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Abstract—Due to the fast growth of the photovoltaic (PV)
market, more power plants have become available with data
accessible for power forecasting and long-term reliability assess-
ment. The accuracy of the modeling on this data is influenced
heavily by the quality of the data and can be improved through
data imputation to fill missing gaps. In this study, we introduce
a FAIRification framework for ingesting data from PV power
plants. This process improves the efficiency of modeling on time
series data provided by different labs and companies through
an automated ingestion process. We take this analysis further by
investigating the use of different imputation methods for filling
in large chunks of missing data. Specifically, mean interpolation,
linear interpolation, and k-nearest neighbors (KNN) were used
in this report to fill in missing data for module temperature
and power in a PV time series. It was found that the KNN
algorithm outperforms the other methods due to its ability to
leverage spatial coherence from nearby systems. These results
point towards the potential use of a spatio-temporal graph neural
network (st-GNN) in order to impute data using spatial coherence
between systems in a large data set with time series data from
many PV power plants.

Index Terms—FAIRification, Spatiotemporal GNN, Missing-
ness

I. INTRODUCTION

Photovoltaics (PV) have become a dominant force in the
energy sector over the past 20 years. The total, installed solar
capacity has increased 500 times since 2000 to a total of 773
GW at the end of 2020 [1]. Not only has the field expanded so
much in total, but the rate of installations continues to increase
as well. In 2020, the world reported a new record of solar
installations by implementing 138 GW of solar energy in a
year [1]. The growth of the PV market has pushed the demand
for power forecasting and performance evaluation for a huge
population of PV power plants which have spatiotemporal
coherence that can be utilized for improving model accuracy
[2]. There are many logistical challenges towards performing
this kind of time series analysis. Different groups use dif-
ferent types of databases, different variable naming schemes,
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different data cleaning processes, etc. The time series data
itself is typically missing data, or can even have incorrect
data from faulty sensors [3]. Manually addressing these kinds
of issues takes time away from developing new models on
the data which takes time away from producing more efficient
PV modules based on the results. Through the development
of an automated framework for ingesting time series data
and feeding it into machine learning models, we can make
our analysis methods more efficient at a larger scale. Much
of the standards for our automated process are based on
the FAIR principles introduced through the publication of
Wilkinson et al. [4]. These principles aim to increase the
ability of both humans and computers to understand data by
making it Findable, Accessible, Interoperable, and Reusable
(FAIR). These guiding principles have been the foundation
for our automated process as we try to design a system
to standardize the analysis of time series data across the
whole solar field. In this paper, we propose a FAIRification
framework for spatiotemporal data from PV power plants. We
also propose automated methods for data quality assessment
and missingness pattern classification that can be applied to
time series PV data across the field. Investigating missingness
patterns is essential for deciding imputation methods that
can improve the model performance for degradation analysis
studies. In this case, we examine missingness imputation
through the application of several baseline methods including
mean interpolation, linear interpolation, and KNNs.

II. METHODS

A. PV Power Plants FAIRification

The data used in this project are stored in the SDLE
research center’s Apache Hadoop/Hbase/Spark cluster [5],
which we will henceforth refer to as CRADLE (Common
Research Analytics and Data Lifecycle Environment). This
environment is based on the Cloudera CDH distribution. We
use a Hadoop Distributed Filesystem (HDFS) to store all of
our raw data. After cleaning, the data used for analysis is
moved into the Apache Hbase. Hbase takes its inspiration
from Google’s Big Table, a NOSQL database based on triples
where each observation in the dataframe has a rowkey and



a columnkey. In order to interact with CRADLE, we rely on
Case Western’s high performance computing cluster (HPC), an
environment with over 250 compute servers, including more
than 60 GPU nodes and 7000 processors. While the data used
for this analysis is not made public yet, the data will be
made accessible by the general PV community on OSF.io in
accordance with FAIR guidelines.

We have developed a four-step data ingestion pipeline for
receiving data from outside groups and ingesting it into the
CRADLE ecosystem. Fig. 1 shows a visual representation of
this process.

Fig. 1. Data Ingestion Pipeline

After receiving time series data, the first step is to move the
data into the staging area. The staging area is stored in Case
Western’s V-drive, which is a Windows file sharing system
hosted by the university. Every night, the contents of the V-
drive get backed up automatically to the HPC for redundancy.
Once the data is safe in the staging area, the next step is to
move the raw data into Case’s Hadoop Distributed File System
(HDFS). At this point in the process, the raw data has been
comfortably stored where it can be accessed should anyone
ever need it again. The next step is to preprocess the data.
This includes basic data cleaning, adding satellite weather data
from SolarGIS, and metadata FAIRification. After the data has
been processed, it is stored in an Apache Hbase table for ease
of access for future analysis and modeling.

