Proceedings of Machine Learning Research vol 134:1-25, 2021 34th Annual Conference on Learning Theory

Stochastic block model entropy and broadcasting on trees with survey

Emmanuel Abbe EMMANUEL.ABBE @EPFL.CH
Elisabetta Cornacchia ELISABETTA.CORNACCHIA @EPFL.CH
Ecole polytechnique fédérale de Lausanne

Yuzhou Gu YUZHOUGU @MIT.EDU
Yury Polyanskiy YP@MIT.EDU
Massachusetts Institute of Technology

Editors: Mikhail Belkin and Samory Kpotufe

Abstract

The limit of the entropy in the stochastic block model (SBM) has been characterized in the sparse
regime for the special case of disassortative communities Coja-Oghlan et al. (2017) and for the
classical case of assortative communities but in the dense regime Deshpande et al. (2016). The
problem has not been closed in the classical sparse and assortative case. This paper establishes the
result in this case for any SNR besides for the interval (1, 3.513). It further gives an approximation
to the limit in this window.

The result is obtained by expressing the global SBM entropy as an integral of local tree en-
tropies in a broadcasting on tree model with erasure side information. The main technical advance-
ment then relies on showing the irrelevance of the boundary in such a model, also studied with
variants in Kanade et al. (2016), Mossel et al. (2016) and Mossel and Xu (2015). In particular, we
establish the uniqueness of the BP fixed point in the survey model for any SNR above 3.513 or
below 1. This only leaves a narrow region in the plane between SNR and survey strength where the
uniqueness of BP conjectured in these papers remains unproved.

Keywords: stochastic block model, broadcasting on trees with side information, belief propaga-
tion, local algorithms optimality, information-theoretic limits.

1. Introduction

Over the last decade, several works have established a precise picture for the statistical and algo-
rithmic behavior of the stochastic block model (see an account in Abbe (2018)). In particular, the
questions of weak and exact recovery, i.e., whether it is possible (or not) to recover the communities
in the extremal cases of weak and exact accuracy, have been fully closed in the two-community
symmetric SBM by establishing sharp threshold phenomena in terms of appropriate signal-to-noise
(SNR) ratios Massouli¢ (2014); Mossel et al. (2015, 2018); Abbe et al. (2016). Yet, despite sig-
nificant progress, the more nuanced question of proving how much information or agreement can
be recovered about the communities at any given value of the SNR has remained open even in this
simplest case.

More specifically, for two symmetric communities and in the sparse regime, the expression of
the limiting entropy of the SBM is characterized' at all SNR for the special case of disassortative
communities (i.e., communities that connect more outside than inside) Coja-Oghlan et al. (2017).

1. Characterizing the limit does not mean obtaining an explicit expression; it refers to an implicit n-independent ex-
pression relying on integrals and fixed point equations for the quantities of interest in all of the papers discussed
here.
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The problem for assortative communities is closed but in the denser regimes, where the vertex
degrees diverge while maintaining a finite SNR Deshpande et al. (2016). However, for the classical
case of assortative communities and in the sparse regime, a complete characterization remains open,
despite significant progress Kanade et al. (2016); Mossel et al. (2016); Mossel and Xu (2015). The
expression of the optimal agreement (rather than the entropy) is known in this case for SNR large
enough, and is related to the problem of robust reconstruction on a tree Mossel et al. (2016). This
result is conjectured to hold all the way down to the optimal threshold of 1, i.e., the threshold until
which the communities can be weakly recovered. We make progress on this question by establishing
the result down to 3.513. Further, we establish new results and improvements of prior results for the
problem of broadcasting on a tree with side information; see Section 1.1.

The SBM entropy. Recall that in the symmetric SBM with two communities, a random variable
X is drawn uniformly at random in {£1}" and an n-vertex graph G is drawn by connecting vertices
having same (resp. different) values in X with probability a/n (resp. b/n).

The SBM mutual information is defined by the limit (if it exists)

T(a,b) == lim ~I(X:G), )
n—oo N
where [ is the mutual information. Note that establishing the existence of this limit is nontrivial.
This was proved in Abbe and Montanari (2015) for the case of a < b, the same case for which the
value of the limit has more recently been established Coja-Oghlan et al. (2017). Note also that due
to the chain rule I(X; G) = H(X) — H(X|G), the SBM mutual information is the complement of
the SBM conditional entropy (called simply the SBM entropy)

H(a,b) = Tim ~H(X|G). P
n—oo N
Informally, the SBM mutual information measures how much information can be recovered about
the communities after observing the graph, and equivalently, the SBM entropy measures how much
uncertainty is left about the communities after observing the graph. More formally, it quantifies the
average number of bits needed to represent the communities after observing the graph; see Abbe
(2016) for formal relations to graph compression.

Note that one may use other measures on the communities signal given the graph, such as the
optimal (normalized) mean square error of reconstructing the n X n rank-2 block matrix (with a/n
in the n/2 x n/2 diagonal blocks and b/n in the off diagonal blocks), or the optimal (normalized)
agreement (Hamming distance) of reconstructing X up to a community relabelling. These can be
explicitly related to each other in the tree models discussed next, and require bounds in the SBM
context; see for instance Deshpande et al. (2016). The conditional entropy allows however for a
direct reduction from the SBM to the tree model with side information, as discussed below.

The BOTS entropy. Consider the following problem of broadcasting on a tree with side infor-
mation (BOTS). This will be later defined on general trees and with general side information, but
consider for simplicity the case of regular trees (where each vertex has exactly d descendants)
and erasure side information. In this model, a random bit is attached to the root of the tree and
broadcasted down the tree by flipping its value independently with probability § on each edge (for
convenience we call § = 1 — 2J). We denote by o, the root bit, by o, the d*-dimensional vector
of the leaf bits at generation k, and by w, the side information up to depth £: these are the vertices



STOCHASTIC BLOCK MODEL ENTROPY AND BROADCASTING ON TREES WITH SURVEY

labelled that are revealed in the tree (besides the root) independently with probability 1 — €. We call
this side information the “survey”. Note that this is the type of side information used in our con-
nection between BOTS and SBM entropies, but other types of side information are of independent
interest. In this paper we devote attention to general (but symmetric with respect to the spin flip)
observation model of the nodes, which we refer to as the BMS channel W.

We are now interested in two quantities:

1. the limiting entropy of the root bit after observing the leaf bits and the survey, i.e.?,

h(d, 9, 6) = kli{{.lo H<O'p‘0-Lk7w%k)7

2. the same quantity without the leaf bits being observed, i.e.,

h(d,0,¢) := klim H(op|lwg, )-
—00

We now give a rather direct method to express the SBM entropy in terms of BOTS entropies.

