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Abstract

We consider the problem of learning the behav-
ioral preferences of an expert engaged in a task
from noisy and partially-observable demonstra-
tions. This is motivated by real-world applica-
tions such as a line robot learning from observ-
ing a human worker, where some observations
are occluded by environmental elements. Further-
more, robotic perception tends to be imperfect and
noisy. Previous techniques for inverse reinforce-
ment learning (IRL) take the approach of either
omitting the missing portions or inferring it as part
of expectation-maximization, which tends to be
slow and prone to local optima. We present a new
method that generalizes the well-known Bayesian
maximum-a-posteriori (MAP) IRL method by
marginalizing the occluded portions of the trajec-
tory. This is then extended with an observation
model to account for perception noise. This novel
application of marginal MAP (MMAP) to IRL sig-
nificantly improves on the previous IRL technique
under occlusion in both formative evaluations on
a toy problem and in a summative evaluation on a
produce sorting line task by a physical robot.

1 INTRODUCTION

Inverse reinforcement learning (IRL) aims to infer an ex-
pert’s behavioral preferences from observations of the expert
performing the task as a means to learn the expert’s behav-
ior. It represents an important paradigm in the toolkits for
robot learning from demonstrations [Argall et al., 2009] and
imitation learning [Hussein et al., 2017]. To perform this
inference feasibly, the typical IRL methodology is to as-
cribe a decision-making model to the expert, which it solves
optimally and follows the obtained policy [Ng et al., 2000,
Abbeel and Ng, 2004]. Subsequently, IRL methods learn

the reward function of the decision-making model that best
explains the observed behavior under the assumption that
the other components of the model are known to the learner
(recent techniques relax this assumption – see Section 6.3
of the survey [Arora and Doshi, 2021] for a review of such
methods).

Another assumption prevalent among IRL methods, which
is particularly impractical for robot learning, is that the ex-
pert’s behavior is observed fully and perfectly. Previous
work [Bogert et al., 2016] has partially relaxed this assump-
tion by recognizing that portions of the observed trajectories
may be occluded from the learner’s view in real-world ap-
plications. However, scarce attention has been given to the
associated challenge that a robotic observer often has a noisy
sensor model or a noisy perception pipeline. As such, the
learner’s perception of the task performance may be both
incomplete and imperfect. This is different from a typical
POMDP setup [Choi and Kim, 2011b] as in our case the
expert can perfectly observe the environment and the noisy
observations are due to the learner’s imperfect sensors. For
example, consider a line robot tasked with learning how to
sort produce such as onions by watching the human worker
perform the sort. Positioning an unobtrusive depth-camera
to avoid occlusion from other nearby workers on the line is
challenging and correctly discriminating between blemished
and unblemished onions is not always possible.

We present the first IRL method that allows learning from
trajectories, which contain both occlusions and the result of
noisy perception. We adopt Bayesian IRL [Ramachandran
and Amir, 2007a] as our point of departure and generalize
the maximum-a-posteriori (MAP) inference [Choi and Kim,
2011a] of the reward function in two ways:

• First, we introduce a noisy observation model in the MAP
inference framework under the assumption that the robot’s
observation noise levels are known.

• Second, given that the portions of the trajectory suffering
from occlusion are known (a realistic assumption as such
portions are easily detected), we may model the observed
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trajectory as a full trajectory with the occluded elements
marginalized. Consequently, we perform a marginalized
MAP inference (MMAP) of the reward function.

A forward-backward search of the hidden variable values
yields a probable list of observations that makes the MMAP
inference more efficient than simply summing over all pos-
sible observations. This is done by starting from the last
available observation before the occluded block, and gen-
erating a list of observations that have non-zero transition
probability from it. From each observation in that list, the
same is done until the end of the occluded block. This pro-
cess is repeated in reverse from the available observation
just after the occluded block. Only the observations common
to both searches are retained.

We evaluate this MMAP-BIRL method on a toy problem
and on the use-inspired domain of learning to sort produce,
both modeled using discrete states and actions. We show
that simply ignoring the occluded portions degrades the
IRL performance — a confirmation of a similar drop in
performance on a different domain is provided in [Bogert
et al., 2016]. Subsequently, the MMAP-BIRL improves
dramatically on a previous method that uses expectation-
maximization for occlusion [Bogert et al., 2016] in both
learning accuracy and run time. Our experiments with the
physical cobot platform Sawyer demonstrate that the learned
policy allows Sawyer to sort produce on a conveyor with
both improved precision and recall.

