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Abstract
Network regression models, where the outcome
comprises the valued edge in a network and the
predictors are actor or dyad-level covariates, are
used extensively in the social and biological sci-
ences. Valid inference relies on accurately model-
ing the residual dependencies among the relations.
Frequently homogeneity assumptions are placed
on the errors which are commonly incorrect and
ignore critical, natural clustering of the actors. In
this work, we present a novel regression model-
ing framework that models the errors as resulting
from a community-based dependence structure
and exploits the subsequent exchangeability prop-
erties of the error distribution to obtain parsimo-
nious standard errors for regression parameters.

1. Introduction
Researchers are often interested in how relations between
pairs of actors are related to observable covariates, such
as demographic, sociological and geographic factors. For
example, Ward & Hoff (2007) examine political and in-
stitutional effects on international trade and find that the
domestic political framework of the exporter and importer
are important factors of the trade; Aker (2010) explores the
impact of mobile phones on the price difference of grain
between a pair of markets and find that the introduction of
mobile phone service explains a reduction in grain price
dispersion; Fafchamps & Gubert (2007) explore the role
of geographic proximity on risk sharing among agriculture
workers in the Philippines and find that intra-village mutual
insurance links are largely determined by social and geo-
graphical proximity, potentially since personal/geographical
closeness facilitates enforcement.
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In this work, we focus on a case where continuous relations
between pairs of actors are modeled as a linear function
of observable covariates. Continuous, pairwise relations
can be represented as a network with directed, weighted
edges. We assume a set of observed covariates for the ac-
tors and dyads (ordered actor pairs) and wish to study the
association between the relational response and covariates.
Efficient inference for the effect of the covariates on the
relations requires accurate modeling of the dependence be-
tween the regression errors. Our main contribution is a novel
non-parametric block-exchangeability assumption on the
covariance structure of the error vector suitable for when
there is excess hidden block variation in the network beyond
that accounted for by the covariates. When the underlying
error structure of data satisfies the model assumptions, we
show that our inference procedures have correct confidence
interval coverage. We present algorithms to both estimate
the latent block structure and estimate the corresponding
standard errors of the regression coefficients. Our goal in the
paper is to provide a new approach to model and estimate
the dependence between residual relations, which bridges
the gap between the existing non-parametric estimators.

Let n be the observed number of individuals, yij be the
directed relational response from actor i to actor j, and
Xij = [1, X1,ij , · · ·, X T

(p�1),ij ] be a (p ⇥ 1) vector of
covariates. We assume there is no relation from an actor i
to itself. The regression model can be expressed

yij = �TXij + ⇠ij , i, j 2 {1, ..., n}, i = j. (1)

We model the error vector ⌅ = [⇠21, ⇠31, · · ·, ⇠n1, · · ·, ⇠1n, · ·
·, ⇠(n�1)n]

T
⇠ N(0,⌦), where ⌦ = Var(⌅) is a n(n � 1)

by n(n � 1) symmetric matrix. For example, if we are
interested in how geographical and demographic factors
affect number of mobile calls between actors,, then yij is
the number of mobile calls from actor i to actor j and Xij

may include the actors’ geographical distances and their
mobile plans. Making inference on � then provides insights
into how a change in geographical distance or mobile plans
is associated with a change in the number of mobile calls.

In order to get accurate estimation of the standard error of
� and thus a confidence interval with the correct coverage,
we need to pose assumptions on the error structure that
is satisfied by the data. The challenge in modeling ⌦ =
Var(⌅) is that ⇠ij and ⇠kl are likely correlated whenever the
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relation pairs share a member, i.e.{i, j}\{k, l} = ; (Kenny
et al. (2006)). The residuals represent variation in relational
observations not accounted by observable covariates, and
two residuals which both involve actor A may be affected by
actor A’s individual effects. For example, if the residual of
number of mobile calls from actor A to actor B is negative,
we may expect number of mobile calls from actor A to actor
C is likely also less than expected under the mean model,
because actor A does not use mobile calls a lot. Another
example is the case of reciprocal relations (Miller & Kenny
(1986)). The residuals of number of mobile calls from
actor A to actor B and from actor B to actor A are likely
correlated, because they involve the same pair of actors and
this dependence is often not fully captured by covariates.

One set of approaches to model the covariance structure ⌦
is to impose parametric distributional assumptions on the
error vector or model the error covariance structure directly
(Hoff (2005), Ward & Hoff (2007), Hoff et al. (2011), Hoff
(2015)). While these approaches produce interpretable rep-
resentations of underlying residual structure, they always
assume the error structure is consistent with an underlying
parametric model.