SBM to BOTS entropy reduction. The relation obtained between the SBM and BOTS condi-
tional entropy is as follows: if for some range of parameters d, §, we can establish that

h=h, Yee(0,1),

i.e., if the boundary is irrelevant, then we can characterize H as an integral of h using the parameter
correspondence d = (a + b)/2 and § = ZT:Z (see Theorem 1).

Our starting point to such a reduction is an area-theorem or interpolation trick that is com-
monly used in coding theory Richardson and Urbanke (2001) and related statistical physics litera-
ture Mézard and Montanari (2009).

The idea is to express the entropy in the SBM H (X |G) as the integral

1HXG— 116HXGYEd 3

LH(XIG) = [ (x| Y G
where, similarly as before, Y ¢ is an erasure survey that reveals the community of each vertex in X
independently with probability 1 — e. We then use the fact that %%H (X|G,Y,) = H(X1|G,Y<),
where 1 is an arbitrary vertex in the graph and Y ¢, denotes the erasure survey on all vertices exclud-
ing vertex 1. Since conditioning reduces entropy, one can upper bound H(X;|G,Y<,) by consid-
ering only the information in the vertex 1 neighborhood, and due to the local tree-like topology of
SBM:s, this gives an upper bound with the BOTS entropy without leaf information. Moreover, one
can add the leaf information in the conditioning to cut-off the graph beyond a local neighborhood,
using the Markovianity® of the model, obtaining as well a lower bound from the BOTS entropy but
this time with the leaf information, cf. (17).

Different kind of reductions from SBMs to tree models have long been known and leveraged in
the SBM in Coja-Oghlan et al. (2017); Mossel et al. (2016); Alaoui and Montanari (2019); we refer
to Section 1.1 for further discussions on these.

We now turn to the crux of the analysis, i.e., the establishment of h = h.

2. Note that in these tree models, the limits can be proved to always exist.

3. Strict Markovanity does not hold in the SBM due to the weak effect of non-edges, and this requires a technical
lemma; see proof of Theorem 1. This technicality can also be avoided by considering the related Censored Block
Model (CBM), rather than the SBM, for which strict Markovianity holds.
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Uniqueness of BP fixed point for BOTS. Our main contribution is to show that in a wide range
of parameters and side information models, the BOTS associated distributional fixed point equation
(known as BP fixed point) has a unique solution. This automatically has several implications.

First, this establishes the desired “Boundary Irrelevance” property for BEC survey, i.e., h = h:

kll)ngo (oplop,,wr, ) = klgr;o H(oy|wf, ). 4)
This implies
ggri kl;ngo H(oy|wf, ) = kli)rgo H(o,lor,) - (5)

Indeed, one only needs to notice that lim_,1 limy o0 H(0p|or,,wh, ) = sup, i H(oplor,, ws, )
and that for every k the latter quantity is continuous in € € [0, 1] including at the boundary.

Further, the presence of the survey allows to convert the absence of leaf information into the
presence of noisy leaf information, thereby obtaining the robust reconstruction property in the pres-
ence and in the absence of the survey Mossel et al. (2016).

Property (5) is also known in the SBM literature as the condition for “optimality of local algo-
rithms”, and was investigated in Kanade et al. (2016); Mossel and Xu (2015). These works build
on the crucial contribution of Mossel et al. (2016), which shows uniqueness of BP fixed point for
BOT without survey and df? > C, where C is “large enough” (see Appendix D for our estimates of
how large). Note that since the conditional entropy in (5) can be sandwiched between H (o |01, )
and H (ap\wzk ), the result of Mossel et al. (2016) implies (5), as indeed observed in (Kanade et al.,
2016, Prop. 3). However, Kanade et al. (2016) derives result for the case where ¢ — 1, relying
on Mossel et al. (2016) for large enough C'. It also conjectures the more general (4) (for all d, 0, €
and BEC survey), and our paper validates this conjecture in a wide range of parameters (see Fig. 1),
including for all values of the d6? ¢ (1,3.513).

Finally, subsequent work Mossel and Xu (2015) focuses on the case of BSC, rather than BEC,
survey, and also conjectured (4) for all d, 0, e. They demonstrate the uniqueness of the BP fixed
point in this setting for some range of parameters (which as ¢ — 1/2 reduces to df#> > C for
some large enough ). Although the method of Mossel and Xu (2015) is an extension of Mossel
et al. (2016), the authors make the remark “We note however that the paper Mossel et al. (2016)
did not consider side information and the adaptation of the proof is far from trivial.” This is further
expanded in the current paper.

1.1. Novelty and comparison to the literature

We believe that our proof technique offers the following improvements compared to Mossel et al.
(2016); Mossel and Xu (2015): (a) it is much shorter; (b) we do not need to consider large ¢, small
d and small d large @ cases separately; (c) it works simultaneously for d§> < 1 and df? > 3.513;
(d) it works simultaneously with and without side information, and the side information can be any
BMS, rather than specifically the BEC or BSC; (e) it closes the entire low-SNR case df? < 14, and
to the best of our knowledge it yields the state-of-the-art threshold for the high-SNR case.

Our main innovation is the information-theoretic point of view: we consider BOTS with or
without leaf observations as two binary input symmetric channels (BMSs) which are related to

4. There are, however, two related low-SNR results. (Mossel and Xu, 2015, Theorem 4.2) shows uniqueness of fixed
point for df < 1 via a simple contractivity of Fy function in the BP recursion (27).(Kanade et al., 2016, Theorem 3)
shows (5) for d6? < 1 as an application of information contraction from Evans et al. (2000).
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each other by a property known as degradation. This implies a certain inequality between the log-
likelihood ratios (LLRs), cf. (31), which we exploit in the application of the potential method. These
key ideas are the content of the Prop. 2. On the more technical side, another innovation is the choice
of the potential function as ¢(r) = e,

Concerning the reduction from SBM to BOTSs, we note first that the reduction in Mossel et al.
(2016) is obtained for the agreement metric. It is easy to navigate between agreement and entropy
once on the tree models, but in the SBM, the entropy allows for the chain rule and other properties
that lead to the direct reduction detailed previously. On the other hand, Mossel et al. (2016), rely
on a black-box algorithms that solves weak recovery in order to bring the noisy leaves. Therefore,
we are trading the noisy leaves with the survey. In turn, we can exploit the survey to obtain tighter
conditions for the boundary irrelevance that lead to part (ii) of Theorem 1.

Finally, Coja-Oghlan et al. (2017) uses a reduction to trees for the entropy that does also not
rely on the erasure side information as described above. In particular, the computation of the SBM
entropy is linked to an optimization problem (Theorem 2.2 therein), whose solution corresponds to
the dominant BP fixed point on a Galton-Watson tree (Theorem 2.4).