2 PRELIMINARIES: BAYESIAN IRL
AND MAP INFERENCE

IRL utilizes input from an expert whose behavior is assumed
to be modeled using a Markov decision process (MDP) [Put-
erman, 1994], which it solves optimally. The expert provides
demonstrations of the task to the learner and the problem is
to solve for the expert’s reward function that best explains
the observed behavior. Formally, the MDP of an expert is
defined as a quadruple 〈S, A, T , R〉, where S is the set
of states defining the environment, A is the expert’s set of
possible actions, T : S×A×S → [0, 1] gives the transition
probabilities from any given state to a next state for each
action, and R : S×A→ R is the reward function modeling
the expert’s preferences, rewards, or costs of performing an
action from a state. Typically, the learner is aware of the
expert’s S, A, and T , but not R.

We may model the reward function as a linearly-weighted
sum of K basis functions [Ng et al., 2000]: Rθ(s, a)

,
∑K
k=1 θkφk(s, a) where K is finite and non-zero, θk

are the weights, and φ : (S,A) → (0, 1) is a feature
function. A binary feature function maps a state from the
set of states S and an action from the set of actions A
to 0 (false) or 1 (true). Notice that this representation re-
quires pre-defining these features. An alternative is to learn

these feature functions [Levine et al., 2010] or use a neu-
ral network representation [Wulfmeier and Posner, 2015],
which automatically identifies the features but typically re-
quires far more demonstrations to converge. A (station-
ary) policy for a MDP is a mapping from states to ac-
tions π : S → A and the discounted, infinite-horizon
value of a policy π for a given reward function Rθ at
some state s ∈ S, with t denoting time steps is given by:
Es [V π(s)] = E [

∑∞
t=0 γ

tRθ(st, π(st))|π, s] .

In this paper, we consider the situation where a portion of
the trajectory is occluded from the learner. In keeping with
previously established notation [Bogert et al., 2016], let the
set of input trajectories of finite length T generated by an
MDP attributed to the expert be, X T = {X|X = Y

⋃
Z}.

Here, Y is the observable portion and Z is the occluded part
of a trajectory X . A complete trajectory X is a sequence,
X = (s1, a1, s2, a2, s3, ..., sT , aT ); some of these may be
occluded. We build on the well-known Bayesian approach
to IRL (BIRL) [Ramachandran and Amir, 2007b] that treats
the reward function as a random variable and utilizes a prior
distribution over the reward function, given as 1

P (R) =
∏

s∈S,aεA
Pr(R(s, a)). (1)

Notice that the reward values for the state-action pairs are
i.i.d. Ramchandran and Amir [2007b] discuss some example
prior distributions including the Gaussian. We may derive
the likelihood function for the demonstrated set of trajecto-
ries X as:

P (X|R) =

|X|∏
X=1

T∏
t=1

Pr(stX , at
X ;R)

=

|X|∏
X=1

Pr(s1X) Pr(a1
X |s1X ;R)

T −1∏
t=1

Pr(st+1
X |stX , at

X)

× Pr(at+1
X |st+1

X ;R).

We may rewrite this as,

P (X|R) =
∏|X |

X=1
Pr(s1

X) π(a1
X |s1

X ;R)

×
∏T −1

t=1
T (stX , a

t
X , s

t+1
X ) π(at+1

X |s
t+1
X ;R). (2)

The policy is commonly modeled in BIRL as a Boltzmann
exploration [Ramachandran and Amir, 2007b, Vroman,
2014] of the form:

π(a|s;R) =
eβQ(s,a;R)∑

a′∈A e
βQ(s,a′;R)

=
eβQ(s,a;R)

Ξ(s)
(3)

where Ξ(s) is the partition function. As the Boltzmann tem-
perature parameter β becomes large, the exploration assigns
increasing probability to the action(s) with the largest Q-
value(s). One possible assignment to β could be between 0 -
1 with 0 being fully exploratory and 1 being fully greedy.

1Here, BIRL’s original formulation of the reward function as a
function over states is extended to include both states and actions.



Methods for both maximum likelihood Vroman [2014], Jain
et al. [19] and maximum-a-posteriori Choi and Kim [2011a]
inferences of the reward function exist, which use the likeli-
hood function of Eq. 2 and, in case of MAP inference, the
prior as well. MAP inference for IRL has been shown to be
more accurate, benefiting from its use of the prior Choi and
Kim [2011a]. Formally, we may write MAP inference in log
form as:

R∗ = arg max
R

Pr(R|X )

= arg max
R

logPr(X|R) + logPr(R) (4)

where R is the continuous space of reward functions, and
the prior and likelihood functions are as given in Eqs. 1
and 2, respectively.

