Main Track

AAMAS 2022, May 9-13, 2022, Online

A Hierarchical Bayesian Process for Inverse RL in
Partially-Controlled Environments

Kenneth Bogert
Computer Science Dept., University of North Carolina
Asheville, NC 28804, USA
kbogert@unca.edu

ABSTRACT

Robots learning from observations in the real world may encounter
objects or agents in the environment, other than the expert giv-
ing the demonstration, that cause nuisance observations. These
confounding elements are typically removed in fully-controlled
environments such as virtual simulations or lab settings. When
complete removal is impossible the nuisance observations must
be filtered out. However, identifying the sources of observations
when large amounts of observations are made is difficult. To address
this, we present a hierarchical Bayesian process that models both
the expert’s and the confounding elements’ observations thereby
explicitly modeling the diverse observations a robot may receive.
We extend an existing inverse reinforcement learning algorithm
originally designed to work under partial occlusion of the expert to
consider the diverse and noisy observations. In a simulated robotic
produce-sorting domain containing both occlusion and confound-
ing elements, we demonstrate the model’s effectiveness. In particu-
lar, our technique outperforms several other comparative methods,
second only to having perfect knowledge of the subject’s trajectory.

KEYWORDS
Cobots; Maximum entropy; Produce sorting; Uncertainty

ACM Reference Format:

Kenneth Bogert and Prashant Doshi. 2022. A Hierarchical Bayesian Process
for Inverse RL in Partially-Controlled Environments. In Proc. of the 21st
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), online, May 9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

A known modality for imitation learning in robotics [15] is to
employ a sensor suite to learn from observing (LfO) the expert. The
sensed data constitutes a trajectory, usually modeled by a Markov
decision process (MDP), which specifies the state of and action taken
by the subject agent at successive time steps as it performs the task.
Techniques such as classical machine vision and deep learning may
be combined to automate this process for complex sensors such as
depth cameras [22]. On acquiring the trajectories, they are used by
a machine learning method such as inverse reinforcement learning
(IRL) [2, 18], to learn a model of the subject’s demonstration so that
an apprentice robot may then perform the same task.

While our ultimate concern pertains to the deployed robot’s
performance, a significant amount of effort goes into developing
the portion of the LfO pipeline used only during demonstrations.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

145

Prashant Doshi
THINC Lab, University of Georgia
Athens, GA 30602, USA
pdoshi@uga.edu

It is this portion which yields the trajectories that are used in the
learning. Clearly, a challenge for the learning is the inherent noise
present in the sensor stream. The vision may fail to uniquely iden-
tify the state or action of the subject, deployed sensors may fail
temporarily while observing the task being performed, or the de-
tection is obfuscated due to the presence of confounding elements
in the environment. Confounding elements are objects in the back-
ground, other agents moving through the environment, or objects
that cause occlusion of the expert. Either by strictly controlling
the environment during demonstrations, repeating demonstrations
multiple times, or manually editing noisy sensor streams, such
practical issues are overlooked by the extant literature.

In this paper, we present a general hierarchical Bayesian process
that models the uncertainty present in observations of the expert
agent demonstrations in partially controlled, real-world situations
to perform imitation learning. We define a partially-controlled envi-
ronment as one which contains a finite and static set of confounding
elements, which are known. Our model exploits the underlying
incomplete MDP that is being learned to provide structure to noisy
observation data and is integrated into a previous technique for
IRL under occlusion [5, 7] that generalizes the classical maximum
entropy optimization. We demonstrate our model’s effectiveness
in a formative Gridworld scenario and in a larger robotic produce-
sorting experiment in which a number of confounding elements
are present.

2 PRELIMINARIES

IRL connotes both the problem and method by which an agent
learns goals and preferences of another agent that explain the
latter’s observed behavior [18, 21]. The observed subject agent E is
often considered an “expert” in the performed task. To model the
subject agent, it is assumed that the expert is executing an optimal
policy based on a standard MDP (S, A, T, R). The learning agent L
is assumed to exhibit perfect knowledge of the MDP parameters
except of the reward function. Therefore, the learner’s task is to
infer a reward function that best explains the observed behavior of
the expert under these assumptions. A policy is a function mapping
each state to an action. It can be deterministic, 7 : S — A or
stochastic, 7 : S — Pr(A). The value function V" : S — R gives
the value of a state s as the long-term expected cumulative reward
obtained from the state by following . The value of a policy 7 from
some initial state sy is an expectation, V7 (so) = E [Z‘;io Y'R(s) |7r],
where y € (0, 1) is a discount factor.

The problem of IRL is generally ill-posed because for any given
behavior there are infinitely-many reward functions which may
explain the behavior. Ng and Russell [18] initially approached the
problem with linear programming inferring a reward function that

Main Track

maximizes the difference between the value of the expert’s optimal
policy and the next best policy under the assumption that the ex-
pert’s complete policy is available. Abbeel and Ng [1] relaxed this
assumption using an algorithm in which the expert, E, provides a
demonstration of the task performance instead of its policy. (Demon-
strations may be seen as composed of simulations of the expert’s
optimal policy.) The reward function is modeled as a linear combi-
nation of K > 0 binary features, ¢y: SX A — [0,1], k € {1,2...K}.
Each feature maps a state from the set of states, S, and an action
from E’s set of actions, Ag, to a value in {0,1}. Choosing appropriate
feature functions is important, and, if these are not known to the
learner, they can be learned from the data thereby diminishing the
need for feature engineering [17].

