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Automation is good, so long as you know exactly where to put
the machine.

— Eliyahu Goldratt

Abstract

Neural Architecture Search (NAS) represents an emerging
machine learning (ML) paradigm that automatically searches
for models tailored to given tasks, which greatly simplifies
the development of ML systems and propels the trend of ML
democratization. Yet, little is known about the potential se-
curity risks incurred by NAS, which is concerning given the
increasing use of NAS-generated models in critical domains.

This work represents a solid initial step towards bridging
the gap. Through an extensive empirical study of 10 popular
NAS methods, we show that compared with their manually
designed counterparts, NAS-generated models tend to suffer
greater vulnerability to various malicious attacks (e.g., adver-
sarial evasion, model poisoning, and functionality stealing).
Further, with both empirical and analytical evidence, we pro-
vide possible explanations for such phenomena: given the
prohibitive search space and training cost, most NAS meth-
ods favor models that converge fast at early training stages;
this preference results in architectural properties associated
with attack vulnerability (e.g., high loss smoothness and low
gradient variance). Our findings not only reveal the relation-
ships between model characteristics and attack vulnerability
but also suggest the inherent connections underlying differ-
ent attacks. Finally, we discuss potential remedies to mit-
igate such drawbacks, including increasing cell depth and
suppressing skip connects, which lead to several promising
research directions.

1 Introduction

Automated Machine Learning (AutoML) represents a new
paradigm of applying ML techniques in real-world settings.
For given tasks, AutoML automates the pipeline from raw
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Figure 1: Cell-based neural architecture search.

data to deployable ML models, covering model design [18],
optimizer selection [37], and parameter tuning [1]. The use
of AutoML greatly simplifies the development of ML sys-
tems and propels the trend of ML democratization. Many
IT giants have unveiled their AutoML frameworks, such as
Microsoft Azure AutoML, Google Cloud AutoML, and IBM
Watson AutoAl

In this paper, we focus on one primary task of AutoML,
Neural Architecture Search (NAS), which aims to find per-
formant deep neural network (DNN) architectures' tailored
to given tasks. For instance, as illustrated in Figure 1, cell-
based NAS constructs a model by repeating the motif of a
cell structure following a pre-specified template, wherein a
cell is a topological combination of operations (e.g., 3 X 3
convolution). With respect to the given task, NAS optimizes
both the topological structure and the operation assignment.
It is shown that in many tasks, NAS finds models that remark-
ably outperform manually designed ones [11,35,39,46].

Yet, in contrast to the intensive research on improving the
capabilities of NAS, its security implications are fairly un-
explored. As ML systems are becoming the new targets for
malicious attacks [6], the lack of understanding about the po-
tential risks of NAS is highly concerning, given its surging
popularity in security-sensitive applications. Specifically,

n the following, when the context is clear, we use the terms of “model”
and “architecture” exchangeably.



RQI1 — Does NAS introduce new weaknesses, compared
with the conventional ML practice?

RQ2 — If so, what are the possible root causes of such
vulnerability?

RQ3 — Further, how would ML practitioners mitigate such
drawbacks in designing and operating NAS?

The answers to these key questions are crucial for the use
of NAS in security-sensitive domains (e.g., cyber-security,
finance, and healthcare).

Our work — This work represents a solid initial step to-
wards answering such questions.

Al - First, through an extensive empirical study of 10
representative NAS methods, we show that compared with
their manually designed counterparts, NAS-generated mod-
els tend to suffer greater vulnerability to various malicious
manipulations such as adversarial evasion [8,42], model poi-
soning [5], backdoor injection [23, 40], functionality steal-
ing [44], and label-only membership inference [13]. The
findings suggest that NAS is likely to incur larger attack sur-
faces, compared with the conventional ML practice.

A2 - Further, with both empirical and analytical evidence,
we provide possible explanations for the above observations.
Intuitively, due to the prohibitive search space and training
cost, NAS tends to prematurely evaluate the quality of can-
didate models before their convergence. This practice favors
models that converge fast at early training stages, resulting
in architectural properties that facilitate various attacks (e.g.,
high loss smoothness and low gradient variance). Our analy-
sis not only reveals the relationships between model charac-
teristics and attack vulnerability but also suggests the inher-
ent connections underlying different attacks.

A3 - Finally, we discuss potential remedies. Besides post-
NAS mitigation (e.g., adversarial training [42]), we explore
in-NAS strategies that build attack robustness into the NAS
process, such as increasing cell depth and suppressing skip
connects. We show that while such strategies mitigate the
vulnerability to a certain extent, they tend to incur non-trivial
costs of search efficiency and model performance. We deem
understanding the fundamental trade-off between model per-
formance, attack robustness and search efficiency as an im-
portant topic for further investigation.

Contributions — To our best knowledge, this work repre-
sents the first study on the potential risks incurred by NAS
(and AutoML in general) and reveals its profound security
implications. Our contributions are summarized as follows.

— We demonstrate that compared with conventional ML
practice, NAS tends to introduce larger attack surfaces with
respect to a variety of attacks, which raises severe concerns
about the use of NAS in security-sensitive domains.

— We provide possible explanations for such vulnerability,
which reveal the relationships between architectural proper-
ties (i.e., gradient smoothness and gradient variance) and at-
tack vulnerability. Our analysis also hints at the inherent con-

nections underlying different attacks.

— We discuss possible mitigation to improve the robust-
ness of NAS-generated models under both in-situ and ex-situ
settings. This discussion suggests the necessity of improving
the current practice of designing and operating NAS, point-
ing to several research directions.

2 Preliminaries

We first introduce a set of key concepts and assumptions.

2.1 Neural Architecture Search

Deep neural networks (DNNSs) represent a class of ML mod-
els to learn high-level abstractions of complex data. We as-
sume a predictive setting, in which a DNN f, (parameterized
by 0) encodes a function fy : R* — S™, where n and m denote
the input dimensionality and the number of classes. Given
input x, f(x) is a probability vector (simplex) over m classes.

In this paper, we mainly focus on one primary task of
AutoML, neural architecture search (NAS), which searches
for performant DNN architectures for given tasks [18]. For-
mally, let D be the given dataset, £(-,-) be the loss function,
F be the functional space of possible models (i.e., search
space), the NAS method A searches for a performant DNN
f* via minimizing the following objective:

= argjrfréiﬂrrl]E(xﬁy)Nz)é(f(x)v)’) (1

The existing NAS methods can be categorized according
to their search spaces and strategies. In the following, we fo-
cus on the space of cell-based architectures [39,46,47,58,64],
which repeat the motif of a cell structure in a pre-specified
arrangement, and the strategy of differentiable NAS [11, 35,
39], which jointly optimizes the architecture and model pa-
rameters using gradient descent, due to their state-of-the-art
performance and efficiency. Nevertheless, our discussion
generalizes to alternative NAS frameworks (details in § 6).

Without loss of generality, we use DARTS [39] as a con-
crete example to illustrate differentiable NAS. At a high
level, DARTS searches for two cell structures (i.e., normal
cell and reduction cell) as the basic building blocks of the
final architecture. As shown in Figure 1, a cell is modeled as
a directed acyclic graph, in which each node x% is a latent
representation and each directed edge (i, j) represents an op-
eration o/ applied on x'” (e.g., skip connect). Each node is
computed based on all its predecessors:

) = ZO('ZJ) (x(i)) (2)
i<j

Each cell contains n;, input nodes (often n;, = 2), n,, output
nodes (often n,, = 1), and n,,y intermediate nodes. Each in-
put node takes the output from a preceding cell, the output



node aggregates the latent representations from intermediate
nodes, while each intermediate node is connected to m pre-
ceding nodes (typically m = n;,).

To enable gradient-based optimization of the architecture,
DARTS applies continuous relaxation on the search space.
Letting O be the set of candidate operations, the categorical
choice of an operation is reduced to a softmax over O:

(i.J)

ol (x) = %")ﬁ.)o(x) 3)
0e0 Z()/EO exp(oco,“’ )
where 0"/ represents the trainable weight of operation o. At
the end of the search, a discrete architecture is obtained by
replacing 0"/ with the most likely operation arg max,, o).

The search is thus formulated as a bi-level optimization
objective function:

m&n L(0°(0), ) st 0°(a) = argmein Lin(0,0) (4)

where £, and L, are the training and validation losses, and
o = {a*)} and 0 denote the architecture and model parame-
ters, respectively. To handle the prohibitive cost of the nested
optimization, single-step gradient descent is applied to avoid
solving the inner objective exactly.