Another set of approaches to model the covariance structure,
⌦, is using non-parametric methods. However, existing
approaches either make no distributional assumptions and
estimate O(n3) parameters (see dyadic clustering estimator
in Fafchamps & Gubert (2007)), or assume exchangeability
of the error vector ⌅ and estimate five parameters (Marrs
et al. (2017)). The former approach results in a standard
error estimator for � that is extremely flexible yet extremely
variable, whereas the latter approach assumes all actors are
identically distributed and results in a relatively restricted es-
timator. The former approach is appealing when a researcher
does not have any information on the error structure and
wants to allow for heterogeneity, while the later approach is
appealing when a researcher is more confident the errors are
exchangeable and thus can enjoy the simplicity of the error
structure and a fixed, small number of covariance parame-
ters. Nevertheless, there are likely cases where a researcher
has some information about the error structure, but the er-
rors are not exchangeable. This calls for an approach that
bridges the gap between these two existing methods.

We propose an alternative block-exchangeable standard er-
ror estimator that assumes that actors have block member-
ships and actors within the same block are exchangeable
(i.e. have relations that are identically distributed). Hetero-
geneity based on unobserved variables are quite common in
networks, and relational observations between actors in the
same block may have different patterns than relations be-
tween actors in different blocks. The stochastic block model
(Holland et al. (1983), Snijders & Nowicki (1997)) and
degree-corrected stochastic block model (Karrer & Newman

6 (2011)) have been proposed to model connectivity between
actors based on latent block memberships and actor degree
heterogeneities. Spectral clustering algorithms (Rohe et al.
(2011), Qin & Rohe (2013)) have also been proposed to
estimate the hidden block membership for these models. By
imposing the exchangeability assumption on the error vector
conditioned on block membership of the actors, we take into
account possible block structure in the network residuals
and allow for heterogeneity between blocks. Specifically,
we propose an algorithm that estimates the covariance ma-
trix ⌦b given the block memberships, as well as a second
algorithm to estimate block memberships using spectral
clustering. We present theoretical results proving the block-
exchangeable estimator outperforms the exchangeable esti-
mator when the errors are block-exchangeable. Critically,
if the distribution of the covariates is dependent on block
membership, we see a larger difference in standard errors
from the block-exchangeable estimator compared to those
from the exchangeable estimator.

2. Previous Methodology
In a linear regression model of form (1), there are a number
of ways to model ⌦. Fafchamps & Gubert (2007) propose
a maximally flexible model for ⌦ subject to the single con-
dition that Cov(⇠ij⇠kl) = 0 if dyads (i, j) and (k, l) do
not share a member, i.e. {i, j} \ {k, l} = ;. No additional
structure is placed on the O(n3) remaining covariance terms.
This method is known as dyadic clustering, denoted here
‘DC’, and we let ⌦DC denote the covariance matrix under
the Fafchamps & Gubert (2007) assumption. Fafchamps
& Gubert (2007) propose a simple way to estimate the el-
ements in ⌦DC : Codv(⇠ij , ⇠kl) = rijrkl, where rij and rkl
are the residuals of the corresponding relations. While the
DC estimator is extremely flexible, the estimator ⌦bDC con-
tains O(n3) parameters and each element is estimated by
a single product of residuals. This makes the estimator
highly variable, which consequently leads to highly variable
� standard errors estimates.

In order to ease the computational burden and decrease the
variance of dyadic clustering estimator, Marrs et al. (2017)
propose an exchangeability assumption on the error vector
and a simple moment-based estimator for the covariance
parameters resulting in ⌦bE . The errors in a relational data
model are jointly exchangeable if the probability distribution
of the error vector is invariant under simultaneous permu-
tation of the rows and columns. Li & Loken (2002) argue
that data generated under the variance component model,
which assumes that the observation can be decomposed
additively into multiple actor-level components, and the So-
cial Relation Model (Warner et al. (1979), Cockerham &
Weir (1977)) satisfy this exchangeability assumption. Un-
der exchangeability and the assumption that the covariance
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between relations involving non-overlapping dyads is zero,
Marrs et al. (2017) shows that there are five non-zero param-
eters in ⌦ (see Figure 1), notably one variance �2 and four
covariances {�2

A,�
2
B ,�

2
C ,�

2
}D They estimate these five pa-

rameters by averages of the corresponding residual products,
greatly reducing the variance of the estimator ⌦bE compared
to ⌦bDC .