The reward function for the expert, E, is then defined as R(s, a) =
0T ¢(s,a) = 2115:1 Ok - ¢r(s,a), where 0y are the weights in vec-
tor 0; let R = RIS*4l be the continuous space of reward func-
tions. The learner task is simplified to one of completing the re-
ward function by finding an appropriate vector of weights so that
the demonstrated behavior is optimal. The data for IRL is in the
form of a demonstration, which is usually comprised of trajec-
tories. A trajectory of finite length T assumed to be generated
by the MDP attributed to the expert is defined as X7 = {X|X =
(s, a)1, (s, a)2,...,(s,a)T)}, Vs € S,Ya € A}. A demonstration is
some finite, non-empty collection of trajectories of varying lengths,
X ={X|Xx exTy.

As the expert’s policy is unavailable to the learner, the vector of
weights is found by comparing the feature expectations of all pos-
sible trajectories to feature counts empirically estimated from the
expert’s policy [30]. The expert’s feature expectations are estimated
using the average of feature values for all observed trajectories,
dr = ﬁ YXeX 2L(sa)yex Pk((s a)). The learner completes the
expert’s MDP using the learned reward function and may solve it
to obtain 7. Due to the ill-posed nature of the problem, the learned
reward function may not be directly compared to the true function,
if known. Instead, a popular metric is the inverse learning error
(ILE) [11] of a learned reward R obtained as ILE = ||V”E vy 1,
where V7" is the value function computed using the true reward
and the expert’s optimal policy, V7" is the value function using the
true rewards and the optimal policy for the learned reward.

2.1 Maximum Entropy IRL

The max-margin approach of Abeel and Ng [1] introduces a bias
into the learned reward function. Biases can help guide the search
in ill-posed problems, but they may preclude other meaningful
solutions. Consequently, this motivates methods that make the
least assumptions. Toward this, Ziebart et al. [30] finds the distri-
bution over the trajectories that exhibits the maximum entropy
while matching the observed feature expectations. The following
nonlinear program gives this distribution.

mAax (— ZXeX Pr(X) log Pr(X))

subject to ZXeX Pr(X)=1
Ex[¢x] = i Vk @

Here, Ex[¢] = Sxcx Pr(X) 5 (sa),x $((s @) is the feature
expectation. The problem reduces to finding 6, which parameterizes

146

AAMAS 2022, May 9-13, 2022, Online

the exponential distribution that exhibits the highest likelihood:

Pr(X) o eXisanex 67¢(s:9) Notice that the chances of an expert
agent following a trajectory is proportional to the cumulative re-
ward incurred along that path. The benefit of this approach is that
distribution Pr(X) makes no further assumptions beyond those
which are needed to match its constraints and is maximally non-
committal to any one trajectory. As such, it is most generalizable
by being the least wrong most often of all alternative distributions.
A disadvantage is that it becomes intractable for long trajectories
because the set of trajectories grows exponentially with timesteps.
To address this, another formulation, MaxCausalEntIRL [29], finds
stochastic policies with maximum entropy.

2.2 IRL under Occlusion: HiddenDataEM

Our motivating application involves a collaborative robotic arm
sorting produce as they move down a conveyor belt in a processing
shed. It learns how to sort by using its sensors to observe an expert
worker over an extended period. However, the activity may not be
fully observed due to various reasons such as other persons acciden-
tally walking in front of the camera. Previous methods [6] denote
this special case of incomplete observability where some states are
fully hidden as occlusion. Subsequently, the trajectories gathered by
the learner exhibit missing data associated with timesteps where
the expert is in one of the occluded states. The empirical feature
expectation of the expert ¢;k would exclude the occluded states (and
actions in those states).

To ensure that the feature expectation constraint of IRL methods
accounts for the missing data, recent approaches [5, 7] take an
expectation over the missing data conditioned on the observations.
Completing the missing data in this way allows the use of all states
in the constraint and with it the Lagrangian dual’s gradient as well.
The nonlinear program of (1) is modified to account for the hidden
data and its expectation.

Let Y be the observed portion of a trajectory, H is one way of
completing the hidden portions of this trajectory, and X = Y U H.
Treating H as a latent variable gives a new definition for the expert’s
empirical feature expectations:

T
SN pr(ly:0) Y grGsad) ()
t=1

YeVY HeH

‘Hly o 1

Yor = 1]
where (s,a); € Y U H, Y is the set of all observed Y, H is the
set of all possible hidden H that can complete a trajectory. The
program in (1) is modified by replacing (j;k with g{;gllcy Notice that
in the case of no occlusion H is empty and X = Y. Therefore
é{:l‘:’ = figk and this method reduces to (1). Thus, this approach
generalizes the previous maximum entropy IRL method. However,
the program becomes nonconvex due to the presence of Pr(H|Y).
As such, finding its optima by Lagrangian relaxation is not trivial.
Wang et al. [26] suggests a log-linear approximation that casts
the problem of finding the parameters of the distribution (reward
weights) as a likelihood maximization that can be solved within the
schema of expectation-maximization [13]. An application of this
approach to the problem of IRL under occlusion yields a method
labeled as HiddenDataEM, which consists of the following two
steps (with more details in [7]):

Main Track

E-step This step involves calculating Eq. 2 to arrive at q‘;glLY’(t), a

conditional expectation of the K feature functions using the pa-
rameter 89 from the previous iteration. We may initialize the
parameter vector randomly.

M-step In this step, the modified program is optimized by utilizing

~Hly,
¢0’/|(Y (t)

to obtain 8(**1). Now, optimizing the relaxed Lagrangian becomes
easier. Unconstrained adaptive exponentiated gradient descent [23],
a version of gradient descent in which the learned parameter is
scaled using the exponent of the gradient, solves the program. This
variant of the gradient descent exhibits improved worst-case loss
bounds over the standard gradient descent and often converges
faster.

