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Examining Student Cognitive Engagement in Integrated STEM
(Fundamental)

Abstract

While there are many approaches to integrated STEM instruction (iISTEM), the integration of
engineering design is the most widely-studied and practiced pedagogical approach to iSTEM in
K-12 classrooms. Research has shown that the inclusion of engineering-design improves
students’ attitudes, as well as interest and engagement in pursuing STEM-related careers.
Furthermore, studies have shown enhanced 21st century skills for students engaged in iSTEM
learning contexts. However, more research is needed to understand how iSTEM and its critical
features are operationalized to promote positive student outcomes. To address this need, this
study examined the relationship between student cognitive engagement in iSTEM and its
hypothesized predictors: curricular opportunities for STEM content integration, engagement in
multiple solution development, agency in STEM practices, evidence-based reasoning, data
practices, and collaboration. The study is guided by Roehrig et al.’s (2021) Detailed Conceptual
Framework of Integrated STEM and Moore et al.'s (2014) framework for Quality K-12
Engineering Education. We utilized multinomial logistic regression (MLR) analysis due to the
polytomous categorical distribution of the outcome variable. This study used classroom video
data from previous work that examined the presence of critical features of K-12 iSTEM. Scores
using a novel and validated iISTEM observation protocol (Dare et al., 2021) from 2,007 iSTEM
lessons were used. Through preliminary analyses, we determined that the assumptions for MLR
have been sufficiently met. Three categories of the outcome variable, student cognitive
engagement, reported on were lessons that provide opportunities for students to (1)
analyze/evaluate STEM concepts, (2) use/apply STEM concepts, and (3) know/understand
STEM concepts (which was set as the baseline or reference category). All predictor variables
except for curricular opportunities for collaboration and data practices were statistically
significant in the model. The final MLR model has a total of 12 predictor categories. The
deviance goodness-of-fit test indicated that the model was a good fit to the observed data,
1*(234) = 207.605, p = .892, with 137 (36.2%) cells having zero frequencies. The final model
statistically significantly predicted the outcome variable over and above the intercept-only
model, p <.001. Furthermore, it has a pseudo R-squared value of .643 (Nagelkerke R?) and
correctly classified 72.8% of cases. Among other findings, we found that the odds of
multidisciplinary lessons providing opportunities for students to analyze and/or evaluate STEM
concepts was 2.401 times higher than that for monodisciplinary lessons, ¥*(1) =24.963, p < .001.
In addition, lessons with opportunities for students to redesign a solution to the engineering task
are more likely to provide opportunities for students to analyze/evaluate STEM concepts (exp(B)
= 126.038) compared to lessons without such curricular opportunity, y*(1) = 22.033, p <.001. In
conclusion, engineering-centric iSTEM instruction that engage students in higher levels of
cognition are marked by the presence of multidisciplinary content, engagement in designing
solutions to an engineering problem, agency in STEM practices, and evidence-based reasoning.

Introduction
With the current state of global affairs and looming threats posed by misinformation,

STEM education continues to be relevant and vital to developing a scientifically-literate citizenry
who are both critical consumers of information and creative problem-solvers. Coupled with



concerns about increasing student interest in STEM careers to meet the increasing demands of
the STEM workforce, researchers and policy-makers advocated for an integrated approach to
STEM education that led to curricular developments such as the Next Generation Science
Standards (NGSS) in the United States [1], [2].

The resulting increased demand to improve STEM education around the world has led to
new and varied models of integrated STEM instruction (iISTEM) [3]. Implementation and views
of integrated STEM differ with regard to which of the STEM disciplines should be the focus,
how many of the four STEM disciplines should be present and to what degree they should each
be emphasized, the main purpose of learning in STEM, whether other non-STEM subjects
should be incorporated, etc. While there are many approaches to iSTEM, the integration of
engineering design is the most widely-studied and practiced pedagogical approach to iSTEM in
K-12 classrooms [3], [4]. Research has shown the inclusion of engineering-design improves
students’ attitudes and learning [5], [6] and increases students’ interest and engagement in
pursuing STEM-related careers [7]. Furthermore, there are studies that have shown enhanced
21st century skills among students in these kinds of integrated STEM learning contexts [8], [9].

Unfortunately, there remains a gap in the literature about the operationalization of
integrated STEM pedagogies, specifically the engineering-centric approach, in terms of how it
promotes the improvement of student outcomes. One way to investigate this is by exploring
curricular opportunities and associated pedagogical strategies that support student learning.
Classroom activities that promote student cognitive engagement serve as a window to the
potential of a pedagogical approach to promote student learning. In the context of iISTEM,
identifying the pedagogical features associated with higher cognitive engagement among
students can inform further research on improving STEM pedagogies and supporting positive
student outcomes.

Thus, this study aims to examine the relationship between student cognitive engagement
in iISTEM and key predictors that are identified from pertinent literature and theoretical
frameworks.