2.2 Attack Vulnerability

It is known that DNN models are vulnerable to a variety of
attacks at both training and inference phases. Here, we high-
light the following major attacks.

Adversarial evasion — At inference time, the adversary
generates an adversarial input (x+ 8) by modifying a begin
one x with imperceptible perturbation 8, to cause the target
model f to misbehave [21]. Formally, in a targeted attack,
letting ¢ be the target class desired by the adversary, the attack
crafts (x4 0) by optimizing the following objective:

min ¢(f(x+9),t) Q)]

8B,

where B, specifies the set of allowed perturbation(e.g., a £..-
norm ball of radius €). Eqn (5) is often solved using projected
gradient descent [42] or general-purpose optimizers [8].

Model poisoning — The adversary aims to modify a target
model f’s behavior (e.g., overall performance degradation or
misclassification of specific inputs) via polluting its training
data [5]. For instance, to cause the maximum accuracy drop,
letting D, and D, be the training and testing sets and f be
the target model, the attack crafts a set of poisoning inputs
D,os by optimizing the the following objective (note: the ad-
versary may not have access to D,,,, D, or f):

max E, ) op, (fo (%), )

. . 6
1.0 = argminE(y)p om, L00)y)

Backdoor injection — During training, via perturbing a
benign model f, the adversary forges a trojan model fy- sen-
sitive to a trigger pattern r*, which is used in the downstream
task by the victim; at inference time, the adversary invokes
the malicious function by feeding trigger-embedded input
x+ r*. Formally, letting D,, be the training data and ¢ be
the target class desired by the adversary, the attack generates
a trojan model parameterized by 0* and its associated trigger
r* by optimizing the following objective:

rren}yl?eE@‘*”””"" [(fo(x),y) + M(fo(x+7),0)] (D

where r* is selected from a feasible set &, (e.g., a 3 x 3 patch
with transparency 7), the first term enforces all clean inputs
to be correctly classified, the second term ensures all trigger
inputs to be misclassified into ¢, and the hyper-parameter A
balances the two objectives.

Functionality stealing — In functionality stealing [44], the
adversary aims to construct a replicate model f (parameter-
ized by 0*) functionally similar to a victim model f via prob-
ing f through a black-box query interface. Notably, it is dif-
ferent from model stealing [54] that aims to re-construct f
in terms of architectures or parameters. Formally, letting D
be the underlying data distribution, the attack generates the
query-prediction set Q (note: the adversary may not have the
labeling of D, has only query access to f, and is typically
constrained by the number of queries to be issued), which
optimizes the following objective:

min Exwgf(fe* (x), f(x))

) A 8
s.t. 0" = argnleln]E(fo(x))NQé(fe(x)>f(x)) ®

Different functionality stealing attacks differ in how Q is
constructed (e.g., random or adaptive construction).

Membership inference — In membership inference [50],
given input x and model’s prediction f(x), the adversary at-
tempts to predict a binary variable b indicating whether x is
included in f’s training data: b < 4(x, f). The effectiveness
of membership inference relies on f’s performance gap with
respect to the training data D, and testing data D,,. The ad-
versary may exploit this performance gap by thresholding the
confidence score of f(x) if it is available, or estimating other
signals (e.g., x’s distance to the nearest decision boundary) if
only the label of f(x) is provided [13].

3 Measurement

To investigate the security risks incurred by NAS, we empir-
ically compare the vulnerability of NAS-generated and man-
ually designed models to the aforementioned attacks.



Architecture ‘ CIFAR10 | CIFARI100 | ImageNet32
o BIiT[32] | 96.6% 80.6% 72.1%
2 DenseNet [28] |  96.7% 80.7% 73.6%
£ DLA[60] | 96.5% 78.0% 70.8%
5 ResNet [26] | 96.6% 79.9% 67.1%
= ResNext[57] | 96.7% 80.4% 67.4%
g VGG[52] | 95.1% 73.9% 62.3%
* | WideResNet[61] | 96.8% 81.0% 73.9%
AmoebaNet [47] 96.9% 78.4% 74.8%
DARTS[39] | 97.0% 81.7% 76.6%
o DINAS[11] | 96.9% 80.4% 75.6%
g ENAS[46] | 96.8% 79.1% 74.0%
= NASNet[64] | 97.0% 78.8% 73.0%
Z | PC-DARTS[59] | 96.9% 77.4% 74.7%
2 PDARTS[12] | 97.1% 81.0% 75.8%
z SGAS[35] | 97.2% 81.2% 76.8%
SNAS[58] | 96.9% 79.9% 75.5%
Random [17] | 96.7% 78.6% 72.2%

Table 1. Accuracy of representative NAS-generated and manually
designed models on benchmark datasets.

3.1 Experimental Setting

We first introduce the setting of the empirical evaluation. The
default parameter setting is deferred to Table 5 in § B.

Datasets — In the evaluation, we primarily use 3 datasets
that have been widely used to benchmark NAS performance
in recent work [12,35,39,46,58]: CIFAR10 [33] — it consists
of 32 x 32 color images drawn from 10 classes (e.g., ‘air-
plane’); CIFAR100 — it is essentially the CIFAR10 dataset
but divided into 100 fine-grained classes; ImageNet32 — it is
a subset of the ImageNet dataset [15], downsampled to im-
ages of size 32 x 32 in 60 classes.

NAS methods — We consider 10 representative cell-based
NAS methods, which cover a variety of search strategies: (1)
AmoebaNet [47] applies an evolutionary approach to gener-
ate candidate models; (2) DARTS [39] is the first differen-
tiable method using gradient descent to optimize both archi-
tecture and model parameters; (3) DrNAS [11] formulates dif-
ferentiable NAS as a Dirichlet distribution learning problem;
(4) ENAS [46] reduces the search cost via parameter sharing
among candidate models; (5) NASNet [64] searches for cell
structures transferable across different tasks by re-designing
the search space; (6) PC-DARTS [59] improves the memory
efficiency by restricting operation selection to a subset of
edges; (7) PDARTS [12] gradually grows the number of cells
to reduce the gap between the model depth at the search and
evaluation phases; (8) SGAS [35] selects the operations in a
greedy, sequential manner; (9) SNAS [58] reformulates rein-
forcement learning-based NAS to make it differentiable; and
(10) Random [17] randomly samples candidate models from
the pre-defined search space.

NAS search space — We define the default search space
similar to DARTS [39], which consists of 10 operations in-
cluding: skip-connect, 3 x 3 max-pool, 3 x 3 avg-pool, 3 x 3

sep-conv, 5 X 5 sep-conv, 7 X T sep-conv, 3 X 3 dil-conv, 5 X 5
dil-conv, 1 X7 -7 x 1 conv, and zero.

Manual models — For comparison, we use 7 represen-
tative manually designed models that employ diverse ar-
chitecture designs: (1) BiT [32] uses group normalization
and weight standardization to facilitate transfer learning; (2)
DenseNet [28] connects all the layers via skip connects; (3)
DLA [60] applies deep aggregation to fuse features across
layers; (4) ResNet [26] uses residual blocks to facilitate gra-
dient back-propagation; (5) ResNext [57] aggregates transfor-
mations of the same topology; (6) VGG [52] represents the
conventional deep convolution structures; and (7) WideRes-
Net [61] decrease the depth and increases the width of ResNet.

Training — All the models are trained using the following
setting: epochs = 600, batch size = 96, optimizer = SGD, gra-
dient clipping threshold = 5.0, initial learning rate = 0.025,
and learning rate scheduler = Cosine annealing. The accu-
racy of all the models on the benchmark datasets is summa-
rized in Table 1. Observe that the NAS models often outper-
form their manual counterparts.

3.2 Experimental Results

Next, we empirically compare the vulnerability of NAS-
generated and manually designed models to various attacks.

Adversarial evasion — We exemplify with the projected
gradient descent (PGD) attack [42]. Over each dataset, we
apply the attack on a set of 1,000 inputs randomly sampled
from the test set and measure the attack success rate as:

# Successful trials
Attack Success Rate (ASR) = —————— ©)]
# Total trials

A trial is marked as successful if it is classified as its target
class within maximum iterations.

