otherwise.

The latter is of particular interest to us because of its application to the computation of the SBM

entropy (Theorem 1). For clarity, in the case of erasure survey, we denote ωε
u = BECε(σu).

Theorem 1 Let (X,G) ∼ SBM(n, 2, a/n, b/n). Let T be a Galton-Watson tree with Pois(a+b
2 )

offspring distribution and let (T, ρ, a−b
a+b

,BECε) be a broadcasting instance with erasure survey,

and edge flip probability b
a+b

. Let α∗ ≈ 3.513 be the unique solution in R>1 to the equation

exp(−α−1
2 )α = 1. The following hold.

(i) For a, b such that
(a−b)2

2(a+b) ≤ 1 or
(a−b)2

2(a+b) ≥ α∗ ≈ 3.513

H(a, b) = lim
n→∞

1

n
H(X|G) =

∫ 1

0
lim
k→∞

H(σρ|T, σLk
, ωε

Lk
)dε. (6)
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(ii) For any a, b such that
(a−b)2

2(a+b) ∈ (1, α∗), i.e., inside the gap of part (i),

lim inf
n→∞

1

n
H(X|G) =

∫ 1

0
lim
k→∞

H(σρ|T, σLk
, ωε

Lk
)dε+ ξinf , (7)

lim sup
n→∞

1

n
H(X|G) =

∫ 1

0
lim
k→∞

H(σρ|T, σLk
, ωε

Lk
)dε+ ξsup, (8)

where 0 ≤ ξinf , ξsup ≤ 1−
√
e
2 ≈ 0.178.

A crucial ingredient to establish Theorem 1 is the following property for BOTS.

Definition 1 (Boundary Irrelevance (BI)) We say that (T, ρ, θ,W ) has the Boundary Irrelevance

(BI) property if

lim
k→∞

I(σρ;σLk
|T, ωTk

) = 0. (9)

which is equivalent to (4).

In words, (BI) implies that if we have access to some intermediate node information, the leaves at

infinite depth become irrelevant for detecting the root bit. We focus on regular and Galton-Watson

trees with Poisson offspring. We prove the following Theorem in Section 5.

Theorem 2 Let T be a d-regular tree or a Galton-Watson tree with Poisson(d) offspring distribu-

tion, with root vertex ρ. Let W be a BMS channel. If Pe(W ) 6= 1
2 , and

dθ2 exp(−(dθ2 − 1)+
2

)Z(W ) < 1, (10)

where Pe(W ) is the probability of error, and Z(W ) is the Bhattacharyya coefficient (defined in

Definition 4), then (BI) holds for (T, ρ, θ,W ). In particular, (BI) holds for any (T, ρ, θ,W ) with

dθ2 < 1 or dθ2 > α∗ (and with Pe(W ) 6= 1
2 ), where α∗ ≈ 3.513 is the unique solution in R>1 to

the equation exp(−α−1
2 )α = 1.

We remark that (10) is a relaxation of a sharper bound in Prop. 3 (e.g., for regular trees with d = 2
(BI) is proven for all cases except dθ2 ∈ (1, 1.62)). The following corollary lists a few direct

consequences of Theorem 2.

Corollary 1 In the setting of Theorem 2, if any of the following is true, then (BI) holds for

(T, ρ, θ,W ): (i) Z(W ) <
√
e
2 ≈ 0.824; (ii) Pe(W ) < 1

2 − 1
4

√
4− e ≈ 0.217; (iii) W = BECε and

with ε <
√
e
2 ≈ 0.824.

Proof For (i) we use supα≥0(α exp(−α−1
2 )) = 2√

e
. For (ii) we define p(∆) = 2

√

∆(1−∆) and

notice that Z(W ) = E[p(∆W )] ≤ p(E∆W ) = p(Pe(W )) because the function p is concave. So

when Pe(W ) < 1
2 − 1

4

√
4− e, we have Z(W ) <

√
e
2 . (iii) follows from (i).

Theorem 2 is a consequence of the following more general result, that we state informally here

(for the full statement see Prop.6 in Appendix C).
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Figure 1: Left: Region of BP uniqueness for BEC survey from Corollary 1(iii).

Right: Region of BP uniqueness for BMS survey from Corollary 1(ii).

Proposition 1 (Informal, uniqueness of BP fixed point) For BOTS, if (10) holds, then the BP dis-

tributional fixed point is unique. For BOT if dθ2 < 1 or dθ2 > α∗ then the non-trivial fixed point is

unique.

We demonstrate the region of BP-uniqueness from Corollary 1 on Figure 1. We note that, taking the

limit ε → 1−, Theorem 2 implies that revealing an (arbitrarily) small fraction of vertex labels gives

the same information about the root bit, as revealing the whole boundary labels at large distance,

even in the reconstruction regime, cf. (5).

Conjecture 1 Let T be a regular tree or a Galton-Watson tree with Poisson offspring distribution,

with root vertex ρ. Then (BI) holds for (T, ρ, θ,W ) for all 0 < θ < 1 and all W such that

Pe(W ) 6= 1
2 .

If Conjecture 1 holds, the proof of Theorem 1 gives a precise characterisation of H(a, b), as in (6),

in terms of BOTS entropies for the entire range of a, b.

3. Proof of Theorem 1

Let us denote f(ε) = H(X|G, Y ε), where similarly as before Y ε is a BECε-survey that reveals

the true label of each node independently with probability 1 − ε. Note that f(1) = H(X|G). Let

us replace the single parameter ε by a set of parameters ε = (εu)u∈V (G) (for each vertex u, Xu

is revealed with probability 1 − εu), and let us denote Y ε
∼u = {Y ε

v : v ∈ V (G), v 6= u} and

X∼u = {Xv : v ∈ V (G), v 6= u}. Then

f(ε) = (1− εu)H(X|G,Xu, Y
ε
∼u) + εuH(X|G, Y ε

∼u) (11)

7
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and by chain rule

∂

∂εu
f(ε) = H(X|G, Y ε

∼u)−H(X|G,Xu, Y
ε
∼u) (12)

= H(Xu, X∼u|G, Y ε
∼u)−H(X∼u|G,Xu, Y

ε
∼u) (13)

= H(Xu|G, Y ε
∼u). (14)

Then, setting εu = ε for all u ∈ V (G), we get by symmetry

f ′(ε) =
∑

u∈V (G)

H(Xu|G, Y ε
∼u) = nH(X1|G, Y ε

∼1). (15)

Thus, by bounded convergence

lim
n→∞

1

n
H(X|G) =

∫ 1

0
lim
n→∞

H(X1|G, Y ε
∼1)dε. (16)

Take k = logn
10 log 2(a+b) small enough compared to n, such that the neighborhood of vertex 1 at

depth k is a tree with high probability (this is for instance proved as Proposition 2 in Mossel et al.