Theoretical Frameworks and Related Literature
Features of Integrated STEM Instruction

In the advent of the Next Generation Science Standards (NGSS), most schools in the
United States are embracing integrated STEM education, either explicitly or implicitly in their
curricula. The National Research Council and National Academies of Engineering have called
for educators to reconsider their current teaching styles in light of STEM instruction,
emphasizing the need for explicit and intentional integration of STEM subjects [10], [11].
However, the varied definitions and conceptualizations of integrated STEM instruction pose a
great challenge to accomplishing the more universal goals of STEM education [3]. Fortunately,
recent research [12] laid out a detailed conceptual framework for K-12 integrated STEM
education that can be used by researchers, curriculum developers, educators, and other
stakeholders as a shared vision. Building upon the existing literature on integrated STEM, the



framework specifies seven defining features of integrated STEM: (1) centrality of engineering
design, (2) driven by authentic problems, (3) context integration, (4) content integration, (5)
STEM practices, (6) 21st century skills, and (7) informing students about STEM careers.

While most of these features cater to the improvement of student affective outcomes such
as motivation in learning STEM, the current study takes interest in aspects of integrated STEM
that promote positive cognitive outcomes. For instance, engagement in engineering design
promotes creative problem solving and divergent thinking [13], [14]. Furthermore, allowing
students to engage in redesigning their solutions provides them opportunities to think analytically
about their design choices to come up with better and more innovative designs [15]. Content
integration using multidisciplinary approaches prompts students to consolidate and apply
concepts and practices from multiple disciplines [16], [17]. Activities that allow students to
engage in STEM practices and exhibit 21st century skills support students’ active construction of
knowledge and higher-order thinking skills [18], [19].

Engineering Focus

Moore et al.’s [15] framework for quality K-12 engineering education specifies some of
the aforementioned features as vital to the implementation of engineering-centric instruction and
use of engineering design. Most if not all of its 12 indicators align with the features described in
the aforementioned iISTEM framework [12]. However, Moore and colleagues [20] determined
that among these indicators, three are central to engineering and engineering education. These
are Processes of Design (POD), Apply Science, Engineering, and Mathematics content (SEM),
and Engineering Thinking (EThink). First, engineering practice is centered on design processes.
Solving engineering problems is an iterative process involving knowledge building, planning,
and evaluating the solution. Second, the application of science, mathematics, and engineering
concepts are vital to the practice of engineering itself. As such, K-12 engineering education
should emphasize this interdisciplinary nature. Finally, engineering thinking involves critical and
creative problem solving and using informed judgment to make decisions. Moreover, learners in
engineering education should be independent and reflective thinkers capable of seeking out new
knowledge and learning from failure in problem-solving situations.

These common pedagogical features present in both frameworks are sufficiently
documented in the literature to improve student cognitive outcomes. For instance, English and
colleagues [21] and Li and colleagues [22] emphasize the benefits of integrative approaches to
STEM education, particularly when engineering content is present in the lesson. Supporting
literature indicates that engineering provides context for the application of science and
mathematics concepts and thus helps students see the interconnectedness of the STEM
disciplines [3], [18], [23]. In addition, several researchers argue that engineering-design
pedagogy improved students' attitudes and learning [1], [5], [24]\. For example, Sharunova and
colleagues [25] illustrated how the processes of engineering-design aligns with the increasing
complexity of cognitive abilities in Bloom’s taxonomy. The research emphasized that when
students engage in the iterative process of design, students are prompted to use higher-order
thinking skills.



Despite these accounts of engineering-centric iSTEM’s posited effect on student
achievement, there remains a gap in the literature about the dynamics of the curricular features
that lead to these desirable student cognitive outcomes.

Our Conceptual Model

Upon reflection on the insights from our theoretical frameworks and key literature, we
determined that there are critical features of engineering-centric iSTEM that may help us predict
the level of student cognitive engagement. First, students consolidate and critically apply
concepts and practices from multiple disciplines when they are learning in a multidisciplinary
context [26], [27]. Second, students think creatively and critically when they engage in
engineering design which entails having to come up with design solutions to the problem [20],
[28]. Third, students analyze and evaluate other people’s ideas when they are asked to negotiate
to come up with a group consensus [29]. Fourth, students develop and exercise critical thinking
skills when they engage in evidence-based reasoning which requires justification of claims and
design decisions with evidence [30], [31]. Fifth, students construct knowledge through
collection, analysis, and evaluation when they engage in data practices [32], [33]. Lastly,
learning becomes more meaningful to students when they exercise agency in and reflect on
STEM practices, as they are able to construct their own knowledge [34], [35]. These studies
inform our understanding that individually, these six features of iSTEM have a unidirectional
relationship with student cognitive engagement. It is worth noting at this point, however, that
while we hypothesize unidirectional relationships between our sets of variables, we limit our
investigation to predictive relationships and not causal relationships.

Figure 1 illustrates our conceptual model about the relationship between the outcome and
predictor variables.

Figure 1. Conceptual model for predictor variables and outcome
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Throughout this paper, we aim to answer the following research question: Do the
presence of curricular opportunities for learning multidisciplinary lesson content,
engineering-design activities, agency in STEM practices, data practices, collaboration, and
evidence-based reasoning predict the level of student cognitive engagement in iSTEM lessons?

Based on this question, we formulated the following set of hypotheses:

Null Hypothesis (Ho): There is no predictive relationship between student
cognitive engagement and curricular opportunities for learning multidisciplinary lesson
content, engineering-design activities, agency in STEM practices, data practices,
collaboration, and evidence-based reasoning.

