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Abstract
We study the problem of solving strongly convex and smooth unconstrained optimization problems
using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-
Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic
gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample,
nonasymptotic sense and an asymptotic sense. On the nonasymptotic side, we prove risk bounds on
the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a
unity pre-factor, along with a higher-order term that scales at the sharp rate of O(n−3/2) under the
Hessian-Lipschitz assumption. On the asymptotic side, we show that when a mild, one-point Hessian
continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges
asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad
range of step-size choices.
Keywords: Stochastic first-order optimization, nonasymptotic finite-sample convergence rate, asymp-
totic efficiency, Cramér-Rao lower bound, variance-reduced gradient method, Polyak-Ruppert-Juditsky
(PRJ) procedure.

1. Introduction

Let f : Rd × Ξ→ R be differentiable as a function of its first argument, and consider the following
unconstrained minimization problem:

min
θ∈Rd

F (θ), where F (θ) := E
[
f(θ; ξ)

]
, (1)

and where the expectation is taken over a random vector ξ ∈ Ξ with distribution P. Our goal is to
approximately solve this minimization problem based on samples (ξi)i=1,2,···

i.i.d.∼ P, and moreover to
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do so in a way that is computationally efficient and statistically optimal. When the samples arrive as an
online stream, it is desirable to compute the approximate solution in a single pass, without storing the
data, and this paper focuses on this online setting.

Stochastic optimization problems of this type underpin a variety of methods in large-scale ma-
chine learning and statistical inference. One of the simplest methods is stochastic gradient descent
(SGD), which recursively updates a parameter vector θt by taking a step in the direction of a single
stochastic gradient, with a (possibly) time-varying step-size ηt (Robbins and Monro, 1951). This
simple strategy has been surprisingly successful in modern large-scale statistical machine learning prob-
lems (Nemirovski et al., 2009; Bottou et al., 2018; Nguyen et al., 2019); however, it can be substantially
improved, both in theory and in practice, by algorithms that make use of more than a single stochastic
gradient. Such algorithms belong to the general family of stochastic first-order methods. Various
procedures have been studied, involving different weightings of past stochastic gradients, and also a
range of analysis techniques. The diversity of approaches is reflected by the wide range of terminology,
including momentum, averaging, acceleration, and variance reduction. All of these ideas center around
two main underlying goals—that of proceeding quickly to a minimum, and that of arriving at a final
state that achieves the optimal statistical efficiency and also provides a calibrated assessment of the
uncertainty associated with the solution.

More concretely, the former goal requires the algorithm to achieve a fast rate of convergence
and low sample complexity, ideally matching that of the noiseless case and the information-theoretic
limit. For example, gradient descent takes O(L/µ) number of iterations to optimize a L-smooth and
µ-strongly convex function. It is therefore desirable that the sample-size requirement for a stochastic
optimization algorithm scales linearly with O(L/µ), with additional terms characterizing the effect of
random noise on optimality. On the other hand, the latter goal imposes a more fine-grained requirement
on the estimator produced by the algorithm. Roughly speaking, we need the estimator to share the
same optimal statistical properties typically possessed by the empirical risk minimizer (were it be
computed exactly in the batch setting). The notion of statistical efficiency, in both its asymptotic and
nonasymptotic forms, allows for a fine-grained study of these issues.

Let θ∗ denote the minimizer of F , and define the matrices

H∗ := ∇2F (θ∗), and Σ∗ := E
[
∇f(θ∗; ξ)∇f(θ∗; ξ)>

]
.

Under certain regularity assumptions, given a collection of n samples (ξi)i∈[n]
i.i.d.∼ P, classical

statistical theory guarantees that the minimizer θ̂ERM
n := arg minθ∈Rd

∑n
i=1 f(θ; ξi) of the associated

empirical risk has the following asymptotic behavior:

√
n
(
θ̂ERM
n − θ∗

)
d−→ N

(
0, (H∗)−1Σ∗(H∗)−1

)
. (2)

Furthermore, the asymptotic distribution (2) is known to be locally asymptotic minimax, i.e. given a
bowl-shaped loss function, the asymptotic risk of any estimator is lower bounded by the expectation
under such a Gaussian distribution, in a suitably defined sequence of local neighborhoods. See, for
example, Duchi and Ruan (2021) for a precise statement.

Unfortunately, the goals of rapid finite-sample convergence and optimal asymptotic behavior are in
tension, and the literature has not yet arrived at a single algorithmic framework that achieves both goals
simultaneously. Consider in particular two seminal lines of research:
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(1) The Polyak-Ruppert-Juditsky (PRJ) procedure (Polyak and Juditsky, 1992; Ruppert, 1988) incorporates
slowly diminishing step-sizes into SGD, thereby achieving asymptotic normality with an optimal
covariance matrix (and unity pre-factor). This meets the goal of calibrated uncertainty. However,
the PRJ procedure is not optimal from a nonasymptotic point of view: rather, it suffers from large
high-order nonasymptotic terms and fails to achieve the optimal sample complexity in general (Bach
and Moulines, 2011).

(2) On the other hand, variance-reduced stochastic optimization methods have been designed to achieve
reduced sample complexity that is the sum of a statistical error and an optimization error (Le Roux
et al., 2012; Shalev-Shwartz and Zhang, 2013; Johnson and Zhang, 2013; Lei and Jordan, 2017; Defazio
et al., 2014). These methods yield control on the optimization error, with sharp nonasymptotic rates of
convergence, but the guarantees for the statistical error term are sub-optimal, yielding an asymptotic
behavior involving constant pre-factors that are strictly greater than unity (and hence sub-optimal).

An open question: Given this state of affairs, we are naturally led to the following question: can a
single stochastic optimization algorithm simultaneously achieve optimal asymptotic and nonasymptotic
guarantees? In particular, we would like such guarantees to enjoy the fine-grained statistical properties
satisfied by the empirical risk minimizer, for a commensurate set of assumptions on the function F and
the observations f(·; ξ) and including the same rate of decay of high-order terms.

In this paper, we resolve this open question, in particular by proposing and analyzing a novel
algorithm called Recursive One-Over-T Stochastic Gradient Descent (ROOT-SGD). It is very easy to
describe and implement, and we prove that it is optimal in both asymptotic and nonasymptotic senses:

(1) On the nonasymptotic side, under suitable smoothness assumptions, we show that the estimator θ̂ROOT
n

produced by the last iterate of the (multi-epoch) ROOT-SGD satisfies a bound of the following form:

E‖θ̂ROOT
n − θ∗‖22 ≤

1

n
Tr
(
(H∗)−1Σ∗(H∗)−1

)
+O

(
n−3/2

)
. (3)

Note that the leading-order term of the bound (3) is exactly the squared norm of the Gaussian random
vector in the local asymptotic minimax limit, with unity pre-factor. Moreover, our bound is entirely
nonasymptotic, valid for all finite n. We also prove that high-order term O

(
n−3/2

)
is unavoidable

under a natural setup, and it improves upon existing O(n−7/6) and O(n−5/4) rates for the PRJ
procedure (Bach and Moulines, 2011; Xu, 2011; Gadat and Panloup, 2017). We also derive similar
bounds for the objective gap F

(
θ̂ROOT
n

)
− F (θ∗) and the gradient norm ‖∇F

(
θ̂ROOT
n

)
‖2.

(2) Furthermore, the nonasymptotic bound (3) holds true under a mild sample-size requirement. Indeed,
given a L-smooth and µ-strongly convex population-level function F , and assuming that the noise
ε(·; ξ) := ∇f(·; ξ) − ∇F (·) satisfies a stochastic Lipschitz condition with parameter `Ξ, the finite-

sample bounds are viable as long as n & L
µ +

`2Ξ
µ2 . The first term O

(
L/µ

)
matches the iteration

complexity of gradient descent, and the O
(
`2Ξ/µ

2
)

term is the sample complexity needed for distin-
guishing a µ-strongly convex function from a constant function. The high-order terms in Eq. (3) also
depend on the parameters (µ,L, `Ξ) in a similar way. This exhibits the fast nonasymptotic convergence
of our algorithm, matching state-of-the-art variance reduction algorithms.
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(3) We also establish asymptotic guarantees for the ROOT-SGD algorithm. Assuming additionally a
Lipschitz condition on the Hessian matrix, for a broad range of step-size choices, the last iterate
θ̂ROOT
n converges in distribution to the optimal Gaussian law (2) whenever the Hessian matrix ∇2F is

continuous at θ∗, a much weaker condition than the Hölder or Lipschitz assumption required by the
Polyak-Ruppert averaging procedure (Ruppert, 1988; Polyak and Juditsky, 1992).

Notably, both the MSE bound of the form (3) and the asymptotic normality are fine-grained guarantees
that are satisfied by the empirical risk minimizer, under comparable assumption posed on the continuity
of Hessian matrix. To the best of our knowledge, such guarantees have not been available heretofore in
the literature on stochastic optimization. The ROOT-SGD algorithm proposed in this paper achieves
these guarantees not only simultaneously, but also with sharp nonasymptotic sample complexity.

The rest of the paper is organized as follows. We present the ROOT-SGD algorithm in §2, and
delineate the asymptotic normality and nonasymptotic upper bounds in §3. We present our conclusions
in §4. Full proofs are provided in the appendix.

Notations. Given a pair of vectors u, v ∈ Rd, we write
〈
u, v

〉
for the inner product, and ‖v‖2 for

the Euclidean norm. For a matrix M , the `2-operator norm is defined as |||M |||op := sup‖v‖2=1 ‖Mv‖2.
For scalars a, b ∈ R, we adopt the shorthand notation a ∧ b := min(a, b) and a ∨ b := max(a, b).
Throughout the paper, we use the σ-fields Ft := σ(ξ1, ξ2, · · · , ξt) for any t ≥ 0. Unless indicated
otherwise, C denotes some positive, universal constant whose value may change at each appearance.
For two sequences {an} and {bn} of positive scalars, we denote an & bn (resp. an . bn) if an ≥ Cbn
(resp. an ≤ Cbn) for all n, and an � bn if an & bn and an . bn hold simultaneously. We also write
an = O (bn) , an = Θ (bn) , an = Ω (bn) as an . bn, an � bn, an & bn, respectively.

We finally introduce some martingale-related notations. Given vector-valued martingales (Xt)t≥T0 , (Yt)t≥T0

adapted to the filtration (Ft)t≥T0 , we use the following notation for cross variation for t ≥ T0:

[X,Y ]t :=

t∑
s=T0+1

〈
Xt −Xt−1, Yt − Yt−1

〉
.

We also define [X]t := [X,X]t to be the quadratic variation of the process (Xt)t≥T0 .

2. Constructing the ROOT-SGD algorithm

In this section, we introduce the ROOT-SGD algorithm that is the focus of our study. We first motivate
the algorithm from an averaging and variance reduction perspective. We then describe the burn-in and
restarting mechanism, which contributes to the superior theoretical guarantees in the overall algorithm.

2.1. Motivation and gradient estimator

Our choice of step-size emerges from an overarching statistical perspective—rather than viewing the
problem as one of correcting SGD via particular mechanisms such as averaging, variance reduction
or momentum, we instead view the problem as one of utilizing all previous online data samples,
ξ1, . . . , ξt ∼ P , to form an estimate Estimatort of ∇F (θt−1) at each round t. We then perform a
gradient step based on this estimator—that is, we compute θt = θt−1 − ηt · Estimatort.
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Concretely, our point of departure is the following idealized estimate of the error in the current
gradient:

Estimatort −∇F (θt−1) =
1

t

t∑
s=1

(∇f(θs−1; ξs)−∇F (θs−1)). (4)

Treating the terms ∇f(θs−1; ξs)−∇F (θs−1), s = 1, . . . , t as martingale differences, and assuming
that the conditional variances of these terms are identical almost surely, it is straightforward to verify
that the choice of equal weights 1/t minimizes the variance of the estimator over all such convex
combinations. This simple but very specific choice of weights is central to our algorithm, which we
refer to as Recursive One-Over-T SGD (ROOT-SGD).

The recursive aspect of the algorithm arises as follows. We set Estimator1 = ∇f(θ0; ξ1) and
express (4) as follows:

Estimatort −∇F (θt−1) =
1

t
(∇f(θt−1; ξt)−∇F (θt−1)) +

t− 1

t
(Estimatort−1 −∇F (θt−2)).

Rearranging gives

Estimatort =
1

t
∇f(θt−1; ξt) +

t− 1

t
(∇F (θt−1)−∇F (θt−2)) +

t− 1

t
Estimatort−1.

We now note that we do not generally have access to the bracketed term ∇F (θt−1)−∇F (θt−2), and
replace the term by an unbiased estimator,∇f(θt−1; ξt)−∇f(θt−2; ξt), based on the current sample
ξt. Intuitively, the replacement should not affect much as long as the stochastic gradient noise admits
some smoothness condition. Letting vt denote Estimatort we obtain the following recursive update:

vt =
1

t
∇f(θt−1; ξt) +

t− 1

t
(∇f(θt−1; ξt)−∇f(θt−2; ξt)) +

t− 1

t
vt−1

= ∇f(θt−1; ξt)︸ ︷︷ ︸
stochastic gradient

+
t− 1

t
(vt−1 −∇f(θt−2; ξt))︸ ︷︷ ︸

correction term

, (5)

consisting of both a stochastic gradient and a correction term.
Finally, performing a gradient step based on our estimator yields the ROOT-SGD algorithm:

vt = ∇f(θt−1; ξt) +
t− 1

t
(vt−1 −∇f(θt−2; ξt)) (6a)

θt = θt−1 − ηtvt, (6b)

where {ηt}t≥1 is a suitably chosen sequence of positive step-sizes. Note that vt defined in Eq. (5) is a
recursive estimate of∇F (θt−1) that is unconditionally unbiased in the sense that E[vt] = E[∇F (θt−1)].
So the θ-update is an approximate gradient-descent step that moves along the negative direction −vt.1

We initialize θ0 ∈ Rd, and, to avoid ambiguity, we define the update (6) at t = 1 to use only
v1 = ∇f(θ0; ξ1). Overall, given the initialization (θ0, v0, θ−1) = (θ0, 0, arbitrary), at each step t ≥ 1
we take as input ξt ∼ P , and perform an update of (θt, vt, θt−1). This update depends only on
(θt−1, vt−1, θt−2) and ξt, and is first order and Markovian.

1. Unlike many classical treatments of stochastic approximation, we structure the subscripts so they match up with those of
the filtration corresponding to the stochastic processes.
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2.2. Two-time-scale structure and burn-in period

For the purposes of both intuition and the proof itself, it is useful to observe that the iterates (6)
evolve in a two-time-scale manner. Define the process zt := vt −∇F (θt−1) for t = 1, 2, · · · , which
characterizes the tracking error of vt as an estimator for the gradient. For each θ ∈ Rd and ξ ∼ P we
define the noise term ε(θ; ξ) = ∇θf(θ; ξ)−∇F (θ), and use the shorthand notation εs(·) = ε(·; ξs).
Some algebra yields the decomposition

t · zt =

t∑
s=1

εs(θs−1) +

t∑
s=1

(s− 1)
(
εs(θs−1)− εs(θs−2)

)
, valid for t = 1, 2, . . . . (7a)

In this way, we see that the process (t · zt)t≥1 is a martingale difference sequence adapted to the natural
filtration (Ft)t≥0. Indeed, the quantity zt plays the role of averaging the noise as well as performing a
weighted averaging of consecutive differences collected along the path. On the other hand, the process
(t · vt)t≥1 moves rapidly driven by the strong convexity of the function F :

tvt = (t− 1)
{
vt−1 +∇F (θt−1)−∇F (θt−2)

}
+∇f(θt−1; ξt) + (t− 1)

(
εt(θt−1)− εt(θt−2)

)
.

(7b)

Given an appropriate step-size ηt, the first term on the RHS of Eq. (7b) exhibits a contractive behavior.
Consequently, the process (tvt)t≥1 plays the role of a fast process, driving the motion of iterates
(θt)t≥0, and the noise-collecting process zt is a slow process, collecting the noise along the path and
contributing to the asymptotic efficiency of θt. Note that the fast process moves with a step-size ηt,
making ηtµ progress when F is µ-strongly convex, while the slow process works with a step-size 1/t.
In order to make the iterates stable, we need the fast process to be fast in a relative sense, requiring that
ηtµ ≥ 1/t. This motivates a burn-in period in the algorithm, namely, in the first T0 iterations, we run
the recursion (6) with step-size zero and simply average the noise at θ0; we then start the algorithm
with an appropriate choice of step-size. Concretely, given some initial vector θ0 ∈ Rd, we set θt = θ0

for all t = 1, . . . , T0 − 1, and compute

vt =
1

t

t∑
s=1

∇f(θ0; ξs), for all t = 1, . . . , T0. (8)

As suggested by our discussion, an algorithm with step-size ηt = η will need a burn-in period of
length T0 � (µη)−1 for a µ-strongly convex function F . Equivalently, we can view the step-sizes in
the update for θt as being scheduled as follows:

ηt =

{
η, for t ≥ T0,

0, for t = 1, . . . , T0 − 1,
(9)

briefed as ηt = η · 1[t ≥ T0], and, accordingly, the update rule from Eqs. (6) splits into two phases:

vt =


∇f(θt−1; ξt) + t−1

t (vt−1 −∇f(θt−2; ξt)) for t ≥ T0 + 1,

1
t

t∑
s=1

∇f(θ0; ξs) for t = 1, . . . , T0,

θt =

{
θt−1 − ηvt for t ≥ T0,

θ0 for t = 1, . . . , T0 − 1.
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Algorithm 1 ROOT-SGD

1: Input: initialization θ0; step-size sequence (ηt)t≥1

2: for t = 1, 2, . . . , T do
3: vt = ∇f(θt−1; ξt) + t−1

t (vt−1 −∇f(θt−2; ξt))
4: θt = θt−1 − ηtvt
5: end for
6: Output: θT

Such an algorithmic design has the length of the burn-in period for our algorithm is identical to
the number of processed samples, so it features that the iteration number is identical to the sample
complexity. The ROOT-SGD scheme is presented formally as Algorithm 1; for the remainder of this
paper, when referring to ROOT-SGD, we mean Algorithm 1 unless specified otherwise.