As EM may converge to local minima, this process is repeated
with random initial € and the solution with the maximum entropy
is chosen as the final one.

from the E-step above as the expert’s feature expectations

3 CONTROLLED ENVIRONMENTS

HiddenDataEM assumes that trajectories are noiselessly observed
with some data missing due to occlusion. Data acquired from a
robot’s sensor suite, however, is likely to be noisy and provides
partial information about the subject. We aim to generalize the
E-step of HiddenDataEM to environmental and sensing noise to
obtain a distribution over possible demonstrations X given the
observations.

We first discuss a simplification of our model. It applies to sce-
narios where the learner (or its operator) has full control over the
environment such that there is no possibility of extraneous observa-
tions and the learner has perfect knowledge of the state and action
of the subject agent at each timestep. This is a popular assumption
for IRL, often possible in simulations only, but not practicable in many
real-world robotic contexts.

We emphasize that the sensor data may be markedly different
from the state-action trajectory data. For instance, suppose a video
camera is used to record the expert and a machine vision algorithm
such as SIFT processes the video stream and produces a stream
of features, which we call observations. If this camera runs at 30
fps, potentially hundreds to thousands of observations are generated
every second, with many duplicates. Now, let the MDP timestep
correspond to one wall-clock second and the state and action sets be
discrete. Then, let these observations be modeled by an observation
function (sensor model) dependent on the subject’s state and action
variable, i.e., O(s, a, w), where w € Q are sensed observations (fea-
tures). We show this model graphically in Figure 1 (left). Of note
is that there may be any number of observations at each timestep,
N;. This characteristic makes it different from a hidden Markov
model in which the state and action of the expert are also hidden
but which models a single observation at each timestep.

It is generally impractical to have complete knowledge of O due
to the nature of these complex observations. Instead, we allow O to
be sampled from a Dirichlet distribution with hyperparameters «.
Let the likelihood distribution of Q be multinomial, which makes
the Dirichlet over O a conjugate prior and allows us to set & to be
the count of each observation seen per state and action.

Controlled environments, such as simulations, facilitate this pro-
cedure as the state and action of the subject may be perfectly known.

147

AAMAS 2022, May 9-13, 2022, Online

/ e — ~ \‘ B
7N 77N\
[s W s |
./) J/
’//7777 AN
[A
Ve ~ \\7 /
Ve . N \ - N J
’/ AN e N N \
| S > s | =
\ \ / Ve N o
N - / \
v [M)
e/
[A 7 { A
N/ N N
\ / \\ Zm \ Oz ,“
_ N
v { el
TN Ve p \
(wt,n ,‘4 1 OS‘A :‘ ‘ wt‘n , ’/"/7 \\\
N N N/ . O,)
N "'/ N N
t |S XA| t \\777 /
\ J ‘
e T/ N T/\ |SXA,|/

Figure 1: (left) A hierarchical Bayesian process for a con-
trolled environment displayed in plate notation. At each
timestep ¢, N; observations » are sampled from the ob-
servation model Og 4. (right) The partially-controlled envi-
ronment requires an expanded hierarchical process model.
Each observation w; , is labeled with its source, Z; ,, which
may be the expert or a confounding element belonging to &.
As the true source may not be known, we sample it from the
distribution ;.

This learned model may then be transferred to less controlled en-
vironments. However, we may expect the expert to present some
significant observation differences in this case. Therefore, we may
need to scale the hyperparameters by a small constant to prevent
overfitting.

4 PARTIALLY-CONTROLLED
ENVIRONMENTS

Of course, LfO cannot usually be performed in sterile, controlled
environments. Confounding elements often remain in the environ-
ment during demonstrations which cause extraneous observations.
These observations must be filtered out in order to prevent incorrect
trajectories from being produced that will distort the learning.

This is a problem of data association: if each observation has its
source perfectly labeled we could simply exclude all non-subject
agent observations and use the controlled environment model from
Section 3. However, an observation’s source may not be pinpointed
perfectly due to the inherent noise. One common approach is to re-
strict the accepted observations in the hope that non-subject agent
observations will be removed. But this increases the chances of
occlusion when many of the available observations are not clear.
This also precludes using unexpected, opportunistic observations,
such as the presence of a mirror or a reflective surface in the envi-
ronment, as these extra sources may get filtered out.

Main Track

We take a novel approach with the goal of utilizing all avail-
able information while identifying and filtering out observations
caused by confounding elements. Suppose we enumerate every
confounding element present in the environment during demon-
strations (this is reasonable assuming that the environment has
been at least partially controlled to limit these elements). Then,
the set of observations received at a given timestep is due to some
mixture of these elements and the subject agent. Let & be the set of
all confounding elements. To the previous Bayesian process model,
we add a label variable Z for each observation w, where Z identifies
the source of @ and may take on a value either from & or one addi-
tional value indicating “subject agent”. We expand the observation
model to include all elements in &. Note that when Z labels an
as “subject agent” the observation model conditional on the subject
agent’s state and action is chosen, as was the case in our controlled
environments model. Thus, Z acts as a multiplexer select input.

As machine vision is often uncertain about the identification
of an observation, Z is itself unknown. Thus, we model it as being
sampled from a distribution n(Z), which incorporates any information
the observation system has about the source of a given w and is of
length 1 + |E|, with the first entry indicating “subject agent”. This
allows for a rich set of information to be incorporated beyond
simply that an w was observed. An advanced system could track
the movement of agents to help with the identification, it could
interpret the observation in the context of others nearby, or express
that an observation was vague or unusual. To illustrate, object
detection using the Python ImageAl library could be employed on a
RGB video stream to produce observations. These systems produce
a probability distribution of possible object identifications for each
detected object, which could be utilized as . We show the new
generalized hierarchical Bayesian process in Figure 1 (right).