An especially important aspect of our data preprocessing
step is metadata FAIRification. There are many benefits as-
sociated with FAIRifying our data. It makes our data more
easily shareable with other groups because of the standards
set for variable nomenclature and structure. It makes it easier
for other groups to share data with us, as we can utilize
our FAIRification framework to help computers understand
more generally what certain variables mean. It also makes it
easier to extract meaning from our modeling because of our
structured, graph approach for our metadata. There has been an
extensive push in the US to make metadata “FAIR” recently,
as publishers, science funders, and government agencies have
begun to establish requirements for the proper management
of metadata. As such, we have been implementing FAIR
principles into the ingestion of our data. Specifically, we use

a standardized Javascript Object Notation for Linked Data
(JSON-LD) filetype to store our metadata [6]. We have defined
a new structure for our JSON-LD metadata files through the
creation of a solar power plant ontology. In order to create
and design our solar time series ontology, we have used the
Protege ontology editor [7].

An ontology is a formal dictionary of terms for a given
industry or field that shows how the terms are related through
densely interconnected webs. Part of the point of doing this
is to standardize terms for solar time series data by defining
how variables should be defined across the industry. In our
model, for example, latitude is to be spelled exactly latitude
(not lat, latd, etc), and it is to be measured in degrees always.
This way, there is no ambiguity. An ontology not only defines
terms, but it defines a structure for the metadata as well. An
ontology is the blueprint for linking metadata terms together
through the creation of a knowledge graph. When an ontology
is filled in with real data, it becomes a knowledge graph. An
ontology is made through the creation of triples, or object-
relationship pairs. Fig. 2 shows an example of a triple that
connects a solar power plant to a latitude by the hasLatitude
property. An ontology makes use of more general terms,
defining how classes of objects relate to each other. This
can allow a computer to understand generally what a variable
means, which can help in its understanding of data received
from other groups. A knowledge graph fills the classes from
an ontology with values based on the structure defined by the
ontology.

Fig. 2. Examples of Object-Relationship Pairs for the Ontology Blueprint
and Resultant Graph

B. Data Quality Assessment

At SDLE, we have developed an R package for analyzing
time series data called PVplr [8] that includes functions for
the automated analysis of data quality. These functions include
a heatmap generator and an automated data grading function.
The data grading function assigns a letter grade for the data
based on outliers, missingness percentage, and longest missing
gap [3]. For a data set to receive an ”A” in all categories, it
must have outliers less than 10%, missingness less than 10%,
and a longest missing gap below 15 days, for example. A full
outline of the metrics for the data quality grades can be seen
in Fig. 3.

III. PV POWER PLANTS DATA SETS DESCRIPTION

There are eight PV data sets that have been received from
different companies and research institutions and have been
ingested to the database of our research group. Table I lists



Fig. 3. Standards for PV time series grading system

some basic information about each data set. The PV systems in
the same data set have the same meta variables and time series
variables, but the PV systems in different data sets have some
differences regarding both meta and time series variables. For
example, meta information about the number of strings and
the number of modules in each string exists in data set 1 but
not in data set 2. The irradiance data in data set 1 is global
horizontal irradiance, but it is plane of array irradiance in data
set 2. The PV systems in different data sets can also refer to
different scales. There are individual PV modules (such as in
the data set 4), inverters for a PV array (such as in the data
set 1), and inverters for a PV site (such as in the data set 2).

TABLE I
LIST OF PV SYSTEMS

ID Average Age # of Systems Time Interval (minute)
1 8.24 354 15
2 1.42 1088 1
3 4.24 98 5
4 5.75 8 10
5 0.95 8 30
6 3.13 8 1
7 1.72 70 1
8 2.38 28 15

The data shared from system 8 is from the Florida So-
lar Energy Center and is the focus of this analysis. More
specifically, data from PV systems from the SunSmart Schools
program were made available. From inverters that control
the racks of PV modules at these schools, we have many
years of time series data logged. In total, 28 sites from this
program have been shared from FSEC to the SDLE lab at
Case Western. This data includes 15 minute interval time
series data with information about power output, ambient and
reference temperature, irradiance, battery properties, and input
and output current and voltage. The length of the time series
varies between schools, with the longest set including about 9
years of data, and most of the data sets including data on the
order of about 2 years.