Let f.(x) be the probability that model f assigns to class
¢ with respect to input x. To assess the full spectrum of
vulnerability, we consider both “difficult” and “easy” cases
for the adversary. Specifically, given input x, we rank the
output classes ¢’s according to their probabilities f,.(x) as
c1,¢2,...,Cm, Where c; is x’s current classification; the diffi-
cult case refers to that the adversary aims to change x’s classi-
fication to the least likely class c,,, while the easy case refers
to that the adversary aims to change x’s classification to the
second most likely class ¢;. Table 5 summarizes the setting
of the attack parameters.

Figure 2 illustrates the attack effectiveness against both
NAS and manual models. We have the following observa-
tions. First, across all the datasets, the NAS models seem
more vulnerable to adversarial evasion. For instance, on CI-
FARI10, the attack attains over 90% and 75% ASR against
the NAS models in the most and least likely cases, respec-
tively. Second, compared with the manual models, the ASR
of NAS models demonstrates more evident clustered struc-
tures, implying their similar vulnerability. Finally, the vul-
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Figure 2: Performance of adversarial evasion (PGD) against NAS and manual models under the least and most likely settings.

nerability of NAS models shows varying patterns on differ-
ent datasets. For instance, the measures of NAS models show
alarger variance on CIFAR100 compared with CIFAR10 and
ImageNet32 (especially in the least likely case), which may
be explained by that its larger number of classes results in

more varying “degree of difficulty” for the attack.
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Figure 3: Impact of perturbation threshold (€) on the vulnerability
of different models with respect to PGD on CIFAR10.

We also evaluate the impact of perturbation threshold (€)
on the attack vulnerability. Figure 3 shows the ASR of un-
targeted PGD as a function of € against different models on
CIFARI10 (with perturbation step o = €/3). We have the fol-
lowing observations. First, across different settings, the man-
ual models consistently outperform the NAS models in terms
of robustness. Second, this vulnerability gap gradually de-
creases with €, as the ASR on both NAS and manual models
approaches 100%. Third, compared with the manual mod-
els, the measures of NAS models show a smaller variance,
indicating the commonality of their vulnerability.

Further, by comparing the sets of adversarial examples to
which different models are vulnerable, we show the common-
ality and difference of their vulnerability. We evaluate PGD
(e =4/255) against different models on CIFAR10 in the least
likely case. For each model, we collect the set of adversar-
ial examples successfully generated from 1,000 random sam-
ples. Figure 4 plots the distribution of inputs with respect to
the number of successfully attacked models.

Overall, PGD generates more successful adversarial exam-
ples against the NAS models than the manual models. More-
over, there are more inputs that lead to successful attacks

350
Manual

NAS
-IIIII_
2 3 4 5

Number of Inputs
PR
-
g 2 £

N
S

0 ——— e e

0 1

6 7 0 1 2 3 4 5 6 7 8 9
Number of Successfully Attacked Models

Figure 4: Distribution of inputs with respect to the number of suc-
cessfully attacked models (PGD with € = 4/255 on CIFAR10).

against multiple NAS models. For instance, over 300 inputs
lead to successful attacks against 7 NAS models; in contrast,
the number is less than 10 in the case of manual models. We
may thus conclude that the vulnerability of NAS models to
adversarial evasion seems fairly similar, pointing to potential
associations with common causes.
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Figure 5: Performance of adversarial evasion (NES) against NAS
and manual models under the least and most likely settings.

We also consider alternative adversarial evasion attacks
other than PGD. We use natural evolutionary strategies (NES)
[29], a black-box attack in which the adversary has only
query access to the target model f and generates adversar-
ial examples using a derivative-free optimization approach.
Specifically, at each iteration, it generates ngyery Symmetric
data points in the vicinity of current input x by sampling from
a normal distribution, retrieves their predictions from f, and
estimates the gradient g(x) as:

1 ["query /2]

8(x)= Z (f(x+ou;)— f(x—ou;))u; (10)

Onquery ;=5
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Figure 6: Performance of model poisoning against NAS and manually designed models under varying poisoning fraction ppos.

where each sample u; is sampled from the standard normal
distribution A((0,7), and © is the sampling variance.

We evaluate the vulnerability of different models to NES
under the same setting of Figure2 (with ngyery = 400) on
CIFARI10, with results shown in Figure 5. In general, the
NAS models show higher vulnerability to NES, especially in
the least likely case, indicating that the vulnerability gap be-
tween NAS and manual models also generalizes to black-box
adversarial evasion attacks.

Model poisoning — In this set of experiments, we evaluate
the impact of poisoning attacks on the performance of NAS
and manual models. We assume that a fraction p,, of the
training data is polluted by randomly changing the class of
each input. We measure the performance of various models
with respect to varying poisoning fraction p,, in compari-
son with the case of clean training data (i.e., p,s = 0). We
define the metric of clean accuracy drop:

Clean Accuracy Drop (CAD) an

= Acc. of original model — Acc. of polluted model

Figure 6 compares the CAD of different models as p,, in-
creases from 0% to 40%. The results are average over the
families of NAS and manual models. We have the follow-
ing observations. First, as expected, larger p,,, causes more
performance degradation on all the models. Second, with
fixed pyos, the NAS models suffer more significant accuracy
drop. For instance, on CIFAR100, with p,, fixed as 20%,
the CAD of NAS models is 4% higher than the manual mod-
els. Further, the CAD gap between NAS and manual models
enlarges as p,,s increases.

Backdoor injection — Next, we compare the vulnerabil-
ity of NAS and manual models to neural backdoor attacks
[23,40,45]. Recall that in backdoor injection, the adversary
attempts to forge a trojan model f* (typically via perturbing
a benign model f) that is sensitive to a specific trigger but be-
haves normally otherwise. We thus measure the attack effec-
tiveness using two metrics: attack success rate (ASR), which
is the fraction of trigger-embedded inputs successfully clas-
sified by f* to the target class desired by the adversary; clean
accuracy drop (CAD), which is the accuracy difference of f*
and f on clean inputs.

We consider TrojanNN [40], a representative backdoor at-
tack, as the reference attack model. By optimizing both the
trigger r and trojan model f*, TrojanNN enhances other back-
door attacks (e.g., BadNet [23]) that employ fixed triggers.
Figure 7 plots the ASR and CAD of all the models, in which
the results are average over 1,000 inputs randomly sampled
from each testing set. Observe that the attack seems more ef-
fective against the NAS models across all the datasets. For in-
stance, on CIFAR10, the attack achieves close to 100% ASR
on most NAS models with CAD below 3%. Further, similar
to adversarial evasion and model poisoning, the measures of
most NAS models (except Random) are fairly consistent, in-
dicating their similar vulnerability. Recall that Random sam-
ples models from the search space; thus, the higher vulner-
ability of NAS models is likely to be associated with their
particular architectural properties.

We further evaluate the impact of the number of target neu-
rons (Mneuron) in TrojanNN. Recall that TrojanNN optimizes
the trigger with respect to npeyron target neurons. Figure 8
plots the ASR and CAD of TrojanNN against different mod-
els under varying setting npeyron- First, across all the settings
of Mpeuron, TrojanNN consistently attains more effective at-
tacks (i.e., higher ASR and lower CAD) on the NAS models
than the manual models. Second, as npeuron Vvaries from 1
to 4, the difference of ASR between NAS and manual mod-
els decreases, while the difference of CAD tends to increase.
This may be explained as follows: optimizing triggers with
respect to more target neurons tends to lead to more effective
attacks (i.e., higher ASR) but also result in a larger impact
on clean inputs (i.e., higher CAD). However, this trade-off is
less evident on the NAS models, implying their higher capa-
bilities to fit both poisoning and clean data.

From the experiments above, we may conclude that com-
pared with manual models, NAS models tend to be more vul-
nerable to backdoor injection attacks, especially under more
restricted settings (e.g., fewer target neurons).

Functionality stealing — We now evaluate how various
models are subject to functionality stealing, in which each
model f as a black box only allowing query access: given
input x, f returns its prediction f(x). The adversary attempts
to re-construct a functionally similar model f* based on the
query-prediction pairs {(x, f(x))}.
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Figure 9: Performance of functionality stealing against NAS and manually designed models under the victim architecture-aware setting.
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Figure 10: Performance of label-only membership inference attacks against NAS and manually designed models.