While the number of parameters is significantly reduced
under the exchangeability assumption, this assumption may
be violated in practice in many scientific settings. For ex-
ample, when a network has block structure (i.e. community
structure), such that actors in different blocks have different
behavior patterns, this needs to be accounted for. For in-
stance, conditioned on the covariates, relations in one block
may have larger variation than those among actors in an-
other block, thus violating the exchangeability assumption
where a single variance is shared among all relations. In the
mobile calls example, variance of phone calls among em-
ployed actors and that among unemployed actors may likely
be different, meaning that without information on actor em-
ployment status, residual heterogeneity is likely present.
This motivates us to consider a block-exchangeability as-
sumption on ⌦.

3. Block-exchangeability
With the dyadic cluster estimator making a single assump-
tion but yielding too many parameters and the exchangeable
estimator making strong assumptions, we propose a block-
exchangeability assumption that compromises between im-
posing assumptions on error vector and model complexity.
In a network of B latent blocks, let gi denote the block
assignment of actor i: gi 2 {1, ..., B}. We propose the fol-
lowing definition of block-exchangeability as conditional
exchangeability (Lindley et al. (1981)) of ⌅ given g:

Definition 3.1. The errors in a relational data model are
jointly block-exchangeable if P (⌅), the probability distri-
bution of the error vector, is invariant under permutation of
the rows and columns within each block:

Q
P (⌅) = P ( (⌅)) such that gi = g⇡(i) and gj = g⇡(j),

Q
where (⌅) = {⇠⇡(i)⇡(j)} is the residual matrix with its
rows and columns reordered according to permutation oper-
ator ⇡.

A different exchangeable block assumption in the regres-
sion settings is discussed in McCullagh (2005), where the
distribution of observations is invariant under permutations
that preserve the block-to-block relationship structure, i.e.
permutations ⇡ such that B(i, j) = B(⇡(i),⇡(j))8i, j,
where B(i, j) = 1 if gi = gj , and B(i, j) = 0 other-
wise. There are two key differences between this assump-
tion and that we propose. One is that block-exchangeability

in McCullagh (2005) is on the observations, whereas we
propose block-exchangeability on the errors. The other is
that the permutation in McCullagh (2005) only requires
that B(i, j) = B(⇡(i),⇡(j)) = 0, meaning observations
that are in different blocks remain in different blocks after
permutation.

Under our block-exchangeability assumption and condi-
tional on block membership, the covariance between two
arbitrary errors ⇠ij and ⇠kl takes one of the following six
values depending on the block memberships {gi, gj , gk, gl}
and relationships among the indices {i, j, k, l}:

Var(⇠ij) = �2
(gi,gj)

Cov(⇠ij , ⇠il) = �B(g ,{g ,g })i j l

Cov(⇠ij , ⇠ji) = �A{g ,g }i j
Cov(⇠ij , ⇠kj) = �C(g ,{g ,g })j i k

Cov(⇠ij , ⇠kl) = 0 Cov(⇠ij , ⇠ki) = �D(g ,g ,g )i j k

where {} denotes unordered set and () denotes ordered set.
Note that this notation is an expansion of that introduced in
Marrs et al. (2017) such that all non-zero parameters are
now indexed by node block memberships.

Figure 1. Visualization of covariance matrix for a network of four
actors. Under the block-exchangeability assumption, where A and
B are in one block and C and D are in another block, entries
shaded with the same color and symbol share the same parameter
value. Conversely, under the exchangeability assumption, entries
with the same color share the same value.

Figure 1 shows a visualization of ⌦B for a simple network
of four actors {A,B,C,D}, where actors A and B are in
Block 1 and actors C and D are in Block 2. Under both
exchangeability and block-exchangeability assumption, the
blank entries indicate a covariance value of zero between
non-overlapping dyads (yij , ykl) where {i, j} \ {k, l} = ;.
Under the block-exchangeability assumption, each color
denotes a dyad configuration and conditioned on the color,
each symbol denotes a parameter indexed by the actor block
memberships. Thus entries with the same color and symbol
share the same parameter value. For example, Var(⇠CA) =
Var(⇠DA) = Var(⇠CB) = Var(⇠DB) = �2

(2,1), as denoted
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Covariance term Number of parameters
B2Var(⇠ij) = �2