(2015)), and denote such neighborhood by Tk. Specifically, w.h.p. Tk is a Galton-Watson tree with

Poisson
(

a+b
2

)

offspring distribution, rooted at 1, and the labels in XTk
are distributed as BOT with

flip probability b
a+b

. Moreover, let XLk
be the vertices at distance exactly k from 1, and let Y ε

∼1,Tk

denote the survey on nodes at distance at most k from 1 (excluding 1). We bound the integrand by

the following:

H(X1|Tk, Y
ε
∼1,Tk

, XLk
) + ok(1) ≤ H(X1|G, Y ε

∼1) ≤ H(X1|Tk, Y
ε
∼1,Tk

). (17)

For the inequality on the right, we simply removed conditioning terms and thus increased the con-

ditional entropy, specifically we ignored any information from the graph or from the survey on

nodes at distance ≥ k to 1. The inequality on the left requires the following lemma, that is a direct

consequence of Proposition 2 and Lemma 4.7 in Mossel et al. (2015).

Lemma 1 H(X1|G, Y ε
∼1, XLk

) = H(X1|Tk, Y
ε
∼1,Tk

, XLk
) + ok(1).

In words, Lemma 1 states that after conditioning on the leaves, the information coming from the

graph outside Tk (including non-edges) becomes negligible, i.e. the model is asymptotically a

Markov field. By Theorem 2, if
(a−b)2

2(a+b) ≤ 1 or
(a−b)2

2(a+b) ≥ α∗, then (BI) holds for (Tk, 1,
a−b
a+b

,BECε),
for all ε < 1, thus the leftmost and the rightmost terms in (17) are asymptotically equal. This means

that the limit in the integrand in (16) exists for all ε ∈ (0, 1), thus (i) holds.

On the other hand, by Corollary 1(iii), for all ε < ε∗ =
√
e
2 ≈ 0.824 and for all a, b (BI) holds

for (Tk, 1,
a−b
a+b

,BECε). Thus

lim inf
n→∞

1

n
H(X|G) =

∫ ε∗

0
lim
k→∞

H(X1|Tk, Y
ε
∼1,Tk

, XLk
)dε+ ξinf , (18)

with

ξinf =

∫ 1

ε∗
lim inf
n→∞

H(X1|G, Y ε
∼1)− lim

k→∞
H(X1|Tk, Y

ε
∼1,Tk

, XLk
)dε (19)

≤ (1− ε∗) lim
k→∞

I(X1;XLk
|Tk) ≤ (1− ε∗) ≈ 0.178. (20)

The same holds for lim sup and ξsup.
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4. Preliminaries on BMS channels

We give necessary preliminaries on BMS channels that are used in the proof of Theorem 2. Most

material in this section can be found in e.g., (Richardson and Urbanke, 2008, Chapter 4).

Definition 2 A channel P : {±1} → Y is called a Binary Memoryless Symmetric (BMS) channel

if there exists a measurable involution σ : Y → Y such that P (σ−1(E)|+) = P (E|−) for all

measurable sets E ⊆ Y .

Examples of BMS channels include Binary Erasure Channels (BECs) and Binary Symmetric Chan-

nels (BSCs). In fact, every BMS channel is a mixture of BSCs, in the sense of the following Lemma.

Lemma 2 Every BMS channel P is equivalent to a channel X → (∆, Z), where ∆ ∈ [0, 12 ] is

independent of X , and PZ|∆,X = BSC∆(X).

In the setting of the above lemma, we call channel X → (∆, Z) the standard form of P , and call ∆
the ∆-component of P .

Definition 3 Let P : {±1} → Y and Q : {±1} → Z be two BMS channels. We say P is more

degraded than Q (denoted P ≤deg Q), if there exists a channel R : Z → Y such that P = R ◦Q.

Degradation can be characterized in terms of the ∆-component.

Lemma 3 Let P and Q be two BMS channels. Let ∆ be the ∆-component of P and ∆̃ be the

∆-component of Q. Then P ≥deg Q if and only if there exists a coupling between ∆ and ∆̃ so that

E[∆|∆̃] ≤ ∆̃ for all ∆̃ ∈ [0, 12 ] for which LHS exists.

Definition 4 Let P be a BMS channel and ∆ be the ∆-component of P . We define the following

quantities.

Pe(P ) = E∆, (probability of error)

C(P ) = E[log 2 + ∆ log∆ + (1−∆) log(1−∆)], (capacity)

Cχ2(P ) = E[(1− 2∆)2], (χ2-capacity)

Z(P ) = E[2
√

∆(1−∆)]. (Bhattacharyya coefficient)

By definition, Pe(P ) ∈ [0, 12 ], C(P ) ∈ [0, log 2], Cχ2(P ) ∈ [0, 1], Z(P ) ∈ [0, 1]. These quantities

behave nicely under degradation, by the coupling characterization (Lemma 3) and convexity.

Lemma 4 If P ≤deg Q, then the following holds:

Pe(P ) ≥ Pe(Q), C(P ) ≤ C(Q), Cχ2(P ) ≤ Cχ2(Q), Z(P ) ≥ Z(Q). (21)

5. Proof of Theorem 2

Recall the BOTS model defined in Section 2. Let Mk denote the BMS channel σρ → (ωTk
, σLk

)
and M̃k denote the BMS channel σρ → ωTk

. Let P∆k
(resp. P∆̃k

) be distribution of ∆-component

of BMS Mk (resp. M̃k). We prove the following strengthening of Theorem 2.