3. Main results

In this section, we present our main nonasymptotic and asymptotic results. We first establish a
preliminary nonasymptotic result in §3.1. With augmented smoothness and moment assumptions, we
then introduce in §3.2 sharp nonasymptotic upper bounds with unit pre-factor on the term characterizing
the optimal statistical risk. Finally, in §3.3, we establish the asymptotic efficiency of ROOT-SGD.

3.1. Preliminary nonasymptotic results

We begin by presenting preliminary nonasymptotic results for ROOT-SGD. Before formally presenting
the result, we detail our assumptions for the stochastic function f(·; ξ) and the expectation F .

First, we impose strong convexity and smoothness assumptions on the objective function:

Assumption 1 (Strong convexity and smoothness) The population objective objective function F is
twice continuously differentiable, µ-strongly-convex and L-smooth for some 0 < µ ≤ L <∞:∥∥∇F (θ)−∇F (θ′)

∥∥
2
≤ L

∥∥θ − θ′∥∥
2
, and

〈
∇F (θ)−∇F (θ′), θ − θ′

〉
≥ µ

∥∥θ − θ′∥∥2

2
,

for all pairs θ, θ′ ∈ Rd.

Second, we assume sufficient regularity for the covariance matrix at the global minimizer θ∗:

Assumption 2 (Finite variance at optimality) At any minimizer θ∗ of F , the stochastic gradient
∇f(θ∗; ξ) has a positive definite covariance matrix, Σ∗ := E

[
∇f(θ∗; ξ)(∇f(θ∗; ξ))>

]
, with its trace

σ2
∗ := E ‖∇f(θ∗; ξ)‖22 assumed to be finite.

Note that we only assume a finite variance on the stochastic gradient at the global minimizer θ∗. This is
significantly weaker than the standard assumption of a globally bounded noise variance. See Nguyen
et al. (2019) and Lei and Jordan (2020) for a detailed discussion of this assumption on the noise.

Third, we impose a mean-squared Lipschitz condition on the stochastic noise:
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Assumption 3 (Lipschitz stochastic noise) The noise function θ 7→ ε(θ; ξ) in the associated stochas-
tic gradients satisfies the bound

E
∥∥ε(θ; ξ)− ε(θ′; ξ)∥∥2

2
≤ `2Ξ

∥∥θ − θ′∥∥2

2
, for all pairs θ; θ′ ∈ Rd. (11)

We note that in making Assumption 3, we separate the stochastic smoothness of the noise, ε(θ; ξ) =
∇f(θ; ξ)−∇F (θ), from the smoothness of the population-level objective. The magnitude of `Ξ and
L are not comparable in general. This flexibility permits, for example, mini-batch algorithms where the
population-level Lipschitz constant L remains fixed but the parameter `Ξ decreases with batch size.
Such a separation has been adopted in nonconvex stochastic optimization literature (Arjevani et al.,
2020).2

Finally, we remark that all of these assumptions are standard in the stochastic optimization and
statistical literature; and specific instantations of these assumptions are satisfied by a broad class of
statistical models and estimators. We should note, however, that the strong convexity and smoothness
(Assumption 1) is a global condition stronger than those typically used in the asymptotic analysis of
M-estimators in the statistical literature. These conditions are needed for the fast convergence of the
algorithm as an optimization algorithm, making it possible to establish nonasymptotic bounds.3 As-
sumptions 2 and 3 are standard for proving asymptotic normality of M-estimators and Z-estimators (see,
e.g., van der Vaart, 2000, Theorem 5.21). In contrast to some prior work (e.g., Ghadimi and Lan, 2012,
2013), we do not assume uniform upper bounds on the variance of the stochastic gradient noise; this
assumption fails to hold for various statistical models of interest, and theoretical results that dispense
with it are of practical interest.

With the aforementioned assumptions in place, we provide our first preliminary nonasymptotic
result for single-epoch ROOT-SGD, as follows:

Theorem 1 (Preliminary nonasymptotic results, single-epoch ROOT-SGD) Under Assumptions 1, 2, 3,
suppose that we run Algorithm 1 with burn-in period T0 and step-size η such that

T0 :=
24

ηµ
and η ∈

(
0, ηmax], where ηmax :=

1

4L
∧ µ

8`2Ξ
. (12)

Then, for any iteration T ≥ 1, the iterate θT satisfies the bound

E‖∇F (θT )‖22 ≤
28 σ2

∗
T

+
2700 ‖∇F (θ0)‖22

η2µ2T 2
. (13)

We provide a complete analysis of Theorem 1 in §C.1. In order to interpret the result, we make few
remarks in order.

2. Observe that Assumptions 1 and 3 imply a mean-squared Lipschitz condition on the stochastic gradient function:

E
∥∥∇f(θ; ξ)−∇f(θ′; ξ)

∥∥2

2
=

∥∥∇F (θ)−∇F (θ′)
∥∥2

2
+ E

∥∥ε(θ; ξ)− ε(θ′; ξ)∥∥2

2
≤

(
L2 + `2Ξ

) ∥∥θ − θ′∥∥2

2
,

where the final step uses the L-Lipschitz condition on the population function F .
3. In the noiseless setting where σ∗ = `Ξ = 0 the ROOT-SGD algorithm degenerates to gradient descent, and one would

expect the iteration complexity of ROOT-SGD to be proportional to the condition number κ := L/µ as of the gradient
descent complexity.

8
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(i) Note when stating the upper bound (13) we adopt the convergence metrics in expected squared gradient
norm. Theorem 1 copes with a wide range of step-sizes η: fixing the number of online samples T , (13)
asserts that the optimal asymptotic risk σ2

∗
T for the squared gradient holds up to an absolute constant

whenever T & 1
ηµ ∨

‖∇F (θ0)‖22
η2µ2σ2

∗
. When fixing the step-size, the bound (13) consists of the sum of two

terms. The leading-order first term corresponds to (a constant multiple of) the optimal statistical risk,
and is determined by the noise variance σ2

∗ at the minimizer. The higher-order second term exhibits a
polynomial forgetting of the initial condition.

(ii) Suppose that we use the maximal step-size ηmax permitted by the conditions (12), and then convert the
convergence rate bound (13) into a sample complexity bound. We then find that it suffices to take

C1(ε) = max

{
74

ηmaxµ
·
‖∇F (θ0)‖2

ε
,

56σ2
∗

ε2

}
� max

{(
L

µ
+
`2Ξ
µ2

)
·
‖∇F (θ0)‖2

ε
,
σ2
∗
ε2

}
(14)

samples in order to obtain an estimate of θ∗ with gradient norm bounded asO(ε). When the asymptotics
holds as ε tends to zero with other problem-dependent constants being bounded away from zero, the
leading-order term � σ2

∗
ε2

in C1(ε) matches the optimal statistical risk up to a constant prefactor. To
the best of our knowledge, this guarantee is the first in our setting. The only work which reported a
near-optimal statistical risk under similar settings in the leading-order stochastic optimization is Nguyen
et al. (2021); Allen-Zhu (2018), and (12) achieves the first with a constant pre-factor.4 To be clear, such
polynomial decay is suboptimal which can be improved via a multi-epoch method, to be discussed
shortly in §3.2.

(iii) It is also helpful to compare Theorem 1 with existing works by Ghadimi and Lan (2012, 2013). Their
guarantees are worst-case optimal for optimizing smooth and strongly-convex objectives, depending on
the condition number L/µ and a uniform upper bound on the noise variance up to a nonunity prefactor.
By way of contrast, our result does not require uniform boundedness on the variance and focuses on
the fine-grained non-asymptotic guarantees that achieve local asymptotic minimax optimality (when
measuring the risk via gradient norm, the optimal risk is characterized by the gradient noise variance
σ∗ at θ∗). That being said, our result does not admit an accelerated rate in terms of condition number√
L/µ. It is an important direction of future research to incorporate acceleration mechanism into our

framework so as to achieve all-regime optimality.

3.2. Improved nonasymptotic upper bounds

The convergence rate bound of Theorem 1 matches the optimal risk by a constant pre-factor c—to
be precise, c = 28 in the provided analysis. In addition to this non-optimal prefactor, this result does
not match the efficiency of M-estimators in its higher-order dependency. So as to overcome these
limitations, we now show how to apply Theorem 1 as the building block to seek to obtain a sharp
fine-grained convergence rate via two-time-scale characterization, under additional smoothness and
moment assumptions.

First, we need the following Hölder continuity condition for the Hessian at the optimum. We denote
H∗ := ∇2F (θ∗) throughout.

4. We highlight that in our setting here, we only assume the first-order smoothness condition holds, i.e. no continuity
assumption on the Hessians are posed.
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Algorithm 2 ROOT-SGD, multi-epoch version

1: Input: initialization θ0; fixed step-size η; burn-in time T0; short epochs length T [ ≥ T0; short
epochs number B

2: Set initialization for first epoch θ(1)
0 = θ0

3: for b = 1, 2, · · · , B do
4: Run ROOT-SGD (Algorithm 1) for T [ iterates with burn-in time T0 (i.e. step-size sequence

(ηt)t≥1 defined as in Eq. (9))
5: Set the initialization θ(b+1)

0 := θ
(b)

T [
for the next epoch

6: end for
7: Run ROOT-SGD (Algorithm 1) for T := n− T [B iterates with burn-in time T0

8: Output: The final iterate estimator θfinal
n := θ

(B+1)
T

Assumption 4 (Hölder continuous Hessians with exponent γ) There exists an exponent γ ∈ (0, 1]
and a constant Lγ > 0 such that

|||∇2F (θ)−∇2F (θ∗)|||op ≤ Lγ ‖θ − θ∗‖γ2 . (15)

We also need fourth-moment analogue of Assumptions 2 and 3, stated as follows. Note that these
conditions are also exploited in prior work on nonasymptotic analyses of PRJ averaging (Bach and
Moulines, 2011; Xu, 2011; Gadat and Panloup, 2017) and Streaming SVRG (Frostig et al., 2015).

Assumption 5 (Finite fourth moment at minimizers) Let Assumption 2 hold, and let σ̃∗
2 :=

√
E ‖∇f(θ∗; ξ)‖42

be finite.

Observe that σ∗ ≤ σ̃∗ by Hölder’s inequality. This distinction is important, as σ2
∗ corresponds to the

optimal statistical risk (measured in gradient norm), while σ̃∗
2 does not.

For the higher-order moments of stochastic gradients, we introduce the following:

Assumption 6 (Lipschitz stochastic noise in fourth moment) The noise function θ 7→ ε(θ; ξ) in
the associated stochastic gradients satisfies the bound√

E ‖ε(θ1; ξ)− ε(θ2; ξ)‖42 ≤ `
2
Ξ ‖θ1 − θ2‖22 , for all pairs θ1, θ2 ∈ Rd. (16)

Note that we slightly abuse the notation and denote `Ξ by both moment Lipschitz constants in Assump-
tions 3 and 6. In the presentations for the rest of this subsection, the notation `Ξ should be understood
as the parameter in Assumption 6, which is strictly stronger than Assumption 3.

Formally, we present a multi-epoch version of the ROOT-SGD algorithm in Algorithm 2. The
algorithm runs B short epochs and one long epoch. The goal of each short epoch is to “halve” the
dependency on the initial condition ‖∇F (θ0)‖2, and it suffices to take T [ = cT0 for some universal
constant c > 1. In Theorem 2, we present the gradient norm bounds satisfied by the multi-epoch
ROOT-SGD algorithm:

10
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Theorem 2 (Improved nonasymptotic upper bound, multi-epoch ROOT-SGD) Under Assumptions 1, 4, 5, 6,

suppose that we run Algorithm 2 with the number of short epochs B =
⌈

1
2 log

(
e‖∇F (θ0)‖22

ηµσ2
∗

)⌉
, the burn-

in time T0 = 24
ηµ , and the small epoch length T [ = 7340

ηµ . Then for any step-size η ∈
(
0, 1

56L ∧
µ

64`2Ξ

]
and n ≥ T [B + 1, it returns an estimate θfinal

n such that

E
∥∥∇F (θfinal

n )
∥∥2

2
− σ2

∗
T
≤ C

{
`2Ξη

µ
+

log T

ηµT
+
`2Ξ log T

µ2T

}
σ2
∗
T

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2
, (17)

where T := n− T [B, and C is a universal constant.

See §C.4 for the proof of this theorem.
In order to discuss this result, let us take n ≥ 2T [B so that we have 1

T ≤
1
n + 2T [B

n2 . We further
impose the mild condition that the quantity ‖∇F (θ0)‖2 /σ∗ scales as a polynomial function of n.5 A
few remarks are in order.

(i) By taking the (constant) step-size η = 0.49

µ(`2Ξ/µ2)
1−α

nα
∧ 1

4L , where α := 1+γ
3 ∧

1
2 , some algebra reduces

the bound to

E
∥∥∇F (θfinal

n )
∥∥2

2
− σ2

∗
n

.

{(
`Ξ
µ
√
n

)2α

+
L

µn

}
σ2
∗ log n

n
+ H̃n, (18a)

where the linearization-related term H̃n takes the form:

H̃n =

[(
`Ξ
µ
√
n

)1−α
+

(
L

µn

) 1
2

]
Lγ
µ1+γ

(
σ̃∗

2

n

)1+ γ
2

. (18b)

Given the sample size satisfying the requirement n & L
µ +

`2Ξ
µ2 , the pre-factors in the second term

of (18a), as well as the linearization error term H̃n, start to diminish. The term σ2
∗
n with the sharp

pre-factor hence becomes the leading-order term in the bound.

(ii) In the Hessian-Lipschitz case where γ = 1, the bound (18a) can be simplified to

E
∥∥∇F (θfinal

n )
∥∥2

2
− σ2

∗
n

.

{
`Ξ
µ
√
n

+
L

µn

}
σ2
∗ log n

n
+

{
`Ξ
µ
√
n

+
L

µn

} 1
2 L1

µ2

(
σ̃∗

2

n

) 3
2

. (19)

Apart from the term σ2
∗
n which achieves the optimal unity-pre-factor statistical risk, the leading-order

term of the RHS of the bound (19) as n → ∞ scales as `Ξ
µ ·

σ2
∗ logn

n3/2 . Other than the O(n−3/2) term
discussed above, several other higher-order terms exist in the bound (19). Given a sufficiently large
sample size n, these terms are dominated by the term `Ξ

µ ·
σ2
∗ logn

n3/2 . On the one hand, a term of order
L logn
µn · σ

2
∗
n exists, which reflects the stochastic optimization essence of the problem: in order to get

meaningful guarantees, we need n
logn & L

µ , which nearly matches the algorithmic complexity of

gradient descent. The linearization-related term H̃n, on the other hand, scales as O(n−7/4) when the
Hessian matrix is a Lipschitz function of θ.

5. This assumption is used only to simplify the presentation. If it does not hold true, the log n terms in the bounds will be
replaced by log n+ log

(
1 + ‖∇F (θ0)‖2 /σ∗

)
.
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Besides the gradient norm, we also establish guarantees on the estimation error ‖θn − θ∗‖2 and
the objective gap F (θn)− F (θ∗). For simplicity, we focus on the Hessian-Lipschitz case of γ = 1. In
order to state the theorem, we define the following linearization error terms that appears in the bound:

H̃(MSE)
n :=

c

λmin(H∗)2
·

{
L1

µ2
·
(
σ̃∗

2

n

)3/2

+
L2

1

µ4
·
(
σ̃∗

2

n

)2
}
, and (20a)

H̃(OBJ)
n :=

c

µ
· L1

µ2
·
(
σ̃∗

2

n

)3/2

+
c

λmin(H∗)
· L

2
1

µ4
·
(
σ̃∗

2

n

)2

. (20b)

For simplicity we only consider the multi-epoch ROOT-SGD as specified in Theorem 2, where we
have the following bound:

Corollary 3 (Nonasymptotic bounds in alternative metrics, multi-epoch ROOT-SGD) Under the
setup of Theorem 2 with γ = 1, the multi-epoch ROOT-SGD algorithm with the optimal step-size
choice of η � 1

L ∧
1

`Ξ
√
n

produces an estimator that satisfies the following bound for n ≥ T [B + 1:

E
∥∥θfinal

n − θ∗
∥∥2

2
− 1

n
Tr
(
(H∗)−1Σ∗(H∗)−1

)
≤ c

{
`Ξ
µ
√
n

+
L

µn

}
σ2
∗ log n

λmin(H∗)2n
+ H̃(MSE)

n , (21a)

E
[
F
(
θfinal
n

)
− F (θ∗)

]
− 1

2n
Tr
(
(H∗)−1Σ∗

)
≤ c

{
`Ξ
µ
√
n

+
L

µn

}
σ2
∗ log n

λmin(H∗)n
+ H̃(OBJ)

n . (21b)

See §C.5 for the proof of this result. As we see in Theorem 3, the optimal step-size choice in the bound
of Corollary 3 is consistent with Theorem 2. The leading-order terms in the bound (21a) and (21b)
are both optimal in a local asymptotic minimax sense with near-unity pre-factor. In particular, they
are exactly the asymptotic risk of the limiting Gaussian random variable N

(
θ∗, 1

n(H∗)−1Σ∗(H∗)−1
)
.

We also note that in the special case of well-specified maximal-likelihood estimation, Fisher’s identity
H∗ = Σ∗ holds true, and the leading-order terms in Eq. (21a) and (21b) become 1

nTr
(
(H∗)−1

)
and d

2n ,
respectively. This is in accordance with the classical asymptotic theory for M-estimators (c.f.(van der
Vaart, 2000), Chapter 5.3).

We can compare the bounds in Corollary 3 with the gradient norm bound (19) induced by Theorem 2
in the Hessian-Lipschitz case. While their leading-order terms match the corresponding optimal
statistical risk, and the higher-order terms all scale as O(n−3/2), there are some key differences:

(i) The linearization error terms H̃MSE
n and H̃OBJ

n both decay at a rate of O
(
n−

3
2

)
. The higher-order

term
{

`Ξ
µ
√
n

+ L
µn

}
σ2
∗ logn
n in the gradient norm bound is multiplied by a factor of λmin(H∗)−2

(resp. λmin(H∗)−1) in the MSE (resp. objective gap) bound. Compared with the linearization term H̃n
in (18b), the terms H̃MSE

n and H̃OBJ
n also incur additional factors related to the minimum eigenvalue of

H∗, or alternatively the strong-convexity parameter of F .