2. Results: Boundary Irrelevance and SBM Entropy

Broadcasting on Trees with Survey (BOTS). We start with the standard broadcasting on trees
(BOT) setting. Let T" be an infinite tree rooted at p. Let o, ~ Unif({£1}) be the root bit and
assume that it is broadcast through each edge independently with flip probability § € (0, %] For
simplicity we use notation § = 1 — 2. Let Ly denote the set of nodes at level k, and T}, denote the
set of nodes at level < k (where the root is at level 0). Reconstruction on such models consists of
recovering the root bit after observing the leaves bits at large depth (Evans et al. (2000)).

We consider a slightly different problem, where we have access to some node side information,
or “survey”. Specifically, let W be a fixed BMS channel, and for each node u we observe w, ~
W (o). We call (T, p,0, W) a broadcasting instance with survey. We will also denote by Ay
the A-component of the BMS W (see Section 4 for background on BMS channels). This setting
includes the one in Mossel and Xu (2015), where W = BSC,, i.e., for each node u, Pw,, = 0,,] =
1 — Plwy, = —0oy] = 1 — «; and the one in Kanade et al. (2016), where W = BEC,, i.e., for each
node the survey reveals the correct label with probability 1 — € and an erasure symbol otherwise.
The latter is of particular interest to us because of its application to the computation of the SBM
entropy (Theorem 1). For clarity, in the case of erasure survey, we denote w¢, = BEC,(o,,).

Theorem 1 Let (X,G) ~ SBM(n,2,a/n,b/n). Let T be a Galton-Watson tree with Pois(“)
offspring distribution and let (T, p, Z—jrlg,
and edge flip probability aLer' Let o ~ 3.513 be the unique solution in R<1 to the equation

exp(fo‘Tfl)a = 1. The following hold.

BEC,) be a broadcasting instance with erasure survey,

(i) For a,bsuch that $=205 < 1or §=25 > o ~ 3513
1 1
H(a,b) = nlir{:o EH(X‘G> :/0 klggo H(op|T,or,,w, )de. (6)
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(ii) For any a,b such that ;(2;23 € (1,a%), i.e., inside the gap of part (i),
1
hnnilor‘}f nH(X|G) /0 klggo H(o,|T, ULk,ka)deJrginf, @)
1
lim sup fH(X|G) = / lim H(o,|T, ULk,weLk)de + Esups )

where 0 < Eing, Eaup < 1 — %€ ~ 0.178.
A crucial ingredient to establish Theorem 1 is the following property for BOTS.

Definition 1 (Boundary Irrelevance (BI)) We say that (T, p,0, W) has the Boundary Irrelevance
(BI) property if
lim I(op;0r,|T,wr,) = 0. )

k—o0

which is equivalent to (4).

In words, (BI) implies that if we have access to some intermediate node information, the leaves at
infinite depth become irrelevant for detecting the root bit. We focus on regular and Galton-Watson
trees with Poisson offspring. We prove the following Theorem in Section 5.

Theorem 2 Let T' be a d-regular tree or a Galton-Watson tree with Poisson(d) offspring distribu-
tion, with root vertex p. Let W be a BMS channel. If P.(W) # %, and

(d6* — 1)

de? —
exp( 5

)Z(W) <1, (10)
where P.(W) is the probability of error, and Z (W) is the Bhattacharyya coefficient (defined in
Definition 4), then (BI) holds for (T, p,0,W). In particular, (BI) holds for any (T, p,0, W) with
d6? < 1 or dh* > o* (and with P.(W) # %), where o =~ 3.513 is the unique solution in R+ to
the equation exp(—5%)a = 1.

We remark that (10) is a relaxation of a sharper bound in Prop. 3 (e.g., for regular trees with d = 2
(BI) is proven for all cases except d#? € (1,1.62)). The following corollary lists a few direct
consequences of Theorem 2.

Corollary 1 In the setting of Theorem 2, if any of the following is true, then (BI) holds for
(T, p,0,W): (i) Z(W) < % ~ 0.824; (ii) P.(W) < } — 1\/A = ¢ ~ 0.217; (iii) W = BEC, and
with e < % ~ 0.824.

Proof For (i) we use sup,>q(aexp(—251)) = % For (ii) we define p(A) = 24/A(1 — A) and
notice that Z(W) = E[p(Aw)] < p(EAw) = p(P.(W)) because the function p is concave. So
when P.(W) < 1 — 3/ =, we have Z(W) < <. (iii) follows from (i). [ |

Theorem 2 is a consequence of the following more general result, that we state informally here
(for the full statement see Prop.6 in Appendix C).
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<l |

Figure 1: Left: Region of BP uniqueness for BEC survey from Corollary 1(iii).
Right: Region of BP uniqueness for BMS survey from Corollary 1(ii).

Proposition 1 (Informal, uniqueness of BP fixed point) For BOTS, if (10) holds, then the BP dis-
tributional fixed point is unique. For BOT if d9* < 1 or d9* > o* then the non-trivial fixed point is
unique.

We demonstrate the region of BP-uniqueness from Corollary 1 on Figure 1. We note that, taking the
limit e — 17, Theorem 2 implies that revealing an (arbitrarily) small fraction of vertex labels gives
the same information about the root bit, as revealing the whole boundary labels at large distance,
even in the reconstruction regime, cf. (5).

Conjecture 1 Let T be a regular tree or a Galton-Watson tree with Poisson offspring distribution,
with root vertex p. Then (BI) holds for (T, p,0,W) for all 0 < 0 < 1 and all W such that
P(W) # 3.

If Conjecture 1 holds, the proof of Theorem 1 gives a precise characterisation of H(a, b), as in (6),
in terms of BOTS entropies for the entire range of a, b.

3. Proof of Theorem 1

Let us denote f(e¢) = H(X|G,Y*¢), where similarly as before Y is a BEC,-survey that reveals
the true label of each node independently with probability 1 — €. Note that f(1) = H(X|G). Let
us replace the single parameter € by a set of parameters € = (ey),cv /() (for each vertex u, X,
is revealed with probability 1 — €,), and let us denote ¢, = {Y,f : v € V(G),v # u} and
Xew ={Xy v e V(G),v # u}. Then

fle) = (1 - e)H(X|G, Xy, YE,) + e H(X|G, YE,) (11)
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and by chain rule

S f(e) = HX|G.YS,) — H(X|G. X, Y5,) 12
= H(Xy, Xou|G,YS,) — H(X |G, Xu, YE,) (13)
= H(X.|G,YZ,). (14)
Then, setting €, = € for all u € V(G), we get by symmetry
fllo= Y H(X,|G,YS,) =nH(X1|G,Y5)). (15)
ueV(G)