Alternative Hypothesis (H,): There is a predictive relationship between student
cognitive engagement and curricular opportunities for learning multidisciplinary lesson
content, engineering-design activities, agency in STEM practices, data practices,
collaboration, and evidence-based reasoning.

Methodology

This study utilizes a correlational research design with regression analysis that aimed to
examine the relationship between student cognitive engagement in engineering-centric iSTEM
(outcome) and curricular opportunities for learning multidisciplinary lesson content,
engineering-design activities, agency in STEM practices, data practices, collaboration, and
evidence-based reasoning. The study context and sample, instrument, data, research design and
approach, and statistical analysis are discussed in the following sections.

Research design

In order to address the research questions, this study used a correlational design with
multinomial logistic regression analysis. It is an ex post-facto research [36] because the lesson
implementations have already occurred and the dataset used for the analysis comes from a
previous work (see [4]). Such research design and approach are used to determine the presence
and strength of relationships between outcome and predictor variables without implying
causality. In the present study, the results of the multinomial logistic regression (MLR, hereafter)
analysis would show whether a predictive relationship exists between student cognitive
engagement in iISTEM and its hypothesized predictors (opportunities for learning
multidisciplinary content, engagement in engineering design, evidence-based reasoning, data
practices, agency in STEM practices, and collaboration). Further details about MLR will be
discussed in the statistical analysis section.

Instrument, Data, and Study Context
This study used secondary data obtained from a previous work that examined the

presence of critical features of integrated STEM in various K-12 lessons using a novel STEM
observation protocol [4].



The instrument consists of ten items, each with four scoring levels (0-3) and were
designed to measure the characteristics of integrated STEM outlined in Roehrig et al.’s [12]
theoretical framework. In establishing the validity of the instrument, the authors sought external
review by a panel of STEM experts and subjected the instrument draft to multiple iterations to
ascertain that each item sufficiently captures the aspects of their corresponding constructs.
Furthermore, they provided additional validity evidence through examining the internal structure
of the instrument which they described in length in another study (see [37]). To evaluate item
reliability, they assigned a team of seven coders to use the instrument to independently score a
random sample of roughly 200 classroom videos drawn from the video repository (see [4]). All
items achieved inter-rater reliability above the acceptability threshold of Krippendorff’s a > 0.6
with the slight exception of an item referring to the integration of STEM content that achieved a
>0.58.

For the current study, we selected items from the instrument that measure our variables of
interest. Table 1 outlines these variables and their corresponding STEMOP items.

Table 1. Alignment of study variables and STEM-OP items
Variables in this study STEM-OP item

Student Cognitive Engagement Item 4: Cognitive Engagement in STEM

Engagement in the Processes of Engineering  Item 3: Developing Multiple Solutions
Design

Multidisciplinarity of Instruction Item 5: Integrating STEM Content
Exercising Agency in and Reflection on Item 6: Student Agency

STEM Practices

Engagement in Collaborative Activities Item 7: Student Collaboration
Engagement in Evidence-based Reasoning Item 8: Evidence-based Reasoning
Engagement in Data Practices Item 9: Technology Practices in STEM

Each of the 2,030 cases in the dataset represents a video-recorded observation of STEM
classroom teaching. Collected in a previous research project [38], these videos are 50-minutes
long on average and were recorded daily for the entirety of a curriculum unit that ranged between
one to several weeks of instruction. The participant teachers were recruited from five school
districts (representing urban and suburban environments in the midwestern United States) to
complete a three-week PD workshop designed to promote science learning through engineering
design activities and the development of integrated STEM curriculum that highlighted
engineering as the integrator of STEM content [20], [39]. They taught grades 3-9 (primarily
elementary teachers, elementary science teachers, and middle school science teachers) and
demonstrated teaching of physical science, earth science, and life science lessons.



The original dataset for the analysis included 2,030 classroom video observations
generated from the previously described project. However, because we are primarily interested in
student cognitive engagement in the context of iISTEM, we excluded video observations where
students were not learning any STEM content. Upon applying this exclusion criterion, we ended
up with 2,007 cases. This dataset represents a wide range of teachers (99 teachers), classroom
settings (996 physical science, 427 earth science, and 584 life science classrooms), curriculum
units (48 in total), and grades (849 pre-K and elementary, 1100 middle school, and 58 high
school observations).

While all the STEM-OP items have four descriptive levels, we decided to collapse some
of these and re-coded them into new categories that reflect the kind of detail in our variables of
interest. For example, because we are only interested in whether there are multiple STEM
disciplines present in a given iSTEM instruction, we collapsed levels 1-3 of STEM-OP Item 5
into just one category that represents multidisciplinarity. The same principle (presence vs
absence of a feature) applies to Items 7, 8, and 9. However, Item 3 was not binary-coded because
we are particularly interested in the alignment between the levels of cognitive engagement and
the main stages of the engineering design [25]. Meanwhile, Item 6 is a multidimensional measure
(i.e. evidence of STEM practices vs none, student agency vs procedural task, reflection on STEM
practices vs none).