IV. DISCUSSION

A. FAIRification

We have developed FAIRmaterials, both an R [9] and
Python [10] package, for automating the creation of FAIRified
JSON-LD files. Given a simple excel file of a user’s metadata,
these packages automatically generate a FAIRified JSON-LD
file based off the standards that we have developed in our

solar power plant ontology. We are currently going through
all received data sets and collecting the variables provided
with their typical names and units. This information will be
provided to our collaborators, including both companies and
research institutions, that own the time series PV data of
multiple systems. Using feedback from these entities, we can
improve our FAIRification process based off the input of real
world users.

We have also developed an ontology to describe time series
data for its application in solar. The steps we have taken for
this process are outlined in Fig. 4.

Fig. 4. Steps in Ontology Design

The first step was to create a class hierarchy that describes
all of the objects that need to exist in our ontology. In this
case, we need to create a general class that describes a solar
power plant. Each power plant will have information about its
location, array, time series, and inverters. So we have chosen
these to be the main sub-classes that describe our power plants.
There is a visual depiction of this design in Fig. 5.

Fig. 5. Class Hierarchy for Solar Ontology

Given the structure from our class hierarchy, we can add
more information to our graph by defining how our properties
are connected. For example, properties can be described as
functional if there is one unique value of y for each instance,
x. So a PV power plant would only have one unique value
for a longitude, making that a functional property. With a
well defined hierarchy and correct property descriptions, we
can make use of a reasoner in order to infer things about
our data. As we begin to add instance level data into our
ontology to create a knowledge graph, we can make use of the
ontology’s reasoning capabilities in order to discover important
relationships in our data.

B. Data Grading

With the data from the SunSmart Schools program, we have
performed an analysis of the data quality of a set of PV sites
with the PVplr package [8]. In Fig. 6 we have generated a
heatmap to visualize the quality of a representative data set.

We plot the time of day on the y-axis, with the date on
the x-axis. The graph is then colored in by the power output.
This kind of visualization is especially powerful for grading



Fig. 6. Data Quality Heatmap

data quality, because missing chunks in the data are made
especially apparent as grey bars. We can also see that the data
that is not missing meets our expectations. We get high power
output during the day when it is sunny, and no power output at
night. Such analysis is important to perform at the beginning
of a project in order to ensure that the data that we are working
with is in line with reality. In Fig. 7 are heat maps plots of all
the data that exist in our set. This application at scale is made
easy through the use of the PVplr R package.

Fig. 7. Heatmaps for All of the Data in the Analysis Set

While a visual representation of the data is useful for human
interpretation of the data quality, it’s important to convert
this into something that a computer can make sense of. We
do this through assigning the data letter grades based on
their percentage of outliers, missingness percentage, longest
missing gap, and a pass/fail based on if the data is longer
than two years or not. The grading function applied at scale
on our data set is described in Table II. Using the results from
our data grading process, we can easily decide which power
plants provide more complete data for our analysis. This in
turn allows us to focus in on the more important data sets that
will allow for more in-depth analysis on our data. With an

TABLE II
GRADED PV SYSTEMS

Site Outlier Missingness Longest Missing Length
Percentage Percentage Gap Requirement

1 B A C P
2 B A D P
3 B A A F
4 B B D P
5 A C C P
6 B A A F
7 B B D P
8 C A A P
9 B A A P
10 B A A P
11 B A A P
12 C A A P
13 C A A F
14 B A A F
15 B B D P
16 B A A F
17 B A A F
18 B A A P
19 A D D P
20 B A C P
21 B A A P
22 B B D P
23 B C D F
24 B B D P
25 B A A P
26 B A A F
27 C A A F
28 A D D F

idea of the missingness existing in the data set, we can move
towards trying to impute this missing data.

C. Missingness Pattern Discovery

We can characterize the patterns of missing values between
the different PV time series data sets from two aspects. From a
micro perspective, missing data in a series can be categorized
into single or block. Single refers to a single missing value be-
tween known values while block refers to consecutive chunks
of missing values. This is why our data grading function
measures both missingness percent and longest missing gap.
From a macro perspective between different power plants,
depending on the positions of missing values, we consider four
common missingness patterns: Missing Completely at Random
(MCAR), Disjoint, Overlap, and Blockout, see Fig. 8 [11].
By identifying the common missingness patterns in our PV
data sets, we can possibly construct suitable missing value
imputation (MVI) models whose assumptions match our data
sets.