Theorem 3 In the setting of Theorem 2, P∆k
and P∆̃k

converge in distribution to the same distri-

bution as k → ∞. In particular,

lim
k→∞

Pe(Mk) = lim
k→∞

Pe(M̃k), (22)

lim
k→∞

C(Mk) = lim
k→∞

C(M̃k). (23)
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5.1. Belief propagation recursion

The maximum a posteriori probability (MAP) decoder is the optimal decoder for this reconstruction

problem. It can be implemented using belief propagation (BP) as follows.

For each node u, let Lk(u) denote the set of nodes in subtree rooted at u that are at distance k
to u. Let Tk(u) denote the set of nodes in subtree rooted at u that are at distance ≤ k to u. Let

Ru,k ∈ R ∪ {±∞} denote the posterior log likelihood ratio given ωTk(u) ∪ σLk(u):

Ru,k = log
P[σu = +|ωTk(u) ∪ σLk(u)]

P[σu = −|ωTk(u) ∪ σLk(u)]
. (24)

The initial value is

Ru,0 = σu · ∞. (25)

Define a function Fθ : R ∪ {±∞} → R as

Fθ(r) = 2 arctanh(θ tanh(
1

2
r)). (26)

By definition of Ru,k and Bayes rule (see e.g. Mossel and Xu (2015)), we have

Ru,k+1 =
∑

v∈L1(u)

Fθ(Rv,k) +Wu (27)

where Wu is the log likelihood ratio induced by observation, i.e.,

Wu = log
P[σu = +|ωu]

P[σu = −|ωu]
. (28)

Using (25)(27) we are able to compute Rρ,k recursively.

For observation without leaves, let R̃u,k denote the posterior log likelihood ratio given ωTk(u).

Then R̃u,k satisfies the same recursion (27), but with a different initial value

R̃u,0 = 0. (29)

Let Mk(u) denote the BMS channel σu → (ωTk(u), σLk(u)). Let M̃k(u) denote the BMS chan-

nel σu → ωTk(u). Let ∆u,k and ∆̃u,k denote the corresponding ∆-components (both are random

variables supported on [0, 12 ]). They relate to log likelihood ratio via the following expression:

|Ru,k| = log
1−∆u,k

∆u,k
, |R̃u,k| = log

1− ∆̃u,k

∆̃u,k

. (30)

There exists a canonical coupling between Mk(u) and M̃k(u) via forgetting σLk(u) (i.e., the

channel (ωTk(u), σLk(u)) 7→ ωTk(u)). So Mk(u) is less degraded than M̃k(u). Furthermore, by data

processing inequality for total variation, under the canonical coupling, we have

E[∆u,k|∆̃u,k] ≤ ∆̃u,k. (31)

10
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As we will see, the core of our proof is the use of this degradation relationship.

Let µ+
k be the distribution of Ru,k conditioned on σu = + (and for Galton-Watson trees, without

revealing structure of the subtree rooted at u), and µ̃+
k be the distribution of R̃u,k conditioned on

σu = +. These definitions do not depend on the choice of u. Then µ+
0 is the point measure at +∞,

µ̃+
0 is the point measure at 0.

Both distributions satisfy the same recursion. Consider the equation

R+
u,k+1 =

∑

v∈L1(u)

ZvFθ(R
+
v,k) +Wu (32)

where {Zv, R
+
v,k,Wu : v ∈ L1(u)} are independent, Zv are i.i.d. Bernoulli with P[Zv = +1] =

1 − P[Zv = −1] = 1 − δ, R+
v,k ∼ µ+

k , and Wu distributes as log likelihood ratio corresponding to

the survey BMS. Then R+
u,k+1 ∼ µ+

k+1. The same holds if we replace R+
v,k ∼ µ+

k with R̃+
v,k ∼ µ̃+

k

and R+
u,k+1 ∼ µ+

k+1 with R̃+
u,k+1 ∼ µ̃+

k+1.

BP distributional fixed point. A distribution µ on R ∪ {±∞} is called a BP fixed point of the

BOTS (d, θ,W ) if taking R+
i i.i.d. ∼ µ, i ∈ [d], Zi and RW as above results in

R+ =
∑

1≤i≤d

ZiFθ(R
+
i ) +RW (33)

having the same distribution µ. In this work we restrict our attention to symmetric distributions,

i.e., distributions associated with BMS channels. We talk below about the fixed point distribution

P∆ on [0, 12 ] that is related to µ via transformation (30). Namely, a distribution P∆ is a fixed point

iff the law µ of random variable R+ is a fixed point, where R+ is generated via sampling ∆ ∼ P∆

and then setting

R+ =

{

log 1−∆
∆ , w.p. 1−∆,

− log 1−∆
∆ , w.p. ∆.

(34)

Similarly, we define the BP fixed point for the BOTS (Poi(d), θ,W ) where in (33) d is replaced

with b ∼ Poi(d).

5.2. Contraction of potential function

The technical part of our proof is contraction of certain potential functions. The next proposition

shows the kind of contraction result we need.