Thus, by bounded convergence

1
lim H(X|G) / lim H(X1|G,Y<,)de. (16)
n—oo N 0 n—oo

Take k = ﬁm small enough compared to n, such that the neighborhood of vertex 1 at

depth k is a tree with high probability (this is for instance proved as Proposition 2 in Mossel et al.
(2015)), and denote such neighborhood by T}. Specifically, w.h.p. T} is a Galton-Watson tree with
P01sson( a+b) offspring distribution, rooted at 1, and the labels in X7, are distributed as BOT with
flip probability 7. Moreover, let X7, be the vertices at distance exactly k from 1, and let Y, ;.
denote the survey on nodes at distance at most k from 1 (excluding 1). We bound the integrand by
the following:

H(Xq|Ty, Y51 1, X1p,) +or(1) < H(X1|G,YS) < H(Xq Tk, Yo 1) (17)

For the inequality on the right, we simply removed conditioning terms and thus increased the con-
ditional entropy, specifically we ignored any information from the graph or from the survey on
nodes at distance > k to 1. The inequality on the left requires the following lemma, that is a direct
consequence of Proposition 2 and Lemma 4.7 in Mossel et al. (2015).
Lemmal H(X1|G,Y<$, Xp,) = H(X1|Ty, V<, 1, X1,) + or(1).
In words, Lemma 1 states that after conditioning on the leaves, the information coming from the
graph outside 7T}, (including non-edges) becomes negligible, i.e. the model is asymptotically a
Markov field. By Theorem 2, if gzaﬁv) <lor g( +2)) > a*, then (BI) holds for (7}, 1, Z+Z, BEC,),
for all € < 1, thus the leftmost and the rightmost terms in (17) are asymptotically equal. This means
that the limit in the integrand in (16) exists for all € € (0, 1), thus (i) holds.

On the other hand, by Corollary 1(iii), for all ¢ < €* = % ~ (0.824 and for all a, b (BI) holds
for (T, 1, 2 BEC,). Thus

7a+b7
6*
lim inf — H(X|G) lim H(X1|Ty, Y.< 1, X1, )de + int, (18)
n—oo N 0 k—oo k
with
1
Eint —/ limian(leG, :1) — lim H(leTk,Yil Tk’XLk>d€ (19)
€* n— ’
< (1= ) lim 1(X03 X0, [T) < (1 - €) = 0.178. (20)

The same holds for lim sup and &gyp.
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4. Preliminaries on BMS channels

We give necessary preliminaries on BMS channels that are used in the proof of Theorem 2. Most
material in this section can be found in e.g., (Richardson and Urbanke, 2008, Chapter 4).

Definition 2 A channel P : {£1} — Y is called a Binary Memoryless Symmetric (BMS) channel
if there exists a measurable involution o : Y — Y such that P(c~1(E)|+) = P(E|-) for all
measurable sets E C ).

Examples of BMS channels include Binary Erasure Channels (BECs) and Binary Symmetric Chan-
nels (BSCs). In fact, every BMS channel is a mixture of BSCs, in the sense of the following Lemma.

1

Lemma 2 Every BMS channel P is equivalent to a channel X — (A, Z), where A € [0, 5

independent of X, and Pz a x = BSCa(X).
In the setting of the above lemma, we call channel X — (A, Z) the standard form of P, and call A
the A-component of P.

Definition 3 Let P : {£1} — Y and Q : {£1} — Z be two BMS channels. We say P is more
degraded than () (denoted P <4cs (), if there exists a channel R : Z — Y such that P = R o Q.

Degradation can be characterized in terms of the A-component.

Lemma 3 Let P and QQ be two BMS channels. Let A be the A-component of P and ~A be the
A-co;ziponeiat of Q. Then P >4eq Q if and only if there exists a coupling between A and A so that
E[A|A] < A forall A € [0, 1] for which LHS exists.

Definition 4 Let P be a BMS channel and A be the A-component of P. We define the following

| is

quantities.
P.(P) = EA, (probability of error)
C(P) =E[log2+ Alog A + (1 — A)log(1 — A)], (capacity)
Cy2(P) =E[(1 - 2A)%, (x%-capacity)
Z(P) =E[2y/A(1 - A)]. (Bhattacharyya coefficient)

By definition, P.(P) € [0, 1], C(P) € [0,log2], C,2(P) € [0,1], Z(P) € [0,1]. These quantities

behave nicely under degradation, by the coupling characterization (Lemma 3) and convexity.
Lemmad4 If P <o, (), then the following holds:
Pe(P) > Pe(Q)7 C(P) < C(Q)a CXQ(P) < CXQ(Q)a Z(P) > Z(Q) (21)

5. Proof of Theorem 2

Recall the BOTS model defined in Section 2. Let M}, denote the BMS channel o, — (wn,,oL,)
and M), denote the BMS channel o, — wr, . Let P, (resp. PAk) be distribution of A-component
of BMS M;, (resp. M,,). We prove the following strengthening of Theorem 2.

Theorem 3 In the setting of Theorem 2, Pa, and PAk converge in distribution to the same distri-
bution as k — oo. In particular,

Jim Po(My) = lim P,(My,), (22)
khm C(My) = hm C(Mk) (23)
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5.1. Belief propagation recursion

The maximum a posteriori probability (MAP) decoder is the optimal decoder for this reconstruction
problem. It can be implemented using belief propagation (BP) as follows.

For each node wu, let Lj(u) denote the set of nodes in subtree rooted at u that are at distance k
to u. Let Ty (u) denote the set of nodes in subtree rooted at u that are at distance < k to u. Let
R, € RU{#£o0} denote the posterior log likelihood ratio given wry () U 07, (u):

Plow = +|wrw) U 0L (w)]

R, = log . 24)
b Ploy = —|wr,(u) U oL, (w)]
The initial value is
Ru,O = Oy " OQ. (25)
Define a function Fp : RU {£+o0} — R as
1
Fy(r) = 2arctanh( tanh(gr)). (26)
By definition of R, j, and Bayes rule (see e.g. Mossel and Xu (2015)), we have
Rups1= Y Fo(Rop)+ W, 27
veLj(u)
where W, is the log likelihood ratio induced by observation, i.e.,
P =
W, = log M' (28)
Plow = —|wu]

Using (25)(27) we are able to compute R, . recursively.
For observation without leaves, let R, ;; denote the posterior log likelihood ratio given wr, (,,).-

Then Ru,k satisfies the same recursion (27), but with a different initial value

Ry =0. (29)

Let My, (u) denote the BMS channel 0, — (w73, (u); 01, (u))- Let M;,(u) denote the BMS chan-
nel o, — wry,(u)- Let A, and A%k denote the corresponding A-components (both are random
variables supported on [0, %]) They relate to log likelihood ratio via the following expression:

1

1-A
|Ry. 1| = log - Tuk

ALk ~
* |Ru7k:‘ = log —

— , 30
Au,k Au,k ( )

There exists a canonical coupling between Mj,(u) and Mj,(u) via forgetting 0L, () (€., the

channel (wry (4), T, (u)) = W1 (u))- SO My (u) is less degraded than M;,(u). Furthermore, by data
processing inequality for total variation, under the canonical coupling, we have

E[Au k| Auk] < Ak 31

10
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As we will see, the core of our proof is the use of this degradation relationship.