Cov(⇠ij , ⇠ji) = �A B(B + 1)/2
Cov(⇠ij , ⇠il) = �B B2(B + 1)/2
Cov(⇠ij , ⇠kj) = �C B2(B + 1)/2

B3Cov(⇠ij , ⇠ki) = �D

Table 1. Number of parameters of each covariance type under the
block-exchangeability assumption, where B is the number of actor
blocks. Note that if there are fewer than three actors in a given
block, some of these parameters will not appear in ⌦B .

by the blue & in Figure 1, because the sender is in Block 2
and the receiver is in Block 1. On the contrary, under the
exchangeability assumption of Marrs et al. (2017), entries

ith the same color share the same value. Therefore, ⌦B

has more parameters than ⌦E , while maintaining the same
places for zero-valued entries.

Figure 2 shows the configurations of relation pairs un-
der the block-exchangeability assumption. Each circle
contains dyad configurations of the same type under ex-
changeability in ⌦E . However, under block exchange-
ability, there is variability with each configuration based
on actor block memberships and these variations are
shown within each circle. For example, the top left circle
shows the variance parameters under block-exchangeability:
�2
(1,1),�

2
(1,2),�

2
(2,1), and �2

(2,2) corresponding to every or-
dered pair of blocks. In contrast, under the exchange-
ability assumption, all variance terms share the same pa-
rameter value �2. The top right circle shows four block-
exchangeability parameters for the configuration of rela-
tions pairs of the form (yij , ykj). In the top left corner
of this circle, the common receiver actor B is in Block
, sender A is in Block 1 and sender C is in Block 2

and therefore Cov(⇠AB , ⇠CB) = �B,(1,{1,2}). Because
e only have two actors in each block, the case when

Cov(⇠ij , ⇠kj) = �B,(1,{1,1}) is not shown in Figure 2 since
it would require three actors i, j, and k in Block 1. In gen-
eral the number of block-exchangeable parameters belong-
ing to each configuration type depends on the number of
blocks B (see Table 1).

w

1

w

As shown in Table 1, the number of parameters in ⌦B is on
the order of O(B3). This is substantially greater than the
number of parameters under the exchangeability assumption,
which is five regardless of network size, yet significantly
smaller than the number of parameters for dyadic clustering,
which is on the order of O(n3). The block-exchangeablility
assumption balances between imposing assumptions on er-
ror vector and model complexity, in an attempt to model
the covariance matrix with a reasonable number of parame-
ters while keeping the assumptions feasible for real world
applications.

Figure 2. Configurations of directed relation pairs under the block-
exchangeability assumption in a simple network of four actors
{A, B, C, D}, where A and B are in one block (indicated by
purple color) and C and D are in the other (indicated by light
coral color). Each circle represents one dyad configuration, and
the parameters within the circle correspond to those under the
block-exchangeability assumption. The circles denote which block-
exchangeable parameters share the same value under the exchange-
ability assumption and the associated exchangeable parameter is
positioned at the end of the arrow outside the circle.

4. Network Regression with
Block-exchangeable Errors

Assuming the errors are block-exchangeable and there
are B blocks, we now present algorithms that produce
standard error estimates for the coefficients � in a lin-
ear regression model (1). Let X be the design matrix,
�b = (XTX)�1XT y denote the ordinary least squares
estimate of � and rij = yij �X�b denote the residual for
observation yij .

4.1. Known Blocks

Given block memberships, the estimate of each block-
exchangeable parameter is formed by the empirical average
of the products of the residual pairs of the same block-dyad
configuration type. To formally describe the estimator, let
[B] = {1, ..., B} and [n] = {1, ..., n}. Let M index the five
dyad configurations M 2 {�2,�A,�B ,�C ,�D}, and QM

denote the set of block pairs/triplets for dyad configuration
M given [B]. Thus Q�2 = {(u, v) : u, v 2 [B]}, and
Q�B = {(u, {v, w}) : u, v, w 2 [B]}. We explicitly define
all other sets QM in the supplementary material. Further-
more, let �M,q, where q 2 QM , denote the set of ordered
relation pairs that have the configuration M and block speci-
fication q. Thus ��2,(u,v) = {[(i, j), (i, j)] : i, j 2 [n], i =
j, gi = u, gj = v}. All other sets ��A,{u,v}, ��B ,(u,{v,w}),
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Algorithm 1 Known block estimation of ⌦B

Input: residuals {rij : i = j}, number of blocks B,
block memberships {gi}
Output: b⌦B

1. For each configuration type M and block combination
q, calculate the set of residual products associated with
�M,q:

RM,q = {rjkrmn : [(j, k), (m,n)] 2 �M,q}

3. Estimate the parameters in ⌦B using the empirical
average of the corresponding residual products:

✓̂M,q =

P
t:t2RM,q

t

|RM,q|

where ✓M,q is the block-exchangeable parameter corre-
sponding to M and q.