4.1 Finding the Expert’s Trajectory
Distribution

Let O = {{w,m1,{@, M2 ...,{®,) x|} be the set of observed
trajectories produced from the subject’s demonstration X each as-
sociated with a distribution over their corresponding labels (source
distribution). To compute distributions over trajectories given «
and O we also require the subject’s policy Pr(A|S). Unfortunately,
as IRL is attempting to learn this distribution, we will not have the
correct policy ahead of time. We resolve this by using the currently
found trajectory distributions to compute ¢; in the E-step of Hid-
denDataEM, revising Eq. 2 to yield Eq. 3. Using the policy produced
by the subsequent M-step we iteratively improve our likelihood
estimate of the subject’s true demonstration.

T

ﬁ Z ZPr(XIw,n;O)Z%((S,a}t)

(w,n)c0 XeX t=1

®)

0 A

Pox =

We may employ the Baum-Welch algorithm [19] to find the distri-
butions Pr(X|w, n;). However, due to the large amounts of obser-

vation nodes per trajectory we replace the forward-backward mes-
sage passing of Baum-Welch with Markov chain Monte Carlo sam-

pling to improve performance. As shown in Algorithm 1 Hierarchical

Bayes Inference present in Appendix A at the end of this paper,
we first sample all the local nodes (S, A, Z) to produce distributions

148

AAMAS 2022, May 9-13, 2022, Online

over all complete trajectories, update the observation model us-
ing these distributions, and repeat until convergence. We employ
Metropolis-within-Gibbs sampling [24], a hybrid technique similar
to Gibbs sampling, which samples individual nodes one at a time.
However, when the transition function of the underlying MDP is de-
terministic, we may not efficiently sample one state or action node
at a time due to the probability of all transitions but one being zero.
Then, our algorithm samples a trajectory’s entire set of state-action
nodes at once using a method similar to Metropolis-Hastings.

4.2 Exploiting Indirect Observations

Although occlusion of the subject is one potential challenge in
partially-controlled environments, it may be mitigated by exploiting
indirect observations received from the subject.

By definition, the percept that causes an indirect observation
does not travel directly from the subject agent to the learner’s
sensors, rather it reflects or bounces off of some part of the environ-
ment, appearing to come from elsewhere than the subject. These
observations could include mirror reflections, natural pinspeck cam-
eras [25], shadows [3], and changes in ambient color. Because they
partly depend on the specific demonstration environment, these
observations are difficult to manually specify and detect. It is also
difficult to simulate them, as they rely on complex calculations such
as ray tracing for optical physics, requiring extensive computation
time.

As a simple instance of indirect observations countering occlu-
sion, suppose a color blob finder is being used to identify an object
being manipulated by a robot. If a reflective surface exists in the
environment, such as a mirror behind the robot, we may receive
consistent indirect observations from this surface. If the object is
accidentally occluded from direct view, it is possible the reflection
is still visible and can be used to identify the object.

Our approach is to allow the observation model, O, to be updated
from the available demonstration data. This can be seen in line 23
of Algorithm 1 (see Appendix A at the end of this paper), where we
gradually update & using & found using the expected trajectories
at iteration i and the previous values. In occluded timesteps, the
number of observations directly caused by the subject agent is
small, if any. Thus, any indirect observations greatly influence the
resulting distribution over the expert’s states and actions in these
timesteps.

5 EXPERIMENTS

We implemented Algorithm 1 and evaluate it on a toy Gridworld
as well as in our domain of key interest — the sorting of produce
using a robotic manipulator.

5.1 Formative Tests on Gridworld

We evaluate our model first on a 5x5 Gridworld MDP. The Grid-
world’s reward function has four features corresponding to being
in each of the four corners, with one corner randomly chosen to
be the goal. We define four observations corresponding to each
of the corners. The true observation function has each occurring
exponentially more likely as the agent gets closer to the respective
corner. For more details about the Gridworld, see Appendix B in
the supplement.

Main Track

To this model we add some confounding elements, each with its
own random observation function. For our experiment we simulate
the subject agent moving through the Gridworld 20 times, and at
each timestep produces 40 observations sampled with equal proba-
bilities from the subject agent’s and each confounding element’s
observation function. Thus, as the number of confounding elements
increases, the proportion of observations attributed to the subject
reduces thereby making this a difficult learning task.

True Trajectories —+—
Ignore CE —»—
True Observation Function ——

Uniform n —&—

25 Plausible n —=—

20

Average ILE

. PR

0 2 4 6 8 10 12 14
Number of confounding elements

Figure 2: Average ILE of various techniques as the number
of confounding elements increases in Gridworld. Each data
point is the result of 65+ runs. Error bars are 95% confidence
intervals on the mean. Lower ILE is preferred.

Figure 2 shows the ILE of the algorithm and several baselines.
First, True Trajectories where the subject’s true trajectories are
input into MaxCausalEntropyIRL [28], has zero error as expected.
Next is a variant where the True Observation Function O of the
subject and those of the confounding elements are known to the
learner but all 5 are uniform. Thus, the source Z of each observa-
tion is not known. It exhibits excellent performance with up to 6
confounding elements. In the next two variants, the observation
model O is unknown but an informative Dirichlet prior « is used
for the expert and a symmetric (uninformative) prior for the con-
founding elements.! Uniform 7 uses a uniform 7 distribution for all
observations in the hierarchical Bayesian process while Plausible 1
has a 80% chance of assigning the true source of an observation
0.6 probability mass, otherwise a random source is given this mass.
Finally, Ignore CE treats all observations as if they came from
the subject and gives the lower bound. It achieves 0 error with no
confounding elements but ILE rapidly rises as |&| grows. Overall,
Fig. 2 shows that our technique with a plausible 5 performs nearly
as well as having the true trajectories with up to 13 confounding
elements.