Choi et al. [2011a] presents a gradient-based approach to
obtainR∗, which searches the reward optimality region only.
Given the expert’s policy, Ng and Russell [2000] show that
this region can be obtained as

Hπ , I − (IA − γT )(I − γTπ)−1Eπ (5)

where I is the identity matrix, T is the transition matrix,
Eπ is an |S| × |S||A| matrix with the (s, (s′, a′)) element
being 1 if s = s′ and π(s′) = a′. IA is an |S||A| × |S|matrix
constructed by stacking the |S| × |S| identity matrices |A|
times. The reward update rule in the gradient ascent is given
as Rnew ← R+ δt∇RPr(R|X ) where δt is an appropriate
step size (or the learning rate). As computing∇RPr(R|X )
involves calculating an optimal policy, this may slow down
the computations. By checking if the gradient lies within
the new reward optimality region, we can reuse the same
gradient and reduce the computational time: ifHπ ·Rnew ≤
0, then the previous gradient is reusable.

3 IRL UNDER OCCLUSION WITH
NOISY OBSERVATIONS

Choi and Kim’s MAP-BIRL assumes that the input trajec-
tories are noiseless and fully-observable. However, these
assumptions are difficult to satisfy in real-world use cases of
robotic learning. In particular, it may be difficult to position
a depth-camera in a factory such that the processing line
task is fully observed. Furthermore, recording sensors as
well as the visual state-action recognition tend to be noisy.

Consequently, we generalize MAP-BIRL to learn in the
context of both occlusions and noisy learner observations.
Let X = (o1

l , o
2
l , o

3
l , ..., o

T
l ) where each element otl is the

learner’s observation of the expert at a time step t; some
of these observations may be occluded. We begin by us-
ing the parameterized linear sum of reward features, Rθ,
as the representation of the reward function. Subsequently,
the prior over the reward function (Eq. 1) is now a distribu-
tion over the feature weights, decomposed into independent

distribution over each weight:

Pr(Rθ) =
∏

θk∈Θ
Pr(θk). (6)

3.1 FRAMEWORK

Obviously, we may simply ignore the occluded data
and utilize just the observed portions of the set of
trajectories Y for IRL [Bogert and Doshi, 2015].
In other words, R∗θ = arg maxθ∈Θ Pr(Rθ|Y)
= arg maxθ∈Θ Pr(Y|Rθ)Pr(Rθ). But, as Bogert et
al. [2016] shows, IRL’s performance improves if the
occluded portion can be inferred because it may contain
salient state-action pairs. As such, we formulate the
marginal MAP inference of the reward function from the
data. To enable this, the likelihood of the visible portions
of the trajectories can be written as the marginal of the
complete trajectory X by summing out the corresponding
hidden portion Z:

Pr(Y|Rθ) =
∏

Y ∈Y
Pr(Y |Rθ)

=
∏

Y ∈Y

∑
Z∈Z

Pr(Y, Z|Rθ)

=
∏

Y ∈Y

∑
Z∈Z

Pr(X|Rθ).

Here, the parameters θ are the maximization variables and
the occluded portion Z of a trajectory comprises the sum-
mation variables of the marginal MAP inference. Using the
above likelihood function, the MMAP-BIRL problem is
fully formulated as:

R∗θ = arg max
θ∈Θ

∏
Y ∈Y

∑
Z∈Z

Pr(Y,Z|Rθ) Pr(Rθ).

(7)

Let Z be the collection of the observations in the occluded
time steps of X , and Y = X/Z. Then,

R∗θ = arg max
θ∈Θ

∏
Y ∈Y

∑
Z∈Z

Pr(o1
l , o

2
l , o

3
l , ..., o

T
l |Rθ)

× Pr(Rθ).

The learner’s observation otl is a noisy perception of the ex-
pert’s state and action at time step t, and the observations are
conditionally independent of each other given the expert’s
state and action. Therefore, we introduce the state-action
pairs in the likelihood function above.

Pr(o1
l , o

2
l , o

3
l , . . . , o

T
l |Rθ) =

∑
s1,a1,...,sT ,aT

Pr(o1
l , o

2
l , o

3
l ,

..., oTl , s
1, a1, s2, a2, ..., sT , aT |Rθ).