6

��C ,(u,{v,w}) and ��D,(u,v,w) are explicitly defined in the
supplementary material. Algorithm 1 formally describes
estimation on ⌦B in this known block setting.

4.2. Unknown Blocks

When block memberships are unknown, we propose spec-
tral clustering to estimate them by constructing a similarity
matrix from the regression residuals (see Algorithm 2). For
each actor i and each dyad configuration M , we extract all
pairs of relation residuals that involve actor i as the over-
lapping actor in the given configuration. Let �M,i denote
the set of relation pairs that involve a specific actor i in con-
figuration type M 2 {�2,�A,�B ,�C ,�D}. For example,
��2,i = {[(i, j), (i, j)] : j 2 [n], i = j} [ {[(j, i), (j, i)] :
j 2 [n], i = j} and ��B ,i = {[(i, j), (i, k)] : j, k 2

[n], i = j = k}. Complete definitions of all other sets
are provided in the supplementary material. We compute
the Kolmogorov-Smirnov statistic between the distribution
of residual products that involve actor i and the distribution
that involve actor j for each configuration type M and com-
bine these to create a similarity measure between actors i
and j. Unnormalized spectral clustering is then performed
on the resulting similarity matrix to obtain block member-
ship estimates (Von Luxburg (2007)).

When block memberships are known, we apply Algorithm
1 to obtain ⌦bB . When block membership are unknown, we
apply Algorithm 2 to estimate the block memberships {ĝi}
and then apply Algorithm 1 using {ĝi} as an input to obtain
⌦bB . The value K in step 4 of Algorithm 2 is a tuning param-
eter and is used to construct a K-nearest neighbor weighted
adjacency matrix for input to the spectral clustering. Maier
et al. (2007) prove that choosing K = c1n� c2 log(n)+ c3,
where c1, c2 � 0 and c3 are all constants, provides an opti-

6

6

6 6

Algorithm 2 Block membership estimation

Input: residuals {rij : i = j}, number of blocks B, K
for nearest neighbor graph
Output: estimated block memberships {ĝi}
1. For each actor i and configuration M 2

{�2,�A,�B ,�C ,�D}, calculate the set of residual prod-
ucts for �M,i:

RM,i = {rabrcd : [(a, b), (c, d)] 2 �M,i}

2. Let Fi,M be the empirical distribution function for
RM,i. For each pair of actors i and j and for each M ,
calculate the Kolmogorov-Smirnov statistic

KSi,j,M = sup
x

|Fi,M (x)� Fj,M (x)|.

3. For each pair of actors i and j, define

sij = 1�

 
P

M2{�2,�A,�B ,�C ,�D}
KSi,j,M

!
/5.

4. Let W = (wij)i,j=1,...,n denote the weighted adja-
cency matrix,where

wij = wji =

(
sij , if i 2 KNN(j) or j 2 KNN(i)

0, otherwise

where KNN denotes K-nearest neighbor.
5. Perform unnormalized spectral clustering on weighted
graph W to get estimated blocks ĝi, where ĝi 2 [B] 8i.

6

mal choice of K. We found that for our simulation setting
K = 0.2n worked well. When block memberships are
known, computation of ⌦bB is quite inexpensive because
the algorithm simply extracts all dyad pairs with the same
covariance and averages the residual products (e.g. 5 sec-
onds when n = 80, 20 seconds when n = 160 on standard
machine). When the block memberships are unknown, Step
1 and 2 of Algorithm 2 may be expensive if the network size
is large. In these cases, we suggest a modification of Step 2.
Instead of letting Fi,M be the empirical distribution function
for RM,i, we modify Fi,M to be the empirical distribution
function for quantiles of RM,i. This reduces the size of
the set RM,i, which decreases the storage cost as well as
the computational cost of computing Kolmogorov-Smirnov
statistic.

5. Theoretical Analysis of Estimator
If the block-exchangeability assumption is appropriate, then
our method provides accurate estimation of the regression
coefficient standard errors, and confidence intervals con-
structed with such standard errors have the correct coverage.
This is why an accurate estimation of standard errors is
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important in inference on the coefficients.