D. Missing Data Imputation

In this section, we focus on 10 specfic sites in the Sunsmart
schools data set that contain data at the same time over a
one year period ranging from 09/01/2014 to 08/31/2015. We
aim to impute the missingness of the module temperature and
power readings from these sites. We measure imputation error



Fig. 8. Four Missingness Scenarios

by Mean Absolute Error (MAE) and Rooted Mean Squared
Error (RMSE), defined as follows:

MAE =
1

m

m∑
i=1

|Pi − P̃i|; RMSE =

√√√√ 1

m

m∑
i=1

(Pi − P̃i)2

(1)
where m = card(M), Pi ∈ P , and P̃i ∈ P̃ , M is the set
of missing data, P is set of imputed values, and P̃ is ground
truth.

We compare the performance of three imputation methods.
(1) Linear Interpolation (LI) [12]: a timeseries imputation

method that fits a simple linear model using two values before
and after the missing data block. Each missing data point will
then be estimated using the linear model between these points.

(2) Mean Imputation (Mean) [13]: a common approach that
uses the column-wise mean to fill the missing data.

(3) K-nearest Neighbors (KNN) [14]: imputes data by find-
ing and averaging the K nearest neighbors to fill in the missing
value.

To evaluate the accuracy of these three methods, we inject
missing values into the real-world data sets. Particularly, we
are interested in how different imputation methods perform
when there are large chunks of missing values (Block Miss-
ing). To achieve this, we corrupt daily time series data of each
PV system by randomly injecting a 16-hours block of missing
values.

Our experiments have demonstrated the superiority of KNN
over the LI and Mean methods for imputing missing values in
the case of Block Missingness, see Fig. 9 and Fig. 10. These
results are in line with existing literature [15]. KNN achieves a
gain from 14.18% to 63.72% in imputation accuracy compared
to LI and Mean. KNN likely outperforms other methods
because it leverages spatial coherence from nearby systems
while LI and Mean impute each PV system separately. The
rich neighboring information within PV systems can improve
the accuracy of imputation and potential predictive tasks like
PV degradation rate prediction.

E. Spatiotemporal GNN Autoencoders

We propose the idea of using spatiotemporal GNN autoen-
coders to better leverage spatial coherence of PV systems and
potentially further improve the imputation accuracy over KNN.

First, we need to translate PV systems into a graph. We map
the PV systems into a spatiotemporal graph G = (V,E,Xv(t))
where nodes V represent PV systems, edges E are assigned

Fig. 9. Imputation Error for Module Temperature

Fig. 10. Imputation Error for Power

using similarity or spatiotemporal correlations among PV
systems, and Xv(t) indicates node features. Since the locations
of PV systems are fixed, the graph structure is static with time-
invariant nodes and edges. However, Xv(t) is time-varying.
Each node consists of a set of time-series features such as
power, irradiance and temperature and may have missing
values in one or multiple of these features.

Spatiotemporal Graph Neural Network modeling has
demonstrated its performance improvement in power forecast-
ing for PV power systems rather than utilizing an individual
PV system [2] by capturing both spatial and temporal depen-
dencies and coherence among PV systems. We propose a new
framework - St-GNN Autoencoders (STGNN-AE) to detect
and impute missing values in the PV data sets. Given a set
of validated and correct data, we can learn a STGNN-AE,
which consists of an encoder to transform inputs into a lower
dimension representation and a decoder to recover the inputs
from reduced data with a small reconstruction error. STGNN-
AE will detect and localize erroneous values as outliers when
observing a significant reconstruction error, suggest normal
values to be used for imputation with the transformed values
from reconstructed embedding by the decoder for local strat-
egy, and provide synthetic PV input for simulation analysis
over PV plants and regions when and where sensors are not
available. The imputation quality will be measured by the
impacts on the performance of downstream learning tasks like
PV performance loss rate (PLR) prediction.



V. CONCLUSIONS

We have demonstrated in this paper the FAIRification of
spatiotemporal PV time series data. By creating a solar power
plant ontology, we propose standards for the naming and
structure of metadata used to describe the data from these
power plants. We can also use this ontology to assist in our
modeling, where the computer can infer things about our data
based on the relationships we have defined. Using the structure
from this ontology, we have developed both R and Python
packages for the automation of the FAIRification process.
Going further, we have also developed an R package that
automates the analysis of the quality of a data set through letter
grades and heatmaps. We have shown that imputation meth-
ods that can leverage spatial coherence (e.g.: KNN) achieve
higher imputation accuracy over simple methods like Linear
and Mean Interpolation. To further improve the imputation
accuracy, we propose the use of St-GNN autoencoders to
detect and impute missing values from a data set by utilizing
the spatial coherence between the power plants in the data set.
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