Proposition 2 Let φ : R ∪ {±∞} → R ∪ {±∞} be a function such that the function g : [0, 12 ] →
R ∪ {±∞} defined as

g(∆) = (1−∆)φ(log
1−∆

∆
) +∆φ(− log

1−∆

∆
) (35)

is decreasing and α-strongly convex for some α > 0. If

lim
k→∞

E[φ(R+
ρ,k)− φ(R̃+

ρ,k)] = 0, (36)

then under the canonical coupling,

lim
k→∞

E(∆ρ,k − ∆̃ρ,k)
2 = 0. (37)

11
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Proof Because g is α-strongly convex, we have

g(∆ρ,k)− g(∆̃ρ,k) ≥ g′(∆̃ρ,k)(∆ρ,k − ∆̃ρ,k) +
α

2
(∆ρ,k − ∆̃ρ,k)

2. (38)

Then

E[φ(R+
ρ,k)− φ(R̃+

ρ,k)] = E∆̃ρ,k
E[φ(R+

ρ,k)− φ(R̃+
ρ,k)|∆̃ρ,k]

= E∆̃ρ,k
E[g(∆ρ,k)− g(∆̃ρ,k)|∆̃ρ,k]

≥ E∆̃ρ,k
E[g′(∆̃ρ,k)(∆ρ,k − ∆̃ρ,k) +

α

2
(∆ρ,k − ∆̃ρ,k)

2|∆̃ρ,k]

= E∆̃ρ,k
[g′(∆̃ρ,k)(E[∆ρ,k|∆̃ρ,k]− ∆̃ρ,k)] +

α

2
E(∆ρ,k − ∆̃ρ,k)

2

≥ α

2
E(∆ρ,k − ∆̃ρ,k)

2. (39)

The second step is because R+
ρ,k and ∆ρ,k (also R̃+

ρ,k and ∆̃ρ,k) relate via (34). By (39), we see that

(36) implies (37).

Note that (39) also shows that E[φ(R+
ρ,k)− φ(R̃+

ρ,k)] is non-negative as long as g is decreasing and

convex.

We choose the potential function to be φ(r) = − exp(−1
2r). This potential function is chosen

so that the expectation of φ(R+
u,k+1) has a nice decomposition (49). In fact E[exp(−1

2R
+)] is equal

to the Bhattacharyya coefficient of the BMS channel, and (49) can be interpreted as multiplicativity

of Bhattacharyya coefficients under *-convolution.

The function g is given by g(∆) = −2
√

∆(1−∆). One can check that g is decreasing and

4-strongly convex on [0, 12 ].

Proposition 3 Assume that we have a non-trivial survey channel. Let

C1 = C1(d, θ,W ) = dθ2(1− (dθ2 − 1)+
d− 1

)
d−1

2 Z(W ). (40)

For regular trees, under the canonical coupling, for any ε > 0, there exists k∗ such that for all

k ≥ k∗,

E[exp(−1

2
R̃+

ρ,k+1)− exp(−1

2
R+

ρ,k+1)] ≤ (1 + ε)C1E[exp(−
1

2
R̃+

ρ,k)− exp(−1

2
R+

ρ,k)]. (41)

In particular, if C1 < 1, then (36) holds.

For Galton-Watson trees with Poisson offspring distribution, the same holds with C1 replaced

by

C2 = C2(d, θ,W ) = dθ2 exp(−d(1−
√

1− (dθ2 − 1)+
d

))Z(W ). (42)

Proof of Proposition 3 is deferred to Appendix A.

Proposition 2 and 3 complete the proof of Theorem 3, because for i = 1, 2, we have

Ci ≤ dθ2 exp(−(dθ2 − 1)+
2

)Z(W ). (43)
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6. Other results

Weak spatial mixing. BOT (without survey) is an example of the Ising model. As it is typical

for such models, at high temperature (i.e. dθ ≤ 1) it exhibits the property known as weak spatial

mixing (WSM): enforcing a (far away) boundary condition does not affect the distribution of spins.

This property disappears at low temperatures (dθ > 1), but what is surprising is that there is a

range of parameters (dθ > 1 but dθ2 < 1) in which there is no WSM, but reconstruction is still

impossible Bleher et al. (1995).

Now, the BOTS model can be thought of as an example of an Ising spin glass system: one

first generates the survey and then, treating the survey as quenched randomness, considers an Ising

model with external fields corresponding to survey. The question we ask is whether in this spin-

glass type model we still have that (in the limit of vanishing survey) the threshold for WSM appears

at dθ = 1. Some partial results towards this are contained in Appendix E. We mention that for BEC

survey we were not able to show this.

Boundary irrelevance (BI) on amenable graphs. So far we studied (BI) property (9) for trees,

but it can also be defined for general graphs as follows.

Let G = (V,E) be an infinite graph. Consider the Spin Synchronization model, where we have

i.i.d. random variables Xv ∼ Unif({±1}) for v ∈ V ; for each edge uv ∈ E, we observe a random

variable Yuv ∼ BSCδ(XuXv), and we denote θ = 1 − 2δ. Conditioned on the X variables, the Y
variables are mutually independent. In addition to the edge variables, we may observe surveys at

each node: for v ∈ V , we have ωv ∼ W (Xv), with W being a fixed BMS channel. In this Section

we consider BECε survey.

Let o ∈ V be a vertex. Let Bn(o) be the set of nodes with distance ≤ n to o, and ∂Bn(o) be

the set of nodes at distance n to o. We use notation X∂Bn(o) for the set {Xv : v ∈ ∂Bn(o)} and

notation YBn(o) for {Yuv : uv ∈ E, u ∈ Bn(o), v ∈ Bn(o)}. We say the model (G, o, θ,W ) has the

(BI) property if

lim
n→∞

I(Xo;X∂Bn(o)|YBn(o), ωBn(o)) = 0. (44)

In Appendix F we show, by applying results of Alaoui and Montanari (2019), that (BI) holds for all

amenable graphs and survey channel being BECε. The definition of such graphs appears therein,

but in a nutshell, it requires the boundary of any subset S ⊂ V to be negligible compared to |S|.
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Appendix A. Proof of Proposition 3

Let us first deal with the regular tree case. Let u be a vertex and v1, . . . , vd be its children. Let

R+
v1,k

, . . . , R+
vd,k

be i.i.d. ∼ µ+
k , and R̃+

v1,k
, . . . , R̃+

vd,k
be i.i.d. ∼ µ̃+

k . Define R+
u,k+1 and R̃+

u,k+1

using (32). Furthermore, for 0 ≤ i ≤ d, define R+
u,i,k+1 as

R+
u,i,k+1 =

∑

1≤j≤i

ZjFθ(R̃
+
vj ,k

) +
∑

i+1≤j≤d

ZjFθ(R
+
vj ,k

) +Wu. (45)

That is, R+
u,0,k+1 = R+

u,k+1, and R+
u,d,k+1 = R̃+

u,k+1.