We consider two scenarios: (i) f and f* share the same ar-
chitecture; and (i) the adversary is unaware of f’s architec-
ture and instead uses a surrogate architecture in f*. We apply
Knockoff [44], a representative functionality stealing attack
that adaptively generates queries to probe f to re-construct
f*. We evaluate the attack using the average cross entropy
(ACE) of f’s and f*’s predictions on the testing set, with
lower cross entropy indicating more effective stealing.

Replicate f* Manual NAS
Victim f ResNet DenseNet | DARTS ENAS
ResNet 1.286 1.377
Manual
DenseNet 1.288 1.231  1.381
NAS DARTS 1.272 1.172 | 1.125
ENAS 1.259 1.151

Table 2. Performance of functionality stealing against NAS and
manual models under the victim architecture-agnostic setting.

Figure 9 summarizes the attack effectiveness under the vic-
tim architecture-aware setting. Across all the datasets, the
attack achieves smaller ACE on the NAS models with much
lower variance, in comparison with the manual models. This
implies that most NAS models share similar vulnerability
to functionality stealing. We further consider the victim
architecture-agnostic setting. For each pair of models, we
assume one as f and the other as f*, and measure the attack
effectiveness. The results on CIFAR10 (with the query num-
ber fixed as 8K) are summarized in Table 2. Observe that
with the replicate model f* fixed, the NAS models as the vic-
tim model f result in lower ACE, implying that it tends to be
easier to steal the functionality of NAS models, regardless of
the architecture of the replicate model.

Membership inference — Recall that in membership infer-
ence, the adversary attempts to infer whether the given input
x appears in the training set of the target model f. The infer-
ence accuracy serves as an indicator of f’s privacy leakages.
Next, we conduct membership inference attacks on various
models to assess their privacy risks.

There are two possible scenarios: (i) f’s prediction f(x)
contains the confidence score f,(x) of each class c; and (if)
f(x) contains only the label ¢* = argmax, f.(x). As (i) can
be mitigated by removing the confidence scores in f(x) [50],
here, we focus on (ii). Under the class-only setting, we apply
the decision boundary-based attack [13], which determines
x’s membership (in the training data) by estimating its dis-
tance to the nearest decision boundary using label-only ad-
versarial attacks (e.g., HopSkipJump [9]). In each case, we
evaluate the attack over 2,000 inputs, half randomly sampled
from the training set and the other half from the testing set,
and measure the attack effectiveness using the area under the
ROC curve (AUC), with the estimated distance as the control
of false and true positive rates.

Figure 10 compares the attack performance against differ-
ent models. Notably, the attack achieves higher AUC scores
on the NAS models. For instance, the average scores on the
NAS and manual models on CIFAR100 differ by more than

0.05, while the scores on the manual models are close to ran-
dom guesses (i.e., 0.5). Moreover, most NAS models (except
Random) show similar vulnerability. Also, note that the man-
ual models seem more vulnerable on ImageNet32, which
may be explained as follows: compared with CIFAR10 and
CIFAR100, ImageNet32 is a more challenging dataset (see
Table 1); the models thus tend to overfit the training set more
aggressively, resulting in their higher vulnerability to mem-
bership inference.

Remark 1 — Compared with their manually designed counter-
parts, NAS-generated models tend to be more vulnerable to vari-
ous malicious manipulations.

4 Analysis

The empirical evaluation in § 3 reveals that compared with
manually designed models, NAS-generated models tend to
be more vulnerable to a variety of attacks. Next, we provide
possible explanations for such phenomena.

4.1 Architectural Properties of Trainability

We hypothesize that the greater vulnerability of NAS models
stems from their key design choices.

Popular NAS methods often evaluate the performance of
a candidate model prematurely before its full convergence
during the search. For instance, DARTS [39] formulate the
search as a bi-level optimization problem, in which the inner
objective optimizes a given model; to save the computational
cost, instead of solving this objective exactly, it approximates
the solution using a single training step, which is far from
its full convergence. Similar techniques are applied in other
popular NAS methods (e.g., [46,47]). As the candidate mod-
els are not evaluated on their performance at convergence,
NAS tends to favor models with higher “trainability” — those
converge faster during early stages — which result in candi-
date models demonstrating the following key properties:

High loss smoothness — The loss landscape of NAS models tends
to be smooth, while the gradient provides effective guidance for
optimization. Therefore, NAS models are amenable to training
using simple, first-order optimizers.

Low gradient variance — The gradient of NAS models with re-
spect to the given distribution tends to have low variance. There-
fore, the stochastic gradient serves as a reliable estimate of the

true gradient, making NAS models converge fast.

Note that the loss smoothness captures the geometry of
the loss function in the parameter space (or the input space),
while the gradient variance measures the difference between
the gradients with respect to different inputs. While related,
the former dictates whether a model is easy to train if the
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Figure 11: Loss contours of NAS-generated models (DARTS, ENAS) and manually designed ones (ResNet, DenseNet) in (a) parameter space

and (b) input space.

gradient direction is known and the latter dictates whether it
is easy to estimate the gradient direction reliably.

Next, we empirically validate the above hypotheses by
comparing the gradient smoothness and variance of NAS-
generated and manually designed models.

Loss smoothness — A loss function L is said to have L-
Lipschitz (L > 0) continuous gradient with respect to 0 if it
satisfies |[VL(0) —VL(0')|| < L||6 —¢'|| for any 6,6". The
constant L controls £’s smoothness. While it is difficult to
directly measure L of given model f, we explore its loss con-
tour [22], which quantifies the impact of parameter pertur-
bation on L. Specifically, we measure the loss contour of
model f as follows:

I'(a,B) = L(8"+ad, +Bd,) (12)

where 0 denotes the local optimum, d, and d, are two ran-
dom, orthogonal directions as the axes, and o and 3 represent
the perturbation steps along d, and d,, respectively. Notably,
the loss contour effectively approximates the loss landscape
in a two-dimensional space [36].

Figure 11(a) visualizes the loss contours of NAS (DARTS
and ENAS) and manual (ResNet and DenseNet) models across
different datasets. Observe that the NAS models tend to
demonstrate a flatter loss landscape. Similar phenomena are
observed with respect to other models. This observation may
explain why the gradient of NAS models gives more effec-
tive guidance for minimizing the loss function, leading to
their higher trainability.

Further, for the purpose of the analysis in § 4, we extend
the loss smoothness in the parameter space to the input space.
We have the following result to show their fundamental con-
nections (proof deferred to § A).

Theorem 1. If the loss function L has L-Lipschitz contin-
uous gradient with respect to © and the weight matrix of
each layer of the model is normalized [48], then L has
L/+/n-Lipschitz continuous gradient with respect to the in-
put, where n is the input dimensionality.

Empirically, we define f’s loss contour with respect to a

given input-class pair (x,y) as follows:

Ly (0, B) = £(f(x+ ad, +Bd.),y) (13)

where d, and d, are two random, orthogonal directions in the
input space. Figure 1 1(b) visualizes the loss contours of NAS
and manual models in the vicinity of randomly sampled in-
puts. It is observed that NAS models also demonstrate higher
loss smoothness in the input space, compared with the man-
ual models.

Gradient variance — Meanwhile, the variance of the gra-
dient with respect to inputs sampled from the underlying dis-
tribution quantifies the noise level of the gradient estimate
used by stochastic training methods (e.g., SGD) [20]. For-
mally, let g be the stochastic gradient. We define the gradi-
ent variance as follows (where the expectation is taken with
respect to the given distribution):

var(g) =E[|lg —E[g] |13 (14)

Assuming g is an unbiased estimate of the true gradient,
Var(g) measures g’s expected deviation from the true gradi-
ent. Smaller Var(g) implies lower noise level, thereby more
stable updating of the model parameters 6.

In Figure 12, we measure the gradient variance of various
models before training (with Kaiming initialization [25]) and
after training is complete. It is observed in all the cases that
at initialization, the gradient variance of NAS models is more
than two orders of magnitude smaller than the manual mod-
els and then grows gradually during the training; in compari-
son, the gradient variance of manual models does not change
significantly before and after training. This observation may
explain why the stochastic gradient of NAS models gives a
reliable estimate of the true gradient, making them converge
fast at early training phases.