For convenience, let τ denote the underlying (hidden) tra-
jectory of the actual state-action pairs of the expert, τ =



(s1, a1, s2, a2, ..., sT , aT ). Then, we may reformulate the
MMAP-BIRL problem as:

R∗θ = arg max
Rθ

∏
Y ∈Y

∑
Z∈Z

∑
τ∈(|S||A|)T

Pr(o1
l , o

2
l , o

3
l ,

. . . , oTl , τ |Rθ) Pr(Rθ). (8)

3.2 MMAP-BIRL INFERENCE

The MMAP inference problem is hard. Previous approaches,
mostly in the context of Bayesian network inference, have
utilized AND-OR graph structures to perform the infer-
ence [Marinescu et al., 2014]. But, the maximization vari-
ables in these techniques are discrete, which allows the use
of a discrete data structure such as a graph to model the
inference. As our maximization variables are continuous,
we seek to solve the hard MMAP inference problem using
continuous-variable optimization such as gradient ascent.

The log forms of the prior and the likelihood function in (8)
are represented respectively as:

Lprθ = logPr(Rθ) and

Llhθ =
∑

Y ∈Y
log
∑

Z∈Z

∑
τ∈(|S||A|)T

Pr(o1
l , o

2
l , o

3
l ,

. . . , oTl , τ |Rθ).

If we let the prior Pr(θk) in Eq. 6 be Gaussian (some values
of each feature weight are more likely than others), i.e.,

Pr(θk;µθ, σθ) = 1√
2πσθ

e
− (θk−µθ)

2

2σ2
θ , where the mean µθ

and standard deviation σθ may differ between the feature
weights. Then, the gradient of the log prior is obtained as,

∂Lprθ
∂θ

=
−(θ − µθ)

2σ2
θ

. (9)

Next, to obtain the gradient of Llhθ , we may expand the term
Pr(o1

l , o
2
l , o

3
l , . . . , o

T
l , τ |Rθ) as shown below.

Pr(o1
l , o

2
l , o

3
l , . . . , o

T
l , τ |Rθ)

= Pr(o1
l , o

2
l , o

3
l , . . . , o

T
l |τ,Rθ) Pr(τ |Rθ)

= Pr(o1
l |o2

l , o
3
l , ..., o

T
l , τ, Rθ) Pr(o2

l , o
3
l , ..., o

T
l , τ |Rθ)

× Pr(τ |Rθ)

= Pr(o1
l |s1, a1) Pr(o2

l , o
3
l , . . . , o

T
l , τ

′|Rθ) Pr(τ |Rθ).

The last step is obtained by noting that the learner’s current
observation is conditionally independent of its future obser-
vations given the expert’s true state and action in the same
time step. LetOl(s1, a1, o1

l ) represent Pr(o1
l |s1, a1), which

is the learner’s stochastic mapping from the expert’s state
and performed action (s1, a1) to the learner’s observation
of it, o1

l , all corresponding to the same time step. It informs
the learner about the expert’s state and performed action,
albeit noisily.

Using the above observation model, we may continue ex-
panding Pr(o2

l , o
3
l , . . . , o

T
l , τ

′|Rθ) as,

Pr(o1
l , o

2
l , o

3, . . . , oTl , τ |Rθ) = Ol(s
1, a1, o1

l )Pr(o
2
l , o

3
l ,

. . . , oTl , τ
′|Rθ) Pr(τ |Rθ) =

T∏
t=1

Ol(s
t, at, otl) Pr(τ |Rθ).

Observe that the last term Pr(τ |Rθ) corresponds exactly
to Pr(X|Rθ) in Eq. 2 for a trajectory of state-action pairs
X ∈ X . Hence, we use the terms inside the outer product
of Eq. 2 to substitute Pr(τ |Rθ) above,

Pr(o1
l , o

2
l , o

3
l , . . . , o

T
l , τ |Rθ) =

T∏
t=1

Ol(s
t, at, otl)Pr(s

1)

× π(a1|s1;θ)
T −1∏
t′=1

T (st
′
, at
′
, st
′+1)π(at

′+1|st
′+1;θ)

= Pr(s1) π(a1|s1;θ)

(T −1∏
t=1

Ol(s
t, at, otl)

× T (st, at, st+1) π(at+1|st+1;θ)
)
Ol(s

T , aT , oTl ).

We may now rewrite the log likelihood Llhθ more fully as,

Llhθ =
∑
Y ∈Y

log
∑
Z∈Z

∑
τ∈(|S||A|)T

Pr(s1) π(a1|s1;θ) ×

(T −1∏
t=1

Ol(s
t, at, otl)T (st, at, st+1)π(at+1|st+1;θ)

)
×Ol(sT , aT , oTl ). (10)

While obtaining the gradient of Llhθ is not trivial, it is possi-
ble and we show the complete derivation of this gradient in
the supplementary file.