For 1 ≤ i ≤ d and k large enough, let us prove that

E[exp(−1

2
R+

u,i,k+1)− exp(−1

2
R+

u,i−1,k+1)] ≤ (1 + ε)
C1

d
E[exp(−1

2
R̃+

v1,k
)− exp(−1

2
R+

v1,k
)]

(46)

where C1 is defined in (40). We prove that (46) is true even if conditioned on ∆̃vi,k. For ∆ ∈ [0, 12 ],
define

G(∆) = E[exp(−1

2
R+

u,i,k+1)− (1 + ε)
C1

d
exp(−1

2
R̃+

vi,k
)|∆̃vi,k = ∆]. (47)

Define p(∆) = −g(∆) = 2
√

∆(1−∆) so that we work with non-negative numbers. So

E[exp(−1

2
R̃+

vi,k
)|∆̃vi,k = ∆] = p(∆). (48)
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Then

E[exp(−1

2
R+

u,i,k+1)|∆̃vi,k = ∆]

=
∏

1≤j≤i−1

E[exp(−1

2
ZjFθ(R̃

+
vj ,k

))] ·
∏

i+1≤j≤d

E[exp(−1

2
ZjFθ(R

+
vj ,k

))]

· E[exp(−1

2
ZiFθ(R̃

+
vi,k

))|∆̃vi,k = ∆] · E[exp(−1

2
Wu)]. (49)

Let us examine E[exp(−1
2ZiFθ(R̃

+
vi,k

))|∆̃vi,k = ∆]. We can compute that

exp(−1

2
ZiFθ(R̃

+
vi,k

)) =

{

exp(−1
2 log

1−∆∗δ
∆∗δ ), w.p. 1−∆ ∗ δ,

exp(+1
2 log

1−∆∗δ
∆∗δ ), w.p. ∆ ∗ δ, (50)

where we use notation δ1 ∗ δ2 = δ1(1− δ2) + δ2(1− δ1)). So

E[exp(−1

2
ZiFθ(R̃

+
vi,k

))|∆̃vi,k = ∆] = E[p(∆ ∗ δ)]. (51)

Similarly,

E[exp(−1

2
ZjFθ(R̃

+
vj ,k

))] = E[p(∆̃v1,k ∗ δ)], (52)

E[exp(−1

2
ZjFθ(R

+
vj ,k

))] = E[p(∆v1,k ∗ δ)]. (53)

Finally,

E[exp(−1

2
Wu)] = E[p(∆W )] = Z(W ). (54)

So from (49) we get

E[exp(−1

2
R+

u,i,k+1)|∆̃vi,k = ∆] = E[p(∆̃v1,k ∗ δ)]i−1
E[p(∆v1,k ∗ δ)]d−ip(∆ ∗ δ)Z(W ). (55)

So

G′′(∆) = E[p(∆̃v1,k ∗ δ)]i−1
E[p(∆v1,k ∗ δ)]d−iZ(W )

d2

d∆2
p(∆ ∗ δ)

− (1 + ε)
C1

d
p′′(∆). (56)

Let us bound each factor.

p(∆ ∗ δ) = 2
√

(∆ ∗ δ)(1−∆ ∗ δ) =
√

1− θ2(1− 2∆)2. (57)

So

E[p(∆̃v1,k ∗ δ)] = E[

√

1− θ2(1− 2∆̃v1,k)
2] ≤

√

1− θ2E(1− 2∆̃v1,k)
2. (58)
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By Proposition 4, for any ε′ > 0, for k large enough, we have

E[(1− 2∆̃v1,k)
2] ≥ (

dθ2 − 1

(d− 1)θ2
− ε′)+. (59)

So

E[p(∆̃v1,k ∗ δ)] ≤
√

1− θ2(
dθ2 − 1

(d− 1)θ2
− ε′)+. (60)

Similarly,

E[p(∆v1,k ∗ δ)] ≤
√

1− θ2(
dθ2 − 1

(d− 1)θ2
− ε′)+. (61)

Note that p is strictly concave on [0, 12 ], and p′(12) = 0. So

d2

d∆2
p(∆ ∗ δ) ≥ θ2p′′(∆). (62)

So (56) gives

G′′(∆) ≥ (1− θ2(
dθ2 − 1

(d− 1)θ2
− ε′)+)

d−1

2 θ2p′′(∆)Z(W )− (1 + ε)
C1

d
p′′(∆)

= ((1− θ2(
dθ2 − 1

(d− 1)θ2
− ε′)+)

d−1

2 θ2Z(W )− (1 + ε)
C1

d
)p′′(∆). (63)

Note that

lim
ε′→0

(1− θ2(
dθ2 − 1

(d− 1)θ2
− ε′)+)

d−1

2 = (1− (dθ2 − 1)+
d− 1

)
d−1

2 . (64)

So we can take ε′ > 0 small enough so that

(1− θ2(
dθ2 − 1

(d− 1)θ2
− ε′)+)

d−1

2 < (1 + ε)(1− (dθ2 − 1)+
d− 1

)
d−1

2 . (65)

So for k large enough, G′′(∆) ≤ 0 for all ∆ ∈ [0, 12 ] and G(∆) is convex. Also,

G′(
1

2
) = E[p(∆̃v1,k ∗ δ)]i−1

E[p(∆v1,k ∗ δ)]d−iZ(W )
d

d∆
|∆= 1

2

p(∆ ∗ δ)

− (1 + ε)
C1

d
p′(

1

2
) (66)

= 0. (67)

So G′ is non-positive, thus G is decreasing on [0, 12 ]. Because Mk(vi) (BMS corresponding to R+
vi,k

)

is less degraded than M̃k(vi) (BMS corresponding to R̃+
vi,k

), we get (46).