Given ⌦bB from Algorithm 1, the sandwich covariance es-
timator can be used to estimate the standard error of the
ordinary least squares estimate �b:

Vb (�b) = (XTX)�1XT⌦bBX(XTX)�1. (2)

Observe that entries in Vb (�b) are entries in ⌦bB weighted by
functions of X . It is possible that even with the (incorrect)
exchangeable covariance structure in ⌦, we still obtain ac-
curate standard error estimation of �b because the difference
⌦bB � ⌦bE averages out over X . Here we quantify the dif-
ference between the standard error estimator of �b under the
assumption of exchangeability and block-exchangeability,
as a function of covariates X , block assignments {gi}, and
the true ⌦.

Consider a simple linear regression model with only one
covariate:

yij = �0 + �1Xij + ⇠ij , (3)

where yij is the observed relation, Xij is a scalar covari-
ate, ⇠ij is the error term, �0 is the intercept, and �1 is the
covariate coefficient. In addition, assume there is a two
block structure in the network, with block sizes n1 and n2,
respectively, where n1 + n2 = n. Under the assumption
that the error vector is block-exchangeable, we show that
the difference in Vb (�b) with the exchangeable estimator ⌦bE ,
denoted VbE(�b), and that with the block-exchangeable es-
timator ⌦bB , denoted VbB(�b), converges in probability to
a matrix that depends on the distribution of the covariate,
block assignments, and parameters in ⌦B .

THEOREM 5.1. Assume (a) the error vector satisfies the
block-exchangeability assumption, with two blocks of sizes
n1 and n2, (b) X is a full rank (n(n � 1) ⇥ 2) matrix,
(c) covariates {Xij} are independent and identically dis-
tributed, (d) the fourth moment of the errors and covariates
are bounded, (e) errors ⌅ and X are independent, and (f) the
number of blocks B is O(1). As n1 ! 1, n2 ! 1, and
n1/n2 ! ↵, where ↵ is a constant such that 0 < ↵ < 1,

⇣ ⌘
n VbB(�b)� VbE(�b

p
) ! c(X). (4)

where c(X) is a weighted linear combination of the dif-
ferences between the true block exchangeable parameters
and the corresponding exchangeable parameters (when the
block exchangeable parameters are appropriately averaged
within configuration type) and convergence is pointwise.
Furthermore, when Xij is independent of gi and gj , c(X)
= 0 and thus the estimators are asymptotically equivalent.

Proof of this theorem is provided in the supplementary
materials. The corresponding exchangeable parameter
�2 under block-exchangeability is a weighted average of

�2
(1,1),�

2
(1,2),�

2
(2,1) and �2

(2,2). Note we can interpret �2

as the common variance term if the error vector is in fact
exchangeable. We use the same logic for the other four con-
figurations, and recognize that the magnitude and sign of
the difference in standard errors using block-exchangeable
estimator and exchangeable estimator are determined by
a sum of weighted differences of all five configurations.
Therefore, whether the exchangeable estimator has over- or
under- coverage depends on parameters in ⌦B , {gi}, and
{Xij}.

The second part of the theorem notes that even if the differ-
ences �2

�(1,1) �2,�2
�(1,2) �2,�2

�(2,1) �2,�2
�(2,2) �2 are

nonzero, as long as the covariate Xij is independent of block
memberships gi and gj , on average the difference will dis-
appear after adjusted by weights. This is a critical insight,
because we see that in order for the block-exchangeable
estimator to have lower bias than exchangeable estimator,
we need (1) the error vector satisfies block exchangeability
but not exchangeability, and (2) the distribution of Xij is
correlated with on gi and gj .

6. Simulations
To evaluate the performance of our proposed block-
exchangeable error model, we generate data from a modified
latent space model (Hoff, 2005), which satisfies the require-
ments for block exchangeability. We consider a simple
regression model with one covariate, as in (3) where both
coefficients equal 1. We consider three settings for the rela-
tionship between the covariate and block structure, and three
types of covariates. Figure 3 shows the coverage of 95% con-
fidence intervals for �1 for all nine simulation settings. The
first column represents the cases where the covariate Xij

is uncorrelated with block membership, the second column
represents the case where relations with high variance in Xij