3.3 ALGORITHM FOR MMAP-BIRL USING
GRADIENT ASCENT

The algorithm for MMAP-BIRL is shown in Algorithm 1. It
computes the initial gradient ∇θP (Rθ|Y) for the initially
sampled weights (line 1), performs forward rollout (line 7)
to find the policy corresponding to these weights, computes
the reward optimality region (line 8) and stores all of these
(line 9). Notice that the gradient requires inferring possible
Z, a set considerably narrowed down by forward-backward
search. Then, we repeatedly update the reward weights ac-
cording to the update rule (line 11). If the weights fail to
satisfy the optimality condition (line 13), we find a new gra-
dient and proceed with the remaining steps. On convergence,
we return the learned weights (line 21).

We briefly analyze the complexity of this algorithm, which
consists of two main components: (1) obtain the gradient
and its optimality region using MMAP, and (2) reuse a



Algorithm 1: MMAP-BIRL
Input: MDP, Y , step-size δn, ε
Output: Learned reward function Rθ

1 Sample Rθ from the prior distribution
2 Initialize Π← ∅, δ←∞
3 if ∇θPr(Rθ|Y) not in Π then
4 if no. of occlusions > 0 then
5 Z ← Bidirectional_Search(MDP, Y)
6 ∇θPr(Rθ|Y)← Compute_MMAP

_Gradient(MDP, Y , Z)
7 π ← Solve_MDP(Rθ)
8 Hπ ← Compute_Reward_Optimality_Region(π) as

shown in Eq. 5
9 Π← {〈π,Hπ,∇θP (Rθ|Y)〉}

10 while δ > ε(1− γ)/γ do
11 Rθnew ← Rθ + δn∇θPr(Rθ|Y)
12 if Rθnew is not in the reward optimality region Hπ

then
13 Repeat steps 3 to 8 using Rθ,new

14 if isNewEntry(〈π,Hπ,∇θP (Rθnew |Y)〉) then
15 add 〈π,Hπ,∇θP (Rθnew |Y)〉 to Π

16 else
17 ReuseCachedGradient(Π)
18 δ ← |Rθ −Rθnew |
19 Rθ ← Rθnew

20 return Rθ

cached gradient if Rθnew is within the reward optimality
region, otherwise recalculate the gradient. The first part in-
volves a forward-backward search that obtains the list of
possible candidates for the occluded block. Its complexity in
the worst case is O((|Ol||S||A|)d/2) where d is the length
of the occluded block, but typically less because not all
observations are always possible. Computing the gradient
involves parsing all the features for each trajectory whose
complexity is KT |X |. Next, solving the MDP using policy
iteration with current reward weights has the policy space
as the worst-case complexity O((|S||A|) but more typically
its O(|S| · Niter), where the latter term denotes the num-
ber of iterations until convergence, which is not fixed. And,
the complexity of the optimality region Hπ computation is
dominated by the multiplication of two matrices whose com-
plexity is O(|S|3|A|). The complexity of the second part
involves updating the reward weights using the previously
computed gradient, whose complexity is K and checking
if Rθnew is within the range of one of the cached entries
in Π, whose complexity is O(K|Π|). If a cached gradient
cannot be used, then the complexity of the first part again
applies. As such, the overall complexity of MMAP-BIRL
is dominated by the complexity of solving the MDP and
computing the optimality region scaled by how many times
these operations must be performed in the gradient ascent
process.

4 EXPERIMENTS

We evaluated MMAP-BIRL on two domains. For both these
domains, we use the Boltzmann temperature β = 0.3, step
size δn = 0.01, discount factor γ = 0.99, and a decay
rate of 0.95. We solve the MDP in Algorithm 1 (line 7)
using policy iteration to obtain the current iteration’s pol-
icy, Q- and V - values. Our code for this algorithm can be
accessed at this https://github.com/prasuchit/
mmap-birl/.

We evaluate the performance of MMAP-BIRL using the
well-known metric of inverse learning error (ILE) and run
time. ILE is inversely proportional to the accuracy of the
learned reward function, ILE =

∑
s∈S‖V πE (s)−V πL(s)‖,

where V πE is the value of the expert’s policy πE and V πL
is the value of the learned policy πL using the true MDP.

We compare MMAP-BIRL’s performance with an extension
of HiddenDataEM [Bogert and Doshi, 2017] that utilizes
expectation-maximization for managing the hidden portions
of the trajectory. However, as the method does not account
for observer noise, we generalize it by introducing the ob-
servation model Ol into the method. MMAP-BIRL’s perfor-
mance is also compared with Choi and Kim’s MAP-BIRL,
which serves as an ablated baseline to establish the value of
modeling observation noise and occlusion for IRL.