(ii) The pre-factor
{

`Ξ
µ
√
n

+ L
µn

} 1
2 in the bound H̃n is also replaced by unity. This is because the Hessian-

Lipschitz assumption plays a key role in relating MSE and objective gap to the underlying noise
structure in the stochastic optimization problem, paying for larger linearization error; whereas in

12
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the gradient norm bound, the Hessian-Lipschitz assumption is employed only to mitigate the effect
correlation that appears at even higher-order terms of the bound. The linearization error in either MSE
or objective gap has to appear in the O(n−3/2) term. This is different from our earlier result in gradient
norm (17) of Theorem 2, where the linearization-related terms are all incorporated in O(n−7/4).

3.3. Asymptotic results

In this subsection, we study the asymptotic behavior Under minimal assumptions we aim to prove
the asymptotic efficiency of the multi-epoch estimator of Algorithm 2. In this case, Assumptions 1, 2
and 3 are the standard ones needed for proving asymptotic normality of M-estimators and Z-estimators
(see e.g. van der Vaart (2000, Theorem 5.21)). We first introduce our one-point Hessian continuity
assumption as follows, as the qualitative counterpart of the continuity Assumption 4:

Assumption 7 (One-point Hessian continuity) The Hessian mapping ∇2F (θ) is continuous at the
minimizer θ∗, i.e.,

lim
θ→θ∗

|||∇2F (θ)−H∗|||op = 0.

Note in Assumption 7 we assume only the continuity of Hessian matrix at θ∗ without posing any
bounds on its modulus of continuity. This merely requires slightly more than second-order smoothness,
and is usually considered as the minimal assumption needed in the general setup. The weak condition
manifests the difference between ROOT-SGD and the Polyak-Ruppert averaging procedure.

Under this setup, we are ready to state our weak convergence asymptotic efficiency result for θfinal

in the following theorem,6 whose proof is provided in §C.6:

Theorem 4 (Asymptotic efficiency, multi-epoch ROOT-SGD) Under Assumptions 1, 2, 3 and 7
and for any α ∈ (0, 1), suppose that we run the multi-epoch Algorithm 2 with burn-in time T0 = 24

ηµ ,

short-epoch length T [ = 7340
ηµ and number of short epochs B =

⌈
1
2 log

(
e‖∇F (θ0)‖22

ηµσ2
∗

)⌉
. Then as

n→∞, η → 0 such that η(n− T [B)→∞ and T [B/n→ 0, the estimate θfinal,(η)
n satisfies the weak

convergence

√
n
(
θfinal,(η)
n − θ∗

)
d−→ N

(
0, [∇2F (θ∗)]−1Σ∗[∇2F (θ∗)]−1

)
, (22)

where Σ∗ := E
[
∇f(θ∗; ξ)∇f(θ∗; ξ)>

]
is the covariance of the stochastic gradient at the minimizer.

We remark that in Theorem 4, we are adopting the multi-epoch ROOT-SGD with the same algorithmic
specifications as in Theorem 2 (except the step-size choices), and we achieve the asymptotic conver-
gence to the Gaussian limit that matches the Cramér-Rao lower bound. The asymptotic covariance
matrix in Eq. (22), however, carries significantly more information than the (scalar) optimal asymptotic
risk. Our asymptotic result is in a triangular-array format: we let the fixed constant step-size scale
down with n where the scaling condition is essentially η → 0, n → ∞ with ηn/ log(η−1) → ∞,
which is satisfied when η � 1

nc1 for any fixed c1 ∈ (0, 1). Although not directly comparable, the

6. We emphasize our estimator’s dependency on the step-size η by explicitly bracketing it in the superscript.
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range of step-size asymptotics is broader than Polyak and Juditsky (1992) and accordingly hints at
potential advantages over PRJ, primarily due to our de-biasing corrections in our algorithm design. In
Appendix §D, we establish an additional asymptotic normality result for ROOT-SGD with fixed con-
stant step-size, which exhibits exactly the same limiting behavior as constant-stepsize linear stochastic
approximation under PRJ averaging procedure under comparable asssumptions (Mou et al., 2020).

We end this subsection by remarking that Theorem 4 only requires strong convexity, smoothness,
and a set of noise moment assumptions standard in asymptotic statistics, but not any higher-order
smoothness other than the continuity of Hessian matrices at θ∗. This matches the assumptions for
asymptotic efficiency results in classical statistics literature (van der Vaart, 2000; van der Vaart and
Wellner, 1996).

4. Future directions

We have shown that ROOT-SGD enjoys favorable asymptotic and nonasymptotic behavior for solving
the stochastic optimization problem (1) in the smooth, strongly convex case. With this result in hand,
several promising future directions arise. First, it is natural to extend the results for ROOT-SGD to
non-strongly convex and nonconvex settings, for both nonasymptotic and asymptotic analyses. Second,
it would also be of significant interest to investigate both the nonasymptotic bounds and asymptotic
efficiency of the variance-reduced estimator of ROOT-SGD in Nesterov’s acceleration setting, in
the hope of achieving all regime optimality in terms of the sample complexity to the stochastic first-
order oracle. Finally, for statistical inference using online samples, the near-unity nonasymptotic and
asymptotic results presented in this work can potentially yield confidence intervals and other inferential
assertions for the use of ROOT-SGD estimators.
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learning problems using stochastic recursive gradient. In International Conference on Machine
Learning, pages 2613–2621, 2017.
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Appendices

In this appendix, we provide deferred proofs for theorems and lemmas in the main text organized as
follows. §A provides additional work related to us. §B provides additional discussion on comparison
of our results with concurrent work. §C proves the main results for both the nonasymptotic and the
asymptotic convergence properties of our ROOT-SGD algorithm. §D complements our asymptotic
efficiency result in §3.3 and establishes an additional asymptotic result for constant-step-size ROOT-
SGD. §E presents auxiliary lemmas stated in §C.3, §C.4 and §C.5. Finally, §F proves necessary
lemmas for the proof of Proposition 2 (in §D.1).

Appendix A. Additional related work

SGD and Polyak-Ruppert-Juditsky averaging The theory of the stochastic approximation method
has a long history since its birth in the 1950s (Robbins and Monro, 1951; Bottou and Le Cun, 2004;
Zhang, 2004; Nemirovski et al., 2009; Bottou, 2010; Bubeck, 2015) and recently regains its attention
due to its superb performance in real-world application practices featured by deep learning (Goodfellow
et al., 2016), primarily due to its exceptional handling of the online samples; classics include Bertsekas
and Tsitsiklis (1989); Benveniste et al. (1990); Ljung et al. (1992); Borkar (2008) and many more.
Specially on the study of asymptotic normality which can trace back to Fabian (1968), the general
idea of iteration averaging is based on the analysis of two-time-scale iteration techniques and it
achieves asymptotic normality with an optimal covariance (Ruppert, 1988; Polyak, 1990; Polyak and
Juditsky, 1992). Recent work along this line includes Bach and Moulines (2011, 2013); Bach (2014);
Défossez and Bach (2015); Flammarion and Bach (2015); Dieuleveut and Bach (2016); Duchi and
Ruan (2021); Dieuleveut et al. (2017); Allen-Zhu (2018); Dieuleveut et al. (2020); Asi and Duchi
(2019), presenting attractive asymptotic and nonasymptotic properties under a variety of settings and
assumptions. Agarwal et al. (2012); Woodworth and Srebro (2016) provide minimax lower bounds
for stochastic first-order algorithms. Jain et al. (2017, 2018a,b) analyze SGD and its acceleration
with tail-averaging that simultaneously achieves exponential forgetting and optimal statistical risk up
to a constant prefactor. It is also worth mentioning that iteration averaging provides robustness and
adaptivity (Lei and Jordan, 2020). Instead of averaging the iterates, our ROOT-SGD algorithm averages
the past stochastic gradients with proper de-biasing corrections and achieves competitive asymptotic
performance.7 For statistical inferential purposes, recent work (Chen et al., 2020; Su and Zhu, 2018)
presents confidence interval assertions via online stochastic gradient with Polyak-Ruppert-Juditsky
averaging; analogous results for the ROOT-SGD algorithm are hence worth exploring, building upon
the asymptotic normality that our work has established.

Variance-reduced gradient methods In the field of smooth and convex stochastic optimization,
variance-reduced gradient methods represented by, but not limited to, SAG (Le Roux et al., 2012),
SDCA (Shalev-Shwartz and Zhang, 2013), SVRG (Johnson and Zhang, 2013; Konečnỳ and Richtárik,
2017; ?; Lei and Jordan, 2017), SAGA (Defazio et al., 2014), SARAH (Nguyen et al., 2017, 2021) have
been proposed to improve the theoretical convergence rate of (stochastic) gradient descent. Accelerated

7. A related but fundamentally different idea was proposed in Nesterov (2009); Xiao (2010); Lee et al. (2012) called dual
averaging for optimizing the regularized objectives. In contrast to their method, we focus in this work on the smooth
objective setting and augment our estimator to be globally unbiased. See also Duchi and Ruan (2021); Tripuraneni et al.
(2018) for first-order optimization methods on Riemannian manifolds.
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variants of SGD provide further improvements in convergence rate (Lin et al., 2015; Shalev-Shwartz,
2016; Allen-Zhu, 2017; Lan and Zhou, 2018; Kulunchakov and Mairal, 2020; Lan et al., 2019). More
recently, a line of work on recursive variance-reduced stochastic first-order algorithms have been
studied in the nonconvex stochastic optimization literature (Fang et al., 2018; Zhou et al., 2018; Wang
et al., 2019; Nguyen et al., 2021; Pham et al., 2020; Li et al., 2021). These algorithms, as well as
their hybrid siblings (Cutkosky and Orabona, 2019; Tran-Dinh et al., 2021), achieve optimal iteration
complexities for an appropriate class of nonconvex functions and in particular are faster than SGD under
mild additional smoothness assumption on the stochastic gradients and Hessians (Arjevani et al., 2020).
Limited by space, we refer interested readers to a recent survey article by Gower et al. (2020), and
while our ROOT-SGD algorithm can be viewed as a variant of variance-reduced algorithms, our goal is
substantially different: we aim to establish for strongly convex objectives both a sharp, unity pre-factor
nonasymptotic bound and asymptotic normality with Cramér-Rao optimal asymptotic covariance that
matches the local asymptotic minimax optimality (Duchi and Ruan, 2021).

Sharp nonasymptotics and asymptotic efficiency When the objective admits additional smooth-
ness, nonasymptotic rate analyses for either SGD with iteration averaging or variance-reduced stochastic
first-order algorithms have been studied in various settings. Bach and Moulines (2011) presents a
nonasymptotic analysis of SGD with PRJ averaging showing that, after processing n samples, the
algorithm achieves a nonasymptotic rate that matches the Cramér-Rao lower bound with a pre-factor
equal to one with the additional term being O(n−7/6) (see the discussions in §B). Xu (2011); Gadat and
Panloup (2017) improves the additional term to O(n−5/4) under comparable assumptions. Défossez
and Bach (2015); Dieuleveut and Bach (2016); Duchi and Ruan (2021); Asi and Duchi (2019) achieves
either sharp nonasymptotic bounds (in the quadratic case) or asymptotic efficiency that matches the
local asymptotic minimax lower bound. The asymptotic efficiency of variance-reduced stochastic
approximation methods, however, has been less studied. Frostig et al. (2015) establishes the nonasymp-
totic upper bounds on the objective gap for an online variant of the SVRG algorithm (Johnson and
Zhang, 2013), where the leading-order nonasymptotic bound on the excess risk matches the optimal
asymptotic behavior of the empirical risk minimizer under certain self-concordant condition posed on
the objective function; the additional higher-order term reported is at least Ω(n−8/7).

Other related work Lakshminarayanan and Szepesvari (2018); Mou et al. (2020) studies fixed-
constant-step-size linear stochastic approximation with PRJ averaging that is not necessarily an opti-
mization algorithm, which includes many interesting applications in minimax game and reinforcement
learning. To be specific, Lakshminarayanan and Szepesvari (2018) provides general nonasymptotic
bounds which suffer from a constant prefactor on the optimal statistical risk, and Mou et al. (2020)
studies the PRJ averaging for general linear stochastic approximation and precisely characterizes the
asymptotic limiting Gaussian distribution, delineating the additional term that adds onto the Cramér-Rao
asymptotic covariance and which vanishes as η → 0 (Dieuleveut et al., 2020), and further establishes
sharp concentration inequalities under stronger moment conditions on the noise. Arnold et al. (2019)
proposes an extrapolation-smoothing scheme of Implicit Gradient Transportation to reduce the variance
of the algorithm (the general convergence rates of such a scheme is still open to our best knowledge),
which is further generalized to nonconvex optimization to improve the convergence rate of normalized
SGD (Cutkosky and Mehta, 2020). For the policy evaluation problem in reinforcement learning,
Khamaru et al. (2020) establishes an instance-dependent non-asymptotic upper bound on the `∞
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Algorithm Assumption Additional Term Reference

PRJ Hessian Lipschitz O
(

1
n7/6

)
(Bach and Moulines, 2011)

PRJ Hessian Lipschitz O
(

1
n5/4

)
(Xu, 2011; Gadat and Panloup, 2017)

Streaming SVRG Self-concordant multiplicative8 (Frostig et al., 2015)

ROOT-SGD Hessian Lipschitz O
(

1
n3/2

)
(This work)

ROOT-SGD Hessian ν-Hölder O
(

1
n(4+ν)/3∧3/2

)
(This work)

Table 1. Comparison of our results with comparative work. For the unity pre-factor nonasymptotic
result, we only characterize the additional term to the optimal risk.

estimation error, for a variance-reduced stochastic approximation algorithm. Their bound matches the
risk of optimal Gaussian limit up to constant or logarithmic factors. Recently, Mou et al. (2022) extends
the algorithmic idea in this work and proposes the recursive variance-reduced stochastic approximation
in span seminorm, which is applicable for generative models in reinforcement learning.

Appendix B. Comparison to related works

In this section, we provide a careful comparison of our convergence results to those for stochastic first-
order gradient algorithms. For all nonasymptotic results, we compare our algorithm results with that of
vanilla stochastic gradient descent, possibly equipped with iteration averaging and variance-reduced
stochastic first-order optimization algorithms. In the Lipschitz continuous Hessian case, we can achieve
asymptotic unity. We compare our result with comparative work in Table 1 along with the following
itemized discussions:

(i) In order to compare ROOT-SGD with SGD (without averaging), we impose Assumption 2 that
allows the noise variance to be at most quadratically growing with the distance to optimality. A
recent analysis due to Nguyen et al. (2019), which builds upon earlier analysis surveyed by Bottou
et al. (2018), makes a comparable noise assumption and applies to SGD. In special, Nguyen et al.
(2019) shows that for appropriate diminishing step-sizes ηt we have E‖θSGD

T − θ∗‖22 . σ2
∗

µ2T
. We

observe that the convergence rate of SGD is in no regime better than that of ROOT-SGD presented
in (14). Moreover, generalizing their analysis to appropriate multi-epoch design for SGD further
allows the convergence to be valid for any T after the burn-in period, which presents the corresponding
complexity of max

{(
L
µ +

`2Ξ
µ2

)
log
(
L
µε

)
, L

2σ2
∗

µ2ε2

}
after a straightforward metric conversion. Such a

multi-epoch SGD is also in no regime better than the optimized multi-epoch ROOT-SGD complexity
of max

{(
L
µ +

`2Ξ
µ2

)
log
((

L
µ +

`2Ξ
µ2

)
· ‖∇F (θ0)‖2

σ2
∗

)
, σ

2
∗
ε2

}
.

(ii) Allen-Zhu (2018) developed a multi-epoch variant of SGD with averaging (under the name SGD3)
via recursive regularization techniques and achieved a near-optimal rate for attaining an estimator of
O(ε)-gradient norm. Our convergence theory of ROOT-SGD assumes the finiteness of `Ξ, rendering

8. Note that the paper Frostig et al. (2015) achieves a risk bound whose leading-order term is a 1 +O(b−1)-multiplicative
approximation to the optimal risk, with some additional terms (See Corollary 5 in their paper). Since this result requires
b7 ≤ n, the additional term is at least Ω(n−8/7).
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worse dependency on these parameters in their set of (more relaxed) assumptions. Despite that,
our ROOT-SGD is set under the noise assumption in the statistical learning setting that imposes
a more stringent stochastic Lipschitzness condition while allowing the noise variance to break the
boundedness.Without sketching its proof, one can (optimistically at best) impose an effective variance
bound σ2

∗ +
ε2`2Ξ
µ2 log

(
1
ε

)
and achieve via a fine-grained analysis a complexity upper bound, as the

maximal of the following two terms:

L

µ
log

((
L

µ
+
`2Ξ
µ2

)
· ‖∇F (θ0)‖2

σ2
∗

)
log

(
‖∇F (θ0)‖2

ε

)
,

and

max

{
`2Ξ
µ2

log

(
‖∇F (θ0)‖2

ε

)
,
σ2
∗
ε2

}
log3

((
L

µ
+
`2Ξ
µ2

)
· ‖∇F (θ0)‖2

σ2
∗

)
,

which cannot exactly match the complexity of our multi-epoch ROOT-SGD Algorithm 2, partly due to
at least log3(·) extra polylogarithmic factor in condition number in its leading-order optimal risk term,
letting alone matching the near-unity pre-factor.9

(iii) For SGD with PRJ averaging, Bach and Moulines (2011) present a convergence rate that provides a
useful point of comparison, although the assumptions are different (no Lipschitz gradient, bounded
variance). In particular, when choosing the step-size ηt = Ct−α for α ∈ (1/2, 1), Bach and Moulines
(2011) show that the following bound holds true for the averaged iterates θ̄T for the PRJ:√

E
∥∥θ̄T − θ∗∥∥2

2
−
√

Tr ((H∗)−1Σ∗(H∗)−1)

T
≤ c0

T 2/3
,

which corresponds to an O(n−7/6) additional term in the squared estimation error metric ((21a) in
Corollary 3). Here, the constant c0 depends on the initial distance to optimum, smoothness and strong
convexity parameters of second- and third-order derivatives, as well as higher-order moments of the
noise. Xu (2011); Gadat and Panloup (2017) further improves the higher-order term from O(n−7/6) to
O(n−5/4). The convergence rate of (single-loop) ROOT-SGD is similar to SGD with PRJ averaging in
the nature of the leading term and the high-order terms, but the rate of ROOT-SGD is much cleaner
and easier to interpret.