are correlated with low variance errors ⇠ij , and the third col-
umn represents the case where relations with high variance
in Xij also have high variance errors ⇠ij . The rows represent
different covariates: the first row is a binary indicator of ac-
tors sharing an attribute Xij,1 = 1[Xi=Xj ], the second row
represents the absolute difference between an actor attribute
Xij,2 = |Xi �Xj |, and the third row represents a pairwise
covariate with block structure Xij,3 ⇠ N(0, a2gi,gj ). We
generated 1000 errors for each of 500 simulations of the co-
variates and block memberships, and considered networks
of size 20, 40, 80, and 160. We consider four estimators
of ⌦ that are then plugged into the sandwich estimator (2)
to obtain a confidence interval for �1. The red box shows
the coverage using the block-exchangeable estimator con-
ditioned on the true block membership (Algorithm 1), the
blue box shows the coverage using the block-exchangeable
estimator with the estimated block membership (Algorithms
1 and 2), the yellow box shows the coverage using exchange-
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able estimator, and the purple box shows the coverage using
the dyad clustering estimator. For each boxplot, the mid-
dle line indicates the median coverage, the top and bottom
boundaries indicate the 90% and 10% percentiles, and the
top and bottom whiskers indicate the 97.5% and 2.5% per-
centiles.
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Figure 3. Coverage of 95% confidence interval for �1 under three
error settings and three covariate types for the block-exchangeable
standard error estimator conditioned on the true block member-
ships (oracle), block-exchangeable standard error estimator with es-
timated blocks, exchangeable standard error estimator, and dyadic
clustering standard error estimator.

The block-exchangeable estimator performs similarly to
the exchangeable estimator when the covariate is uncorre-
lated the errors, while the block-exchangeable estimator
substantially outperforms the exchangeable estimator when
the covariate is correlated the errors. This is consistent with
our theoretical results in Section 5. When high variance in
a relation’s covariate Xij is associated with low variance
in the error ⇠ij , we observe that the exchangeable estima-
tor is conservative, and the bias in coverage probability
increases with increasing network size. On the contrary, the
coverage bias of block-exchangeable estimator decreases
with increasing network size. When high variance in a rela-
tion’s covariate Xij is associated with high variance in the
error ⇠ij , the exchangeable estimator is anti-conservative,
and its performance improves little with increasing network
size. Most notably, at n = 160, the exchangeable estima-
tor’s coverage is worse than the dyadic clustering estimator,
which is evidence that estimators with strict assumptions
perform worse than distribution-free estimators when the

assumptions are violated. In addition, we observe that the
differences between the oracle block-estimator using true
block memberships and the block-estimator using estimated
block membership decreases with increasing network size,
suggesting that our block estimation gets better with increas-
ing network size.

7. Air Traffic Data
We demonstrate our method on data representing passen-
ger volume between US airports (Bureau of Transportation
Statistics, 2016). The data consist of origin, destination,
and number of passengers by month for n = 573 airports
for all months of 2016. The number of passenger seats
is a right-tailed skewed distribution, so we use the values

0
yij = log(yij + 1) as the relational observations for regres-
sion model in (1). For covariates, we calculated the great
circle distance between two airports using their longitudes
and latitudes. Additionally, we identified the county of the
municipality of each airport, and found the total GDP of
that county from of Economic Analysis (2015) and average
payroll of an employed person from Bureau (2015). We stan-
dardized the distance, GDP, and average payroll measures
before using them as covariates in the model.

An additional complication in this data is that, for most
airports, there is no direct traffic between them. Using
ordinary least squares on only the positive observations re-
sults in an inconsistent estimator of � (Wooldridge, 2001)
(Chapter 16.3). Therefore, instead, we estimated both the
regression coefficients � and covariance parameters using a
maximum pseudo-likelihood approach (Arnold & Strauss,
1991; Besag, 1975; Strauss & Ikeda, 1990). We use tech-
niques similar to Fieuws & Verbeke (2006) and Solomon
& Weissfeld (2017) for longitudinal observations on the
same individual, but modified the approach to account for
network structure.

A required input to the pseudo-likelihood estimation pro-
cedure is known or estimated block memberships. A pre-
liminary estimate of �bE was obtained assuming exchange-
able errors. These coefficient estimates were then used to
compute residuals rij = yij � �bEXij , 8yij > 0, and
Algorithm 2 was performed on the residuals for positive
observations to obtain block membership estimates. Given
the block memberships, the covariate effects � and the
block-exchangeable covariance parameters could be simul-
taneously estimated using the pseudo-likelihood framework.