5.2 Summative Tests using Robotic Onion
Sorting
Domain description We now examine the performance of our

technique in a larger produce sorting task. A simulated Sawyer ro-
bot arm is tasked with inspecting onions moving down a conveyor

!Informative observation model priors for confounding elements did not significantly
impact performance in our experiments.

149

AAMAS 2022, May 9-13, 2022, Online

belt and sorting good onions from blemished ones. A blemished
onion exhibits dark portions which may be visible while on the con-
veyor but will generally require a closer inspection by the robot’s
cameras. In this pick-inspect-place scenario we desire installing
a new robot that will work alongside the existing one to increase
sorting capacity. Rather than manually program the new robot,
however, we wish to have it learn from watching the existing one’s
behavior in a production environment, such as a packing shed,
where many confounding elements are present that cannot be re-
moved. Examples of such elements include other shed workers and
stations sorting produce other than onions. To assist the learner,
we place a mirror behind the sorting robot to give the learner an
additional viewpoint into the inspection. When the subject robot
is occluded from the learner’s view, the mirror offers indirect obser-
vations of the onion being inspected and the expert’s actions to the
learner.

A state of our MDP for the sorting task is factored and composed
of 3 discrete variables: Onion Quality (unknown, good, blemished),
Onion Position (on_conveyor, gripped, in_bin), and Gripper Posi-
tion (conveyor, bin, inspection).

Actions cause certain changes in the state. Any action may be
taken in any state but will have no effect (state unchanged) other
than those described here.

e Grip onion changes an onion’s position from on_conveyor to
gripped with probability 1;

o Release onion changes an onion’s position from gripped to in_bin
or on_conveyor (based on the gripper’s position) with probability
1

o Inspect onion changes an onion’s quality from unknown to either
good or blemished by closely showing all sides of the onion to
the robot’s camera (only applicable in the inspection gripper
position);

e Move to conveyor, Move to inspection, Move to bin changes the
gripper’s position to conveyor, inspection, and the bin each with
probability 1, respectively.

Four general binary reward features are defined below and
take the value 0 in all states and actions except in those described
where they are valued 1.

(1) Release good onion in bin;

(2) Release good onion back on the conveyor belt;

(3) Release blemished onion in bin;

(4) Release blemished onion back on the conveyor belt.

The MDP assumes the subject is placing each type of onion either

in the bin or back on the conveyor. The learner is unaware of which

action is chosen for which onion type.

Trajectories are short (5-6 timesteps long) and terminate when
Sawyer performs a Release onion action, thereby completing a sin-
gle sort. Timesteps correspond to 2 secs of wall-clock time and
we assume the learner is able to detect the beginning and end of
trajectories (or an operator indicates them).

Our learner robot is equipped with a fixed RGB camera that
is observing the expert. Determining the subject’s complete state
is not straightforward: Consider a blemished onion as shown in
Fig. 3(a). It appears identical to a good onion from one angle, but
from others has detectable dark spots. These appear to the learner
as a distribution of discrete observations: bright onion and dark

Main Track

AAMAS 2022, May 9-13, 2022, Online

(d)

Figure 3: (a) A blemished onion from two viewpoints. (b) The onion sorting robot inspecting a bad onion in a fully controlled
environment. (c,d,e) The same robot in a partially controlled environment sorting onions. Note the blue gripper and an indi-
vidual’s confounding blue shirt, occlusion due to a worker temporarily in front of camera, presence of other onions, and the
mirror which provides the indirect observations (see the simulation video at https://youtu.be/r6IGU21Rty8 for more details).

onion, with blemished onions producing relatively more dark onion

observations.

Additionally, confounding elements are present in the partially-
controlled trials. These include moving persons in the environment
that cause false positive observations or occlude the subject from
view, and other onions not being sorted (see Fig. 3(c, d, e) and the
supplemental video). The observations are defined below with more
details in Appendix B in the supplementary material:

e Gripper blobs - The gripper is detected by running a color blob
finder on the RGB frames. Gripper positions produce distribu-
tions of color blobs which are classified into one of 20 discrete
observations each corresponding to an equal-sized region of the
camera’s f.0.v. The n for these observations is based on the size
of the blob, with more mass given to the subject as the blob size
approaches the bounding box size of the gripper in pixels. The
leftover mass is attributed to a person walking behind the expert
wearing a shirt of the same color as the gripper.

e Bright or Dark onion - Onions are detected in the RGB images
using a color blob finder. The luminosity of the pixels constituting
the onion is then classified as either bright or dark based on the
proportion of dark pixels present. 7 is set to 80% for subject if the
blob is proximal to a gripper blob, with the remainder going to
other onions and a foreground person. If no gripper blob is seen
nearby, we assign 60% mass to the other onions for small blobs or
a foreground person for large ones, with the remainder divided
between the subject (10%) and other confounding element (25%).

Notice that these observations do not unambiguously specify the

state and action of the expert. The 5 values chosen represent our

uncertain estimate of the source of the detected blobs, illustrating
the difficulty of filtering out observations of confounding elements.