(iv) The work by Frostig et al. (2015) proposes the Streaming SVRG algorithm that provides nonasymptotic
guarantees in terms of the objective gap. Under a slightly different setting where smoothness and
convexity assumptions are imposed on the individual function, their objective gap bound asymptotically
matches the optimal risk achieved by the empirical risk minimizer under an additional self-concordance
condition, with a multiplicative constant that can be made arbitrarily small. In particular, via our
notations their results take the following form:

E
[
F (θ̂n)− F (θ∗)

]
≤
(

1 +
5

b

) 1

2n
Tr
(
(H∗)−1Σ∗

)
+ high-order terms,

9. Their setting and analysis can be translated to our set of assumptions, where the multi-epoch ROOT-SGD achieves a
convergence rate upper bound that is no worse than their SGD3, since their variance bound scales locally as

σ2
∗ + `2Ξ‖θ0 − θ∗‖22 ≤ σ2

∗ +
`2Ξ
µ2
‖∇F (θ0)‖22.

However, this is optimistically the best-case translation, and rigorous analysis is also missing and pending future research.
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where they require n ≥ b2p+3 for some p ≥ 2. In order to achieve the sharp pre-factor, the additional
term in this bound is at least Ω(n−8/7), a worse rate than our Corollary 3. Additionally, to get the
corresponding nonasymptotic guarantees under such a setting, their bound requires a scaling condition
T & L2

max
µ2 where Lmax denotes the smoothness of the individual function, which is larger than our

burn-in sample size. Without the self-concordance condition, the convergence rate bound of Streaming
SVRG suffers from an extra multiplicative factor α ∈

[
1, Lmax

µ

]
, and its leading-order term thereby

has a worse dependency on the condition number compared to SGD.

Appendix C. Proofs of nonasymptotic and asymptotic results

We provide the convergence rate analysis and the proofs of our theorems in this section. In our analysis
we utilize the central object the tracking error process zt defined as in (30), and we heavily use the fact
that the process (tzt)t≥T0 is a martingale adapted to the natural filtration.

C.1. Proof of Theorem 1 and extended analysis

This subsection is devoted to an (extended) analysis and proof of Theorem 1. In part of our analysis, as
an alternative to our Lipschitz stochastic noise Assumption 3, we can impose the following individual
convexity and smoothness condition (Le Roux et al., 2012; Johnson and Zhang, 2013; Defazio et al.,
2014; Nguyen et al., 2017):

Assumption 8 (Individual convexity/smoothness) Almost surely, the (random) function θ 7→ f(θ; ξ)
is convex, twice continuously differentiable and satisfies the Lipschitz condition∥∥∇f(θ; ξ)−∇f(θ′; ξ)

∥∥
2
≤ Lmax

∥∥θ − θ′∥∥
2
a.s., for all pairs θ; θ′ ∈ Rd. (23)

All Assumptions 1 and 2 along with either Assumption 3 or 8, are standard in the stochastic optimiza-
tion literature (cf. Nguyen et al. (2019); Asi and Duchi (2019); Lei and Jordan (2020)). Note that
Assumption 8 implies Assumption 3 with constant Lmax; in many statistical applications, the quantity

Lmax can be significantly larger than
√
L2 + `2Ξ in magnitude.

With these assumptions in place, let us formalize the two cases in which we analyze the ROOT-
SGD algorithm. We refer to these cases as the Lipschitz Stochastic Noise case (or LSN for short), and
the Individually Smooth and Convex case (or ISC for short).

LSN Case: Suppose that Assumptions 1, 2 and 3 hold, and define

ηmax :=
1

4L
∧ µ

8`2Ξ
. (24)

ISC Case: Suppose that Assumptions 1, 2 and 8 hold, and define

ηmax :=
1

4Lmax
. (25)

As the readers shall see immediately, ωmax is a key quantity that plays a pivotal role in our analysis for
both cases.
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Theorem 5 (Unified nonasymptotic results, single-epoch ROOT-SGD) Suppose that the conditions
in either the LSN or ISC Case are in force, and let the step sizes be chosen according to the protocol (9)
for some η ∈ (0, ηmax], and assume that we use the following burn-in time:

T0 :=
⌈ 24

µη

⌉
. (26)

Then, for any iteration T ≥ 1, the iterate θT from Algorithm 1 satisfies the bound

E‖∇F (θT )‖22 ≤
2700 ‖∇F (θ0)‖22
η2µ2(T + 1)2

+
28 σ2

∗
T + 1

. (27)

We provide the proof of Theorem 1 in §C.1 in both the LSN and ISC cases. In accordance with
the discussion in §1, our nonasymptotic convergence rate upper bound (13) for the expected squared
gradient norm consists of the addition of two terms. The first term, σ

2
∗
T , corresponds to the nonimprovable

statistical error depending on the noise variance at the minimizer. The second term, which is equivalent
to ‖∇F (θ0)‖22T 2

0
T 2 , corresponds to the optimization error that indicates the polynomial forgetting from the

initialization. Theorem 1 copes with a wide range of step sizes η: fixing the number of online samples
T , (13) asserts that the optimal asymptotic risk σ2

∗
T for the squared gradient holds up to an absolute

constant whenever T & 1
ηµ ∨

‖∇F (θ0)‖22
η2µ2σ2

∗
.

Converting the convergence rate bound in (13), we can achieve a tight upper bound on the sample
complexity to achieve a statistical estimator of θ∗ with gradient norm bounded by O(ε):10

C1(ε) = max

{
74

ηmaxµ
· ‖∇F (θ0)‖2

ε
,

56σ2
∗

ε2

}

�

max
{(

L
µ +

`2Ξ
µ2

)
· ‖∇F (θ0)‖2

ε , σ
2
∗
ε2

}
, for the LSN case,

max
{
Lmax
µ · ‖∇F (θ0)‖2

ε , σ
2
∗
ε2

}
, for the ISC case.

(28)

In above, the step size η = ηmax is optimized as in (24) for the LSN and (25) for the ISC case,
separately, and where the asymptotics holds as ε tends to zero while σ∗ is bounded away from zero. In
both cases, the leading-order term of C1(ε) in either case is � σ2

∗
ε2

which matches the optimal statistical
error up to universal constants. To our best knowledge, this is achieved for the first time by single-loop
stochastic first-order algorithms in the setting where only first-order smoothness condition holds, i.e. no
continuity assumption on the Hessians are posed.

Detailed proof. The rest of this subsection devotes to prove Theorem 5. It is straightforward to
show first (27) automatically holds for T < T0 since for these T , θT = θ0 and hence E‖∇F (θT )‖22 =
E‖∇F (θ0)‖22, so we only need to prove the result for T ≥ T0.

We first define ωmax which is a key quantity in our analysis in this section for both cases, as follows

ωmax :=

{
2`2Ξ
µ2 , for LSN case,
2Lmax
µ , for ISC case.

(29)

10. Indeed, we choose T in Eq. (13) to be sufficiently large such that it satisfies the inequalities T ≥ T0 = d 24
ηµ
e, as well as

2700‖∇F (θ0)‖22
η2µ2T2 ≤ ε2

2
and 28σ2

∗
T
≤ ε2

2
. Here and on, we assume without loss of generality that ε2 ≤ ‖∇F (θ0)‖22. It is

then straightforward to see that (14) serves as a tight sample complexity upper bound.
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A central object in our analysis is the iteration of tracking error, defined as

zt := vt −∇F (θt−1), for t ≥ T0. (30)

At a high level, this proof involves analyzing the evolution of the quantities vt and zt, and then bounding
the norm of the gradient∇F (θt−1) using their combination. From the updates (6), we can identify a
martingale difference structure for the quantity tzt: its difference decomposes as the sum of pointwise
stochastic noise, εt(θt−1), and the incurred displacement noise, (t − 1) [εt(θt−1)− εt(θt−2)]. The
expression of the martingale structure is expressed as

tzt = t (vt −∇F (θt−1)) = εt(θt−1) + (t− 1)(vt−1 −∇F (θt−2)) + (t− 1)(εt(θt−1)− εt(θt−2))

= εt(θt−1) + (t− 1)zt−1 + (t− 1)(εt(θt−1)− εt(θt−2)).

(31)

Unwinding this relation recursively yields the decomposition

tzt − T0zT0 =

t∑
s=T0+1

εs(θs−1) +

t∑
s=T0+1

(s− 1)(εs(θs−1)− εs(θs−2)). (32)

We now turn to the proofs of the three auxiliary lemmas that allow us to control the relevant
quantities and the main theorem, as follows:

Lemma 6 (Recursion involving zt) Under the conditions of Theorem 1, for all t ≥ T0 + 1, we have

t2E‖zt‖22 ≤ (t− 1)2E‖zt−1‖22 + 2E‖εt(θt−1)‖22 + 2(t− 1)2E‖εt(θt−1)− εt(θt−2)‖22. (33a)

On the other hand, for t = T0, we have

T 2
0 E‖vT0‖22 − T 2

0 E ‖∇F (θ0)‖22 = T 2
0 E‖zT0‖22 = T0E‖εT0(θ0)‖22. (33b)

See §C.1.1 for the proof of this claim. Note we have zT0 = vT0 − ∇F (θ0) which is simply the
arithmetic average of T0 i.i.d. noise terms at θ0, ε1(θ0), . . . , εT0(θ0).

Our next auxiliary lemma characterizes the evolution of the sequence (vt : t ≥ T0) in terms of the
quantity E‖vt‖22.

Lemma 7 (Evolution of vt) Under the settings of Theorem 1, for any η ∈ (0, ηmax], we have

t2E‖vt‖22 − 2tE〈vt,∇F (θt−1)〉+ E ‖∇F (θt−1)‖22 = E ‖tvt −∇F (θt−1)‖22 , (34a)

and

E ‖tvt −∇F (θt−1)‖22 ≤ (1− ηµ) · (t− 1)2E‖vt−1‖22 + 2E‖εt(θt−1)‖22
− 2(t− 1)2E ‖εt(θt−1)− εt(θt−2)‖22 , (34b)

for all t ≥ T0 + 1.
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See §C.1.2 for the proof of this claim.

Our third auxiliary lemma bounds the second moment of the stochastic noise.

Lemma 8 (Second moment of pointwise stochastic noise) Under the conditions of Theorem 1, we
have

E‖εt(θt−1)‖22 ≤ ωmaxE‖∇F (θt−1)‖22 + 2σ2
∗, for all t ≥ T0 + 1. (35)

See §C.2 for the proof of this claim.

Equipped with these three auxiliary results, we are now ready to prove Theorem 1.
Proof [Proof of Theorem 1] Our proof proceeds in two steps.
Step 1. We begin by applying the Cauchy-Schwarz and Young inequalities to the inner product
〈vt, ∇F (θt−1)〉. Doing so yields the upper bound

2t〈vt, ∇F (θt−1)〉 ≤ 2 [t‖vt‖2 · ‖∇F (θt−1)‖2] ≤ ηµt2‖vt‖22 +
1

ηµ
‖∇F (θt−1)‖22.

Taking the expectation of both sides and applying the bound (34a) from Lemma 7 yields

(1− ηµ)t2E‖vt‖22 −
1− ηµ
ηµ

E‖∇F (θt−1)‖22 ≤ t2E‖vt‖22 − 2tE〈vt,∇F (θt−1)〉+ E ‖∇F (θt−1)‖22

≤ (1− ηµ) · (t− 1)2E‖vt−1‖22 + 2E‖εt(θt−1)‖22
− 2(t− 1)2E‖εt(θt−1)− εt(θt−2)‖22.

Moreover, since we have η ≤ ηmax ≤ 1
4µ under condition (12), we can multiply both sides by

(1− ηµ)−1, which lies in [1, 3
2 ]. Doing so yields the bound

t2E‖vt‖22 −
1

ηµ
E‖∇F (θt−1)‖22 ≤ (t− 1)2E‖vt−1‖22 + 3E‖εt(θt−1)‖22 − 2(t− 1)2E ‖εt(θt−1)− εt(θt−2)‖22 .

Combining with the bound (33a) from Lemma 6 gives

t2E‖zt‖22 + t2E‖vt‖22 − (t− 1)2E‖zt−1‖22 − (t− 1)2E‖vt−1‖22

≤ 5E‖εt(θt−1)‖22 +
1

ηµ
E‖∇F (θt−1)‖22.

By telescoping this inequality from T0 + 1 to T , we find that

T 2E‖zT ‖22 + T 2E‖vT ‖22 − T 2
0 E‖zT0‖22 − T 2

0 E‖vT0‖22

≤
T∑

t=T0+1

[
5E‖εt(θt−1)‖22 +

1

ηµ
E‖∇F (θt−1)‖22

]
. (36)
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Next, applying the result (33b) from Lemma 6 yields

T 2

2
E‖∇F (θT−1)‖22 ≤ T 2E‖zT ‖22 + T 2E‖vT ‖22

≤ T 2
0 E‖zT0‖22 + T 2

0 E‖vT0‖22 +

T∑
t=T0+1

[
5E‖εt(θt−1)‖22 +

1

ηµ
E‖∇F (θt−1)‖22

]

= T 2
0 ‖∇F (θ0)‖22 + 2T0E‖εT0(θ0)‖22 + 5

T∑
t=T0+1

E‖εt(θt−1)‖22 +
1

ηµ

T∑
t=T0+1

E‖∇F (θt−1)‖22.

Following some algebra, we find that

E‖∇F (θT−1)‖22 ≤
2T 2

0 ‖∇F (θ0)‖22 + 4T0E‖εT0(θ0)‖22
T 2

+
10

T 2

T∑
t=T0+1

E‖εt(θt−1)‖22 +
2

ηµT 2

T∑
t=T0+1

E‖∇F (θt−1)‖22. (37)

Combining inequality (37) with the bound (35) from Lemma 8 gives

E‖∇F (θT−1)‖22 ≤
2T 2

0 ‖∇F (θ0)‖22 + 4T0

[
ωmaxE‖∇F (θ0)‖22 + 2σ2

∗
]

T 2

+
10

T 2

T∑
t=T0+1

[
ωmaxE‖∇F (θt−1)‖22 + 2σ2

∗
]

+
2

ηµT 2

T∑
t=T0+1

E‖∇F (θt−1)‖22

≤ (4ωmax + 2T0)T0E‖∇F (θ0)‖22
T 2

+
10ωmax + 2µ−1η−1

T 2

T∑
t=T0+1

E‖∇F (θt−1)‖22 +
20σ2

∗
T

,

concluding the following key gradient bound that controls the evolution of the gradient norm ‖∇F (θT−1)‖2:

E‖∇F (θT−1)‖22 ≤
1

T 2

α1E‖∇F (θ0)‖22 + α2

T∑
t=T0+1

E‖∇F (θt−1)‖22

+
20σ2

∗
T

, (38)

where α1 := (4ωmax + 2T0) T0 and α2 := 10ωmax + 2
ηµ .

Step 2. Based on the estimation bound (38), the proof of Theorem 1 relies on a bootstrapping argument
in order to remove the dependence of the right-hand side of Eq. (38) on the quantity E‖∇F (θt−1)‖22.
Let T ∗ ≥ T0 + 1 be arbitrary. Telescoping the bound (38) over the iterates T = T0 + 1, . . . , T ∗ yields

T ∗∑
T=T0+1

E‖∇F (θT−1)‖22 ≤ α1

T ∗∑
T=T0+1

‖∇F (θ0)‖22
T 2︸ ︷︷ ︸

Q1

+

T ∗∑
T=T0+1

α2

T 2

T∑
t=T0+1

E‖∇F (θt−1)‖22︸ ︷︷ ︸
Q2

+

T ∗∑
T=T0+1

20σ2
∗

T︸ ︷︷ ︸
Q3

.

Let us deal with each of these quantities in turn, making use of the integral inequalities

T ∗∑
T=T0+1

1

T 2

(i)

≤
∫ T ∗

T0

dτ

τ2
≤ 1

T0
, and

T ∗∑
T=T0+1

1

T

(ii)

≤
∫ T ∗

T0

dτ

τ
= log

(T ∗
T0

)
. (39)
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We clearly have

Q1 ≤
α1

T0
‖∇F (θ0)‖22 = (4ωmax + 2T0) ‖∇F (θ0)‖22 .

Moreover, by using the fact that T ∗ ≥ T , interchanging the order of summation, and then using
inequality (39)(i) again, we have

Q2 ≤
T ∗∑

T=T0+1

α2

T 2

T ∗∑
t=T0+1

E‖∇F (θt−1)‖22 =

T ∗∑
t=T0+1

( T ∗∑
T=T0+1

α2

T 2

)
E‖∇F (θt−1)‖22

≤ α2

T0

T ∗∑
t=T0+1

E‖∇F (θt−1)‖22.

Finally, turning to the third quantity, we have Q3 ≤ 20σ2
∗ log

(
T ∗

T0

)
, where we have used inequal-

ity (39)(ii). Putting together the pieces yields the upper bound

T ∗∑
T=T0+1

E‖∇F (θT−1)‖22 ≤ (4ωmax + 2T0)‖∇F (θ0)‖22 +
α2

T0

T ∗∑
t=T0+1

E ‖∇F (θt−1)‖22 + 20σ2
∗ log

(
T ∗

T0

)
.

Eqs. (12) imply that, for either case under consideration, we have the bound ωmax ≤ 1
ηµ , and, since

0 < ηµ ≤ 1
4 < 1, we have from (12) that T0 =

⌈
24
ηµ

⌉
≤ 1

ηµ , resulting in

4ωmax + 2T0 ≤
4

ηµ
+ 2

(
1

ηµ

)
=

54

ηµ
,

where we have the choice of burn-in time T0 from Eq. (12). Similarly, we have α2 = 10ωmax + 2
ηµ ≤

12
ηµ ≤

T0
2 . Putting together the pieces yields

1

2

T ∗∑
t=T0+1

E‖∇F (θt−1)‖22 ≤
54

ηµ
E‖∇F (θ0)‖22 + 20σ2

∗ log

(
T ∗

T0

)
. (40)

Now substituting the inequality (40) back into the earlier bound (38) with T ∗ = T allows us to obtain
a bound on E‖∇F (θT−1)‖2. In particular, for any T ≥ T0 + 1, we have

E‖∇F (θT−1)‖22 ≤
54T0

ηµ
· E‖∇F (θ0)‖22

T 2
+
T0

T 2
· 1

2

T∑
t=T0+1

E‖∇F (θt−1)‖22 +
20σ2

∗
T

≤ 54T0

ηµ
· E‖∇F (θ0)‖22

T 2
+
T0

T 2

[
54

ηµ
‖∇F (θ0)‖22 + 20σ2

∗ log

(
T

T0

)]
+

20σ2
∗

T

≤ 2(54)T0

ηµ
· E‖∇F (θ0)‖22

T 2
+

20σ2
∗

T

[
1 +

T0

T
log

(
T

T0

)]
.
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Using the inequality log(x)
x ≤ 1

e , valid for x ≥ 1, we conclude that

E‖∇F (θT−1)‖22 ≤
2(54)T0

ηµ
· E‖∇F (θ0)‖22

T 2
+

20σ2
∗

T

[
1 +

T0

T
log

(
T

T0

)]
≤ 108

ηµ
· 1

ηµ
· E‖∇F (θ0)‖22

T 2
+

20σ2
∗

T

[
1 +

1

e

]
≤

2700 ‖∇F (θ0)‖22
η2µ2T 2

+
28σ2

∗
T

.