All the predictor categories have to be re-coded in inverse order because the analysis
software (SPSS v.27) automatically sets the last category of each predictor as the reference
category. In order to come up with a more comprehensible interpretation of results, we decided
to set the lowest level or absence of a variable measured as the referent. A summary of the
re-coding done (and inverse coding with respect to the statistical analysis) is provided in Table 2.

Table 2. Coding labels for each of the study’s measures

STEM-OP Item (Measures)

Re-coding Scheme and Coding Labels

Item 4/ Student Cognitive Engagement
(outcome)

reverse coding:

0 - opportunities for students to analyze/
evaluate STEM content

1 - use/ apply

2 - know/ understand

Item 3/ Engagement in the Processes of
Engineering Design

reverse coding:

0 - opportunities for students to redesign
solutions

1 - evaluate design solutions

2 - design solutions

3 - no opportunities for students to design
solutions

Item 5/ Multidisciplinarity of Instruction

binary coding:
0 - multidisciplinary instruction
1 - monodisciplinary instruction




Item 6/ Exercising Agency in STEM Practices  reverse coding:
0 - opportunities for students to reflect on
STEM practices
1 - exercise agency in doing STEM practices
2 - perform procedural tasks
3 - no opportunities for students to engage in

STEM practices
Item 7/ Engagement in Collaborative binary coding:
Activities 0 - opportunities for student collaboration

1 - no opportunities for student collaboration

Item 8/ Engagement in Evidence-based binary coding:

Reasoning 0 - opportunities for students to engage in
evidence-based reasoning
1 - no opportunities for students to engage in
evidence-based reasoning

Item 9/ Engagement in Data Practices binary coding:
0 - opportunities for students to engage in
data practices
1 - no opportunities for students to engage in
data practices

Of special interest here is the set of categories/levels for the outcome variable, Student
Cognitive Engagement. The levels progress in terms of complexity of cognitive ability. At the
lowest level, students participate in tasks that require lower-order thinking skills such as
remembering facts and exhibiting their understanding of concepts. Meanwhile, lessons which
prompt students to apply what they have learned, analyze concepts, and evaluate ideas are given
higher scores. Dare and colleagues [4] indicated that while the item levels were phrased to
denote that opportunities for cognitive engagement were provided, emphasis has to be given on
what students were actually doing. In other words, the observers must see evidence that students
are acting on those opportunities for cognitive engagement. Additionally, multiple types of
opportunities for cognitive engagement can be present in a single classroom instruction and the
observations were scored based on the highest level of cognitive engagement that was evident.
This is supported by our theoretical position and related literature on the hierarchy of cognitive
engagement in which there is preference for engaging students in higher-order thinking skills.
This is also aligned to the overarching goals of STEM education, among which is helping
learners become critical consumers of information and creative problem solvers.

Power analysis
Since there is no standard way to calculate a priori power for multinomial regression, we

have to resort to convention in terms of the required number of cases for the analysis. Using a
standard rule of thumb, an appropriate sample size calculated for multinomial regression was the



number of independent predictors times 10, which required at least 50 individual observations or
cases for this study [40]. A more conservative estimation involved a factor of 30 times the
number of independent predictors for a sample size of 150 cases (see [40], [41]). Given the large
dataset used in this study, we ascertain that the analyses performed are sufficiently powered.

Statistical Analysis

To examine the relationship between student cognitive engagement and its hypothesized
predictors, we utilized logistic regression analysis in this study. Specifically, we employed a
multinomial logistic regression (MLR) analysis due to the polytomous categorical distribution of
the outcome variable. MLR analysis is used to find the best model to describe the relationship
between the outcome variable, student cognitive engagement, and the hypothesized predictors.
The resulting value of the logistic regression equation is the chance of the event being used as a
measure for classification [42]. This data analysis technique mostly involves the following steps:
(a) estimating parameters, that is to estimate the logit model with a qualitative scale response
variable using the maximum likelihood method, (b) testing the significance of the parameters
using a partial test such as a Wald test, and (c) calculating the accuracy of the classification.

Results and Discussion

The purpose of this study is to examine whether the presence of curricular opportunities
in engineering-centric iSTEM can indicate the level of student cognitive engagement in iSTEM
lessons.

In the following sections, we discuss statistics pertaining to the description of the
characteristics of the sample, addressing the assumptions of multinomial logistic regression, and
evaluation of the results of the multinomial logistic regression analysis with regard to the
research question and hypotheses.

Descriptive Statistics

Student cognitive engagement is the outcome variable for this study. Applying the
exclusion criterion helped us focus on the three categories of the variable which correspond to
levels 1 to 3 of the STEM-OP item 4. Of the 2,007 classroom video observations analyzed, the
most frequent was level 1 (opportunities for students to know/understand STEM content). The
distribution of STEM-OP item 4 scores is shown in Figure 2. While the graph shows a
non-normal distribution of the said scores, normality is not a requirement of multinomial logistic
regression [43].



Figure 2. Frequency distribution of Student Cognitive Engagement categories
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The predictor variables in this study are multidisciplinarity of lesson content, engagement
in engineering design, agency in STEM practices, data practices, evidence-based reasoning, and
collaborative tasks. More than half (64.5%) of the classroom observations involved lesson
content from more than one STEM discipline. Meanwhile, 48.8% of these observations feature
students engaging in designing, evaluating, and redesigning engineering solutions. 46.2% (928)
of 2,007 video observations involved procedural tasks for students while 32% (643) of these
involved classroom activities that allowed for student agency. Meanwhile, about half (46.7%) of
the classroom videos observed featured activities that provided opportunities to engage in
evidence-based reasoning, 20% involved data practices, 87.2% included collaborative tasks (see
Table 3).