4.1 FOREST WORLD

Our domain for formative evaluations is a previously intro-
duced toy problem [Bogert et al., 2016] consisting of a 4x4
grid traversed by a fugitive. A UAV is tasked with recon-
naissance of the fugitive (to learn which location is the goal
and which locations are avoided), but the latter’s movement
is not always visible due to forest cover in some sectors,
as shown in Fig. 1a. We model the fugitive’s navigation
through the grid as an MDP. The states of the MDP are the
sector coordinates (x, y) and there are four actions corre-
sponding to movement in the 4 cardinal directions. The start
state of the fugitive may vary. However, the resulting next
sector location is not deterministic: there is a 10% chance
that the fugitive may end up in any of the three sectors other
than the intended one. A hidden tunnel from (2,3) to (3,3)
introduces ambiguity whether the fugitive has reached the
goal location of (3,3): with a chance of 30% the UAV’s sen-
sors may incorrectly place the fugitive back at (2,3). This
forms the UAV camera’s observation model. The UAV mod-
els the fugitive’s reward function as a weighted linear sum
of the following two feature functions:

• Avoidable_state(x, y) is activated if the fugitive eschews
(x, y),

• Goal_state(x, y) is activated if (x, y) is the fugitive’s
goal location.

https://github.com/prasuchit/mmap-birl/
https://github.com/prasuchit/mmap-birl/


(a) (b) (c) (d)

Figure 1: (a) A fugitive intends to reach the safe sector (3,3) while avoiding the river in (1,1) and the army personnel in
(3,2). These sector preferences are not known to the UAV flying overhead. (b) ILE increases with increasing occlusions
on noise-free data and data with 30% noise, but less so for MMAP-BIRL. (c) ILE changes with increasing noise on
occlusion-free data. (d) Average clock times for increasing occlusion at 30% noise. These were measured on a Ubuntu PC
with quad-core Xeon CPU @ 3.2GHz and 76GB RAM. The vertical error bars denote one standard deviation.

For Fig. 1a, the fugitive’s own reward function places
a high negative weight on Avoidable_state(1, 1) and
Avoidable_state(3, 2), whereas a high positive weight for
Goal_state(3, 3).

A simple comparison of the learned weights can be done
as we have access to the expert’s true reward weights in a
toy domain. We compare along the 3 features, in a setting
of 30% noise and 4 occlusions per trajectory for a total of
10 trajectories with 15 steps each. MMAP-BIRL produces
learned reward weights [-0.7181, -0.8397, 0.6902] as com-
pared to the true weights of [-0.5, -1, 0.1]. However, in
order to compare them on a common scale, we compare
the softmax values of both rewards. This shows a differ-
ence of 0.2131 along feature 1, 0.0065 along feature 2 and
-0.2196 along feature 3. Thus the learned weights induce a
slightly lower reward for the first two features and slightly
higher one for the goal feature, nonetheless, maintaining the
general trend of the rewards.

We evaluate the performance of the methods under vary-
ing levels of occlusion (from 10% to 40%) while keeping
observation noise fixed at 0% and 30% (Fig. 1b), and for
varying levels of noise (from 20% to 45%) without occlusion
(Fig. 1c). Each data point is the mean of 10 batches with 10
trajectories in each batch exhibiting the corresponding level
of occlusion and noise. A Gaussian prior (µ = −1, σ2 = .5)
is used for MAP- and MMAP-BIRL. As we may expect,
the ILE increases as the learning becomes more challeng-
ing. This increase is worst for MAP-BIRL, which does not
model the noise and simply ignores the occlusion. Between
the two methods that model both, MMAP-BIRL exhibits a
much lower ILE, and it does not increase as dramatically as
HiddenDataEM, especially for the 30%-noise level. How-
ever, the HiddenDataEM does run marginally faster than
MMAP-BIRL in this toy problem, and both show run times
that generally increase linearly as the occlusion increases.
As we may expect, MAP-BIRL’s run times remain mostly
consistent as it does not reason about the uncertainty.

4.2 ROBOTIC SORTING ON PROCESSING LINES

Our second evaluation domain is a use-inspired robotic line
sorting where the physical cobot Sawyer (from Rethink
Robotics) is tasked with sorting onions on a conveyor belt
after observing a human perform the sort. Sawyer observes
the human using a Kinect v2 RGB-D camera, and a trained
YOLO v5 deep neural network model [Redmon et al., 2016]
is used to detect and classify the onions as blemished or not.
The depth-camera frames are quantized into appropriate
state variables by SA-Net [Soans et al., 2020]. These state
recognitions are shown in red text on the frames in Fig. 2.