Shifting the subscript forward by one yields Theorem 1.

C.1.1. PROOF OF LEMMA 6

The claim (33b) follows from the definition along with some basic probability. In order to prove the
claim (33a), recall from the ROOT-SGD update rule for vt in the first line of (6) that for t ≥ T0 + 1
we have:

tvt = (t− 1)vt−1 + t∇f(θt−1; ξt)− (t− 1)∇f(θt−2; ξt). (41)

Subtracting the quantity t∇F (θt−1) from both sides yields

tzt = (t− 1)vt−1 + t∇f(θt−1; ξt)− (t− 1)∇f(θt−2; ξt)− t∇F (θt−1).

Thus, we arrive at the following recursion for the estimation error zt:

tzt = (t− 1) [vt−1 −∇F (θt−2)]

+ t [∇f(θt−1; ξt)−∇F (θt−1)]− (t− 1) [∇f(θt−2; ξt)−∇F (θt−2)]

= (t− 1)zt−1 + εt(θt−1) + (t− 1) [εt(θt−1)− εt(θt−2)] .

Observing that the variable εt(θt−1)+(t−1) [εt(θt−1)− εt(θt−2)], defines anL2-martingale-difference
sequence, we see that

t2E‖zt‖22 = E ‖(t− 1)zt−1‖22 + E ‖εt(θt−1) + (t− 1) [εt(θt−1)− εt(θt−2)]‖22
≤ (t− 1)2E‖zt−1‖22 + 2E‖εt(θt−1)‖22 + 2(t− 1)2E‖εt(θt−1)− εt(θt−2)‖22,

where in the last step follows from Young’s inequality. Computing the constants out completes the
proof of the claim (33a).

C.1.2. PROOF OF LEMMA 7

Eq. (34a) follows in a straightforward manner by expanding the square and taking an expectation. As
for the inequality (34b), from the update rule (6) for vt, we have

tvt −∇F (θt−1) = t∇f(θt−1; ξt) + (t− 1) [vt−1 −∇f(θt−2; ξt)]−∇F (θt−1)

= (t− 1)vt−1 + (t− 1) [∇f(θt−1; ξt)−∇f(θt−2; ξt)] + εt(θt−1).
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Using this relation, we can compute the expected squared Euclidean norm as

E‖tvt −∇F (θt−1)‖22 = E ‖(t− 1)vt−1 + (t− 1) [∇f(θt−1; ξt)−∇f(θt−2; ξt)] + εt(θt−1)‖22
= E ‖(t− 1)vt−1‖22 + E ‖(t− 1) [∇f(θt−1; ξt)−∇f(θt−2; ξt)] + εt(θt−1)‖22

+ 2E 〈(t− 1)vt−1, (t− 1) [∇f(θt−1; ξt)−∇f(θt−2; ξt)] + εt(θt−1)〉 .

Further rearranging yields

E‖tvt −∇F (θt−1)‖22 = (t− 1)2E‖vt−1‖22 + 2(t− 1)2E ‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22
+ 2E ‖εt(θt−1)‖22 + 2(t− 1)2E 〈vt−1,∇f(θt−1; ξt)−∇f(θt−2; ξt)〉 . (42)

We split the remainder of our analysis into two cases, corresponding to the LSN Case or the ISC Case.
The difference in the analysis lies in how we handle the term 〈vt−1, ∇F (θt−1)−∇F (θt−2)〉.

Analysis in the LSN Case: From L-Lipschitz smoothness of F in Assumption 1, we have〈
vt−1, ∇F (θt−1)−∇F (θt−2)

〉
= −1

η

〈
θt−1 − θt−2, ∇F (θt−1)−∇F (θt−2)

〉
≤ − 1

ηL
‖∇F (θt−1)−∇F (θt−2)‖22.

(43)

Now consider the inner product term 〈vt−1, ∇F (θt−1)−∇F (θt−2)〉 in Eq. (42). We split it into two
terms, and upper bound them using equations (45) and (43) respectively. Doing so yields:

E‖tvt −∇F (θt−1)‖22
≤ (t− 1)2E‖vt−1‖22 + 2(t− 1)2E ‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22

+ 2E ‖εt(θt−1)‖22 + 2(t− 1)2E 〈vt−1,∇F (θt−1)−∇F (θt−2)〉
≤ (t− 1)2E‖vt−1‖22 + 2(t− 1)2E ‖∇F (θt−1)−∇F (θt−2)‖22 + 2(t− 1)2E ‖εt(θt−1)− εt(θt−2)‖22

+ 2E‖εt(θt−1)‖22 −
3ηµ

2
(t− 1)2E‖vt−1‖22 −

1

2ηL
(t− 1)2E‖∇F (θt−1)−∇F (θt−2)‖22

≤
(

1− 3ηµ

2

)
(t− 1)2E‖vt−1‖22 + 2E‖εt(θt−1)‖22 + 4(t− 1)2E ‖εt(θt−1)− εt(θt−2)‖22

− 2(t− 1)2E ‖εt(θt−1)− εt(θt−2)‖22

≤
(

1− 3ηµ

2
+ 4η2`2Ξ

)
(t− 1)2E‖vt−1‖22 + 2E‖εt(θt−1)‖22 − 2(t− 1)2E ‖εt(θt−1)− εt(θt−2)‖22 .

From the condition (25), we have 1− 3
2ηµ+ 4η2`2Ξ ≤ 1− ηµ, which completes the proof.

Analysis in the ISC Case: We deal with the last summand in the last line of Eq. (42), where we use
the iterated law of expectation to achieve

E 〈vt−1,∇f(θt−1; ξt)−∇f(θt−2; ξt)〉 = E 〈vt−1,E [∇f(θt−1; ξt)−∇f(θt−2; ξt) | Ft−1]〉
= E 〈vt−1,∇F (θt−1)−∇F (θt−2)〉 .
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The update rule for vt implies that vt−1 = − θt−1−θt−2

η for all t ≥ T0 + 1. The following analysis
uses various standard inequalities (c.f. §2.1 in Nesterov (2018)) that hold for individually convex and
Lmax-Lipschitz smooth functions. First, we have

〈vt−1,∇f(θt−1; ξt)−∇f(θt−2; ξt)〉 = −1

η
〈θt−1 − θt−2,∇f(θt−1; ξt)−∇f(θt−2; ξt)〉

≤ − 1

ηLmax
‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22 ,

(44)

where the inequality follows from the Lipschitz condition. On the other hand, the µ-strong convexity of
F implies that

〈vt−1,∇F (θt−1)−∇F (θt−2)〉 = −1

η
〈θt−1 − θt−2,∇F (θt−1)−∇F (θt−2)〉

≤ −µ
η
‖θt−1 − θt−2‖22 = −ηµ‖vt−1‖22.

(45)

Plugging the bounds (44) and (45) into Eq. (42) yields

E‖tvt −∇F (θt−1)‖22
≤ (t− 1)2E‖vt−1‖22 + 2(t− 1)2E ‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22 + 2E ‖εt(θt−1)‖22

+ (t− 1)2E 〈vt−1,∇F (θt−1)−∇F (θt−2)〉+ (t− 1)2E 〈vt−1,∇f(θt−1; ξt)−∇f(θt−2; ξt)〉
≤ (t− 1)2E‖vt−1‖22 + 2(t− 1)2E ‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22 + 2E‖εt(θt−1)‖22

− ηµ(t− 1)2E‖vt−1‖22 −
1

ηLmax
(t− 1)2E‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22

≤ (1− ηµ)(t− 1)2E‖vt−1‖22 + 2E‖εt(θt−1)‖22 − 2(t− 1)2E‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22,

where in the last inequality relies on the fact that η ∈ (0, 1
4Lmax

] (see Eq. (25)), leading to the
bound (34b).

C.2. Proof of Lemma 8

We again split our analysis into two cases, corresponding to the LSN and ISC cases. Recall that the
main difference is whether the Lipschitz stochastic noise condition holds (cf. Assumption 3), or the
functions are individually convex and smooth (cf. Assumption 8).

Analysis in the LSN Case: From the `Ξ-Lipschitz smoothness of the stochastic gradients (Assump-
tion 3) and the µ-strong-convexity of F (Assumption 1), we have

E‖εt(θt−1)‖22 ≤ 2E‖εt(θt−1)− εt(θ∗)‖22 + 2E‖εt(θ∗)‖22
≤ 2`2ΞE‖θt−1 − θ∗‖22 + 2E‖εt(θ∗)‖22

≤
2`2Ξ
µ2

E‖∇F (θt−1)‖22 + 2σ2
∗,

(46)

which establishes the claim.
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Analysis in the ISC Case: Using Assumption 8 and standard inequalities for Lmax-smooth and
convex functions yields

f(θ∗; ξ) + 〈∇f(θ∗; ξ), θ〉+
1

2Lmax
‖∇f(θ; ξ)−∇f(θ∗; ξ)‖22 ≤ f(θ; ξ).

Taking expectations in this inequality and performing some algebra11 yields

E‖∇f(θ; ξ)−∇f(θ∗; ξ)‖22 = 2Lmax〈E[∇f(θ∗; ξ)], θ〉+ E‖∇f(θ; ξ)−∇f(θ∗; ξ)‖22
≤ 2LmaxE [f(θ; ξ)− f(θ∗; ξ)]

= 2Lmax [F (θ)− F (θ∗)] .

Recall that ∇F (θ∗) = 0 since θ∗ is a minimizer of F . Using this fact and the µ-strong convexity
condition, we have F (θ)− F (θ∗) ≤ 1

2µ‖∇F (θ)‖22. Substituting back into our earlier inequality yields

E‖∇f(θ; ξ)−∇f(θ∗; ξ)‖22 ≤
Lmax

µ
‖∇F (θ)‖22.

We also note that12

E ‖εt(θt−1)− εt(θ∗)‖22 = E ‖∇f(θt−1; ξt)−∇f(θ∗; ξt)− [∇F (θt−1)−∇F (θ∗)]‖22
≤ E ‖∇f(θt−1; ξt)−∇f(θ∗; ξt)‖22

≤ Lmax

µ
E‖∇F (θt−1)‖22.

Finally, applying the argument of (46) yields the claim (35).

C.3. Intermediate result Proposition 1 and its proof

En route our proof of Theorem 2 we state and prove an intermediate upper-bound result for single-epoch
version of ROOT-SGD.

Proposition 1 (Improved nonasymptotic upper bound, single-epoch ROOT-SGD) Under Assump-
tions 1, 4, 5, 6, suppose that we run Algorithm 1 with step-size η ∈

(
0, 1

56L ∧
µ

64`2Ξ

]
. Then for any

T ≥ 1, the iterate θT satisfies the bound

E ‖∇F (θT )‖22 −
σ2
∗
T
≤ C

{`2Ξη
µ

+
log T

ηµT
+
`2Ξ log T

µ2T

}σ2
∗
T

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2

+
C ‖∇F (θ0)‖22
η2µ2T 2

+
CLγ ‖∇F (θ0)‖2+γ

2

η(5+2γ)/2µ(7+4γ)/2T (5+2γ)/2
. (47)

11. In performing this algebra, we assume exchangeability of gradient and expectation operators, which is guaranteed because
the function x 7→ ∇f(x; ξ) is Lmax-Lipschitz for a.s. ξ.

12. This proof strategy is forklore and appears elsewhere in the variance-reduction literature; see, e.g., the proof of Theorem
1 in Johnson and Zhang (2013), and also adopted by Nguyen et al. (2019, 2021)).
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A few remarks are in order. When setting T → ∞ the leading-order term (1 +
C`2Ξη
µ )σ

2
∗
T of the

nonasymptotic bound (47) nearly matches the optimal statistical risk for the gradient norm with unit
pre-factor when η is prescribed as positively small, and as will be seen later it matches the asymptotic
Proposition 2 under a shared umbrella of assumptions. It can be observed that the dependence on the
initial gradient norm ‖∇F (θ0)‖2 decays polynomially, which is generally unavoidable for single-epoch
ROOT-SGD, as the gradient noise at the initial point θ0 is also averaged along the iterates. However,
as we will see anon, an improved guarantee can be obtained by appropriately re-starting the algorithm,
leading to near-optimal guarantees in terms of the gradient norm. In addition, we note that the high-
order terms of Eq. (47) contains terms that depend on the step-size η at opposite directions which
demands a trade-off. We forgo optimizing the step-size as is the conduct in our multi-epoch result.

For the rest of §C.3 we prepare to prove Proposition 1. From the discussions in §2.2 we decomposes
E ‖∇F (θt−1)‖22 as the summation of three terms:

E ‖∇F (θt−1)‖22 = E ‖vt − zt‖22 = E ‖vt‖22 + E ‖zt‖22 − 2E
〈
vt, zt

〉
. (48)

En route our proof, we provide estimations for E ‖tvt‖22, E ‖tzt‖22 and E
〈
tzt, tvt

〉
separately, where

our main focus will be on bounding the cross term. On a very intuitive and high-level viewpoint, when
comparing with the Polyak-Ruppert-Juditsky analysis, we can roughly think of the (ηtvt : t ≥ 0)
process acts like a last-iterate SGD (as it is in the quadratic minimization case) and is fast and small. The
tzt process more resembles random walk at a slower rate driven by the same noise sequence. The two
timescale intuitions beneath is that, in the Hessian Lipschitz γ = 1 scenario, two fast-slow discounted
random walks processes driven by the same noise has an inner product that is approximately the second
moment of the fast process. In our case this results in the ”asymptotically independence” of the two
processes in the sense that E

〈
tzt, tvt

〉
scales as E ‖tvt‖22, so∇F (θt−1) = vt − zt is approximately of

the same scale as zt in its first and second orders.
We first introduce the following lemma which is an essential part of the proof:

Lemma 9 (Sharp bound on vt) Under the setting of Theorem 1, there exists a universal constant
c > 0, such that for T ≥ T0 + 1, we have:

E ‖vT ‖22 ≤
cσ2
∗

ηµT 2
+

c

η4µ4T 4
‖∇F (θ0)‖22 . (49)

We defer the proof of Lemma 9 to §C.3.1. This lemma, along with Theorem 1, helps conclude the
following bound on zt that has a leading-order term of near-unity pre-factor, that is, (1 + o(1)) σ∗√

t
:

Lemma 10 (Sharp bound on zt) Under settings of Theorem 1, the following bounds hold true for
T ≥ T0 + 1:

E ‖zT ‖22 −
σ2
∗
T
≤ c
{`2Ξη
µ

+
`Ξ

µ
√
T

+
log
(
T
T0

)
`2Ξ

µ2T

}σ2
∗
T

+ c
`Ξσ∗
µ
· T0

T 2
‖∇F (θ0)‖2 + c

T 2
0

T 2
‖∇F (θ0)‖22 ,

(50)

for some universal constant c > 0.
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See §C.3.2 for the proof of this lemma.
Finally, we need the following lemma, which bounds the cross term E

[
〈vt, zt〉

]
. Under Hölder

condition on the Hessian matrix and additional moment conditions, this lemma provides significant
sharper bound than the naı̈ve bound obtained by applying the Cauchy-Schwartz inequality and invoking
the previous two lemmas.

Lemma 11 (Sharp bound on the cross term) Under settings of Theorem 1, we have the following
bound for any T ≥ T0 + 1:

∣∣E〈vT , zT 〉∣∣ ≤ c( σ2
∗

ηµT 2
+
‖∇F (θ0)‖22
η4µ4T 4

)
log T

+ cLγ

(
σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2
+

‖∇F (θ0)‖2+γ
2

η(5+2γ)/2µ(7+4γ)/2T (5+2γ)/2

)
, (51)

for some universal constant c > 0.

See §C.3.3 for the proof of this lemma.
Taking the aforementioned lemmas as given, we are ready to prove the sharp bound. In particular,

by substituting these three lemmas into the decomposition (48), we have the following bound

E ‖∇F (θT−1)‖22 −
σ2
∗
T

= E ‖vT − zT ‖22 −
σ2
∗
T

=

(
E ‖zT ‖22 −

σ2
∗
T

)
+ E ‖vT ‖22 − 2E

〈
vT , zT

〉
≤ C

`2Ξη
µ

+
`Ξ

µ
√
T

+
log
(
T
T0

)
`2Ξ

µ2T

 σ2
∗
T

+ C

(
`Ξσ∗
µ
· T0

T 2
‖∇F (θ0)‖2 +

`2Ξ
µ2
· T0

T 2
‖∇F (θ0)‖22

)

+ C

(
σ2
∗

ηµT 2
+
‖∇F (θ0)‖22
η4µ4T 4

)
log T + 6C0Lγ

(
σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2
+

‖∇F (θ0)‖2+γ
2

η(5+2γ)/2µ(7+4γ)/2T (5+2γ)/2

)

≤ C

`2Ξη
µ

+
`Ξ

µ
√
T︸ ︷︷ ︸+

log T

ηµT
+

log
(
T
T0

)
`2Ξ

µ2T

 σ2
∗
T

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2

+ C

‖∇F (θ0)‖22
η2µ2T 2

+
`Ξσ∗
µ
· T0

T 2
‖∇F (θ0)‖2︸ ︷︷ ︸

+ C
Lγ ‖∇F (θ0)‖2+γ

2

η(5+2γ)/2µ(7+4γ)/2T (5+2γ)/2
.

Absorbing the bracketed cross terms into corresponding sum of the squares, this gives Eq. (47) and
concludes Proposition 1.