Table 3. Descriptive Statistics for each predictor categories

Predictor Variables Predictor Categories Frequency Percent
Multidisciplinarity of multidisciplinary 1295 64.5%
Lesson Content
(STEM-OP Item 5) monodisciplinary 712 35.5%
Collaboration engagement in collaborative tasks 1751 87.2%
(STEM-OP Item 7)

no opportunity for collaboration 256 12.8%
Evidence-based engagement in evidence-based reasoning 938 46.7%
Reasoning
(STEM-OP Item 8) no opportunity for evidence-based 1069 53.3%
reasoning
Data Practices engagement in data practices 402 20.0%
(STEM-OP Item 9)

no opportunity for data practices 1605 80.0%




Engineering Design redesigning solutions 226 11.3%
(STEM-OP Item 3)
evaluating design solutions 250 12.5%
designing solutions 502 25.0%
no opportunity to design solutions 1029 51.3%
Agency in STEM reflection on STEM practices 44 2.2%
Practices
(STEM-OP Item 6) agency in STEM practices 643 32.0%
procedural STEM practices 928 46.2%
no opportunity for STEM practices 392 19.5%
Total 2007 100%

Assumptions of Multinomial Logistic Regression (MLR)

In order to ascertain valid and appropriate interpretation of the predictive model for
student cognitive engagement using the specified predictor variables, we evaluated whether the
study met the assumptions of the multinomial logistic regression model. Three key assumptions
are appropriate sample size, no multicollinearity, and independence of observations.

Appropriate sample size. Based on the estimate of 10 cases per predictor variable
included in the model [40], a minimum sample size of 50 cases was needed to achieve
significance (p <.05) at a power of .80. A more conservative approach requires 30 cases per
predictor variable which would indicate 150 cases [41]. The dataset used in this study has over
2,000 cases; therefore, the study met the sample size requirements and was adequately powered.

No multicollinearity. Multicollinearity occurs when there are two or more independent
variables that are highly correlated with each other [44]. To determine whether it exists among
the predictor variables in this study, we employed the variance inflation factor (VIF) method via
SPSS v.27. VIF values greater than 10 and Tolerance values smaller than 0.1 indicate strong
multicollinearity [42]. After regressing dummy-coded predictor variables and the outcome
variable, we examined the resulting collinearity diagnostics, VIF and Tolerance values (see
Appendix C) which demonstrated that there is no multicollinearity among the predictors.

Independence of observations. Another assumption of MLR is independence of
observations and that the outcome variable should have exclusive and exhaustive categories. In
the context of this study, we cannot claim that the observations are truly independent of each
other because some video observations may be part of a lesson that has been divided into several
days. Also, because multiple lessons are parts of a curriculum unit, some video observations are
related to others. For instance, if the curriculum unit implements an engineering design challenge
(EDC), we expect to see call backs to the EDC in different lessons in that same unit.



Nevertheless, we believe that such kind of dependence has a small effect on our findings because
we have a significantly large number of cases, as well as several predictor variables in our
model. The second part of the assumption implies that the odds of preferring one category over
another do not depend on the presence or absence of “irrelevant” alternative categories. In this
study, a classroom observation can only be classified into one (highest) level/category for
STEM-OP Item 4 (outcome variable). Thus, this part of the assumption has been satisfied.

Main Findings

Using SPSS v.27, we performed multinomial logistic regression on the study data. The
regression analysis began with the selection of significant predictor variables using an automated
forward stepwise method in SPSS (see Table 5 for statistically significant predictor variables).
The model fitting criteria, shown below in Table 4, shows the calculated -2 log likelihoods and
the likelihood ratio (LR) test for the null versus the final model. The chi-square statistic
demonstrates the difference between the null model (no predictors) and the final model (fully
fitted for all significant predictor variables).

Table 4. SPSS output for model fit information
Model Fitting Information

Model Fitting
Criteria Likelihood Ratio Tests
-2 Log
Model Likelihood Chi-Square df Sig.
Intercept 2200.135
Only
Final 502.409 1697.727 16 .000

In Table 5, we present the -2 log likelihood of the reduced model to evaluate the
importance of each of the predictor variables to the full fitted model. The chi-square LR test
involves subtracting the value of the reduced model from the full fitted model. The difference
represents the change in the model fit when that predictor was removed. Each of the chi-square
tests had significant results (p <.05) except for STEM-OP Item 7 (collaborative tasks) and Item
9 (data practices) indicating that each predictor variable except collaboration and data practices
improved the accuracy of the fitted model. Since more than one of the predictors were significant
to the fitted prediction model (p < .05), the null hypothesis that there is no predictive relationship
between the predictors and student cognitive engagement was rejected.