We model the onion-sorting domain as a discrete MDP
as follows. The factored state is captured by 3 key vari-
ables yielding a total of 48 states: Onion_location: {on
conveyor, hover location, in front of face, in bin}; EndEf-
fector_location: {on conveyor, hover location, in front of
face, in bin}; and Prediction:{good, bad, unknown}. The
value “hover location” is a region of space just on top of the
conveyor and “in bin” indicates just inside a bin that holds
discarded onions. An example state where the onion is on
the conveyor, the end-effector is in the hover location, and
the prediction is blemished would be represented as (on con-
veyor,hover location,bad). Prior to inspection, every onion’s
condition is unknown. The sorter performs one of five ab-
stract actions: claim new onion, which shifts the sorter’s
focus to a new onion, Pick up the onion, which denotes the
sorter grasping the onion; Inspect after picking the onion by
rotating it and checking for blemishes; Place onion on the
conveyor after it is picked; and Place onion in the bin after
it is picked. 2

We utilize the following six Boolean feature functions to
represent the human sorter’s preferences:

2Our MDP does not provide low-level control, which allows
its variables to remain discrete. We follow a pipeline programming
architecture in which the MDP’s abstract actions map to motion
planners in joint angle space and plan in real time.



(a) (b) (c) (d) (e)

Figure 2: (a–d) These frames show a human picking an onion, inspecting it, placing it after making a decision, and choosing
the next onion in sequence. The red text appearing on the images is the state predicted by SA-Net. (e) An example occluded
frame where SA-Net is unable to make a prediction. At this point the expert could be placing the onion back on the conveyor
or in the bin.

• Good onion placed on conveyor(s, a) is 1 when a good
onion is placed back on the conveyor,

• Bad onion placed on conveyor(s, a) is 1 when a bad
onion is placed back on the conveyor,

• Good onion placed in bin(s, a) is 1 when a good onion
is placed in the bin,

• Bad onion placed in bin(s, a) is 1 when a bad onion is
placed in the bin,

• Claim new onion(s, a) is activated when a new onion is
chosen if no onion is currently in focus,

• Pick if unknown(s, a) is 1 if the considered onion, whose
classification is unknown, is picked.

The observer noise in this domain comes from YOLO some-
times misclassifying onions due to changing lighting con-
ditions and SA-Net incorrectly identifying the state; we
estimated this noise empirically to be approximately 30%.
This makes the state estimation uncertain and is recorded
as an observation. This forms the probabilistic observation
model of the camera. Occlusions occur when another person
inadvertently passes by in front of the camera during the
recording and blocks a frame either partially or fully, which
leaves SA-Net unable to ascertain a state value (as shown in
Fig. 2e).

We recorded 12 trajectories from human demonstrations
with an average of 4 state occlusions (due to the person
blocking) in 135 state-action pairs per trajectory. Figure 4a
compares ILE between MMAP-BIRL, the extended Hid-
denDataEM, and MAP-BIRL on these trajectories. For pur-
poses of the evaluation, greater occlusions were obtained
by removing states in the trajectories at random. First, the
degraded performance of MAP-BIRL due to noise and oc-
clusion is evident from the significantly higher ILE shown
by the technique. Notice that MMAP-BIRL continues to
show a significantly lower ILE in comparison to Hidden-
DataEM on this larger domain. Equally important, it does so
in much less time showing more than an order of magnitude
in speed up, as is evident from Fig. 4b. Furthermore, the run
times increase linearly in general for both methods as the
rate of occlusion increases.

We let Sawyer physically sort through 50 faux onions us-
ing the policies learned by both MMAP-BIRL and Hidden-
DataEM from the 12 recorded and processed trajectories
(see the sort video in the supplementary file).

Method (TP,FP,TN,FN) Precision Recall

MMAP-BIRL (23,2,18,7) 0.92 0.767
HiddenDataEM (16,10,15,9) 0.615 0.64

Table 1: Precision and recall of Sawyer physically sorting 50
onions on a conveyor using policies from rewards learned
by MMAP-BIRL and HiddenDataEM, respectively. TP -
True positive, FP - False positive, TN - True negative, FN -
False negative.