Experiment procedure We simulate the sorting robot with all
confounding elements removed and record (i) the true state and
action in each timestep and (ii) all observations received. We use
these to find the o hyperparameters, as well as provide a ground
truth trajectory for upper-bound purposes. Next, we repeat the
same sort but with a mirror installed and confounding elements
added, recording all observations. We produce the following data
sets:
e Maximum likelihood (ML) trajectories - given the observation
model and observations received we choose the most likely expert

150

state and action at each timestep. This approximates common

practice and serves as a baseline.

e ML observations - given 5 values as defined above, choose the
observations that are most likely caused by the subject and use
these observations only in the “controlled environment”. This
demonstrates the accuracy of 5 distributions.

e Partially-controlled model - we define & manually by reviewing
the recorded demonstration and observation stream and listing
all objects other than the subject that cause observations. We
use uninformative hyperparameters « for all confounding ele-
ments, and use the observations in our partially controlled model.
n is either Plausible (set to values described previously) or is
Uniform.

We utilize MaxCausalEntIRL to find a reward function for data
sets with known states and actions. For all others, we use Hidden-
DataEM and report metrics after Algorithm 1 has converged. We
show the ILE produced by using the learned reward function to
complete the given MDP versus using the true reward function for
each data source. There were three confounding elements, which
are evident in Fig. 3(c, d).

True Trajectories —+—
ML Trajectories —s—

L Obs ——

Uniformn —&—
Plausible n —=—

40 4

35 -
30 -

25 4

20 A

15 4

10 4

5

0+ + + + ¥ + + T t +
1 2 3 4 5 6 7 8 9 10

Number of Trajectories

Average ILE

Figure 4: Average ILE in the onion sorting experiment as the
number of trajectories increases. Each data point is from
100+ runs. Error bars are 95% confidence intervals on the
mean.

https://youtu.be/r6IGU21Rty8

Main Track

As Fig. 4 reveals, two trajectories are needed for True Trajec-
tories to achieve zero error due to the need to see at least one
good and one blemished onion being sorted. ML trajectories is
mostly flat because observations from the confounding elements
prevent the likelihood estimation from yielding any reasonable
trajectories. ML Obs shows sensitivity to the trajectories due to the
variance in observations produced by each trajectory. Plausible
n achieves very low error with 4 or more trajectories, while all
other techniques fail to reduce error as trajectories increase. As a
verification, on applying these techniques to observations produced
in the fully controlled scenario, all methods achieve zero error with
just two trajectories. Thus, HiddenDataEM [7] when integrated
with the hierarchical Bayesian process and a plausible distribution
over the sources of the learner’s observations exhibits IRL under
much uncertainty.

6 RELATED WORK

Bogert and Doshi [4, 6] introduce the challenges of occlusion that
manifest in real-world applications of IRL to robotics. This exten-
sion of the original problem of IRL — which assumes full and perfect
observability of the trajectories — is formally defined in a recent
survey of the methods and progress in IRL [2]. An initial method [4]
extended MaxEnt [30] to settings involving occlusion of portions of
the trajectory by limiting the constraints to the observed portions
only. Subsequently, the EM based approach reviewed in Section 2
was introduced, which forms an expectation over the missing data
to allow the use of the Lagrangian gradient. However, this method
suffers from a compute intensive expectation step when the oc-
cluded portions of the trajectories are long and contiguous. This
limitation is addressed by a follow-up paper [5], which shows how
blocked Gibbs sampling can be utilized to speed up the forward-
backward message passing in the expectation step to allow scaling
under occlusion to multiple experts. However, none of these gener-
alizations to occlusion integrate indirect observations in the model
as we do in this paper, which represents a different approach to
manage occlusion.

On the other hand, techniques like BIRL [27], D-REX [8], and the
more recent SSRR [9] target noisy trajectories due to the expert’s
failures during task performance. The first is based on the premise
that noisy execution may cause the expert to sometimes exhibit
off-policy actions. A latent variable characterizing the reliability of
the action is introduced and an EM schema in the framework of
BIRL manages this noise. The second technique (D-REX) automati-
cally ranks demonstrated trajectories based on their total rewards
using the Luce-Shepard rule while SSRR uses Adversarial IRL and
assumes that the demonstrator is suboptimal and that pairwise
preferences over trajectories are additionally needed for IRL. How-
ever, none of these methods introduce an observation model for
the learner or account for partially occluded trajectories. As the
expert in our setting fully and perfectly observes its state while the
learner experiences noise due to imperfect sensors, IRL methods
that model the expert as a partially observable MDP (POMDP) [11]
are not related.

Kitani et. al. [16] introduce IRL with a single observation per
timestep of the subject agent. However, the observation is mod-
eled as caused by the subject’s state only and no mechanism for

151

AAMAS 2022, May 9-13, 2022, Online

exploiting the learned policy to improve the state distribution is
developed. Choi and Kim [10] generalized Bayesian IRL [20] to a
hierarchical model by introducing a prior over the temperature pa-
rameter that determines the randomness of the softmax distribution
used in Bayesian IRL, and a hyperprior over the reward function
prior. Maximum a-posteriori inference for Bayesian IRL [12] is then
extended to the hierarchical version with a demonstration on the
Gridworld and taxi problems [30]. A different hierarchical Bayesian
model was also introduced by Dimitrakakis and Rothkopf [14] to
generalize Bayesian IRL to learning multiple reward functions for
multiple demonstrations. It involves a hyperprior on a joint reward-
policy distribution for each of the demonstrated tasks. Posterior
distributions are obtained using Metropolis-Hastings based sam-
pling, which is evaluated on simple random MDPs. While these two
methods involve the use of hierarchical models, these are relatively
shallow compared to the final model we utilize here (Fig. 1(right))
and are not immediately generalizable to the challenges of noisy
observations.