C.3.1. PROOF OF LEMMA 9

Our main technical tools is the following Lemma 12, which recursively bound the second moments of
vt:

Lemma 12 Under the setting of Theorem 1, when η ≤ 1
4L ∧

µ
8`2Ξ

, for T0 = 24µ−1η−1 we have the
following bound for t ≥ T0 + 1

t2E ‖vt‖22 ≤
(

1− ηµ

2

)
(t− 1)2E ‖vt−1‖22 +

10

ηµ
E ‖∇F (θt−1)‖22 + 4σ2

∗. (52)
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See §E.3.2 for the proof of this lemma.
On the other hand, invoking Theorem 1, we have that:

E‖∇F (θt−1)‖22 ≤
2700 ‖∇F (θ0)‖22

η2µ2t2
+

28 σ2
∗

t
, for t ≥ T0 + 1.

Now, to combine everything together, we conclude from (13) and (52) that

t2E ‖vt‖22 ≤
(

1− ηµ

2

)
(t− 1)2E ‖vt−1‖22 +

10

ηµ

[
2700 ‖∇F (θ0)‖22

η2µ2t2
+

28 σ2
∗

t

]
+ 4σ2

∗

≤
(

1− ηµ

2

)
(t− 1)2E ‖vt−1‖22 + c

‖∇F (θ0)‖22
η3µ3t2

+ cσ2
∗. (53)

Multiplying both sides by t2, we obtain that:

t4E ‖vt‖22 ≤
(

1− ηµ

2

)
t2(t− 1)2E ‖vt−1‖22 +

c ‖∇F (θ0)‖22
η3µ3

+ cσ2
∗t

2

≤
(

1− ηµ

6

)
(t− 1)4E ‖vt−1‖22 +

c ‖∇F (θ0)‖22
η3µ3

+ cσ2
∗t

2,

for time index t satisfying t ≥ T0 ≥ 6
ηµ . This gives, by solving the recursion,

T 4E ‖vT ‖22 ≤
(

1− ηµ

6

)T−T0

T 4
0 E ‖vT0‖

2
2 + c

T∑
t=T0+1

(
1− ηµ

6

)T−t( ‖∇F (θ0)‖22
η3µ3

+ σ2
∗T

2

)

≤
(

1− ηµ

6

)T−T0

T 4
0 E ‖vT0‖

2
2 + 6c

‖∇F (θ0)‖22
η4µ4

+ 6c
σ2
∗
ηµ
T 2.

It suffices to bound the initial condition E ‖vT0‖
2
2. Recall that vT0 = 1

T0

∑T0
s=1∇f(θ0; ξs), which is

average of i.i.d. random vectors. It immediately follows from Assumptions 2 and 3 that:

E ‖vT0‖
2
2 ≤ ‖∇F (θ0)‖22 +

2σ2
∗

T0
+

2`2Ξ ‖∇F (θ0)‖22
µ2T0

.

Putting them together, we complete the proof of this lemma.

C.3.2. PROOF OF LEMMA 10

Recalling that the recursive update rule of zt reveals an underlying martingale structure

tzt = (t− 1)zt−1 + (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1).

Adding and subtracting the εt(θ∗) term in the above display we express the noise increment as

tzt − (t− 1)zt−1 = εt(θ
∗) + (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)− εt(θ∗)︸ ︷︷ ︸

=: ζt

.
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In words, the increment of tzt splits into two parts: the additive part εt(θ∗) and the multiplicative
part ζt. Taking expectation on the squared norm in above and using the property of square-integrable
martingales, we have via further expanding the square on the right hand

t2E ‖zt‖22 − (t− 1)2E ‖zt−1‖22 = E ‖εt(θ∗) + ζt‖22 = E ‖εt(θ∗)‖22 + E ‖ζt‖22 + 2E〈εt(θ∗), ζt〉.

Telescoping the above equality for t = T0 + 1, . . . , T gives

T 2E ‖zT ‖22 − T
2
0 E ‖zT0‖

2
2 =

T∑
t=T0+1

E ‖εt(θ∗)‖22 +
T∑

t=T0+1

E ‖ζt‖22 + 2
T∑

t=T0+1

E〈εt(θ∗), ζt〉.

By definition, we have E ‖εt(θ∗)‖22 = σ2
∗ . For the additional noise ζt, Young’s inequality leads to the

bound:

E ‖ζt‖22 ≤
(
`Ξ(t− 1)

√
E ‖θt−1 − θt−2‖22 + `Ξ

√
E ‖θt−1 − θ∗‖22

)2

≤
(
η`Ξ(t− 1)

√
E ‖vt−1‖22 +

`Ξ
µ

√
E ‖∇F (θt−1)‖22

)2

≤ 2η2`2Ξ(t− 1)2E ‖vt−1‖22 +
2`2Ξ
µ2

E ‖∇F (θt−1)‖22 . (54)

It remains to bound the summation of the cross term. Observing that:

T∑
t=T0+1

E〈εt(θ∗), ζt〉 =
T∑

t=T0+1

E〈εt(θ∗), εt(θt−1)− εt(θ∗) + (t− 1) (εt(θt−1)− εt(θt−2))〉

=

T∑
t=T0+1

{
tE〈εt(θ∗), εt(θt−1)− εt(θ∗)〉 − (t− 1)E〈εt(θ∗), εt(θt−2)− εt(θ∗)〉

}
.

Since the random samples (ξt)t≥1 are i.i.d. and the iterate θt−2 is independent of the sample ξt−1, we
have that:

E〈εt(θ∗), εt(θt−2)− εt(θ∗)〉 = E〈εt−1(θ∗), εt−1(θt−2)− εt−1(θ∗)〉.

Consequently, we can re-write the quantity of interests as a telescope sum, leading to the following
identity:

T∑
t=T0+1

E〈εt(θ∗), ζt〉 =
T∑

t=T0+1

{
tE〈εt(θ∗), εt(θt−1)− εt(θ∗)〉 − (t− 1)E〈εt(θ∗), εt(θt−2)− εt(θ∗)〉

}

=
T∑

t=T0+1

{
tE〈εt(θ∗), εt(θt−1)− εt(θ∗)〉 − (t− 1)E〈εt−1(θ∗), εt−1(θt−2)− εt−1(θ∗)〉

}
= T · E〈εT (θ∗), εT (θT−1)− εT (θ∗)〉 − T0 · E〈εT0(θ∗), εT0(θT0−1)− εT0(θ∗)〉.

38



ROOT-SGD: SHARP RATES IN A SINGLE ALGORITHM

In order to bound the inner product terms, we invoke the Cauchy-Schwartz inequality and Assumption 3.
For each t ≥ T0, we have that:

|t · E〈εt(θ∗), εt(θt−1)− εt(θ∗)〉| ≤ t ·
√
E ‖εt(θ∗)‖22 ·

√
E ‖εt(θt−1)− εt(θ∗)‖22

≤ tσ∗`Ξ
√
E ‖θt−1 − θ∗‖22 ≤

tσ∗`Ξ
µ

√
E ‖∇F (θt−1)‖22. (55)

Substituting with t = T0 and t = T and combining with Eq. (54), we have that:

T 2E ‖zT ‖22 ≤ T
2
0 E ‖zT0‖

2
2 + (T − T0)σ2

∗ + 2η2`2Ξ

T∑
t=T0+1

(t− 1)2E ‖vt−1‖22 +
2`2Ξ
µ2

T∑
t=T0+1

E ‖∇F (θt−1)‖22

+
2`Ξσ∗
µ

(
T
√
E‖∇F (θT−1)‖22 + T0 ‖∇F (θ0)‖2

)
. (56)

Above bound involves the second moments of the vectors vt and ∇F (θt). We recall the following
bounds from Theorem 1 and Lemma 9, for each t ≥ T0:

E ‖vt‖22 ≤
cσ2
∗

ηµt2
+

c

η4µ4t4
‖∇F (θ0)‖22 , and

E ‖∇F (θt)‖22 ≤
c ‖∇F (θ0)‖22
η2µ2t2

+
cσ2
∗
t
.

Substituting these bounds to Eq. (56), we note that:

T∑
t=T0+1

(t− 1)2E ‖vt−1‖22 ≤
cσ2
∗T

µη
+
c ‖∇F (θ0)‖22
T0η4µ4

, and

T∑
t=T0+1

E ‖∇F (θt−1)‖22 ≤ cσ
2
∗ log

( T
T0

)
+
c ‖∇F (θ0)‖22

µη2T0
.

Finally, for the burn-in period, we note that:

T 2
0 E ‖zT0‖

2
2 ≤ 2T0E ‖ε1(θ0)− ε1(θ∗)‖22 + 2T0E ‖ε1(θ∗)‖22 ≤

2T0`
2
Ξ

µ2
‖∇F (θ0)‖22 + 2T0σ

2
∗.

Some algebra yields the conclusion of this lemma.

C.3.3. PROOF OF LEMMA 11

First, by Cauchy-Schwartz inequality, we can easily observe that:

|E〈vT , zT 〉| ≤
√
E ‖vT ‖22 ·

√
E ‖zT ‖22 ≤ c

( σ∗
T
√
ηµ

+
‖∇F (θ0)‖2
η2µ2T 2

)
·
( σ∗√

T
+
‖∇F (θ0)‖2

ηµT

)
.

So for T ≤ cT0 log T0, the conclusion of this lemma is automatically satisfied. For the rest of this
section, we assume that T

log T > cT0 for some universal constant c > 0.
The proof requires some bounds on the fourth moment of the stochastic process defined by the

algorithm. In particular, we need the following two lemmas. The first lemma is analogous to the bound
in Theorem 1:
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Lemma 13 (Higher-order-moment bound on ∇F (θt−1)) Under Assumptions 1, 6 and 5. Let the
step-size η ≤ 1

56L ∧
µ

64`2Ξ
and the burn-in time T0 =

⌈
24
ηµ

⌉
. Then for any T ≥ T0, the estimator θT

produced by the ROOT-SGD algorithm satisfies the bound

(
E ‖∇F (θT )‖42

)1/2
≤ 140σ̃∗

2

T + 1
+

60 ‖∇F (θ0)‖22
η2µ2(T + 1)2

. (57)

Proof can be found in §E.1.
We also need a lemma on the fourth-moment bound of vt, analogous to Lemma 9:

Lemma 14 (sharp higher-order-moment bound on vt) Under the setting of Proposition 1 we have
the following bound for T ≥ T0 + 1√

E ‖vT ‖42 ≤
4484σ̃∗

2

ηµT 2
+

1359375

η4µ4T 4
‖∇F (θ0)‖22 . (58)

Proof can be found in §E.2.
Taking these two lemmas as given, we proceed with the proof. Following the two-time-scale

intuition discussed in Section 2.2, the process vt moves faster than the averaging process zt. Therefore,
it is reasonable to expect the correlation between vt and z

t−T̃ ∗ to be small, for sufficiently large time

window T̃ ∗ > 0. For the rest of this section, we choose the window size:

T̃ ∗ =
c

µη
log T, for some universal constant c > 0. (59)

Since we have assumed without loss of generality that T
log T > cT0 = 24c

µη , the window size guarantees

the relation T − T̃ ∗ > T/2.
We subtract off a (t− T̃ ∗)z

t−T̃ ∗ term the tzt expression above, and decompose the absolute value
of the cross term |E

〈
vt, tzt

〉
| as:

|E
〈
tzt, vt

〉
| ≤ (t− T̃ ∗)

∣∣∣E〈zt−T̃ ∗ , vt〉∣∣∣︸ ︷︷ ︸
=:I1

+
∣∣∣E〈tzt − (t− T̃ ∗)z

t−T̃ ∗ , vt
〉∣∣∣︸ ︷︷ ︸

=:I2

. (60)

For bounding the term I2, we make use of the recursive rule of tzt to obtain the bound:

E
∥∥∥tzt − (t− T̃ ∗)z

t−T̃ ∗

∥∥∥2

2
= E

∥∥∥∥∥∥
t∑

s=t−T̃ ∗+1

{
(s− 1)(εs(θs−1)− εs(θs−2)) + εs(θs−1)− εs(θ∗) + εs(θ

∗)
}∥∥∥∥∥∥

2

2

≤
t∑

s=t−T̃ ∗+1

{
(s− 1)2η2`2ΞE ‖vs−1‖22 +

`2Ξ
µ2

E ‖∇F (θs−1)‖22 + σ2
∗

}

≤ T̃ ∗ ·

(
σ2
∗ +
‖∇F (θ0)‖22
η3µ3t2

)
.
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Consequently, we have the bound:∣∣∣E〈tzt − (t− T̃ ∗)z
t−T̃ ∗ , vt

〉∣∣∣ ≤√E
∥∥∥tzt − (t− T̃ ∗)z

t−T̃ ∗

∥∥∥2

2
·
√
E ‖vt‖22

≤ c
√
T̃ ∗
(

σ∗√
ηµt

+
‖∇F (θ0)‖2
η2µ2t2

)(
σ∗ +

‖∇F (θ0)‖2
η3/2µ3/2t

)
≤ c

(
σ2
∗

ηµt
+
‖∇F (θ0)‖22
η4µ4t3

)√
log t.

The bound for the term I1 in the decomposition (60) is given by the following analysis:∣∣∣E〈zt−T̃ ∗ , vt〉∣∣∣ =
∣∣∣E〈zt−T̃ ∗ , E(vt | Ft−T̃ ∗)

〉∣∣∣ ≤√E
∥∥∥zt−T̃ ∗∥∥∥2

2
·
√

E
∥∥∥E(vt | Ft−T̃ ∗)

∥∥∥2

2
, (61)

where the last inequality comes from applying the Cauchy-Schwarz inequality.
The second moment for z

t−T̃ ∗ is relatively easy to estimate using Lemma 10. It suffices to study
the conditional expectation E[vt | Ft−T̃ ∗ ]. We claim the following bound:√

E
∥∥∥E(vt | Ft−T̃ ∗)∥∥∥2

2
≤ cLγ

µ

(
σ̃∗√
ηµt

+
‖∇F (θ0)‖2
η2µ2t2

)(
σ̃∗

µ
√
t

+
‖∇F (θ0)‖2

ηµ2t

)γ
. (62)

We prove this inequality at the end of this section. Taking this bound as given, we now proceed with
the proof for Lemma 11.

Bringing this back to the inequality (61) and by utilizing the zt bound by Lemma 10, we have

E ‖zt−1‖22

≤

1 +
20`2Ξη

µ
+

12`Ξ

µt1/2
+

504 log
(
t
T0

)
`2Ξ

µ2t

 σ2
∗
t

+
9`Ξσ∗
µ
· T0

t2
‖∇F (θ0)‖2 +

183`2Ξ
µ2

· T0

t2
‖∇F (θ0)‖22

≤ C

(
σ2
∗
t

+
‖∇F (θ0)‖22
η2µ2t2

)
,

and thus ∣∣∣E〈zt−T̃ ∗ , vt〉∣∣∣ ≤
√

E
∥∥∥zt−T̃ ∗∥∥∥2

2
·
√
E
∥∥∥E(vt | Ft−T̃ ∗)∥∥∥2

2

≤ cLγ
µ

(
σ∗√
t

+
‖∇F (θ0)‖2

ηµt

)(
σ̃∗√
ηµt

+
‖∇F (θ0)‖22
η2µ2t2

)(
σ̃∗

µ
√
t

+
‖∇F (θ0)‖22

ηµ2t

)γ

≤ cLγ
µ

(
σ̃∗

2+γ

η1/2µ(1+2γ)/2t(3+γ)/2
+

‖∇F (θ0)‖2+γ
2

η(5+2γ)/2µ(5+4γ)/2t(5+2γ)/2

)
.

Combining the bounds for I1 and I2 together, we estimate the cross term as:∣∣E〈tzt, vt〉∣∣ ≤ c(t− T̃ ∗)Lγ
µ

(
σ̃∗

2+γ

η1/2µ(1+2γ)/2t(3+γ)/2
+

‖∇F (θ0)‖2+γ
2

η(5+2γ)/2µ(5+4γ)/2t(5+2γ)/2

)

+ c

(
σ2
∗

ηµt
+
‖∇F (θ0)‖22
η4µ4t3

)√
log t. (63)
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We conclude by dividing both sides of Eq. (63) by T and arrive at the following bound:∣∣E〈vT , zT 〉∣∣
≤ c

(
σ2
∗

ηµT 2
+
‖∇F (θ0)‖22
η4µ4T 4

)√
log T + cLγ

(
σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2
+

‖∇F (θ0)‖2+γ
2

η(5+2γ)/2µ(7+4γ)/2T (5+2γ)/2

)
.

This finishes our bound on the cross term and conclude Lemma 11.