4.2 Explanations of Attack Vulnerability

We now discuss how the vulnerability of NAS models to var-
ious attacks can be attributed to the properties of high loss
smoothness and low gradient variance.
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Adversarial evasion — The vulnerability to adversarial
evasion is mainly attributed to the sensitivity of model pre-
diction f(x) to the perturbation of input x. Under the white-
box setting, the adversary typically relies on the gradient to
craft the adversarial input x*. For instance, PGD [42] crafts
x* by iteratively updating the input using the following rule:

X =g (x +osgn (V. A(f(x),y))) 15)

where x, is the perturbed input after the 7-th iteration, IT de-
notes the projection operator, B, represents the allowed set of
perturbation (parameterized by €), and o is the perturbation
step. Apparently, the attack effectiveness relies on whether
the gradient V, £(f(x,),y) is able to provide effective guid-
ance for perturbing x,.

As shown in § 3.2, compared with the manual models, due
to the pursuit of higher trainability, the NAS models often
demonstrate a smoother loss landscape wherein the gradi-
ent at each point represents effective optimization direction;
thus, the NAS models tend to be more vulnerable to gradient-
based adversarial evasion. Notably, this finding also corrobo-
rates existing studies (e.g., [21]) on the fundamental tension
between designing “linear” models that are easier to train
and designing “nonlinear” models that are more resistant to
adversarial evasion.

The similar phenomena observed in the case of black-box
attacks (e.g., NES) may be explained as follows: to perform
effective perturbation, black-box attacks often rely on indi-
rect gradient estimation, while the high loss smoothness and
low gradient variance of NAS models lead to more accurate
and efficient (with fewer queries) gradient estimation.

Model poisoning — The vulnerability to model poisoning
can be attributed to the sensitivity of model training to the
poisoning data in the training set. Here, we analyze how the
property of low gradient variance impacts this sensitivity.

For a given dataset D, let £(8) be the loss of a model fy

parameterized by 6 with respect to D:

1

A

L£(8) = @Z(L)Ykmﬂ(fe(x),y) (16)
Further, let 6* represent f’s (local) optimum with respect to
PD. With 0 initialized as 6,, consider 7-step SGD updates
with the 7-th step update as:

0,1 =06—0a,g (17

where @, is the step size and g, is the gradient estimate. We
have the following result describing the convergence prop-
ertyof , (r =1,...,T).

Theorem 2 ( [20]). Assuming that (i) L(0) is continuous and
differentiable, with its gradient bounded by Lipschitz con-
stant L, (ii) the variance of gradient estimate g, (t =1,...,T)
is bounded by 6°, and (iii) ©, is selected as the final param-
eters with probability proportional to 20, — Loi?. Then, the
output parameters 0; satisfies:

a2

||60_9*H2+62 tT:1 t (18)

xT:1 (ZOL, - L(xzz)

E[L(6) — £(87)] <

where the expectation is defined with respect to the selection
of t and the gradient variance.

Intuitively, Theorem 2 describes the properties that impact
the fitting of model f to the given dataset D. As shown in
§ 3.2, compared with the manual models, the NAS models
tend to have both higher loss smoothness (i.e., smaller L)
and lower gradient variance (i.e., smaller 6). Therefore, the
NAS models tend to fit D more easily. Recall that in model
poisoning, D consists of both clean data D, and poisoning
data D, fitting to D more tightly implies more performance
drop over the testing data, which may explain the greater
vulnerability of NAS models to model poisoning.



Backdoor injection — Recall that in backdoor injection,
the adversary forges a trojan model f* that is sensitive to a
trigger pattern r such that any input x, once embedded with
r, tends to be misclassified to a target class t: f*(x+r) =1.
To train f*, the adversary typically pollutes the training data
Dy with trigger-embedded inputs.

Intuitively, this attack essentially exploits the attack vec-
tors of adversarial evasion that perturbs x at inference time
and model poisoning that pollutes 2, at training time.
Therefore, the vulnerability of NAS models to both attack
vectors naturally results in their vulnerability to backdoor in-
jection. Due to the space limitations, we omit the detailed
analysis here.

Functionality stealing — Recall that in functionality steal-
ing (e.g., Knockoff [44]), the adversary (adaptively) gener-
ates queries to probe the victim model f to replicate a func-
tionally similar one f*. For instance, Knockoff encourages
queries that are certain by f, diverse across different classes,
and disagreed by f* and f.

The effectiveness of such attacks depends on f’s loss land-
scape with respect to the underlying distribution; intuitively,
the complexity of the loss landscape in the input space im-
plies the hardness of fitting f* to f based on a limited number
of queries. Thus, given their high loss smoothness, the NAS
models tend to be more vulnerable to functionality stealing.

Membership inference — It is shown in § 3 that the NAS
models seem more vulnerable to membership inference, es-
pecially under the label-only setting in which only the predic-
tion labels are accessible. The adversary thus relies on sig-
nals such as input x’s distance to its nearest decision bound-
ary dist(x, f(x)); intuitively, if x appears in the training set,
dist(x, f(x)) is likely to be below a certain threshold. Con-
cretely, the HopSkipJump attack [9] is employed in [13] to
estimate dist(x, f(x)) via iteratively querying f to find point
x, on the decision boundary using bin search, walking along
the boundary using the estimated gradient at x,, and finding
point x,,; to further reduce the distance to x, which is illus-
trated in Figure 13.
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Figure 13: Illustration of the HopSkipJump attack.

The effectiveness of this attack hinges on (i) the quality of
estimated gradient and (if) the feasibility of descending along
the decision boundary. For the NAS models, the gradient es-
timate tends to be more accurate due to the low gradient vari-
ance, while the decision boundary tends to be smoother due
to the high loss smoothness, which may explain the greater
vulnerability of NAS models to label-only membership infer-
ence attacks.

Remark 2 — The high loss smoothness and low gradient variance
of NAS-generated models may account for their greater vulnera-
bility to various attacks.

4.3 Connections of Various Attacks

It is shown above that the vulnerability of NAS models to var-
ious attacks may be explained by their high loss smoothness
and low gradient variance, which bears an intriguing implica-
tion: different attacks may also be inherently connected via
these two factors.

Specifically, most existing attacks involve input or model
perturbation. For instance, adversarial evasion, regardless of
the white- or black-box setting, iteratively computes (or es-
timates) the gradient and performs perturbation accordingly;
backdoor injection optimizes the trigger and model jointly,
requiring to estimate, based on the gradient, how the model
responds to the updated trigger.

The effectiveness of such attacks thus highly depends on
(i) how to estimate the gradient at each iteration and (ii) how
to use the gradient estimate to guide the input or model per-
turbation. Interestingly, gradient variance and loss smooth-
ness greatly impact (i) and (i), respectively: low gradient
variance enables the adversary to accurately estimate the gra-
dient, while high loss smoothness allows the adversary to use
such estimate to perform effective perturbation.

Remark 3 — The effectiveness of various attacks is inherently
connected through loss smoothness and gradient variance.

5 Discussion

In § 3 and § 4, we reveal the relationships between the train-
ability of NAS-generated models and their vulnerability to
various attacks, two key questions remain: (i) what are the ar-
chitectural patterns associated with such vulnerability? and
(iif) what are the potential strategies to remedy the vulnera-
bility incurred by the current NAS practice? In this section,
we explore these two questions and further discuss the limi-
tations of this work.

5.1 Architectural Weaknesses

As shown in § 4, the vulnerability of NAS models is poten-
tially related to their high loss smoothness and low gradi-
ent variance, which stem from the preference for models of
higher trainability. We now discuss how such preference is
reflected in the concrete architectural patterns, which we ex-
amine from two aspects, namely, topology selection and op-
eration selection.

Topology selection — Recent studies [51] suggest that in
cell-based NAS, the preference for models with faster con-
vergence often results in wide, shallow cell structures. As



Architecture | Cell Depth  Cell Width  # Skip connects
AmoebaNet 4 3c 2
DARTS 3 3¢ 3
DrNAS 4 2c 1
ENAS 2 Sc¢ 2
NASNet 2 Sc¢ 1
PC-DARTS 2 4c 1
PDARTS 4 2c 2
SGAS 3 2¢ 1
SNAS 2 4c 4

Table 3. The cell depth and width, and the number of skip con-
nects of representative NAS-generated models (the width of each
intermediate node is assumed to be ¢).

shown in Figure I, the cell depth is defined as the number
of connections along the longest path from the input nodes
to the output node; the width of each intermediate node is
defined as the number of channels for convolution operators
or the number of features for linear operators, while the cell
width is defined as the total width of intermediate nodes con-
nected to the input nodes. Table 3 summarizes the cell depth
and width of NAS models used in our evaluation. It is ob-
served that the cell structures of most NAS models are both
shallow (with an average depth of 2.8) and wide (with an av-
erage width of 3.3¢), where the width of each intermediate
node is assumed to be c.