7 CONCLUDING REMARKS

We relax the strong assumption pervading IRL that the expert’s tra-
jectories are perfectly known to the learner. We introduce a novel
hierarchical Bayesian process to model noisy observations whose
inference is integrated into a previous IRL method that generalizes
the classical maximum entropy technique. As demonstrated in our
experiments involving a robotic domain, we successfully generalize
IRL to realistic environments where confounding elements intro-
duce noisy observations. The method is shown to be resilient to
error in the source distribution 7. Future work will explore the tech-
nique’s sensitivity to 7, allow this distribution to be learned from
data, and extend the technique to uncontrolled scenarios where the
set of confounding elements is unknown.

ACKNOWLEDGMENTS

This research is supported in part by NSF grant IIS-1830421 (to KB
and PD), and a Phase 1 grant from the GA Research Alliance (to PD).
We thank the anonymous reviewers for their valuable feedback.

A APPENDIX: ALGORITHM

Our main algorithm Hierarchical Bayes Inference is shown
in Algorithm 1. The initialization procedure, not shown, involves
finding an initial non-zero probability trajectory and sampling
repeatedly to reduce the impact of this initial state on the final
result.

Here, c is a small constant, o is the number of desired samples,
Dirichlet_mean() computes the mean distribution for a Dirichlet
with the given hyperparameters, and the SoftMaxPolicy(0) uti-
lized in line 1 is defined as follows:

SoftMaxPolicy(0) £ Pr(als) = (@7 (5.a0) -V " (:0)) Vs,a
where Qsoft(st, ar;0) = Es,,, [Vsoft(3t+1; 0)|ss, at] and
Vsaft(st; 0) = softmaxg, [Qsoft(st, a) + 0T¢>(st, at)] .

Steps 12, 14, and 16 of Algorithm 1 involve sampling using
Metropolis-within-Gibbs [24] and performed using Algorithm 2.

Main Track

Algorithm 1: HIERARCHICAL BAYES INFERENCE

-

10
11

13

14

15

16

18

19

20

21

22

23

24

25

26

27

Input :0, a6
Result: Pr(X|w, n)

Pr(als) < SoftMaxPolicy(6) Vs,a
Osq « Dirichlet_mean(al,) Vs, a
Oy «— Dirichletfmean(a%) vV Zn
ie—0

while Not all O converged do

ie—1i+1
for w,n € O do
Initialize { Z}, : ¢ = 1,..T,n = L.N"} {s? : t = 1,...T}, {
ag 1t=1,...T}
for j < 1to o do
fort «— 1to T do
for n < 1to N* do
Sample Zt(]n) ~
Pr(Zt,n |Z§,Jr-,_1): Nt,ns Ot.n, O, Sij_l)a a,(gj_l))
end
Sample s§j> ~
Priselsy ™ af ™ stV s @l
z7,0)
Sample agj) ~ Pr(a; |s£j),s[(ﬁ, Qt,Zt(j), 0)
end
end
Estimate Pr(Z; , |w,) from Zt(!lﬁ“o) vV Z,t,Nt
Estimate Pr(X|w, i) from s(1--) all-9) vXx
end
||
Gsa & 2 2 X Pr(Zin=
(w.m)€0 tew n=1
1w, n) > Pr(X|w,n) Vs,a
X:sp=s,ar=a
|@¢]
dz— Y X XN Pr(Zin=Zlon VZj
(w,n)€0 tew n=1
adl—ca+(1-c)ai! Va
Os,q «— Dirichletfmean(a;a) Vs,a
Oz « Dirichlet_mean(aiz) vYZn
end

Algorithm 2: SAMPLE

1

2

3

4

Given y™~1,¢ = all other current node values
Simulate § ~ U(Y)

7 with probability p
Take y* = 1] B
y* with probability 1 — p
: Pry19))
Where: p = min (1, —_z 2
Pry™ 1))

The sampling probabilities of individual nodes (y in Algorithm 2)
are defined as:

152

Pr(Zt,n|T7t,n, Wt n, O, s¢, at) =

AAMAS 2022, May 9-13, 2022, Online

if Zt,n =1

otherwise

Nt,n (Zt,n)os,,a, ((Ut,n),
Nt,n (Zt,n)OZ,,n (wt,n),

Pr(stlas, se+1,5¢-1, a¢-1, Qt, Z1,0) = Pr(ag|sy) Pr(stlsi-1, ar-1)
X Pr(ssv1lse, ar) Hn:Zz,,Fl Os,.a, (wt,n) and
Pr(atlse, st+1, Qt, Z1, O) = Pr(atlst) Prss+1lse, ar)

Implementation note: When a large number of observations are
present in a timestep the multiplication of the Z nodes in Pr(s;|-)
and Pr(a;|-) above will not be numerically stable. In this situation,
we modify the computation of the ratio Pr(ij)/Pr(y™!) to use
a sum of log probabilities, ie. for s;: exp(- - + (log 0s,.q, (0t,n)—

log Os;r—l’a[(wt’n)) +...)Vn:Zyp=1

We give the complete definitions of the MDPs for the two do-
mains, the observation variables, distributions and & priors, and
the input trajectories in Appendix B, which is available in the
supplementary material. We also show a video of our simulation of
the noisy onion sorting domain at https://youtu.be/r6IGU21Rty8.

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. 2004. Apprenticeship Learning via Inverse

[

[10
(11

[12

(13

]

]
]
]

]

Reinforcement Learning. In Twenty-first International Conference on Machine
Learning (ICML). 1-8.

Saurabh Arora and Prashant Doshi. 2021. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial Intelligence 297 (2021),
103500.

Manel Baradad, Vickie Ye, Adam B. Yedidia, Frédo Durand, William T. Freeman,
Gregory W. Wornell, and Antonio Torralba. 2018. Inferring Light Fields From
Shadows. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 6267-6275.