For Galton-Watson trees with Poisson offspring distribution, the proof is very similar to, and

slightly more involved than the regular case. Let u be a vertex. Let R+
v1,k

, R+
v2,k

, . . . be i.i.d. ∼ µ+
k ,

17
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and R̃+
v1,k

, R̃+
v2,k

, . . . be i.i.d. ∼ µ̃+
k . Let b ∼ Poi(d) and v1, . . . , vb be the children of u. For i ≥ 0,

define

R+
u,i,k+1 =

∑

1≤j≤min{i,b}
ZjFθ(R̃

+
vj ,k

) +
∑

i+1≤j≤b

ZjFθ(R
+
vj ,k

) +Wu. (68)

For i ≥ 1, let us prove that

E[exp(−1

2
R+

u,i,k+1)− exp(−1

2
R+

u,i−1,k+1)] ≤ ciE[exp(−
1

2
R̃+

v1,k
)− exp(−1

2
R+

v1,k
)]. (69)

where ci are constants to be chosen later. Define

Gi(∆) = E[exp(−1

2
R̃+

u,i,k+1)− ci exp(−
1

2
R̃+

vi,k
)|∆̃vi,k = ∆]. (70)

Let us prove that Gi is decreasing and convex on [0, 12 ]. Similarly to (56), we have

G′′
i (∆) = Eb[1b≥iE[p(∆̃v1,k ∗ δ)]i−1

E[p(∆v1,k ∗ δ)]b−iZ(W )
d2

d∆2
p(∆ ∗ δ)]− cip

′′(∆). (71)

Let us study each term in (71). By (57) and Proposition 4, for any ε′ > 0, for k large enough, we

have

E[p(∆̃v1,k ∗ δ)] ≤
√

1− θ2E(1− 2∆̃v1,k)
2 ≤

√

1− θ2(
dθ2 − 1

dθ2
− ε′)+. (72)

Similarly,

E[p(∆v1,k ∗ δ)] ≤
√

1− θ2(
dθ2 − 1

dθ2
− ε′)+. (73)

(62) still holds in the Poisson case. So (71) gives

G′′
i (∆) ≥ (Eb[1b≥i(1− θ2(

dθ2 − 1

dθ2
− ε′)+)

b−1

2 ]θ2Z(W )− ci)p
′′(∆). (74)

We can take

ci = Eb[1b≥i(1− θ2(
dθ2 − 1

dθ2
− ε′)+)

b−1

2 ]θ2Z(W ) (75)

so that G′′
i (∆) ≥ 0 for all i ≥ 1 and ∆ ∈ [0, 12 ]. Also,

G′
i(
1

2
) = Eb[1b≥iE[p(∆̃v1,k ∗ δ)]i−1

E[p(∆v1,k ∗ δ)]b−iZ(W )
d

d∆
|∆= 1

2

p(∆ ∗ δ)]

− cip
′(
1

2
) (76)

= 0. (77)

So Gi is decreasing.
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By summing up (69) for i ≥ 1, we get

E[exp(−1

2
R̃+

u,k+1)− exp(−1

2
R+

u,k+1)] ≤ (
∑

i≥1

ci)E[exp(−
1

2
R̃+

v1,k
)− exp(−1

2
R+

v1,k
)]. (78)

By (75), we have

∑

i≥1

ci = θ2Eb[1b≥i(1− θ2(
dθ2 − 1

dθ2
− ε′)+)

b−1

2 ]Z(W ) (79)

≤ dθ2 exp(−d(1−
√

1− θ2(
dθ2 − 1

dθ2
− ε′)+))Z(W ). (80)

We can take ε′ > 0 small enough so that

exp(−d(1−
√

1− θ2(
dθ2 − 1

dθ2
− ε′)+)) < (1 + ε) exp(−d(1−

√

1− (dθ2 − 1)+
d

)). (81)

This finishes the proof for the Poisson tree case.

Appendix B. χ2-capacity of broadcasting-on-tree channels

Proposition 4 Consider the Broadcasting on Trees model defined in Section 2, with the following

observation models:

• M1
k : σρ → νLk

, where νv ∼ BSCη(σv);

• M2
k : σρ → (σLk

, ωTk
).

• M3
k : σρ → σLk

;

• M4
k : σρ → ωTk

with non-trivial survey channel W ;

• M5
k : σρ → ωLk

with non-trivial survey channel W .

For each of the above channels, we have

• If we work with regular trees, then

lim
k→∞

Cχ2(Mk) ≥
(dθ2 − 1)+
θ2(d− 1)

. (82)

• If we work with Galton-Watston trees with Poisson offspring distribution, then

lim
k→∞

Cχ2(Mk) ≥
(dθ2 − 1)+

dθ2
. (83)

Proof The χ2-capacity is always non-negative, so the dθ2 ≤ 1 case is automatic. In the following

we assume dθ2 > 1.

First we observe that all M i
k’s are less degraded than M1

k for some suitable choice of η. This

is obvious for i = 2, 3. Clearly M4
k is less degraded than M5

k . That M5
k ≤deg M1

k follows from
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(Roozbehani and Polyanskiy, 2019, Lemma 2, 3), where we can take η = Pe(W ). So by Lemma 4,

we only need to prove the result for M1
k .

We prove the result by applying Lemma 5. To do this, we need to find a BMS channel more

degraded than M1
k which takes value in R. One natrual choice is the majority decoder. We define

Sk =
∑

v∈Lk

νv. (84)

Then the channel σρ → Sk is clearly more degraded than M1
k . We apply Proposition 5 to conclude.

Lemma 5 (Restatement of (Evans et al., 2000, Lemma 4.2(iii))) Let P : X → Y be a BMS

channel with Y a real variable, and with involution Y 7→ −Y . Then Cχ2(P ) ≥ (E+Y )2

Var(Y ) .

Proof Let X → (∆, Z) be the equivalent standard form of P . By Cauchy-Schwarz, we have

E
+[(1− 2∆)2]E+[Y 2] ≥ (E+[(1− 2∆)|Y |])2 = (E+Y )2. (85)

This is equivalent to the desired result.

Proposition 5 Assume dθ2 > 1. Consider the channel σρ → Sk defined in (84).