Itis shown in [51] that under similar settings (i.e., the same
number of nodes and connections), wide and shallow cells
tend to demonstrate higher trainability. This observation is
also corroborated by the recent theoretical studies on the con-
vergence of wide neural networks [34]: neural networks of
infinite width tend to evolve as linear models using gradient
descent optimization.

Operation selection — The preference for higher trainabil-
ity also impacts the selection of operations (e.g., 3 X3 convo-
lution versus skip connection) on the connections within the
cell structure, and typically favors skip connects over other
operations.

Recall that differential NAS methods [11,35,39] typically
apply continuous relaxation on the search space to enable di-
rect gradient-based optimization. The operation on each con-
nection is modeled as a softmax of all possible operations O
and discretized by selecting the most likely one arg max,co0L,.
It is shown in [55] that in well-optimized models, the weight
of skip connection 0, often exceeds other operations, lead-
ing to its higher chance of being selected. This preference
takes effect in our context, as NAS models tend to converge
fast at early training stages. Table 3 summarizes the number
of skip connects in each cell of representative NAS models.
Observe that most NAS models have more than one skip con-
nection in each cell.

The operation of skip connection is originally designed to
enable back-propagation in DNNs [26,28]. As a side effect,
accurate gradient estimation also facilitates attacks that ex-
ploit gradient information [56]. Thus, the over-use of skip

connects in NAS models also partially accounts for their vul-
nerability to such attacks.

Remark 4 — NAS-generated models often feature wide and shal-
low cell structures as well as overuse of skip connects.

5.2 Potential Mitigation

We now discuss potential mitigation to remedy the vulnera-
bility incurred by the NAS practice. We consider enhancing
the robustness of NAS models under both post-NAS and in-
NAS settings. In post-NAS mitigation, we explore using ex-
isting defenses against given attacks to enhance NAS models,
while with in-NAS mitigation, we explore building attack ro-
bustness into the NAS process directly.

Post-NAS mitigation — As a concrete example, we ap-
ply adversarial training [41, 49], one representative defense
against adversarial evasion, to enhance the robustness of
NAS models. Intuitively, adversarial training improves the
robustness of given model f by iteratively generating adver-
sarial inputs with respect to its current configuration and up-
dating f to correctly classify such inputs.
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Figure 14: Effectiveness of adversarial training on various models
over CIFAR10.

Figure 14 compares the effectiveness of adversarial train-
ing on various models over CIFAR10. For each model, we
measure its accuracy (in terms of accuracy drop from before
adversarial training) and robustness (in terms of the success
rate of the untargeted PGD attack). Observe that a few NAS
models (e.g., DARTS) show accuracy and robustness com-
parable with manual models, while the other NAS models
(e.g., DrNAS) underperform in terms of both accuracy and
robustness, which may be explained by their diverse archi-
tectural patterns associated with adversarial training (e.g.,
dense connections, number of convolution operations, and
cell sizes) [24]. This disparity also implies that adversarial
training may not be a universal solution for improving the
robustness of all the NAS models.

In-NAS mitigation — We further investigate how to build
attack robustness into the NAS process directly. Motivated
by the analysis in § 5.1, we explore two potential strategies.

(i) Increasing cell depth — As the vulnerability of NAS
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Figure 15: Illustration of cell structures of DARTS, DARTS-i,
DARTS-ii, and DARTS-iii.

models tends to be associated with their wide and shallow
cell structures, we explore increasing their cell depth. To
this end, we may re-wire existing NAS models or modify
the performance measure of candidate models. For the latter
case, we may increase the number of training epochs before
evaluation. For instance, DARTS, without fully optimizing
model parameters O with respect to architecture parameters
o, uses a single-step gradient descent (g, = 1) to approx-
imate the solution [39]. We improve the approximation by
increasing the number of training steps (e.g., iy, = 5) at the
cost of additional search time.

(i) Suppressing skip connects — As the vulnerability of
NAS models is also associated with skip connects, we ex-
plore purposely reducing their overuse. To this end, we may
replace the skip connects in existing NAS models with other
operations (e.g., convolution) or modify their likelihood of
being selected in the search process. For the latter case, at
each iteration, we may multiply the weight of skip connec-
tion 0, by a coefficient y € (0,1) in Eqn (3).

We evaluate the effectiveness of such strategies within the
DARTS framework. Let DARTS-i, DARTS-ii, and DARTS-iii
be the variants of DARTS after applying the strategies of (i),
(i), and (i) and (if) combined. Figure 15 compares their cell
structures. Notably, DARTS-i features a cell structure deeper
than DARTS (5 versus 2), while DARTS-ii and DARTS-iii sub-
stitute the skip connects in DARTS and DARTS-i with 3 x 3
convolution, respectively.

. Evasion Backdoor Membership
Architecture
ASR(M) ASR(L)| ASR CAD AUC
DARTS 100.0% 86.7% | 99.9% 2.7% 0.562

DARTS-i 88.3% 72.7% | 90.4% 4.6% 0.534
DARTS-ii 93.0% 75.0% | 98.8% 3.0% 0.531
DARTS-iii 82.0% 65.6% | 842% 4.6% 0.527
Table 4. Vulnerability of DARTS and its variants to adversarial eva-
sion (M - most likely case, L - least likely case), backdoor injection,
and membership inference on CIFAR10.

Table 4 compares their vulnerability to adversarial evasion,
backdoor injection, and membership inference on CIFAR10.
The experimental setting is identical to that in § 3. Observe
that both strategies may improve the robustness of NAS mod-
els against these attacks. For instance, combining both strate-
gies in DARTS-iii reduces the AUC score of membership
inference from 0.562 to 0.527. Similar phenomena are ob-
served in the case of model extraction attacks. As shown in
Figure 16, increasing the cell depth significantly augments
the robustness against model extraction, while suppressing
skip connects further improves it marginally.
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Figure 16: Vulnerability of DARTS and its variants to model extrac-
tion on CIFAR10.

Yet, such strategies seem to have a negative impact on the
robustness against model poisoning. As shown in Figure 17,
both strategies, especially increasing the cell depth, tends to
exacerbate the attack vulnerability. This may be explained
by that while more difficult to fit the poisoning data, it is
also more difficult to fit deeper structures to the clean data,
which results in a significant accuracy drop. This may also
explain why the backdoor injection attack has higher CAD
on DARTS-i and DARTS-iii as shown in Table 4. The observa-
tion also implies a potential trade-off between the robustness
against different attacks in designing NAS models.
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Figure 17: Vulnerability of DARTS and its variants to model poi-
soning on CIFAR10.

Remark 5 — Simply increasing cell depth and/or suppressing skip
connects may only partially mitigate the vulnerability of NAS-
generated models.




5.3 Limitations

Next, we discuss the limitations of this work.

Alternative NAS frameworks — In this work, we mainly
consider the cell-based search space adopted by recent NAS
methods [11, 14, 39, 46, 62], while other methods have con-
sidered the global search space (e.g., chain-of-layer struc-
tures) [3,7]. Further, while we focus on the differentiable
search strategy, there are other strategies including random
search [31], Bayesian optimization [4], and reinforcement
learning [3, 63, 64]. We consider exploring the vulnerability
of models generated by alternative NAS frameworks as our
ongoing research.

Other trainability metrics — In this work, we only con-
sider loss smoothness and gradient variance as two key fac-
tors impacting the trainability (and vulnerability) of NAS
models. There are other trainability metrics (e.g., condition
number of neural tangent kernel [10]) that are potentially in-
dicative of attack vulnerability as well.

Robustness, accuracy, and search efficiency — It is re-
vealed that the greater vulnerability incurred by NAS is pos-
sibly associated with the preference for models that converge
fast at early training phases (i.e., higher trainability). It is
however unclear whether this observation implies fundamen-
tal conflicts between the factors of robustness, accuracy, and
search efficiency; if so, is it possible to find an optimal bal-
ance between them? We consider answering these questions
critical for designing and operating NAS in practical settings.

6 Related Work

Next, we survey the literature relevant to this work.

Neural architecture search — The existing NAS meth-
ods can be categorized along three dimensions: search space,
search strategy, and performance measure.