Kenneth Bogert and Prashant Doshi. 2014. Multi-robot Inverse Reinforcement
Learning Under Occlusion with Interactions. In International Joint Conference on
Autonomous Agents and Multi-agent Systems (AAMAS) (AAMAS ’14). 173-180.
Kenneth Bogert and Prashant Doshi. 2017. Scaling Expectation-Maximization
for Inverse Reinforcement Learning to Multiple Robots Under Occlusion. In
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 522-529.

Kenneth Bogert and Prashant Doshi. 2018. Multi-robot inverse reinforcement
learning under occlusion with estimation of state transitions. Artificial Intelligence
263 (2018), 46 — 73.

Kenneth Bogert, Jonathan Feng-Shun Lin, Prashant Doshi, and Dana Kulic. 2016.
Expectation-Maximization for Inverse Reinforcement Learning with Hidden Data.
In International Joint Conference on Autonomous Agents and Multiagent Systems.
1034-1042.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. 2020. Better-than-
demonstrator imitation learning via automatically-ranked demonstrations. In
Conference on robot learning. PMLR, 330-359.

Letian Chen, Rohan Paleja, and Matthew Gombolay. 2020. Learning from sub-
optimal demonstration via self-supervised reward regression. arXiv preprint
arXiv:2010.11723 (2020).

J. Choi and K. Kim. 2015. Hierarchical Bayesian Inverse Reinforcement Learning.
IEEE Transactions on Cybernetics 45, 4 (2015), 793-805.

Jaedeug Choi and Kee-Eung Kim. 2011. Inverse Reinforcement Learning in
Partially Observable Environments. J. Mach. Learn. Res. 12 (2011), 691-730.
Jaedeug Choi and Kee-Eung Kim. 2013. Bayesian Nonparametric Feature Con-
struction for Inverse Reinforcement Learning. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (Beijing, China) (IJCAI ’13).
AAAI Press, 1287-1293.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B (Methodological) 39 (1977), 1-38. Issue 1.

https://youtu.be/r6IGU21Rty8

Main Track AAMAS 2022, May 9-13, 2022, Online

[14] Christos Dimitrakakis and Constantin A. Rothkopf. 2012. Bayesian Multitask International Conference on Robotics and Automation (ICRA).

Inverse Reinforcement Learning. In 9th European Conference on Recent Advances [23] Jacob Steinhardt and Percy Liang. 2014. Adaptivity and Optimism: An Improved
in Reinforcement Learning. 273-284. Exponentiated Gradient Algorithm. In 31st International Conference on Machine

[15] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. 2017. Learning. 1593-1601.

Imitation Learning: A Survey of Learning Methods. Comput. Surveys 50, 2, Article [24] Luke Tierney. 1994. Markov chains for exploring posterior distributions. the
21 (April 2017), 35 pages. Annals of Statistics (1994), 1701-1728.

[16] Kris M. Kitani, Brian D. Ziebart, J. Andrew Bagnell, and Martial Hebert. 2012. [25] Antonio Torralba and William T Freeman. 2012. Accidental pinhole and pinspeck
Activity forecasting. In European Conference on Computer Vision (ECCV). 201-214. cameras: Revealing the scene outside the picture. In 2012 IEEE Conference on

[17] Sergey Levine, Zoran Popovi¢, and Vladlen Koltun. 2010. Feature Construction Computer Vision and Pattern Recognition. IEEE, 374-381.
for Inverse Reinforcement Learning. In Proceedings of the 23rd International [26] Shaojun Wang and Dale Schuurmans Yunxin Zhao. 2012. The Latent Maximum
Conference on Neural Information Processing Systems (NIPS). 1342-1350. Entropy Principle. ACM Transactions on Knowledge Discovery from Data 6, 8

[18] Andrew Ng and Stuart Russell. 2000. Algorithms for inverse reinforcement (2012).
learning. In Seventeenth International Conference on Machine Learning. 663-670. [27] Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni. 2014. Robust bayesian inverse

[19] Lawrence Rabiner. 1989. A Tutorial on Hidden Markov Models and Selected reinforcement learning with sparse behavior noise. In Proceedings of the AAAI
Applications in Speech Recognition. In Proceedings of the IEEE. 77(2):257-286. Conference on Artificial Intelligence, Vol. 28.

[20] Deepak Ramachandran and Eyal Amir. 2007. Bayesian Inverse Reinforcement [28] Brian Ziebart. 2010. Modeling Purposeful Adaptive Behavior with the Principle of
Learning. In 20th International Joint Conference on Artifical Intelligence (IJCAI). Maximum Causal Entropy. Ph.D. Dissertation. Carnegie Mellon University.
2586-2591. [29] BD Ziebart, JA Bagnell, and AK Dey. 2010. Modeling interaction via the principle

[21] Stuart Russell. 1998. Learning Agents for Uncertain Environments (Extended of maximum causal entropy. In ICML.

Abstract). In Eleventh Annual Conference on Computational Learning Theory. [30] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. 2008.
101-103. Maximum Entropy Inverse Reinforcement Learning. In 23rd National Conference
[22] Nihal Soans, Ehsan Asali, Yi Hong, and Prashant Doshi. 2020. SA-Net: Deep on Artificial Intelligence - Volume 3. 1433-1438.

Neural Network for Robot Trajectory Recognition from RGB-D Streams. In

153

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Maximum Entropy IRL
	2.2 IRL under Occlusion: HiddenDataEM

	3 Controlled Environments
	4 Partially-Controlled Environments
	4.1 Finding the Expert's Trajectory Distribution
	4.2 Exploiting Indirect Observations

	5 Experiments
	5.1 Formative Tests on Gridworld
	5.2 Summative Tests using Robotic Onion Sorting

	6 Related Work
	7 Concluding Remarks
	Acknowledgments
	A Appendix: Algorithm
	References