Proof of Eq (62): We note the following expansion:

∇F (θt−1)−∇F (θt−2) =

∫ 1

0
∇2F (λθt−2 + (1− λ)θt−1) (θt−1 − θt−2)dλ,

which leads to the following bound under the Hölder’s continuity condition for the Hessians (Assump-
tion 4): ∥∥∇F (θt−1)−∇F (θt−2)−∇2F (θ∗)(θt−1 − θt−2)

∥∥
2

=

∫ 1

0

∥∥(∇2F (λθt−2 + (1− λ)θt−1)−∇2F (θ∗)
)

(θt−1 − θt−2)
∥∥

2
dλ

≤ ηLγ ‖vt−1‖2
∫ 1

0
‖λ(θt−2 − θ∗) + (1− λ)(θt−1 − θ∗)‖γ2 dλ

≤ ηLγ ‖vt−1‖2 ·max (‖θt−1 − θ∗‖γ2 , ‖θt−2 − θ∗‖γ2) . (64)

Since H∗ = ∇2F (θ∗) we have

t
∥∥∥E(vt | Ft−T̃ ∗)

∥∥∥
2

=
∥∥∥E((t− 1) (vt−1 +∇F (θt−1)−∇F (θt−2)) +∇F (θt−1) | F

t−T̃ ∗

)∥∥∥
2

= ‖E ((t− 1) (vt−1 +H∗(θt−1 − θt−2)

+ ∇F (θt−1)−∇F (θt−2)−H∗(θt−1 − θt−2)) +∇F (θt−1) | F
t−T̃ ∗

)∥∥∥
2

≤
∥∥∥E((t− 1) (vt−1 +H∗(θt−1 − θt−2)) | F

t−T̃ ∗

)∥∥∥
2

+
∥∥∥E(vt | Ft−T̃ ∗)

∥∥∥
2

+
∥∥∥E((t− 1) (∇F (θt−1)−∇F (θt−2)−H∗(θt−1 − θt−2)) | F

t−T̃ ∗

)∥∥∥
2
. (65)

Further by rearranging the terms, and dividing both sides by (t− 1), we obtain∥∥∥E(vt | Ft−T̃ ∗)
∥∥∥

2
≤
∥∥∥E(vt−1 +H∗(θt−1 − θt−2) | F

t−T̃ ∗

)∥∥∥
2

+
∥∥∥E (∇F (θt−1)−∇F (θt−2)−H∗(θt−1 − θt−2)) | F

t−T̃ ∗

∥∥∥
2

≤ (1− ηµ)
∥∥∥E(vt−1 | Ft−T̃ ∗

)∥∥∥
2

+ ηLγE
(
‖vt−1‖2 ·max (‖θt−1 − θ∗‖γ2 , ‖θt−2 − θ∗‖γ2) | F

t−T̃ ∗

)
,
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where in the last inequality we apply the result in Eq. (64). Next by calculating the second moment of
both the RHS and the LHS of the above quantity and the Hölder’s inequality, we have√

E
∥∥∥E(vt | Ft−T̃ ∗)∥∥∥2

2

≤ (1− ηµ)

√
E
∥∥∥E(vt−1 | Ft−T̃ ∗

)∥∥∥2

2
+ ηLγ

√
E
∥∥∥E(‖vt−1‖22 ·

(
‖θt−1 − θ∗‖2γ2 + ‖θt−2 − θ∗‖2γ2

)
| F

t−T̃ ∗

)∥∥∥2

2

≤ (1− ηµ)

√
E
∥∥∥E(vt−1 | Ft−T̃ ∗

)∥∥∥2

2

+ ηLγ

(
E ‖vt−1‖2+2γ

2

) 1
2+2γ

{(
E ‖θt−1 − θ∗‖2+2γ

2

) γ
2+2γ +

(
E ‖θt−2 − θ∗‖2+2γ

2

) γ
2+2γ

}
.

Recursively applying the above inequality from t− T̃ ∗ to t and we have that√
E
∥∥∥E(vt | Ft−T̃ ∗)∥∥∥2

2

≤ (1− ηµ)T̃
∗
E
∥∥∥vt−T̃ ∗∥∥∥2

2
+
Lγ
µ

max
t−T̃ ∗≤s≤t

(
E ‖vs‖2+2γ

2

) 1
2+2γ · max

t−T̃ ∗≤s≤t

(
E ‖θt−2 − θ∗‖2+2γ

2

) γ
2+2γ .

(66)
We recall from Lemmas 13 and 14 the following

(
E ‖vT ‖2+2γ

2

) 1
1+γ ≤ C

(
σ̃∗

2

ηµT 2
+
‖∇F (θ0)‖22
η4µ4T 4

)
, and

(
E ‖∇F (θT−1)‖2+2γ

2

) 1
1+γ ≤ C

(
σ̃∗

2

T
+
‖∇F (θ0)‖22
η2µ2T 2

)
.

Bringing this into Eq. (66) and we have that√
E
∥∥∥E(vt | Ft−T̃ ∗)∥∥∥2

2
≤ (1− ηµ)T̃

∗
E
∥∥∥vt−T̃ ∗∥∥∥2

2

+
cLγ
µ

(
σ̃∗

√
ηµ(t− T̃ ∗)

+
‖∇F (θ0)‖2
η2µ2(t− T̃ ∗)2

)(
σ̃∗

µ
√
t− T̃ ∗

+
‖∇F (θ0)‖2
ηµ2(t− T̃ ∗)

)γ
.

Substituting with the window size T̃ ∗ defined in Eq (59), the above inequality reduces as follows:√
E
∥∥∥E(vt | Ft−T̃ ∗)∥∥∥2

2
≤ cLγ

µ

(
σ̃∗√
ηµt

+
‖∇F (θ0)‖2
η2µ2t2

)(
σ̃∗

µ
√
t

+
‖∇F (θ0)‖2

ηµ2t

)γ
.

C.4. Proof of Theorem 2

Utilizing the intermediate Proposition 1 in §C.3, we now aim to improve the dependency on initialization
and turn to the proof of our multi-epoch nonasymptotic result. Invoking Eq. (57) in Lemma 13, we
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obtain for b = 1, 2, · · · , B the bound for T [ ≥ cT0:

E
∥∥∥∇F (θ

(b+1)
0 )

∥∥∥2

2
≤ 1

e2
E
∥∥∥∇F (θ

(b)
0 )
∥∥∥2

2
+
cσ2
∗

T [
, and√

E
∥∥∥∇F (θ

(b+1)
0 )

∥∥∥4

2
≤ 1

e2

√
E
∥∥∥∇F (θ

(b)
0 )
∥∥∥4

2
+
cσ̃∗

2

T [
,

where our setting of T [ gives a discount factor of 1/e2. Solving the recursion, we arrive at the bound:

E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥2

2
≤ cσ2

∗
T [

+ e−2B ‖∇F (θ0)‖22 , and√
E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥4

2
≤ cσ̃∗

2

T [
+ e−2B

√
E ‖∇F (θ0)‖42.

Our take is B ≥ log
T [
√

E‖∇F (θ0)‖42
cσ2
∗

such that e−2BE ‖∇F (θ0)‖22 ≤
σ2
∗
T [

and e−2B
√

E ‖∇F (θ0)‖42 ≤
σ̃∗

2

T [
both hold. Finally, we have

E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥2

2
≤ e−2BE ‖∇F (θ0)‖22 +

cσ2
∗

T [
≤ c′σ2

∗
T [

, and√
E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥4

2
≤ e−2B

√
E ‖∇F (θ0)‖42 +

cσ̃∗
2

T [
≤ c′σ̃∗

2

T [
, and

E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥2+γ

2
≤
(
E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥4

2

) 2+γ
4

≤ c′σ̃∗
2+γ

(T [)(2+γ)/2
, and

E
∥∥∥∇F (θ

(B+1)
0 )

∥∥∥
2
≤ cσ∗

(T [)1/2
,

where constants c, c′ change from line to line. Substituting this initial condition into the bound (47), we
obtain the final bound:

E
∥∥∥∇F (θ

(B+1)
T )

∥∥∥2

2
− σ2

∗
T

≤ C

`2Ξη
µ

+
`Ξ

µT 1/2
+

log T

ηµT
+

log
(
T
T0

)
`2Ξ

µ2T

 σ2
∗
T

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2

+ C

(
‖∇F (θ0)‖22
η2µ2T 2

+
`Ξσ∗ ‖∇F (θ0)‖2

ηµ2T 2

)
+

CLγ ‖∇F (θ0)‖2+γ
2

η(5+2γ)/2µ(7+4γ)/2T (5+2γ)/2

≤ C

`2Ξη
µ

+
`Ξ

µT 1/2
+

log T

ηµT
+

log
(
T
T0

)
`2Ξ

µ2T

 σ2
∗
T

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2

+ C

(
σ2
∗

ηµT 2
+

Lγ σ̃∗
2+γ

η(3+γ)/2µ(5+3γ)/2T (5+2γ)/2

)

≤ C

`2Ξη
µ

+
`Ξ

µT 1/2
+

log T

ηµT
+

log
(
T
T0

)
`2Ξ

µ2T

 σ2
∗
T

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2T (3+γ)/2
,
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which proves the bound (17).
Finally, substituting T by the final epoch length n − BT [ and adopt similar reasoning as the

previous one, we arrive at the conclusion:

E
∥∥∇F (θfinal

n )
∥∥2

2
− σ2

∗
n
≤ C

`2Ξη
µ

+
`Ξ

µn1/2
+

log n

ηµn
+

log
(
n
T0

)
`2Ξ

µ2n

 σ2
∗
n

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2n(3+γ)/2
,

which proves the bound (17). Plugging η as given by η = c

µ(`2Ξ/µ2)
1−α

nα
∧ 1

4L with c = 0.49, we have

E
∥∥∇F (θfinal

n )
∥∥2

2
≤ C

`2Ξη
µ

+
`Ξ

µn1/2
+

log n

ηµn
+

log
(
n
T0

)
`2Ξ

µ2n

 σ2
∗
n

+
CLγ σ̃∗

2+γ

η1/2µ(3+2γ)/2n(3+γ)/2

≤ C

(
log

(
en

T0

)(
`Ξ
µ
√
n

)2α

+
L

µn

)
σ2
∗
n

+
C(µ(2α−1)/2`1−αΞ nα/2 + L1/2)Lγ σ̃∗

2+γ

µ(3+2γ)/2n(3+γ)/2
.

This concludes (18a) and hence Theorem 2.

C.5. Proof of Corollary 3

The proof consists of two parts: bounds on the mean-squared error E ‖θT − θ∗‖22 and bounds on the
expected objective gap E

[
F (θT )− F (θ∗)

]
. Two technical lemmas are needed in the proofs for both

cases. (Recall we fix our γ = 1)
The first lemma is analogous to Lemma 10, which provides a sharp bound on Gzt for any matrix

G ∈ Rd×d.

Lemma 15 Under settings of Theorem 1, for any matrix G ∈ Rd×d, the following bounds hold true
for T ≥ T0 + 1:

E
[
‖GzT ‖22

]
≤ 1

T
Tr
(
GΣ∗G>

)
+ c|||G|||2op

{`2Ξη
µ

+
`Ξ

µ
√
T

+
log
(
T
T0

)
`2Ξ

µ2T

}σ2
∗
T

+ c|||G|||2op

{`Ξσ∗
µ
· T0

T 2
‖∇F (θ0)‖2 +

T 2
0

T 2
‖∇F (θ0)‖22

}
. (67)

for some universal constant c > 0.

The second lemma is analogous to Lemma 11, and provides sharp bound on the cross term
E〈Gzt, Gvt〉.

Lemma 16 Under settings of Theorem 1, we have the following bound for any T ≥ T0 + 1:

∣∣E〈GvT , GzT 〉∣∣ ≤ c|||G|||2op

(
σ2
∗

ηµT 2
+
‖∇F (θ0)‖22
η4µ4T 4

)
log T

+ c|||G|||2opL1

(
σ̃∗

3

η1/2µ5/2T 2
+
‖∇F (θ0)‖32
η7/2µ11/2T 7/2

)
, (68)

for some universal constant c > 0.
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See §E.4 for the proof of both lemmas.
Taking these two lemmas as given, we now proceed with the proof of Corollary 3.

C.5.1. PROOF OF THE MSE BOUND (21a)

We start with the following decomposition of the gradient:

∇F (θT ) =

∫ 1

0
∇2F

(
ρθ∗ + (1− ρ)θT

)
(θT − θ∗)dρ,

which leads to the following bound under Assumption 4:

∥∥(H∗)−1∇F (θT )− (θT − θ∗)
∥∥

2
≤
∫ 1

0

∥∥(H∗)−1
(
∇2F

(
ρθ∗ + (1− ρ)θT

)
−H∗

)
(θT − θ∗)

∥∥
2
dρ

≤ L1

λmin(H∗)
‖θT − θ∗‖22 ≤

L1

λmin(H∗)µ2
‖∇F (θT )‖22 . (69)

We can then upper bound the mean-squared error using the processes (zt)t≥T0 and (vt)t≥T0 :

E ‖θT − θ∗‖22 ≤ E
(∥∥(H∗)−1∇F (θT )

∥∥
2

+
L1

µ2λmin(H∗)
‖∇F (θT )‖22

)2

≤ E
∥∥(H∗)−1

(
vT+1 − zT+1

)∥∥2

2
+

2L1

λmin(H∗)2µ2
E
[
‖∇F (θT )‖32

]
+

L2
1

λmin(H∗)2µ4
E
[
‖∇F (θT )‖42

]
. (70)

The first term in the bound (70) admits the following decomposition:

E
∥∥(H∗)−1

(
zT+1 − vT+1

)∥∥2

2

= E
∥∥(H∗)−1zT+1

∥∥2

2
+ E

∥∥(H∗)−1vT+1

∥∥2

2
− 2E〈(H∗)−1zT+1, (H∗)−1vT+1〉.

Note that the re-starting scheme in Algorithm 2 gives the initial conditions:

E ‖∇F (θ0)‖22 ≤
cσ2
∗

T0
, and

(
E ‖∇F (θ0)‖42

)1/2
≤ cσ̃∗

2

T0
. (71)

Using these initial conditions, and invoking the Lemma 15 with test matrix G = (H∗)−1, we obtain
the bound:

E
[ ∥∥(H∗)−1zT

∥∥2

2

]
≤ 1

T
Tr
(

(H∗)−1Σ∗(H∗)−>
)

+
c

λmin(H∗)2

{`2Ξη
µ

+
`Ξ

µ
√
T

+
T0

T

}σ2
∗ log T

T
.

Similarly, invoking Lemma 16 with test matrix G = (H∗)−1, we have that:

∣∣E〈(H∗)−1vT , (H∗)−1zT
〉∣∣ ≤ cσ2

∗
√

log T

λmin(H∗)2ηµT 2
+

cL1

λmin(H∗)2µ2
· σ̃∗

3

(ηµ)1/2T 2
.
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For the term E
∥∥(H∗)−1vT

∥∥2

2
, Lemma 9 along with the initial condition yields:

E
∥∥(H∗)−1vT

∥∥2

2
≤ 1

λmin(H∗)2
E ‖vT ‖22 ≤

cσ2
∗

λmin(H∗)2µηT 2
.

Collecting above bounds, we conclude that

E
∥∥(H∗)−1∇F (θT )

∥∥2

2
≤ 1

T
Tr
(

(H∗)−1Σ∗(H∗)−>
)

+
c

λmin(H∗)2

{`2Ξη
µ

+
`Ξ

µ
√
T

+
1

µηT

}σ2
∗ log T

T

+
cL1

λmin(H∗)2µ2
· σ̃∗

3

(ηµ)1/2T 2
. (72)

In order to bound the last two terms of the decomposition (70), we recall from Lemma 13 and the initial
condition (71) that:

(
E ‖∇F (θT )‖42

)1/2
≤ cσ̃∗

2

T
.

Combining with Eq. (72) and substituting into the decomposition (70), we conclude that:

E
[
‖θT − θ∗‖22

]
≤ 1

T
Tr
(

(H∗)−1Σ∗(H∗)−>
)

+
c

λmin(H∗)2

{`2Ξη
µ

+
`Ξ

µ
√
T

+
1

ηµT

}σ2
∗ log T

T

+
cL1

λmin(H∗)2µ2
·

{
σ̃∗

3

(ηµ)1/2T 2
+
σ̃∗

3

T
3
2

+
L1

µ2

σ̃∗
4

T 2

}
.

Note in the last line, the secondO(T−3/2) term is always no smaller than the previous first term. Taking
T = n−BT [ with n ≥ 2BT [, some algebra then completes the proof of the desired bound.

C.5.2. PROOF OF THE OBJECTIVE GAP BOUND (21b)

Applying second-order Taylor expansion with integral remainder, for any θ ∈ Rd, we note the following
identity.

F (θ) = F (θ∗) + 〈θ − θ∗, ∇F (θ∗)〉+ (θ − θ∗)>
∫ 1

0
∇2F

(
ρθ + (1− ρ)θ∗

)
dρ · (θ − θ∗).

Noting that ∇F (θ∗) = 0 and invoking assumption 4, we have that:

F (θ)

≤ F (θ∗) +
1

2
(θ − θ∗)>H∗(θ − θ∗) + ‖θ − θ∗‖2 ·

∫ 1

0
|||∇2F

(
ρθ + (1− ρ)θ∗

)
−H∗|||opdρ · ‖θ − θ∗‖2

≤ F (θ∗) +
1

2
(θ − θ∗)>H∗(θ − θ∗) + L1 ‖θ − θ∗‖32 .

(73)
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Analogous to Eq. (69), we have the bound:∥∥∥(H∗)1/2(θT − θ∗)− (H∗)−1/2∇F (θT )
∥∥∥

2

≤
∫ 1

0

∥∥∥(H∗)−1/2
(
∇2F

(
ρθ∗ + (1− ρ)θT

)
−H∗

)
(θT − θ∗)

∥∥∥
2
dρ

≤ L1√
λmin(H∗)

‖θT − θ∗‖22 ≤
L1

µ2
√
λmin(H∗)

‖∇F (θT )‖22 .

Denote the residual qt := (H∗)1/2(θt − θ∗)− (H∗)−1/2∇F (θt). Substituting into the bound (73), we
have that:

E [F (θT )]− F (θ∗)

≤ 1

2
E
∥∥∥(H∗)−1/2∇F (θ) + qT

∥∥∥2

2
+ L1E ‖θT − θ∗‖32

≤ 1

2
E
∥∥∥(H∗)−1/2∇F (θT )

∥∥∥2

2
+

1√
λmin(H∗)

E
[
‖qt‖2 · ‖∇F (θT )‖2

]
+

1

2
E ‖qt‖22 +

L1

µ3
E ‖∇F (θT )‖32 .

(74)

For the first term, by applying Lemma 16 and 15 with G = (H∗)−1/2, we can obtain the following
bound analogous to Eq. (72):

E
∥∥∥(H∗)−1/2∇F (θT )

∥∥∥2

2
≤ 1

2T
Tr
(
(H∗)−1Σ∗

)
+

c

λmin(H∗)

{`2Ξη
µ

+
`Ξ

µ
√
T

+
1

µηT

}σ2
∗ log T

T

+
cL1

λmin(H∗)µ2
· σ̃∗

3

(ηµ)1/2T 2
.

For the rest of the terms, we recall that Lemma 13 with the initial condition (71) gives the bound(
E ‖∇F (θT )‖42

)1/2 ≤ cσ̃∗2/T . Substituting into the decomposition (73), we obtain that:

E [F (θT )]− F (θ∗) ≤ 1

2T
Tr
(
(H∗)−1Σ∗

)
+

c

λmin(H∗)

{`2Ξη
µ

+
`Ξ

µ
√
T

+
1

µηT

}σ2
∗ log T

T

+
cL1

µ2
· σ̃∗

3

µT
3
2

+
L2

1

µ4
· σ̃∗

4

λmin(H∗)T 2
.

Noting that T = n−BT [ with n ≥ 2BT [, we completes the proof of the desired bound.