Table 5. Results of Likelihood Ratio Tests

Likelihood Ratio Tests

Model Fitting Criteria Likelihood Ratio Tests

-2 Log Likelihood of
Effect Reduced Model Chi-Square df Sig.
Intercept 502.409* .000 0
Item5TransBinary 532.737 30.329 2 .000
Item8TransBinary 715.355 212.946 2 .000
Item3 Transformed 1078.094 575.686 6 .000
Item6Transformed 705.334 202.925 6 .000

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by
omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.
a. This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom.

The final MLR model has a total of 12 predictor categories, which correspond to the
categories in Table 3 except for those of collaboration and data practices. The deviance
goodness-of-fit test indicated that the model was a good fit to the observed data, y%(234) =
207.605, p = .892, with 137 (36.2%) cells having zero frequencies.

For the study data, the pseudo R? statistics were moderate (Cox-Snell =.571; McFadden
= .386; Nagelkerke = .643). Being the logistic analog of R? in ordinary least squares regression,
pseudo R? is considered as a goodness-of-fit statistic. Nonetheless, many researchers have
practiced great caution in using the direct statement that pseudo R? is a direct measure of the
proportion of variance accounted for in the dependent variable [42]. While the moderate pseudo
R? results in this study may provide insight to how the predictors explain the outcome, they also
inform us that there may be other factors that may influence opportunities for student cognitive
engagement. These include faculty demographics such as teaching experience and alternative
teaching approaches to curriculum content [45], [46], differences among gender, grade bands and
science area [24], [47], and other confounding variables that have not been included in this study.

Another way to evaluate the prediction model is to examine the observed and predicted
classifications which are presented in Table 6. Logistic regression is commonly used to predict
whether cases can be correctly classified (i.e., predicted) from the predictor variables [42]. If the
estimated probability of the event occurring is greater than or equal to 0.5 (better than even
chance), SPSS classifies the event as occurring (e.g., students are using/applying STEM
concepts). If the probability is less than 0.5, SPSS classifies the event as not occurring. Overall,
the final model can only correctly predict 72.8% of the categorical outcomes based on the
predictors. This means that the prediction model can correctly classify 1,461 observations into
each of their corresponding STEM-OP item 4 categories.



Table 6. Classification Table for the Predictive Accuracy of the Final Model

Predicted

STEM Cogn: STEM Cogn:

know and/or STEM Cogn: analyze and/or Percent
Observed understand use or apply evaluate Correct
STEM Cogn: know 657 37 39 89.6%
and/or understand
STEM Cogn: use or apply 230 258 110 43.1%
STEM Cogn: analyze 74 56 546 80.8%
and/or evaluate
Overall Percentage 47.9% 17.5% 34.6% 72.8%

In addition, the relatively low accuracy of the predictive model in classifying “use/apply”
provides insight to the relative complexity of what using or applying STEM content means in
iSTEM implementation that the set of predictors in our model cannot sufficiently account for.
Such variability can be due to the possible multidimensionality of that category. For instance,
because the instrument did not explicitly include synthesis (see [48]) in the levels of STEM-OP
item 4, there may be more variability in scoring video observations where students are creating
solutions and synthesizing ideas. It could also be possible that certain classroom activities that
are inherently opportunities to use/apply concepts appear as another level of cognitive
engagement to observers. One example is when students have to use evidence in making a claim.
It is possible that some observers would see such activity as requiring students to analyze while
some would consider it as simply requiring students to use data in making a claim.



Furthermore, in the interpretation of the parameter estimates of the final model, while
each of the predictors was significant to the improvement of the fitted model, each predictor
category was not significant in the estimation of the odds ratios for every comparison. The odds
ratio, Exp(B), is “the exponentiation of the fitted model coefficient . Since logistic regression
models use a log likelihood statistic, the exponentiation of this value provides an odds ratio”
[49]. We consider this statistic in particular because it allows more intuitive interpretation of the
results. The statistic can be interpreted as that for every one unit change in the predictor
variable, the odds ratio is the percentage of likelihood that the outcome changes [44], [50].
Odds ratios equal to 1 means that the outcome event (e.g. multidisciplinary lessons) was equally
likely to occur as the reference outcome (e.g. monodisciplinary lessons). Odd ratios greater than
1 indicated that the outcome event was more likely than the reference event and odds ratios less
than 1 indicated that the outcome event was less likely than the reference event.

We have summarized below the statistically significant results using the odds ratios from
the multinomial logistic regression for opportunities for learning multidisciplinary lesson
content, opportunities for engaging in processes of engineering design, opportunities for agency
in and reflection on STEM practices, and opportunities for evidence-based reasoning. The
complete table of parameter estimates for the final model is included in Appendix A.

e (lassroom instruction with opportunities to learn multidisciplinary lesson content is
1.798 times more likely to engage students in using/applying STEM concepts and 2.401
times more likely to engage students in analyzing/evaluating STEM concepts, compared
to monodisciplinary lessons.

e (lassroom instruction with opportunities for students to come up with a design solution
to the engineering task is 1.576 times more likely to engage students in using/applying
STEM concepts compared to lessons without such curricular opportunity.

e (lassroom instruction with opportunities for students to evaluate their design solution to
the engineering task are 5.432 times more likely to engage students in using/applying
STEM concepts and 82.930 times more likely to engage students in analyzing/evaluating
STEM concepts, compared to lessons without such curricular opportunity.