The search space defines the possible set of candidate mod-
els. Early NAS methods focus on the chain-of-layer struc-
ture [3], consisting of a sequence of layers. Motivated by that
hand-crafted models often consist of repeated motifs, recent
methods propose to search for such cell structures, including
the connection topology and the corresponding operation on
each connection [39,46,47,58, 64].

The search strategy defines how to efficiently explore the
pre-defined search space. Early NAS methods rely on either
random search [31] or Bayesian optimization [4], which are
often limited in terms of search efficiency and model com-
plexity. More recent work mainly uses the approaches of
reinforcement learning (RL) [3] or neural evolution [39,47].
Empirically, neural evolution- and RL-based methods tend
to perform comparably well [47].

The performance measure evaluates the candidate models
and guides the search process. Recently, one-shot NAS has
emerged as a popular performance measure. It considers all

candidate models as different sub-graphs of a super-net (i.e.,
the one-shot model) and shares weights between candidate
models [39,46,58]. The differentiable NAS methods consid-
ered in this paper belong to this category. Different one-shot
methods differ in how the one-shot model is trained. For in-
stance, DARTS [39] optimizes the one-shot model with con-
tinuous relaxation of the search space.

ML Security — With their wide use in security-sensitive
domains, ML models are becoming the new targets for ma-
licious manipulations [6]. A variety of attack vectors have
been exploited: adversarial evasion crafts adversarial inputs
to force the target model to misbehave [8,21]; model poison-
ing modifies the target model’s behavior (e.g., performance
drop) via polluting its training data [30]; backdoor injec-
tion creates a trojan model such that any input embedded
with a specific trigger is likely to be misclassified by the
model [23,40]; functionality stealing constructs a replicate
model functionally similar to a victim model [27,44]; mem-
bership inference breaches data privacy via inferring whether
a given input is included in the model’s training data based
on the model’s prediction [50].

In response, another line of work strives to improve the re-
silience of ML models against such attacks. For instance,
against adversarial evasion, existing defenses explore new
training strategies (e.g., adversarial training) [42,53] and de-
tection mechanisms [19, 43]. Yet, such defenses often fail
when facing even stronger attacks [2,38], resulting in a con-
stant arms race between the attackers and defenders.

Despite the intensive research on NAS and ML security
in parallel, the robustness of NAS-generated models to ma-
licious manipulations is fairly under-explored [24]. Concur-
rent to this work, it is shown in [16] that NAS models tend
to be more vulnerable to adversarial evasion, while our work
differs in considering a variety of attacks beyond adversarial
evasion, providing possible explanations for such vulnerabil-
ity, and investigating potential mitigation.

7 Conclusion

This work represents a systematic study on the security risks
incurred by AutoML. From both empirical and analytical per-
spectives, we demonstrate that NAS-generated models tend
to suffer greater vulnerability to various malicious manipula-
tions, compared with their manually designed counterparts,
which implies the existence of fundamental drawbacks in
the design of existing NAS methods. We identify high loss
smoothness and low gradient variance, stemming from the
preference of NAS for models with higher trainability, as
possible causes for such phenomena. Our findings raise con-
cerns about the current practice of NAS in security-sensitive
domains. Further, we discuss potential remedies to mitigate
such limitations, which sheds light on designing and operat-
ing NAS in a more robust and principled manner.



Acknowledgments

We thank our shepherd Carmela Troncoso and anonymous
reviewers for valuable feedback. This work is supported by
the National Science Foundation under Grant No. 1951729,
1953813, and 1953893. Any opinions, findings, and con-
clusions or recommendations are those of the authors and
do not necessarily reflect the views of the National Science
Foundation. S. Ji is partly supported by NSFC under No.
61772466, 62102360, and U1836202, the Zhejiang Provin-
cial Natural Science Foundation for Distinguished Young
Scholars under No. LR19F020003, and the Fundamental
Research Funds for the Central Universities (Zhejiang Uni-
versity NGICS Platform). X. Luo is partly supported by Re-
search Grants Council of the Hong Kong Special Adminis-
trative Region, China (No. PolyU15224121)

References

[1] Marcin Andrychowicz, Misha Denil, Sergio Gémez,
Matthew W Hoffman, David Pfau, Tom Schaul, Bren-
dan Shillingford, and Nando de Freitas. Learning to
Learn by Gradient Descent by Gradient Descent. In
Proceedings of Advances in Neural Information Pro-
cessing Systems (NeurlIPS), 2016.

[2] Anish Athalye, Nicholas Carlini, and David Wagner.
Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples. In
Proceedings of IEEE Conference on Machine Learning
(ICML), 2018.

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing Neural Network Architectures using
Reinforcement Learning. In Proceedings of Interna-

tional Conference on Learning Representations (ICLR),
2017.

[4] J. Bergstra, D. Yamins, and D. D. Cox. Making a Sci-
ence of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures. In
Proceedings of IEEE Conference on Machine Learning
(ICML), 2013.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning Attacks against Support Vector Machines. In
Proceedings of IEEE Conference on Machine Learning
(ICML), 2012.

[6] Battista Biggio and Fabio Roli. Wild Patterns: Ten
Years after The Rise of Adversarial Machine Learning.
Pattern Recognition, 84:317-331, 2018.

[7] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han,
and Yong Yu. Path-Level Network Transformation for
Efficient Architecture Search. In Proceedings of IEEE
Conference on Machine Learning (ICML), 2018.

[8] Nicholas Carlini and David A. Wagner. Towards Eval-
uating the Robustness of Neural Networks. In Pro-

ceedings of IEEE Symposium on Security and Privacy
(S&P), 2017.

[9] Jianbo Chen, Michael I. Jordan, and Martin J. Wain-
wright.  HopSkipJumpAttack: A Query-Efficient
Decision-Based Attack. In Proceedings of IEEE Sym-
posium on Security and Privacy (S&P), 2020.

[10] Wuyang Chen, Xinyu Gong, and Zhangyang Wang.
Neural Architecture Search on ImageNet in Four
{GPU} Hours: A Theoretically Inspired Perspective. In
Proceedings of International Conference on Learning
Representations (ICLR), 2021.

[11] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-
aocheng Tang, and Cho-Jui Hsieh. DrNAS: Dirichlet
Neural Architecture Search. In Proceedings of Interna-
tional Conference on Learning Representations (ICLR),
2021.

[12] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progres-
sive Differentiable Architecture Search: Bridging the
Depth Gap between Search and Evaluation. In Proceed-
ings of IEEE International Conference on Computer Vi-
sion (ICCV), 2019.

[13] Christopher A. Choquette-Choo, Florian Tramer,
Nicholas Carlini, and Nicolas Papernot. Label-Only
Membership Inference Attacks. ArXiv e-prints, 2020.

[14] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu,
Xiaolin Wei, and Junchi Yan. DARTS-: Robustly Step-
ping out of Performance Collapse Without Indicators.
In Proceedings of International Conference on Learn-
ing Representations (ICLR), 2021.

[15] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. ImageNet: A Large-scale Hierarchical Image
Database. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2009.

[16] Chaitanya Devaguptapu, Devansh Agarwal, Gaurav
Mittal, Pulkit Gopalani, and Vineeth N Balasubrama-
nian. On Adversarial Robustness: A Neural Archi-
tecture Search perspective. In RobustML Workshop of
International Conference on Learning Representations,
2021.

[17] Xuanyi Dong and Yi Yang. NAS-Bench-201: Ex-
tending the Scope of Reproducible Neural Architecture
Search. In Proceedings of International Conference on
Learning Representations (ICLR), 2020.

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. Neural Architecture Search: A Survey. Journal of
Machine Learning Research, (20):1-21, 2019.



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev. AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract In-

terpretation. In Proceedings of IEEE Symposium on
Security and Privacy (S&P), 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic First-
and Zeroth-order Methods for Nonconvex Stochas-
tic Programming. SIAM Journal on Optimization,
23(4):2341-2368, 2013.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and Harnessing Adversarial Ex-
amples. In Proceedings of International Conference on
Learning Representations (ICLR), 2015.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe.
Qualitatively Characterizing Neural Network Optimiza-
tion Problems. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2015.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain. ArXiv e-prints, 2017.

Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and
Dahua Lin. When NAS Meets Robustness: In Search
of Robust Architectures against Adversarial Attacks. In
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. In Pro-
ceedings of IEEE International Conference on Com-
puter Vision (ICCV), 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016.