For regular trees,

lim
k→∞

Var+ Sk

(E+Sk)2
=

1− θ2

dθ2 − 1
. (86)

For Galton-Watson trees with Poisson offspring,

lim
k→∞

Var+ Sk

(E+Sk)2
=

1

dθ2 − 1
. (87)

Proof The regular tree case is proved in (Mossel et al., 2016, Lemma 3.4, 3.5). (Note that the

expression for limk→∞
Var+ Sk

(E+Sk)2
on top of (Mossel et al., 2016, pg. 2224) is incorrect.)

Let us focus on the Poisson tree case. It is easy to see that

E
+Sk = (1− 2η)(dθ)k. (88)

Let ρ be the root, and v1, . . . , vb be its children. By variance decomposition, we have

Var+ Sρ,k+1 = Var+ E[Sρ,k+1|b] + EbVar
+(E[Sρ,k+1|b, σv1 , . . . , σvb ]|b)

+ EVar+(Sρ,k+1|b, σv1 , . . . , σvb). (89)

Let us compute each summand.

Var+ E[Sρ,k+1|b] = Var+(bθ(1− 2η)(dθ)k) = dθ2(1− 2η)2(dθ)2k. (90)
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EbVar
+(E[Sρ,k+1|b, σv1 , . . . , σvb ]|b)

= EbVar
+(

∑

i∈[b]
σvi(1− 2η)(dθ)k|b)

= Eb[b(1− θ2)(1− 2η)2(dθ)2k]

= d(1− θ2)(1− 2η)2(dθ)2k. (91)

EVar+(Sρ,k+1|b, σv1 , . . . , σvb) = Eb[b
∑

i∈[b]
Var+ Svi,k] = dVar+ Sρ,k. (92)

Plugging (90)(91)(92) into (89), we get

Var+ Sρ,k+1 = d(1− 2η)2(dθ)2k + dVar+ Sρ,k. (93)

Solving (93) with initial value Sρ,0 = 4η(1− η), we get

Var+ Sρ,k = 4η(1− η)dk +
∑

i∈[k]
dk−id(1− 2η)2(dθ)2i−2

= 4η(1− η)dk + (1− 2η)2dk
(dθ2)k − 1

dθ2 − 1
. (94)

Putting together (88)(94), we get the desired result.

Appendix C. Uniqueness of BP fixed point

Proposition 6 Fix d, δ, and a (possibly trivial) BMS W . Recall definition (33) of the BP fixed point

(the P∆ definition) for BOTS (d, θ,W ).

• If W is non-trivial (Pe(W ) < 1
2 ) and C1 < 1 (where C1 is defined in (40)), there is exactly

one BP fixed point.

• If W is trivial and dθ2 ≤ 1, there is exactly one BP fixed point, which is trivial (the point

distribution at ∆ = 1
2 ).

• If W is trivial and C1 < 1, there are exactly two BP fixed points, one is trivial and the other

is non-trivial.

The same (statements about number of fixed points) hold for BOTS (Poi(d), θ,W ) with C1

replaced by C2 (defined in (42)).

Proof If W is trivial and dθ2 ≤ 1, we are in the non-reconstruction regime and there is a unique

BP fixed point, and it is trivial.

If W is trivial, there is one trivial fixed point. If W is non-trivial, the trivial distribution is not a

fixed point. We prove that for any (d, θ,W ) satisfying C1 < 1 (or C2 < 1 for Poisson trees), there

is exactly one non-trivial fixed point.

Suppose there are two non-trivial fixed points P∆ and Q∆. Let P be a BMS corresponding to

P∆ and Q be a BMS corresponding to Q∆. Let r = max{Pe(P ), Pe(Q)}. Then BSCr is non-trivial

and is more degraded than both P and Q.

We consider a Broadcasting on Tree model with three different types of observations:
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• Ma
k : Observe P (σv) for all v ∈ Lk;

• M b
k: Observe Q(σv) for all v ∈ Lk;

• M c
k : Observe BSCr(σv) for all v ∈ Lk.

By the same proof as Theorem 3, in the limit k → ∞, Ma
k and M c

k converge to the same BMS;

the same holds for M b
k and M c

k . Therefore in the limit k → ∞, Ma
k and M b

k converge to the same

BMS.

By the assumption that P and Q are BP fixed points, Ma
k are equivalent to P for all k, and M b

k

are equivalent to Q for all k. So P and Q are equivalent BMSs. This means P∆ = Q∆.

Appendix D. Rough estimate of C in Mossel et al. (2016)

As we mentioned, Mossel et al. (2016) proves uniqueness of BP fixed point for BOT (without

survey) and dθ2 > C for an unspecified C. Can we extract explicit C from their work? First, we

point out that taken literally, the proof demands at least C > 75. Second, we (heuristically!) argue

below that it may be difficult to reduce C below 25 without significant modifications of the proof.

We remark that this section is not meant to be rigorous and it may very well be that the method

therein can be tweaked in ways we did not consider.

The proof in question is divided into the large θ case and the small θ case. First, they prove that

there exists a θ∗ > 0 so that for θ ≤ θ∗, uniqueness of BP fixed point holds for large enough dθ2.

Then they prove that for θ > θ∗, there exists d large enough so that uniqueness of BP holds. We

focus on the small θ part and analyze their proof for θ close to 0.

In (Mossel et al., 2016, middle of page 2230) authors require dθ2 larger than about 75. Let us

analyze how much improvement is possible. In the following, equation and lemmas refer to the

cited paper.

• In Lemma 3.6, it is impossible to achieve an RHS better than 1 − 1−θ2

dθ2
by using a majority

estimator (which is used by both their paper and the current paper).

• In (3.8), they applied Lemma 3.9 with p = 1
4 . Changing this exponent would result in a big

change in the proof, so we leave it as-is.

• In Lemma 3.10, by Taylor expansion, it is impossible to improve RHS to dmd−1(EA2 −
EB2)2.

• In Lemma 3.11, by Taylor expansion

√

1− x

1 + x
= 1− x+

x2

2
− x3

2
+O(x4),

their proof cannot give a RHS better than 1− θ2xk +
1
2θ

2. Combined with Lemma 3.6, their

proof does not give a RHS better than 1− θ2(1− 1−θ2

dθ2
) + 1

2θ
2.