e (Classroom instruction with opportunities for students to redesign their solution to the
engineering task are 2.844 times more likely to engage students in using/applying STEM
concepts and 126.038 times more likely to engage students in analyzing/evaluating
STEM concepts, compared to lessons without such curricular opportunity.

e (lassroom instruction with opportunities for students to do evidence-based reasoning is
3.596 times more likely to engage students in using/applying STEM concepts and 13.502
times more likely to engage students in analyzing/evaluating STEM concepts, compared
to those without such curricular opportunity.

e (lassroom instruction with opportunities for students to reflect on STEM practices is
4.720 times more likely to engage students in using/applying STEM concepts and 20.922
times more likely to engage students in analyzing/evaluating STEM concepts, compared
to one without opportunities for students to engage in any STEM practices at all.

e (lassroom instruction with opportunities for students to exercise agency in doing STEM
practices is 8.115 times more likely to engage students in using/applying STEM concepts
and 19.949 times more likely to engage students in analyzing/evaluating STEM concepts,
compared to one without opportunities for students to engage in any STEM practices at
all.



e (lassroom instruction with opportunities for students to engage in procedural STEM
practices is 2.411 times more likely to engage students in analyzing/evaluating STEM
concepts compared to one without opportunities for students to engage in any STEM
practices at all.

We learn from these results that iISTEM classroom instruction that involves
multidisciplinary content are more likely to engage students in higher-order thinking skills
compared to monodisciplinary lessons. Particularly, the integration of engineering provided
several opportunities for applications of science and mathematics content such as in designing
and evaluating solutions to the engineering problem [12], [14], [15]. Mathematics integration in
science and engineering lessons also engage students in practices that require the application of
concepts and/or analysis of data from experiments and testing of design solutions [12], [27],
[51].

Furthermore, opportunities related to STEM practices such as engaging in the process of
engineering design process, evidence-based reasoning, and exercising agency in and reflecting
on STEM practices are very likely to prompt higher student cognitive engagement. These
insights from our results align with the literature findings. For instance, learning in a
multidisciplinary context requires students to consolidate and critically apply concepts and
practices from multiple disciplines [26], [27]. Second, engagement in engineering design entails
that students have to think creatively and critically to come up with design solutions to the
problem [20], [28]. Third, by allowing students to exercise agency in and reflect on STEM
practices, learning becomes more meaningful to them as they are able to construct their own
knowledge [34], [35]. And finally, evidence-based reasoning activities require students to
develop and exercise critical thinking skills and justify their claims and design decisions with
evidence [30], [31].

While potentially important in promoting cognitive engagement among students [29],
[32], [33], collaboration (STEMOP item 7) and data practices (STEMOP item 9) fell out of the
predictive model because they do not significantly contribute to the accuracy of the model with
respect to our dataset. This may be due to the fact that collaborative tasks are not always
indicative of cognitive engagement because students can also be using higher-order thinking
skills when they are working individually. Similarly, students do not always employ data
practices when they are doing activities that require cognitive engagement.

In addition, the seemingly large parameter estimates for the categories of the predictor
variable, engagement in engineering design, is particularly intriguing at first sight. However, the
standard error values for these estimates do not indicate any issues in terms of their accuracy and
the variability in the data. Nonetheless, such magnitude of these estimates illustrate the possible
high association between the outcome variable, cognitive engagement, and the predictor,
engagement in engineering design, especially at their highest levels. It is also worth noting that
in terms of predicting the outcome, analyze/evaluate, the magnitude of the estimates for
engagement in engineering design increases and peaks at the highest category. This tells us that
opportunities to redesign engineering solutions are more likely to engage students’ higher
cognitive abilities compared to when they are just designing solutions the first time or evaluating
whether their design meets the criteria or not. This supports research claims [20], [25], [28] that
it is critical that students fully engage in the iterative engineering design process and engage in at
least one cycle of redesign.



In summary, we demonstrated the predictive relationship between curricular opportunities
in engineering-centric iISTEM and student cognitive engagement. We determined that the final
predictive model fits the data well and has a modest overall accuracy in classifying the outcome
categories. Based on the results, engineering-centric iSTEM instruction that engage students in
higher levels of cognition are marked by the presence of multidisciplinary content, engagement
in designing solutions to an engineering problem, agency in and reflection on STEM practices,
and evidence-based reasoning.

Limitations

The inferences made in this study are limited to iSTEM implementations where an
engineering component is present and those that use the same iISTEM and engineering education
frameworks described earlier in this paper. Other approaches to iSTEM that do not include
engineering, for example, may have other variables that better determine the levels of student
cognitive engagement. Furthermore, the setting in which the data was collected were science
classrooms where iISTEM approaches were implemented. Most of these are from elementary and
middle school classes, and the dataset has significantly fewer cases of high school classes
compared to the other grade bands.