Let NZ be the distribution of R,, j, conditioned on o, = + (and for Galton-Watson trees, without
revealing structure of the subtree rooted at ), and /Z,i’ be the distribution of Ru,k conditioned on
o, = +. These definitions do not depend on the choice of u. Then ,usr is the point measure at 400,
fig is the point measure at 0.

Both distributions satisfy the same recursion. Consider the equation

Ri= Y ZFp(RE,)+ W, (32)
vELy(u)
where {Z,, R}, ,W,, : v € L1(u)} are independent, Z, are i.i.d. Bernoulli with P[Z, = +1] =
1-P[Z, =-1]=1-4, R;rk ~ M;r, and W, distributes as log likelihood ratio corresponding to
the survey BMS. Then R;r o1 ™ ,ug 41~ The same holds if we replace Rj ey u; with Rj ey [L;
+ + R ~+
and By~ ppyq With Ry~ figy g

BP distributional fixed point. A distribution x on R U {£o00} is called a BP fixed point of the
BOTS (d, 0, W) if taking R;" i.i.d. ~ u, i € [d], Z; and Ry as above results in

Rt = > ZFy(R})+ Rw (33)
1<i<d

having the same distribution . In this work we restrict our attention to symmetric distributions,
i.e., distributions associated with BMS channels. We talk below about the fixed point distribution
Pa on [0, %] that is related to p via transformation (30). Namely, a distribution P, is a fixed point
iff the law . of random variable R™ is a fixed point, where R™ is generated via sampling A ~ Pa
and then setting

log 152 p1-A
R+:{Og Ao WP ’ (34)

—log %, w.p. A.

Similarly, we define the BP fixed point for the BOTS (Poi(d), 6, W) where in (33) d is replaced
with b ~ Poi(d).

5.2. Contraction of potential function

The technical part of our proof is contraction of certain potential functions. The next proposition
shows the kind of contraction result we need.

Proposition 2 Let ¢ : RU {£o00} — R U {+oo} be a function such that the function g : [0, 5] —
R U {00} defined as

1-A 1—-A
)+ Ap(—log

9(A) = (1 - A)¢(log
is decreasing and a-strongly convex for some o > 0. If

Jim Eo(R,) = 6(R, )] =0, (36)

) (35)

then under the canonical coupling,

: 2
khango E(ApJg - Ap,k) =0. (37)

11
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Proof Because g is a-strongly convex, we have

9(8p1) = 9(B0i) = o (Bpi) (B = Do) + 5 (D = By (38)
Then
E[¢(R},) — o(Bi ) =Ex ElS(R},) — ¢(B) )N
=Ez, Elg(2pk) = 9(Bp0)| A0

+
< < < o
= EAM[QI(Ap,k)(E[Ap,k’Ap,k] = Ap i)+ SE(Apk — Ap,k>2
o

> §E(Ap,k — A p)? (39)

The second step is because R:jk and A, (also R:k and Amk) relate via (34). By (39), we see that
(36) implies (37). |

Note that (39) also shows that E[(;S(R; K — gb(R; «)] is non-negative as long as g is decreasing and
convex.

We choose the potential function to be ¢(r) = — exp(—3r). This potential function is chosen
so that the expectation of qb(R:; 1+1) has a nice decomposition (49). In fact E[exp( —1R")]is equal
to the Bhattacharyya coefficient of the BMS channel, and (49) can be interpreted as multiplicativity
of Bhattacharyya coefficients under *-convolution.

The function g is given by g(A) = —2,/A(1 — A). One can check that g is decreasing and
4-strongly convex on [0, 3].

Proposition 3 Assume that we have a non-trivial survey channel. Let

(d6* 1)+

)z, (40)

Cy = Cy(d, 0, W) = db*(1 —
For regular trees, under the canonical coupling, for any € > 0, there exists k™ such that for all
k > k*,
1~ | -, |

E[eXp(_§Rp,k+1) — exp(—§Rp7k+1)] <1+ e)ClE[exp(—iRp’k) — exp(—iprk)]. 41)
In particular, if C1 < 1, then (36) holds.

For Galton-Watson trees with Poisson offspring distribution, the same holds with C replaced
by

0% — 1),

Cy = Co(d, 0, W) = db* exp(—d(1 — /1 — ( T )Z(W). (42)

Proof of Proposition 3 is deferred to Appendix A.
Proposition 2 and 3 complete the proof of Theorem 3, because for ¢ = 1, 2, we have

(d6* — 1),

C; < db? exp(— 5

)Z(W). (43)
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6. Other results

Weak spatial mixing. BOT (without survey) is an example of the Ising model. As it is typical
for such models, at high temperature (i.e. df < 1) it exhibits the property known as weak spatial
mixing (WSM): enforcing a (far away) boundary condition does not affect the distribution of spins.
This property disappears at low temperatures (df > 1), but what is surprising is that there is a
range of parameters (df > 1 but df?> < 1) in which there is no WSM, but reconstruction is still
impossible Bleher et al. (1995).

Now, the BOTS model can be thought of as an example of an Ising spin glass system: one
first generates the survey and then, treating the survey as quenched randomness, considers an Ising
model with external fields corresponding to survey. The question we ask is whether in this spin-
glass type model we still have that (in the limit of vanishing survey) the threshold for WSM appears
at df = 1. Some partial results towards this are contained in Appendix E. We mention that for BEC
survey we were not able to show this.

Boundary irrelevance (BI) on amenable graphs. So far we studied (BI) property (9) for trees,
but it can also be defined for general graphs as follows.

Let G = (V, E) be an infinite graph. Consider the Spin Synchronization model, where we have
i.i.d. random variables X,, ~ Unif({£1}) for v € V; for each edge uv € E, we observe a random
variable Y,,,, ~ BSCs(X,X,), and we denote # = 1 — 2. Conditioned on the X variables, the YV’
variables are mutually independent. In addition to the edge variables, we may observe surveys at
each node: for v € V, we have w, ~ W(X,), with W being a fixed BMS channel. In this Section
we consider BEC, survey.