Sawyer performs the sort by receiving the bounding boxes
from YOLO, on which techniques such as central orthogonal
projection, and direct linear and affine transforms are used
to obtain the coordinates of the onions in its 3D workspace.
The robot picks up the onions and places them either in the
bin or back on the conveyor after inspection. Figure 3 shows
the bounding boxes detected in real-time by YOLO [Red-
mon et al., 2016]. Sorting performance is measured using
the domain-specific metrics of precision and recall where
precision = TP

TP+FP and recall = TP
TP+FN . Here, True

Positive (TP) is the count of blemished onions in the bin,
False Positive (FP) is the count of good onions in bin mis-
taken as being blemished, True Negative (TN) is how many
good onions remain on table, and False Negative (FN) is
how many blemished onions remain on table mistaken as be-
ing good. From Fig. 1, we note that MMAP-BIRL exhibits
a much better precision and recall compared to the previous
HiddenDataEM method .

In summary, this use of MMAP in the context of IRL under
uncertainty yields a new technique that significantly im-
proves on the previous method in both the accuracy of the
learned behavior and run time. We establish its usefulness
toward robot learning on a use-inspired task in a complex
environment.



Figure 3: Snapshots of Sawyer sorting through the onions with bounding boxes detected in real time by YOLO v5. The run
times were measured on the same computing platform as before.

(a)

(b)

Figure 4: (a) MMAP-BIRL exhibits much better ILE perfor-
mance with varying occlusion % at the estimated 30%-noise
level. (b) MMAP-BIRL scales to this larger domain much
better than the previous method with increasing occlusions
and the same level of noise.

5 RELATED WORK

One of the first approaches to consider observer
noise [Shahryari and Doshi, 2017] expands the well-known

maximum entropy IRL [Ziebart et al., 2008] to maximize
the entropy of the joint distribution of the hidden state-action
trajectories and observation sequences. A Lagrangian relax-
ation of this non-linear program yields gradients that can be
used in the optimization. However, the gradients are hard
to compute making the approach computationally unwieldy
and challenging to scale. On the other hand, techniques like
Robust-BIRL [Zheng et al., 2014], D-REX [Brown et al.,
2020], and the more recent SSRR [Chen et al., 2020] tar-
get noisy trajectories due to the expert’s failures during
task performance. The former is based on the premise that
noisy execution may cause the expert to sometimes fol-
low off-policy actions. A latent variable characterizing the
reliability of the action is introduced and an expectation-
maximization schema in the framework of BIRL manages
this noise. The latter technique (D-REX) solves the problem
of automatically ranking demonstrated trajectories based on
Luce-Shepard rule while SSRR uses Adversarial IRL and as-
sumes that the demonstrator is suboptimal and that pairwise
preferences over trajectories are additionally needed for IRL.
However, none of these methods introduce an observation
model or account for partially occluded trajectories. As the
expert in our setting fully and perfectly observes its state
while the learner experiences noise due to imperfect sensors,
IRL methods that model the expert as a partially observable
MDP (POMDP) [Choi and Kim, 2011b] are not relevant.

Over the past few years, there has been a steady stream of
methods for inverse learning in the context of occlusion. Be-
ginning with a method that ignores the occlusions (uses just
the available data) for maximum entropy IRL [Bogert and
Doshi, 2015], to the HiddenDataEM, which inferred the hid-
den variables in actions using the expectation-maximization
schema [Bogert et al., 2016], followed by ways of improv-
ing the computational tractability of the approach Bogert
and Doshi [2017]. As shown, MMAP-BIRL is a significant
improvement over HiddenDataEM. Mai et al. [2019] shows
that forward solving the expert’s MDP using a system of lin-
ear equations also allows for inferring the missing portions
of the input data. But, it requires the underlying Markov
chain to be non cyclic – an assumption difficult to satisfy in
practice.



6 CONCLUSION

Motivated by the problem of learning from observing a
sorting task on a line, we presented a method to generalize
and improve MAP-BIRL to model and reason with both
perception noise and unavoidable occlusions of portions of
the data. In doing so, we show a new application of MMAP
to a domain where the MAP variables are continuous, and
developed a gradient-based approach to solve the MMAP
inference problem. Results show that MMAP-BIRL signifi-
cantly improves over the previous maximum-entropy based
method for IRL under occlusions and could pave the way for
facilitating future cobot deployment on factory floors. The
observation model of the camera used in the cobot domain is
obtained by empirically estimating the probability of the ob-
ject classification network YOLO v5 misclassifying onions.
Therefore the assumption that the camera model is available
is fairly realistic. Based on these results, a promising avenue
of future work is to explore multi-agent demonstrations such
as multiple humans collaborating on the line task, observe
and learn from this collaboration with the ultimate aim of
adding a cobot that brings value to the collaboration.
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