Conclusion and Implications

One practical way of ensuring that engineering-centric iSTEM delivers its promised
outcomes in terms of student learning is by looking into the curricular affordances that support
and prompt higher-order cognitive skills. This study addresses this by examining curricular
opportunities in iISTEM that can predict whether a given classroom instruction provides
opportunities for student cognitive engagement. Considering the findings in this study, we
conclude that engineering-centric iSTEM implementations that prompt students to engage in
higher levels of cognitive tasks are marked by the presence of curricular opportunities to learn
multidisciplinary lesson content and to engage in various STEM practices such as designing
solutions to an engineering problem, exercising agency, and evidence-based reasoning. The
increasing magnitude of the odds ratios for the engineering design variable (STEM-OP item 3)
underscores the importance of giving students opportunities to evaluate and redesign their
solutions. Doing so allows students to engage in higher-order thinking skills.

This study may help inform future research on which iISTEM features must be explored
further. For instance, the relatively high parameter estimates for the higher categories under
STEM-OP item 3 (engagement in processes of engineering design) indicates that redesign
activities can be optimized to help students develop critical thinking and creative problem
solving. More detailed investigation on the content integrative approaches can also be done to
determine their effect on learning each discipline’s core ideas and set of skills. A richer literature
base about these features/components of iISTEM will definitely improve teaching practice and
ensure the fulfillment of the more universal goals of STEM education.
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Appendix

Appendix A. Parameter Estimates for the Final Model

Parameter Estimates

95% Confidence Interval for Exp

(B)

Item4® B Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound

STEM Cogn: use or apply Intercept -1.645 81 115.490 1 =00
[tem&TransBinary=.00] 587 140 17.586 1 =.001 1.798 1.367 2.365
[ltem&TransBinary=1.00] b . . 0
[tem3Transformed=.00] 872 1.071 824 1 364 2644 324 21.589
[tem3Transformed=1.00] 1.692 762 4928 1 026 5432 1.219 24,206
[tem3Transformed=2.00] 455 162 7.873 1 .00s 1576 1.147 2.166
[ltem3Transformed=23.00] b . . 0
[temB8TransBinary=.00] 1.280 A73 54819 1 <.001 3.596 2.563 5.048
[ltemETransBinary=1.00] ob . . 1]
[temBTransformed=.00] 1.552 628 6.100 1 014 4720 1.378 16.172
[temBTransformed=1.00] 2.993 325 85.018 1 =.001 19.948 10.559 37.691
[tem&Transformed=2.00] 79 156 1.315 1 281 1.196 .aa1 1.626
[ltem&Transformed=3.00] ob . . 1] .

STEM Cogn: analyze Intercept -3.278 244 180.980 1 =.001

andior evaluate [ltem&TransBinary=.00] 876 175 24963 1 <001 2.401 1.703 3.385
[tem&TransBinary=1.00] o° . . 0
[tem3Transformeds=.00] 4.837 1.030 22.033 1 =.001 126.038 16.727 949.690
[tem3Transformed=1.00] 4418 73T 35811 1 =.001 82930 19.551 351.768
[tem3Transformed=2.00] -.200 .207 833 1 334 818 546 1.228
[ltem3Transformed=23.00] ob . . 0
[tem8TransBinary=.00] 2.603 188 189.587 1 =.001 13.502 9.322 19.558
[ltem@TransBinary=1.00] ob . . 0 . . . .
[temBTransformed=.00] 3.041 649 21.959 1 =001 20822 5.865 74634
[temBTransformed=1.00] 2.094 393 28.394 1 =.001 8115 3757 17.529
[temBTransformed=2.00] 880 233 14.326 1 <.001 241 1.529 3.803
[ltem&Transformed=23.00] ob . . 0

a. The reference category is: STEM Cogn: know andior understand.
b. This parameteris setto zero because itis redundant.



Appendix B. Parameter Estimates for Outcome Category: know/understand
Parameter Estimates

95% Confidence Interval for Exp

B)
Itermd? B Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound
STEM Cogn: know andior Intercept 3.278 244 180.980 1 =.001
Lpiesiand tem&TransBinary=.00] -876 175 24.963 1 <001 416 205 587
[ltem5TransBinary=1.00] " . . 0
[ltem3Transformed=.00] -4.837 1.030 22.033 1 =.001 .0os .om 060
[ltem3Transformed=1.00] -4.418 737 35911 1 =001 012 .003 051
[ltem3Transformed=2.00] .200 .207 933 1 334 1.221 814 1.831
[ltem3Transformed=3.00] ot . . 0
[ltemB8TransBinary=.00] -2.603 188 189.587 1 =.001 074 051 07
[ltem&TransBinary=1.00] o . . 0
[temETransformed=.00] -3.041 648 21.859 1 =.001 048 013 AT
[temETransformed=1.00] -2.094 393 28.394 1 =001 123 057 266
[temETransformed=2.00] -.B80 233 14326 1 =.001 415 263 654
[temBTransformed=3.00] ot . . 0

Appendix C. Collinearity Statistics - Tolerance and VIF values

Coefficients®

Collinearity Statistics

Maodel Tolerance WIF

1 Item&TransBinary T 1.091
ItemB8TransBinary 588 1.701
Item7TransBinary BT7S 1.143
Item8TransBinary 828 1.078
ltem3TrRedesign 614 1629
ltem3TrEvdesign 638 1.678
ltem3TrDesign BES 1.504
ItemETrReflect Ba5 1.183
ItemBTrAgency 302 3.310
ItemETrProce 473 2116

a. Dependent Variable: ltem#4