Sanghyun Hong, Michael Davinroy, Yigitcan Kaya,
Dana Dachman-Soled, and Tudor Dumitras. How to
Own NAS in Your Spare Time. In Proceedings of In-
ternational Conference on Learning Representations
(ICLR), 2020.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely Connected Convolu-
tional Networks. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2017.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. Black-box Adversarial Attacks with Lim-
ited Queries and Information. In Proceedings of IEEE
Conference on Machine Learning (ICML), 2018.

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and
Ting Wang. Model-Reuse Attacks on Deep Learning
Systems. In Proceedings of ACM SAC Conference on
Computer and Communications (CCS), 2018.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. An Empirical Exploration of Recurrent Net-
work Architectures. In Proceedings of IEEE Confer-
ence on Machine Learning (ICML), 2015.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big Transfer (BiT): General Visual Represen-
tation Learning. In Proceedings of European Confer-
ence on Computer Vision (ECCV), 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning Mul-
tiple Layers of Features from Tiny Images. Technical
report, University of Toronto, 2009.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz,
Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide Neural Networks of Any
Depth Evolve as Linear Models under Gradient De-
scent. In Proceedings of Advances in Neural Informa-
tion Processing Systems (NeurlIPS), 2020.

Guohao Li, Guocheng Qian, Itzel C. Delgadillo,
Matthias Miiller, Ali Thabet, and Bernard Ghanem.
SGAS: Sequential Greedy Architecture Search. In Pro-
ceedings of International Conference on Learning Rep-
resentations (ICLR), 2020.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Visualizing the Loss Landscape of Neu-
ral Nets. In Proceedings of Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2018.

Ke Li and Jitendra Malik. Learning to Optimize. In
Proceedings of International Conference on Learning
Representations (ICLR), 2017.

X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and
T. Wang. DEEPSEC: A Uniform Platform for Secu-
rity Analysis of Deep Learning Model. In Proceedings
of IEEE Symposium on Security and Privacy (S&P),
2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable Architecture Search. In Pro-
ceedings of International Conference on Learning Rep-
resentations (ICLR), 2019.

Yingqi Liu, Shigqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning Attack on Neural Networks. In Proceed-
ings of Network and Distributed System Security Sym-
posium (NDSS), 2018.



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards Deep Learning Models Resistant
to Adversarial Attacks. In Proceedings of the Interna-

tional Conference on Learning Representations (ICLR),
2017.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards Deep Learning Models Resistant to Adversarial
Attacks. In Proceedings of International Conference
on Learning Representations (ICLR), 2018.

Dongyu Meng and Hao Chen. Magnet: A two-pronged
defense against adversarial examples. In Proceedings
of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario
Fritz. Knockoff Nets: Stealing Functionality of Black-
Box Models. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2018.

Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yev-
geniy Vorobeychik, Xiapu Luo, Alex Liu, and Ting
Wang. A Tale of Evil Twins: Adversarial Inputs versus
Poisoned Models. In Proceedings of ACM SAC Confer-
ence on Computer and Communications (CCS), 2020.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le,
and Jeff Dean. Efficient Neural Architecture Search via
Parameter Sharing. In Proceedings of IEEE Conference
on Machine Learning (ICML), 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. Regularized Evolution for Image Classi-
fier Architecture Search. In Proceedings of AAAI Con-
ference on Artificial Intelligence (AAAI), 2019.

Tim Salimans and Diederik P. Kingma. Weight nor-
malization: A simple reparameterization to accelerate
training of deep neural networks. In Proceedings of
Advances in Neural Information Processing Systems
(NeurlIPS), 2016.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu,
John Dickerson, Christoph Studer, Larry S. Davis,
Gavin Taylor, and Tom Goldstein. Adversarial Train-
ing for Free! In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership Inference Attacks against
Machine Learning Models. In Proceedings of IEEE
Symposium on Security and Privacy (S&P), 2017.

(51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Yao Shu, Wei Wang, and Shaofeng Cai. Understanding
Architectures Learnt by Cell-based Neural Architecture
Search. In Proceedings of International Conference on
Learning Representations (ICLR), 2020.

Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. In Proceedings of International Conference on
Learning Representations (ICLR), 2014.

F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel. Ensemble Adversarial
Training: Attacks and Defenses. In Proceedings of
International Conference on Learning Representations
(ICLR), 2018.

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing Machine Learn-
ing Models via Prediction APIs. In Proceedings of
USENIX Security Symposium (SEC), 2016.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi-
aocheng Tang, and Cho-Jui Hsieh. Rethinking Archi-
tecture Selection in Differentiable NAS. In Proceed-
ings of International Conference on Learning Repre-
sentations (ICLR), 2021.

Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bai-
ley, and Xingjun Ma. Skip Connections Matter: On
the Transferability of Adversarial Examples Generated
with ResNets. In Proceedings of International Confer-
ence on Learning Representations (ICLR), 2020.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen
Tu, and Kaiming He. Aggregated Residual Transfor-
mations for Deep Neural Networks. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: Stochastic Neural Architecture Search. In Pro-
ceedings of International Conference on Learning Rep-
resentations (ICLR), 2019.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen,
Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-DARTS:
Partial Channel Connections for Memory-Efficient Ar-
chitecture Search. In Proceedings of International Con-
ference on Learning Representations (ICLR), 2020.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor
Darrell. Deep Layer Aggregation. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide Resid-
ual Networks. In Proceedings of British Machine Vi-
sion Conference (BMVC), 2016.



[62] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine
Marrakchi, Thomas Brox, and Frank Hutter. Under-
standing and Robustifying Differentiable Architecture
Search. In Proceedings of International Conference on
Learning Representations (ICLR), 2020.

[63] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and
Cheng-Lin Liu. Practical Block-wise Neural Network
Architecture Generation. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[64] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V. Le. Learning Transferable Architectures for
Scalable Image Recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018.

A Proofs

Proof. (Theorem 1) Without loss of generality, we assume
the loss function L is computed over a single input-label pair:

L(x;8) = £(f(x:0),) (19)
We split the model f into its first layer and the remaining
layers (with parameters ). Typically, the first layer (without
the non-linear activation) can be modeled as a linear function
Ax+b (e.g., fully-connected or convolutional layer). We thus
rewrite £ as a composite function: L(x;0) = L(Ax+ b;0),
where L (parameterized by 8) is £ excluding f’s first layer.
According to the assumption that £(x;0) has L-Lipschitz
continuous gradient with respect to 8, with 6 and A fixed,

IVoL(Ax+b)|| = ||VL| <L (20)
Thus, the gradient of £ with respect to x is also bounded:
IVsL(Ax+b)|| = [ATVL| < [AT|[VL]| < L|AT||  21)

With weight normalization, Vi ¥;A;; = 0, ¥,;A7; = 1. Ap-
plying the Chebyshev’s inequality, we bound ||AT||; as:

1<i<n

A"l =141 = o 34| < e

where n is the number of rows of A (i.e., the input dimension-
ality). Putting everything together,

[VL(x:0)[1 < (23)

L
N/
Therefore, £(x;0) has ﬁ-Lipschitz continuous gradient

with respect to input x.
O

B Parameter Setting

Table 5 summarizes the default parameter setting in § 3.

Type Parameter | Setting
Optimizer | SGD
Initial learning rate | 0.025
. LR scheduler | Cosine annealing
Training

Gradient clipping threshold
Training epochs
Batch size

5.0
600
96

Adversarial Evasion

Perturbation threshold
Learning rate

Maximum iterations (M)
Maximum iterations (L)
Number of random restarts

£ =18/255
o=12/255
3
7
5

Model Poisoning

Training epochs

50

Backdoor Injection

Pre-processing layer
Number of target neurons
Pre-processing optimizer
Pre-processing learning rate
Pre-processing iterations
Trigger size

Trigger transparency

Penultimate
2

PGD

0.015

20

3x3

0.7

Functionality Stealing

Sampling strategy
Training epochs
Reward type

Adaptive
50
All

Membership Inference

{p-norm

Maximum iterations
Maximum evaluation
Initial evaluation
Initial size

2

50
2,500
100
100

Adversarial Training

Perturbation threshold
Learning rate
Perturbation iterations

£ =18/255
o=12/255
7

Table 5. Default parameter setting used in § 3 (M - most likely case;

L - least likely case).
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