To numerically optimize the pseudo-likelihood, we used
optim in R, with method="L-BFGS-B". We do not set
bounds on �, but did place a lower bound of 1e�2 for all
variance parameters and a bound of [�0.9, 0.9] for all cor-
relation parameters. We used the eigengap method, which
locates a large gap between two subsequent eigenvalues, to
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Figure 4. Smallest eigenvalues of the Laplacian matrix in increas-
ing order

choose the number of blocks B. Figure 4 shows the smallest
seven eigenvalues in increasing order. The gap between �2

and �3 is larger than the gap between �3 and �4, suggesting
that B = 2 is a reasonable choice. Figure 4 also shows that
the gap between �4 and �5 is large, suggest B = 4 may
also be appropriate. When running the spectral clustering
algorithm with B = 3 and B = 4, the smallest block size
contained just two airports. Therefore, we proceeded with
fitting a block-exchangeable covariance estimator with two
blocks, which resulted in one block estimated to have 49
airports, and the other having 524 airports. Full details are
provided in the supplementary materials.

Table 2 shows 95% confidence intervals of coefficients using
exchangeable estimator and block-exchangeable estimator.
We see that the distance between airports is negatively asso-
ciated with number of passenger seats, while GDP and aver-
age payroll of both departure and arrival airports’ counties
are positively associated with traffic between airports. Com-
pared to the exchangeable estimator, the block-exchangeable
estimator returns large effects of economic factors on airport
traffic.

8. Discussion
In this paper, we propose a novel block-exchangeable es-
timator to estimate the standard errors of regression coef-
ficients, assuming block-exchangeability. Our proposed
estimator bridges the gap between the existing dyadic clus-
tering estimator, where no distributional assumptions are
made, and the exchangeable estimator, where the joint distri-
bution of errors are assumed to be exchangeable. Through
theory and simulations, we have shown that when latent
block memberships are correlated with the generative pro-
cess of the covariates, our block-exchangeable estimator
outperforms the exchangeable estimator by having less bias

intercept distance GDPi

Exch (-29.00, -28.94) (-7.27, -7.21) (1.89,1.95)
B-E (-26.25, -26.18) (-6.99, -6.92) (3.38, 3.46)

GDPj payrolli payrollj
Exch (1.89, 1.95) (1.42, 1.48) (1.41, 1.47)
B-E (3.44, 3.51) (2.99, 3.06) (2.96, 3.04)

Table 2. 95% confidence intervals of coefficients using exchange-
able estimator and block-exchangeable estimator. Distance rep-
resents the standardized great circle distance between two air-
ports, GDPi and GDPj denote standardized GDP for departure
and arrival airport, respectively, and payrolli and payrollj denote
standardized average payroll for departure and arrival airport, re-
spectively.

of coverage, and outperforms dyadic clustering estimator by
having less variance.

Because there may not exist a link between every pair of
actors in real network data, we extend our estimation algo-
rithms to a case where we assume relational observations
are zero left censored. In contrast to the method of mo-
ments approach we propose for uncensored data, we use a
maximum pseudo-likelihood approach to estimate both the
regression coefficients and covariance parameters simulta-
neously. Although maximum pseudo-likelihood estimates
are less preferable to maximum likelihood estimates, using
the likelihood directly is not computationally feasible in this
censored data setting.

Although we focus our discussion on the impact of block
dependence on inference for regression coefficients, possi-
bly equally as interesting, is how the covariance structure,
and inferred block structure, is impacted by the inclusion of
covariates. In many settings–namely where a researcher is
conducting experiments on graphs or wants to make causal
claims–the role of covariates is often paramount. As an
example, if a researcher can identify covariates that induce
very strong residual block structure, these blocks may suf-
fice for units for randomized in a causal inference study.

There are a few limitations of our work, and we discuss
them here. We consider linear regression and continuous
relational observations on a fully connected network, and
assume actors are sampled randomly. A future direction
for this work includes extending it to respondent-driven
samples. Extending this approach to the generalized lin-
ear model framework is unfortunately nontrivial due to the
coupling of the relation mean and variance in non-Gaussian
link functions. Additionally, if the block sizes are unbal-
anced, the variance of the estimated parameters associated
with the smallest block is presumably largest. Comparing
the performances of different estimators at various levels of
unbalanced block size is a direction for future study. Finally,
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in the case of unknown block memberships, Algorithm 2
attempts to identify memberships based on similarities be-
tween the distribution of actor residual products. Computing
these similarity scores is computationally intensive and in
our examples, required a matter of hours using a standard
laptop with codes written in R and not optimized for effi-
ciency.
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