Let o € V be a vertex. Let B,,(0) be the set of nodes with distance < n to o, and 9B,,(0) be
the set of nodes at distance n to 0. We use notation Xpp, (o) for the set {X, : v € dBy(0)} and
notation Yp, () for {Yyy : uv € E,u € By (0),v € By(0)}. We say the model (G, o0, 6, W) has the
(BI) property if

lim 1(Xo; XoB,(0)|YB,(0)) WB. (o)) = 0 (44)

n—o0

In Appendix F we show, by applying results of Alaoui and Montanari (2019), that (BI) holds for all
amenable graphs and survey channel being BEC,. The definition of such graphs appears therein,
but in a nutshell, it requires the boundary of any subset S C V' to be negligible compared to |S|.
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Appendix A. Proof of Proposition 3

Let us first deal with the regular tree case. Let u be a vertex and vl, ..., vq be its children. Let
R;’lk,... R;r x beiid ~ pf, and R k,...,R L beiid. ~ . DeﬁneR ey and Ruk+1
using (32). Furthermore, for 0 < ¢ < d, define Ru i k1 a8
u,'L,k+1 Z Z FG v k Z Z]FH(RQ—;,]Q) + Wu (45)
1<5<i i+1<5<d
Thatis, R, = Ry pand Ry = =R} 1

For1<i<dandk large enough let us prove that

1 1 Cy
Elexp(=5 Ry j1) = exp(—5 Ry, 1) < (L +6)— IE[exp(—*Rj1 k) — exp(— le, )]
(46)

where (' is defined in (40). We prove that (46) is true even if conditioned on Avi’k. For A € [0, %]
define

v,k

1 C ~
G(A) = Eloxp(~ 3 R 1) — (146 exp(— 5 RE )Ry i = Al @47)
Define p(A) = —g(A) = 24/A(1 — A) so that we work with non-negative numbers. So

E[exp(—%+ DAk = A] = p(A). (48)

Uw
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Then
1
E[exp( 2Ruzk+1)|Avu = A]
1 ~ 1
11 EkﬂX—Q%FHRLQH' 11 Ebmﬂ—§ZJMR;¢m
1<j<i—1 i+1<j<d

Efexp(— 5 ZiEa (R ) A = Al Elexp(—5 W)

Let us examine E[exp(—1Z; Fy(R} ) |A,. & = A]. We can compute that

—Axd

eXP(—* log :55%), wp.1—Axg,
exp(— ZF@(RU k:)) { exp(+ log Aﬁgfs), w.p. A 0,

where we use notation 07 * d2 = d1(1 — d2) + d2(1 — d1)). So

E@@GMZFMREQNA%k—AP=MMA*®l

Similarly,

Blexp(— 2 Fo( RS )] = Blp(B, = )]

Elexp(— 2 Fo( RS )] = Elp(Au, jc# ).
Finally,

Efexp(— 5 70)] = Elp(Aw)] = Z(7).
So from (49) we get
Bloxp(— 5 Y1) Dok = A = Elp(Ay, 1 )1 E[p( A, 1 )1 p(A ) Z()
So
2
G(8) = Bp(Buy s # 6] Elp(Au g # 0] ZOW) L op(A +9)
~(+ o).

Let us bound each factor.

p(A%0) =2/ (Ax8)(1—Axd)=+/1—62(1—2A)2.

So

Elp(Ay, . #0)] = E[\/1— 02(1 — 28, 1)%] < /1 — 62E(1 — 2, )2,
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By Proposition 4, for any ¢’ > 0, for k large enough, we have

PN i
E[(1 —2A, )7 2 (m —€)+ (59
So
- do? —1
E[p(Ay, k% 6)] < \/1 - 92(m =€)+ (60)
Similarly,
de? —1
Note that p is strictly concave on [0, ], and p/(3) = 0. So
d2 2,1
EP(A x0) > 0°p" (A). (62)
So (56) gives
de* —1 d—1 C
G (&) = (1 0y — <)) T O (Q)Z00) — (14 9 F'()
do? — 1 d—1 C
(1= (g — ) T 2200~ 1+ 9 (). (©3)
Note that
do? —1 d—1 (d92 —1)4 a1
_ 2 / _ o +\ 5=
So we can take ¢ > 0 small enough so that
do* — 1 a1 do? — 1)y a1
(1—92(m—6/)+) 2 < (1+€)(1_(d—1)+) z. (65)

So for k large enough, G”(A) < 0 forall A € [0, 3] and G(A) is convex. Also,

1 - ) ) d
G'(5) =Elp(Buy i ) Elp(Ay, % 0)]* T Z(W) Tl a_1p(A % 0)
cy 1
- (1+6)glp’(§) (66)
—0. (67)

So G is non-positive, thus G is decreasing on [0, %] Because My, (v;) (BMS corresponding to R;}:’ i)
is less degraded than M;, (vi) (BMS corresponding to R;Z 1)» We get (46).

For Galton-Watson trees with Poisson offspring distribution, the proof is very similar to, and
slightly more involved than the regular case. Let u be a vertex. Let R;rl’ o R; o - - - beldd. ~ NZ’
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and R} | Rl . ...beiid. ~ fij. Letb ~ Poi(d) and v, ..., v} be the children of u. Fori > 0,
define

Riwn= 2. ZiFBE )+ Y ZiF(RY )+ W (68)
1<j<min{i,b} iH1<;<b

For ¢ > 1, let us prove that

1 1 1~

E[GXP(_§RL’J€+1) - exp(—iRIFl,kH)] < cﬂE[exp(—i o k) — exp(— le Wl (69)

where ¢; are constants to be chosen later. Define

Gi(A) =Elexp(—= R}, . |) — ciexp(—= R )|A,, 1 = Al. (70)

Let us prove that G; is decreasing and convex on [0, %] Similarly to (56), we have

d2

GY(A) = Ep[LysE[p(Ay, g % 0)] ' E[p(Ay, f + 5)]b—iz(W)Wp(

Ax6)] —ap’(A). (T

Let us study each term in (71). By (57) and Proposition 4, for any ¢’ > 0, for k large enough, we
have

- de? —1
Elp(Ay, o 0)] < /1 — 2E(1 — 2, 4)? < \/1 02— (72)
Similarly,
de? — 1
E[p(Ay, 1 *0)] < \/1 —02( — €. (73)
’ d6?
(62) still holds in the Poisson case. So (71) gives
1" 2 dg* — 1 n \ESiip2 11
Gi(A) 2 ([Bp[loxi(1 = 0°(— 5= — €)4) 7 J0°Z(W) —ci)p"(A). (74)
We can take
do? —1 -
¢; = Ey[Lpss(1 — 6%( —)y) T )02 Z(W) (75)

de?
so that G/ (A) > 0 forall i > 1 and A € [0, 3]. Also,

Ci(3) = BallizElp( i % 0))  Elp(Dy i ) Z(W) |y yp(A )]
1

- Cip/ ( 5) (76)

=0. 7

So G is decreasing.
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By summing up (69) for ¢ > 1, we get

1~ 1 1~ 1
E[GXP(—§RI;€+1) - eXP(—ﬁRIkH)] < (Z Ci)E[eXP(—iR;,k) - eXP(—ng,k)]- (78)
i>1
By (75), we have
do* — 1 -
D e = 0By [1yzi(1 — 6%( F7 ¢)4) T 1Z(W) (79)
i>1
02 02 de? —1 , 7
< dfexp(—d(1 — /1 = 0*(—z5— — €)4)) Z(W). (80)
We can take ¢’ > 0 small enough so that
do? — 1 do? — 1
exp(—d(1 — \/1 — 02%( 7P €)y)) < (1+e)exp(—d(l—1/1— (d)Jr)) (81)

This finishes the proof for the Poisson tree case.