• In Lemma 3.12, RHS cannot be better than 2θ2, because this is less than | d
dx

1−θ2x√
1−θ2x2

| at

x = −1.
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• Consequently, in Lemma 3.13, the leading factor in RHS cannot be better than 2θ2.

• In (3.12), RHS cannot be better than 64d2md−2(a−b)2 by using (3.8) with p = 1
4 and Lemma

3.10.

• Combining the above, in the expression in the middle of Page 2230, RHS cannot be better

than

64((2θ2)2d2(1− θ2(1− 1− θ2

dθ2
) +

1

2
θ2)d−2)z.

Computation shows that, for the factor before z to be smaller than 1, we need at least dθ2 ≥ 26
in the limit θ → 0.

Appendix E. Weak spatial mixing

In Section 5, we studied whether BP message (with recursion (27)) converges to the same value

under perfect observation or no observation of leaves. A related question is weak spatial mixing,

i.e., whether BP message converges to the same value under any observation of leaves.

Fix k ≥ 0. Let RLk,0 and R′
Lk,0

be two boundary conditions. Define Rρ,k (resp. R′
ρ,k) by using

(27) recursively, with initial condition RLk,0 (resp. R′
Lk,0

). We say the model has weak spatial

mixing if

lim
k→∞

ET,ωTk
sup

RLk,0,R
′

Lk,0

|f(Rρ,k)− f(R′
ρ,k)| = 0 (95)

for all bounded continuous functions f : R ∪ {±∞} → R.

In the following we focus on regular trees. It is known Bleher et al. (1995) that in the case there

is no survey, dθ = 1 is the threshold for WSM, i.e., when dθ < 1, WSM holds; when dθ > 1, WSM

does not hold. The following result shows that for WSM with survey, this is still almost the case.

Theorem 4

• For dθ < 1 and any survey, WSM holds.

• For dθ > 1, there exists ε = ε(d, θ) > 0 such that for BSC survey with Pe(W ) > 1
2 − ε,

WSM does not hold.

Proof For dθ < 1: For any node u, We have

E|Ru,k+1 −R′
u,k+1| = E|

∑

v∈L1(u)

(Fθ(Rv,k)− Fθ(R
′
v,k))| (96)

≤ dθE|Rv1,k −R′
v1,k

|. (97)

The second step uses the fact that Fθ is θ-Lipschitz. Then

E|Rρ,k+1 −R′
ρ,k+1| ≤ dθE|Rρ,k −R′

ρ,k| (98)

and we get the desired contraction.
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For dθ > 1: We separate the limit BP distribution for (+)-boundary condition and (−)-
boundary condition. Because dθ > 1, there exists x > 0 such that dFθ(x) > x. Let ε be small

enough so that for all η with Pe(BSCη) >
1
2 − ε, we have

dFθ(x)− log
1− η

η
> x. (99)

In this case, we can prove by induction that if we start with the (+)-boundary condition, then Ru,k >
x for all u and k. By symmetry, if we start with the (−)-boundary condition, then Ru,k < −x for

all u and k. So we get the desired separation.

Note that for the case dθ > 1 we only prove for BSC survey. Numerical computation sug-

gests that the result should hold for any BMS survey with sufficiently large Pe. Thus we make the

following conjecture.

Conjecture 2 For dθ > 1, there exists ε = ε(d, θ) > 0 such that for any BMS survey W with

Pe(W ) > 1
2 − ε, WSM does not hold.

Appendix F. Amenable graphs

Recall definition of the spin synchronization system and the (BI) property given in (44).

Definition 6 (Amenable graph (Alaoui and Montanari (2019))) We say a graph G is amenable

if inf{|∂S|/|S| : S ⊂ V finite, o ∈ S} = 0, where ∂S = {u ∈ S : ∃v /∈ S, (u, v) ∈ E}.

Theorem 5 Let G be an amenable graph. For any ε ∈ [0, 1), the (BI) holds for (G, o, θ,BECε).

Proof A consistent part of this proof is inspired by Lemma 6.3 in Alaoui and Montanari (2019). We

reproduce it for a self-contained exposure. As in the proof of Theorem 1, let us replace the single

parameter ε by a set of parameters (εu)u∈V (G) (for each vertex u, Xu is revealed with probability

1 − εu), and let us denote Xε
∼u = {Xε

v : v ∈ V (G), v 6= u}. For brevity, we write Bn, ∂Bn for

Bn(o), ∂Bn(o). Then,

∂

∂εu
H(X∂Bn

| Y,Xε) = I(Xu;X∂Bn
| Y,Xε

∼u),

and setting εu = ε for every u ∈ Bn we get

d

dε
H(X∂Bn

| Y,Xε) =
∑

u∈Bn

I(Xu;X∂Bn
| Y,Xε

∼u). (100)

Thus, integrating with respect to ε we get

∫ 1

ε

∑

u∈Bn

I(Xu;X∂Bn
| Y,Xε′

∼u)dε
′ = H(X∂Bn

| Y )−H(X∂Bn
| Y,Xε) (101)

≤ H(X∂Bn
) (102)

≤
∑

u∈∂Bn

H(Xu) (103)

= log 2|∂Bn|. (104)
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If we divide by |Bn|, we get that for all ε < 1

∫ 1

ε

1

|Bn|
∑

u∈Bn

I
(

Xu;X∂Bn
| YBn , X

ε′

Bn

)

dε′ ≤ log 2 · |∂Bn|
|Bn|

. (105)

Since G is amenable, the RHS is vanishing as n → ∞. Note that the integrand in the LHS is

bounded by log 2, hence by bounded convergence theorem, we get that for all ε ∈ [0, 1)

lim
n→∞

1

|Bn|
∑

u∈Bn

I
(

Xu;X∂Bn
| YBn , X

ε
Bn

)

= 0. (106)

To conclude, notice that there exists k ∈ N such that

I(Xo;X∂Bk·n(o)|Y,Xε) ≤ 1

|Bn(o)|
∑

u∈Bn(o)

I(Xu;X∂Bn(o) | Y,Xε). (107)
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