Appendix B. x2-capacity of broadcasting-on-tree channels

Proposition 4 Consider the Broadcasting on Trees model defined in Section 2, with the following
observation models:

. M,% : 0p = VL, where v, ~ BSC,(0y);

o M,g 10p — (O’Lk,wTk;).

. M,g’ 10p = 0L

M ,;1 : 0y — wry, with non-trivial survey channel W ;

. M,? : 0p — wr, with non-trivial survey channel W'.
For each of the above channels, we have

* If we work with regular trees, then

. (d§? — 1),
1 M) > 82
dim G (M) 2 g0 (82
* Ifwe work with Galton-Watston trees with Poisson offspring distribution, then
. (d6? — 1),

Proof The x?-capacity is always non-negative, so the df? < 1 case is automatic. In the following
we assume df? > 1.

First we observe that all M, li’s are less degraded than M li for some suitable choice of 7. This
is obvious for ¢ = 2,3. Clearly M ,;1 is less degraded than M ,? That M ,? <deg M ,i follows from
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(Roozbehani and Polyanskiy, 2019, Lemma 2, 3), where we can take = P.(W). So by Lemma 4,
we only need to prove the result for M ,i

We prove the result by applying Lemma 5. To do this, we need to find a BMS channel more
degraded than M} which takes value in R. One natrual choice is the majority decoder. We define

Sy = Z Vy. (84)

veELy

Then the channel o, — S}, is clearly more degraded than M, ,i We apply Proposition 5 to conclude.
|

Lemma 5 (Restatement of (Evans et al., 2000, Lemma 4.2(iii))) Let P : X — Y be a BMS

channel with Y a real variable, and with involution Y — =Y. Then sz (P) > (\I,E;z;): .

Proof Let X — (A, Z) be the equivalent standard form of P. By Cauchy-Schwarz, we have
ET[(1 - 2A)2E¥[Y?] > (E¥[(1 - 24)|Y[]))* = (EY)*. (85)

This is equivalent to the desired result. |

Proposition 5 Assume d9? > 1. Consider the channel o, — Sy, defined in (84).
For regular trees,
Var™ S, 1—62

A ES,)? T dP =1 (86)

For Galton-Watson trees with Poisson offspring,

Var™ S, 1
li = . 87
Koo (E+SR)2  d62 —1 (87)

Proof The regular tree case is proved in (Mossel et al., 2016, Lemma 3.4, 3.5). (Note that the

expression for limy_, % on top of (Mossel et al., 2016, pg. 2224) is incorrect.)

Let us focus on the Poisson tree case. It is easy to see that
EtS, = (1 — 2n)(df)". (88)
Let p be the root, and v, . . . , vy be its children. By variance decomposition, we have

Var®™ S, py1 = Vart E[S, j11[b] + Ey Var™ (E[S, k41]b, 0wy, - - -, 00, ]|b)
+ EVart (S, k4110, Oy - - - 0wy )- (89)

Let us compute each summand.

Var™ E[S,, 11]b] = Var™(b0(1 — 21)(d0)¥) = d6?(1 — 2n)?(d0)?". (90)
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Eb Var+(E[Sp,k+1 |b7 Ovyse - 70%]“})
= By Vart (D 00, (1 — 27)(d6)*b)

i€[b]
= Ey[b(1 — 6%)(1 — 20)°(d6)*"]
= d(1 — 62)(1 — 2n)*(de)?*. 1)
E Var™ (Spps1/b, 00y, - - 00,) = Ep[b Y Var' S, 4] = d Var™ S, . (92)
1€[b]
Plugging (90)(91)(92) into (89), we get
Var® S, 11 = d(1 — 21)*(d6)** + d Vart S, . (93)

Solving (93) with initial value S, o = 4n(1 — 1), we get

Vart S, 5 = dn(1 —n)d* + > d*'d(1 — 2n)*(d6)*

i€k
do*)k —1
(1 — m)d* 1 (1 - 2py2at )1 4
(1 —=n)d" + (1 = 2n)°d"— 77— (94)
Putting together (88)(94), we get the desired result. |

Appendix C. Uniqueness of BP fixed point

Proposition 6 Fix d, §, and a (possibly trivial) BMS W. Recall definition (33) of the BP fixed point
(the Pa definition) for BOTS (d, 0, W).

o If W is non-trivial (P,(W) < %) and C < 1 (where C1 is defined in (40)), there is exactly
one BP fixed point.

o If W is trivial and df? < 1, there is exactly one BP fixed point, which is trivial (the point
distribution at A = % ).

o If W is trivial and Cy < 1, there are exactly two BP fixed points, one is trivial and the other
is non-trivial.

The same (statements about number of fixed points) hold for BOTS (Poi(d), 8, W) with C;
replaced by Cs (defined in (42)).

Proof If W is trivial and df? < 1, we are in the non-reconstruction regime and there is a unique
BP fixed point, and it is trivial.

If W is trivial, there is one trivial fixed point. If W is non-trivial, the trivial distribution is not a
fixed point. We prove that for any (d, 8, W) satisfying C; < 1 (or Co < 1 for Poisson trees), there
is exactly one non-trivial fixed point.

Suppose there are two non-trivial fixed points Pa and Q. Let P be a BMS corresponding to
Pa and ) be a BMS corresponding to Qa. Let r = max{P.(P), P.(Q)}. Then BSC, is non-trivial
and is more degraded than both P and Q).

We consider a Broadcasting on Tree model with three different types of observations:
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» M Observe P(o,) forall v € Ly;
* M}: Observe Q(o,) forall v € Lg;
* Mp: Observe BSC,.(0,) forall v € Ly.

By the same proof as Theorem 3, in the limit & — oo, M}’ and My converge to the same BMS;
the same holds for M ,i’ and M. Therefore in the limit £ — oo, M} and M, f; converge to the same
BMS.

By the assumption that P and () are BP fixed points, M} are equivalent to P for all k, and M, ,l;
are equivalent to () for all k. So P and () are equivalent BMSs. This means Pan = QA. |

Appendix D. Rough estimate of C' in Mossel et al. (2016)

As we mentioned, Mossel et al. (2016) proves uniqueness of BP fixed point for BOT (without
survey) and df? > C for an unspecified C. Can we extract explicit C' from their work? First, we
point out that taken literally, the proof demands at least C' > 75. Second, we (heuristically!) argue
below that it may be difficult to reduce C' below 25 without significant modifications of the proof.
We remark that this section is not meant to be rigorous and it may very well be that the method
therein can be tweaked in ways we did not consider.

The proof in question is divided into the large 6 case and the small § case. First, they prove that
there exists a #* > 0 so that for § < 6*, uniqueness of BP fixed point holds for large enough df?.
Then they prove that for § > 6%, there exists d large enough so that uniqueness of BP holds. We
focus on the small 6 part and analyze their proof for 6 close to 0.

In (Mossel et al., 2016, middle of page 2230) authors require df? larger than about 75. Let us
analyze how much improvement is possible. In the following, equation and lemmas refer to the
cited paper.

* In Lemma 3.6, it is impossible to achieve an RHS better than 1 — 1;922 by using a majority

estimator (which is used by both their paper and the current paper).

* In (3.8), they applied Lemma 3.9 with p = %. Changing this exponent would result in a big
change in the proof, so we leave it as-is.

* In Lemma 3.10, by Taylor expansion, it is impossible to improve RHS to dm?~'(EA? —
EB?)2.

* In Lemma 3.11, by Taylor expansion

1—z 2 23
1/ =1- T 4
Ty x—l—2 2+O(a:),

their proof cannot give a RHS better than 1 — 62z, + %92. Combined with Lemma 3.6, their
proof does not give a RHS better than 1 — 2(1 — 6% 1 142,

62
e In Lemma 3.12, RHS cannot be better than 262, because this is less than |% \/11__66%| at

r = —1.
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+ Consequently, in Lemma 3.13, the leading factor in RHS cannot be better than 262.

« In (3.12), RHS cannot be better than 64d%m?—2 (a— b)2 by using (3.8) withp = i and Lemma
3.10.

* Combining the above, in the expression in the middle of Page 2230, RHS cannot be better
than

1—6% 1 5.4
d92 )+§92)d 2)2'

Computation shows that, for the factor before z to be smaller than 1, we need at least d§? > 26
in the limit 6 — 0.

64((26%)%d*(1 — 6%(1 —

Appendix E. Weak spatial mixing

In Section 5, we studied whether BP message (with recursion (27)) converges to the same value
under perfect observation or no observation of leaves. A related question is weak spatial mixing,
i.e., whether BP message converges to the same value under any observation of leaves.

Fix k£ > 0. Let Ry, o and Rg;k,o be two boundary conditions. Define R, (resp. Rfm 1) by using
(27) recursively, with initial condition Ry, o (resp. R/Lk,o)~ We say the model has weak spatial
mixing if

im Er,  sup  |f(Ror) — f(R,,) =0 (95)

k—o00 /
RLkvaLk,O

for all bounded continuous functions f : R U {+oc0} — R.

In the following we focus on regular trees. It is known Bleher et al. (1995) that in the case there
is no survey, df = 1 is the threshold for WSM, i.e., when df < 1, WSM holds; when df > 1, WSM
does not hold. The following result shows that for WSM with survey, this is still almost the case.

Theorem 4
e For df < 1 and any survey, WSM holds.

* For d9 > 1, there exists € = €(d,0) > 0 such that for BSC survey with P.(W) > % — ¢,
WSM does not hold.

Proof For df < 1: For any node u, We have

E|Ryps1 — Ryl =Bl Y (Fp(Rox) — Fo(R, )| (96)
vEL1(u)
< dOE|Ry, , — Rl 4. (97)

The second step uses the fact that Fy is 6-Lipschitz. Then
E|Rp 41 = Bp | < dOE|R, ) — R (98)

and we get the desired contraction.
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For df > 1: We separate the limit BP distribution for (+)-boundary condition and (—)-
boundary condition. Because dff > 1, there exists x > 0 such that dFp(z) > z. Let € be small
enough so that for all ) with P,(BSC,)) > 3 — ¢, we have

dFy(z) —log — 1 > . (99)
In this case, we can prove by induction that if we start with the (4)-boundary condition, then R,, ;, >
 for all u and k. By symmetry, if we start with the (—)-boundary condition, then R,, ;, < —z for
all v and k. So we get the desired separation. |

Note that for the case df > 1 we only prove for BSC survey. Numerical computation sug-
gests that the result should hold for any BMS survey with sufficiently large P.. Thus we make the
following conjecture.

Conjecture 2 For df > 1, there exists ¢ = €(d,0) > 0 such that for any BMS survey W with
P.(W) > 1 — ¢, WSM does not hold.

Appendix F. Amenable graphs

Recall definition of the spin synchronization system and the (BI) property given in (44).

Definition 6 (Amenable graph (Alaoui and Montanari (2019))) We say a graph G is amenable
if inf{|0S|/|S|: S CV finite, 0 € S} = 0, where 0S = {u € S: v ¢ S, (u,v) € E}.

Theorem 5 Let G be an amenable graph. For any € € [0, 1), the (BI) holds for (G, 0,6, BEC,).

Proof A consistent part of this proof is inspired by Lemma 6.3 in Alaoui and Montanari (2019). We
reproduce it for a self-contained exposure. As in the proof of Theorem 1, let us replace the single
parameter € by a set of parameters (eu)uEV(G) (for each vertex u, X, is revealed with probability
1 — €,), and let us denote X<, = {X; : v € V(G),v # u}. For brevity, we write B,,, 0B,, for
B, (0),0By,(0). Then,

0
9. H(Xop, |V, X%) = I(Xu; Xop, | Y, XZ0),
u
and setting €, = ¢ for every u € B,, we get
d € €
S H(Xop, | Y, X) = > I(Xu; Xop, | Y, X5,). (100)
UEBn
Thus, integrating with respect to € we get
1
/ S (Xu; Xop, |V, XE)de = H(Xop, | V) — H(Xop, | Y, X9 (101)
€ weB,
< H(Xpp,) (102)
< ). H(X.) (103)
u€OBy
= log 2|0B,|. (104)
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If we divide by | B,

, we get that forall e < 1

L ) |0B,,|
/ 51 2 ! (% Xom, 1Y, X5, ) ae <loga. AL (105)
€ n UGBn n

Since G is amenable, the RHS is vanishing as n — oo. Note that the integrand in the LHS is
bounded by log 2, hence by bounded convergence theorem, we get that for all € € [0, 1)

1
lim Bl > I(Xu; Xo, | Ya,,X5,) = 0. (106)

n—oo
u€Bn,

To conclude, notice that there exists k£ € N such that

I(Xo; XoB,.,(o)|Y; X€) < Z I(Xu; XoB,(0) | Y, X). (107)

B2 (0)] 5t
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