C.6. Proof of Theorem 4

Here we provide a two-step proof of Theorem 4. We continue to adopt the vt—zt decomposition as
earlier used, and we proceed with the proof in two steps:
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Step 1: We first claim the following single-epoch result, Eq. (75), that under the setting of Theorem 4
along with ‖∇F (θ0)‖ = O(

√
ηµσ2

∗), the single-epoch estimator produced by Algorithm 1 with burn-

in time T0 =
⌈

24
ηµ

⌉
, as T → ∞, η → 0 such that ηT → ∞ satisfies the following convergence in

probability:

√
TzT −

1√
T

T∑
s=1

εs(θ
∗)

p−→ 0. (75)

Taking this as given, we now combine Eq. (75) with our multi-epoch design Algorithm 2 we can
essentially assume without loss of generality that ‖∇F (θ0)‖ = O(

√
ηµσ2

∗). Under the current scaling
condition, the final long epoch in Algorithm 2 will be triggered with length T = n− T [B, and hence
we apply Eq. (49) so for some C ≤ 56 we have the initial condition holds: E‖∇F (θ

(η)
0 )‖22 ≤

Cσ2
∗

T [
=

O(ηµσ2
∗), so that as ηT →∞,

TE ‖vT ‖22 ≤ O
(
σ2
∗

ηµT
+

ηµσ2
∗

η4µ4T 3

)
→ 0.

Therefore,
√
TvT

p−→ 0 holds.
Now to put together the pieces, note that 1

T

∑T
s=1 εs(θ

∗) is the average of i.i.d. random vectors of
finite second moment. By standard CLT, we have

1√
T

T∑
s=1

εs(θ
∗)

d−→ N (0,Σ∗).

Consequently, replacing T by n− T [B we can apply Slutsky’s rule of weak convergence and obtain
the desired weak convergence: as η → 0, n→∞ such that η(n− T [B)→∞

√
T∇F (θ

(η)
T−1) =

√
TvT −

√
TzT

=
√
TvT −

(
√
TzT −

1√
T

T∑
s=1

εs(θ
∗)

)
− 1√

T

T∑
s=1

εs(θ
∗)

d−→ N (0,Σ∗).

Due to our additional scaling condition, we can further replace T = n − T [B by n, concluding
Theorem 4.

Step 2: We proceed to prove Eq. (75) with the extra initialization condition ‖∇F (θ0)‖ = O(
√
ηµσ2

∗).
By Eqs. (49) and (50), we have for T ≥ T0 there exist constants a1, a2, a3 > 0 independent of η, T but
depends on the problem parameters (µ,L, `Ξ, σ∗, θ0, α), such that

E ‖zT ‖22 ≤
2a2

T
,

and consequently, we have from Eq. (49) that

E ‖vT ‖22 ≤
752σ2

∗
ηµT 2

+
69175

η4µ4T 4
‖∇F (θ0)‖22 ≤

a1

T

(
1

ηT
+

η

η4T 3

)
≤ 2a1

ηT 2
,
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and hence

E ‖∇F (θT−1)‖22 ≤ 2
(
E ‖vT ‖22 + E ‖zT ‖22

)
≤ 4a1

ηT 2
+

4a2

T
≤ 4a3

T
.

Note from the definition in Eq. (31)

tzt = εt(θt−1) + (t− 1)zt−1 + (t− 1)(εt(θt−1)− εt(θt−2)).

By setting At = (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)− εt(θ∗), the process TzT −
∑T

s=1 εs(θ
∗) =∑T

s=1As is a martingale. To conclude the bound (75), we only need to show the following relation as
T →∞ and η → 0:

E

∥∥∥∥∥√TzT − 1√
T

T∑
s=1

εs(θ
∗)

∥∥∥∥∥
2

2

=
1

T

T∑
s=1

E‖As‖2 → 0. (76)

Since we have

E

∥∥∥∥∥∥
T∑

s=T0+1

(s− 1)(εs(θs−1)− εs(θs−2))

∥∥∥∥∥∥
2

2

=

T∑
s=T0+1

(s− 1)2E ‖εs(θs−1)− εs(θs−2)‖22

≤ `2Ξ
T∑

s=T0+1

(s− 1)2E ‖θs−1 − θs−2‖22 = η2`2Ξ

T∑
s=T0+1

(s− 1)2E ‖vs−1‖22

≤ η2`2Ξ

T∑
s=T0+1

(s− 1)2 2a1

η4(s− 1)4
≤

2a1`
2
Ξ

η2T0
.

We note that

E

∥∥∥∥∥∥
T∑

s=T0+1

(εs(θs−1)− εs(θ∗))

∥∥∥∥∥∥
2

2

=
T∑

s=T0+1

E ‖εs(θs−1)− εs(θ∗)‖22

≤ `2Ξ
T∑

s=T0+1

E ‖θs−1 − θ∗‖22 ≤
`2Ξ
µ2
· 4a3 log

(
T

T0

)
.
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Therefore, combining this with E‖At‖22 = E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)− εt(θ∗)‖22 ≤
2`2Ξη

2(t− 1)2E ‖vt−1‖22 +
2`2Ξ
µ2 E ‖∇F (θt−1)‖22 we have as T →∞, η → 0:

1

T

T∑
t=T0+1

E‖At‖22 ≤
1

T

T∑
t=T0+1

E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)− εt(θ∗)‖22

≤ 2`2Ξη
2 · 1

T

T∑
t=T0+1

(t− 1)2E ‖vt−1‖22 +
2`2Ξ
µ2
· 1

T

T∑
t=T0+1

E ‖∇F (θt−1)‖22

≤ 2`2Ξη
2 · 1

T

T∑
t=T0+1

(t− 1)2 2a1

η(t− 1)2
+

2`2Ξ
µ2
· 1

T

T∑
t=T0+1

4a3

t

= 4a1`
2
Ξη +

2`2Ξ
µ2
·

4a3 log
(
T
T0

)
T

,

i.e. the limit (76) holds, which implies
√
TzT − 1√

T

∑T
s=1 εs(θ

∗)
p−→ 0, completing our proof of

Eq. (75).

Appendix D. Asymptotic results for single-epoch fixed-step-size ROOT-SGD

In this section, we complement Theorem 4 in §3.3 and establish an additional asymptotic normality
result for ROOT-SGD with large step-size. Notably, the covariance of such asymptotic distribution is
the sum of the optimal Gaussian limit and a correction term depending on the step-size, which exactly
corresponds to existing results on fine-grained CLT for linear stochastic approximation with fixed
step-size (Mou et al., 2020).

First, in order to obtain asymptotic results for single-epoch constant-step-size ROOT-SGD, we
impose the following slightly stronger assumptions on the smoothness of stochastic gradients and
Hessians:

(CLT.A) For any θ ∈ Rd we have

sup
v∈Sd−1

E
∥∥(∇2f(θ; ξ)−∇2f(θ∗; ξ))v

∥∥2

2
≤ β2 ‖θ − θ∗‖22 . (77a)

(CLT.B) The fourth moments of the stochastic gradient vectors at θ∗ exist, and in particular we have

E ‖∇f(θ∗; ξ)‖42 <∞, and `′Ξ := sup
v∈Sd−1

(
E
∥∥∇2f(θ∗; ξ)v

∥∥4

2

)1/4
<∞. (77b)

Note that both conditions are imposed solely at the optimal point θ∗; we do not impose globally uniform
bounds in Rd.

Defining the random matrix Ξ(θ) := ∇2f(θ; ξ) − ∇2F (θ) for any θ ∈ Rd, we consider the
following matrix equation (a.k.a. modified Lyapunov equation):

ΛH∗ +H∗Λ− ηE
[
Ξ(θ∗)ΛΞ(θ∗)

]
− ηH∗ΛH∗ = ηΣ∗. (78)

in the symmetric matrix Λ. It can be shown that under the given assumptions, this equation has a unique
solution—denoted Λη—which plays a key role in the following theorem.
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Proposition 2 (Asymptotic efficiency, single-epoch ROOT-SGD) Suppose that Assumptions 1, 2,
and 3 are satisfied, as well as (CLT.A) and (CLT.B). Then there exist constants c1, c2, given the step-size
η ∈

(
0, c1( µ

`2Ξ
∧ 1
L ∧

µ1/3

`
′4/3
Ξ

)
)

, and burn-in time T0 = c2
µη , we have

√
T (θT − θ∗)

d−→ N
(
0, (H∗)−1 (Σ∗ + E [Ξ(θ∗)ΛηΞ(θ∗)]) (H∗)−1

)
. (79)

See §D.1 for the proof of this theorem.
A few remarks are in order. First, we observe that the asymptotic covariance in Eq. (79) is the sum

of the matrix (H∗)−1Σ∗(H∗)−1 and an additional correction term defined in Eq. (78). The asymptotic
covariance of (H∗)−1Σ∗(H∗)−1 matches the standard Cramér-Rao lower bound in the asymptotic
statistics literature (van der Vaart and Wellner, 1996; van der Vaart, 2000) and matches the optimal
rates achieved in the theory of stochastic approximation (Kushner and Yin, 2003; Polyak and Juditsky,
1992; Ruppert, 1988). The correction term is of the same form as that of the constant-step-size linear
stochastic approximation of the Polyak-Ruppert-Juditsky algorithm derived in (Mou et al., 2020), while
our Proposition 2 is applicable to more general nonlinear stochastic problems. For instance in our
setting, the correction terms tends to zero as the (constant) step-size decreases to zero, which along
with a trace bound leads to the following asymptotics as T →∞ (see (Mou et al., 2020)):

TE ‖∇F (θT )‖22 ∼ Tr (Σ∗ + E [Ξ(θ∗)ΛηΞ(θ∗)]) ≤
(

1 +
`2Ξη

µ

)
σ2
∗.

The message conveyed by the last display is consistent with the leading two terms in our earlier
nonasymptotic bound Eq. (47) in Proposition 1 in the Hessian-Lipschitz case, and thanks to our
additional smoothness assumptions (CLT.A) and (CLT.B) we are able to characterize this correction
term in a more fine-grained fashion as in the asymptotic covariance of Eq. (79). Second, we note
that Proposition 2 has an additional requirement on the step-size, needing it to be upper bounded by
µ1/3/`

′4/3
Ξ . This is a mild requirement on the step-size. In particular, for applications where the noises

are light-tailed, `′Ξ and `Ξ are of the same order, and the additional requirement η < cµ1/3/`
′4/3
Ξ is

usually weaker than the condition η < cµ
`2Ξ

needed in the previous section.

D.1. Proof of Proposition 2

Denote Ht(θ) := ∇2f(θ; ξt) and Ξt(θ) := Ht(θ) − ∇2F (θ). Intuitively, since the sequence θt is
converging to θ∗ at a 1/

√
t rate, replacing θs−1 with θ∗ will only lead to a small change in the sum.

For the martingale Ψt, each term can be written as:

t(εt(θt−1)− εt(θt−2)) = t

∫ 1

0
Ξt (ρθt−2 + (1− ρ)θt−1) (θt−1 − θt−2)dρ.

By Assumption (CLT.A), this quantity should approach ηΞt(θ
∗) · (tvt−1). If we can show the conver-

gence of the sequence {tvt}t≥T0 to a stationary distribution, then the asymptotic result follows from
the Birkhoff ergodic theorem and a martingale CLT. While the process {tvt}t≥T0 is not Markovian, we
show that it can be well-approximated by a time-homogeneous Markov process that we construct in the
proof.
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In particular, consider the auxiliary process {yt}t≥T0 , initialized as yT0 = T0vT0 and updated as

yt = yt−1 − ηHt(θ
∗)yt−1 + εt(θ

∗), for all t ≥ T0 + 1. (80)

Note that {yt}t≥T0 is a time-homogeneous Markov process that is coupled to {(θt, vt, zt)}t≥T0 . We
have the following coupling estimate:

Lemma 17 Supposing that Assumptions 1, 2 and 3, as well as Conditions (CLT.A) and (CLT.B) hold,
then for any iteration t ≥ T0 and any step-size η ∈ (0, 1

4L ∧
µ

8`2Ξ
), we have

E ‖tvt − yt‖22 ≤
c0√
t
,

for a constant c0 depending on the smoothness and strong convexity parameters L, `Ξ, µ, β and the
step-size η, but independent of t.

See §F.1 for the proof of this lemma.

We also need the following lemma, which provides a convenient bound on the difference Ht(θ)−
Ht(θ

∗) for a vector θ chosen in the data-dependent way.

Lemma 18 Suppose that Assumptions 1, 2 and 3, as well as Conditions (CLT.A) and (CLT.B) hold.
Then for any iteration t ≥ T0, any step-size η ∈ (0, 1

4L ∧
µ

8`2Ξ
) and for any random vector θ̃t−1 ∈ Ft−1,

we have

E
∥∥∥[Ht(θ̃t−1)−Ht(θ

∗)
]
yt−1

∥∥∥2

2
≤ c1

√
E
∥∥∥θ̃t−1 − θ∗

∥∥∥2

2
,

where c1 is a constant independent of t and the choice of θ̃t−1.

See §F.2 for the proof of this lemma.

Finally, the following lemma characterizes the behavior of the process {yt}t≥T0 defined in Eq. (80):

Lemma 19 Suppose that Assumptions 1, 2 and 3, as well as Conditions (CLT.A) and (CLT.B) hold.
Then for any iteration t ≥ T0 and any step-size η ∈ (0, 1

4L ∧
µ

16`2Ξ
∧ µ1/3

6(`Ξ)4/3 ), we have

E(yt) = 0 for all t ≥ T0, and sup
t≥T0

E ‖yt‖42 < a′,

for a constant a′ > 0, which is independent of t. Furthermore, the process {yt}t≥0 has a stationary
distribution with finite second moment, and a stationary covariance Qη that satisfies the equation

H∗Qη +QηH
∗ − η [H∗QηH

∗ + E(Ξ(θ∗)QηΞ(θ∗))] =
1

η
Σ∗.
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See §F.3 for the proof of this lemma.

Taking these three lemmas as given, we now proceed with the proof of Proposition 2. We first
define two auxiliary processes:

NT :=
T∑

t=T0+1

εt(θ
∗), ΥT := η

T∑
t=T0+1

Ξt(θ
∗)yt−1.

Observe that both NT and ΥT are martingales adapted to (Ft)t≥T0 . In the following, we first bound
the differences ‖MT −NT ‖2 and ‖ΨT −ΥT ‖2, respectively, and then show the limiting distribution
results for NT + ΥT .

By Theorem 1, define a0 := 28σ2
∗

µ2 + 2700
η2µ4T0

‖∇F (θ0)‖22, we have

E ‖θt − θ∗‖22 ≤
1

µ2
E ‖∇F (θt)‖22 ≤

2700 ‖∇F (θ0)‖22
η2µ4(t+ 1)2

+
28 σ2

∗
µ2(t+ 1)

≤ a0

t+ 1
, for all t ≥ T0.

(81)

Applying the bound (81) with Assumption 3, we have

E ‖MT −NT ‖22 =
T∑

t=T0+1

E ‖εt(θt−1)− εt(θ∗)‖22 ≤ `
2
Ξ

T∑
t=T0+1

E ‖θt−1 − θ∗‖22 ≤ a0`
2
Ξ log T. (82)

For the process ΥT , by the Cauchy-Schwartz inequality, we have

E ‖ΨT −ΥT ‖22 =

T∑
t=T0+1

E ‖ηΞt(θ
∗)yt−1 − (t− 1)(εt(θt−1)− εt(θt−2))‖22

≤ η2
T∑

t=T0+1

E
∫ 1

0
‖Ξt(θ∗)yt−1 − Ξt(ρθt−1 + (1− ρ)θt−2; ξt)(t− 1)vt−1‖22 dρ ≤ II + I2,

where we define

I1 := 2η2
T∑

t=T0+1

E
∫ 1

0
‖(Ξt(θ∗)− Ξt(ρθt−1 + (1− ρ)θt−2)) yt−1‖22 dρ, and

I2 := 2η2
T∑

t=T0+1

E
∫ 1

0
‖Ξt(ρθt−1 + (1− ρ)θt−2)(yt−1 − (t− 1)vt−1)‖22 dρ.

We bound each of these two terms in succession.

Bound on I1: In order to bound the term I1, we apply Lemma 18 with the choice

θ̃t−1 = ρθt−1 + (1− ρ)θt−2 ∈ Ft−1,
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so as to obtain

E
∥∥∥(Ht(θ̃t−1)−Ht(θ

∗)
)
yt−1

∥∥∥2

2
≤ c1

√
E
∥∥∥θ̃t − θ∗∥∥∥2

2
.

Applying the Cauchy-Schwartz inequality yields

E
∥∥∥(∇2F (θ̃t−1)−∇2F (θ∗)

)
yt−1

∥∥∥2

2
≤ E

∥∥∥(Ht(θ̃t−1)−Ht(θ
∗)
)
yt−1

∥∥∥2

2
≤ c1

√
E
∥∥∥θ̃t − θ∗∥∥∥2

2
.

Putting the two bounds together, we obtain:

E
∥∥∥(Ξt(θ̃t−1)− Ξt(θ

∗)
)
yt−1

∥∥∥2

2

≤ 2E
∥∥∥(Ht(θ̃t−1)−Ht(θ

∗)
)
yt−1

∥∥∥2

2
+ 2E

∥∥∥(∇2F (θ̃t−1)−∇2F (θ∗)
)
yt−1

∥∥∥2

2

≤ 4c1

√
E
∥∥∥θ̃t − θ∗∥∥∥2

2
.

Thus, we find that

E ‖(Ξt(θ∗)− Ξt(ρθt−1 + (1− ρ)θt−2)) yt−1‖22 ≤ 4c1

√
E ‖ρθt−1 + (1− ρ)θt−2 − θ∗‖22

≤ 4c1

(√
E ‖θt−1 − θ∗‖22 +

√
E ‖θt−2 − θ∗‖22

)
≤ 4c1

√
a0

(
1√
t− 1

+
1√
t− 2

)
≤

16c1
√
a0√
t

,

where in the last step we used the inequality (81). Summing over t from T0 + 1 to T yields the bound

I1 ≤ 2η2
T∑

t=T0+1

16c1
√
a0√
t
≤ 64η2c1

√
a0T .

Bound on I2: Turning to the term I2, by Assumption 3 and Lemma 17, we note that:

I2 ≤ 2η2
T∑

t=T0+1

`2ΞE ‖yt−1 − (t− 1)vt−1‖22 ≤ 2η2`2Ξ

T∑
t=T0+1

c0√
t
≤ 4η2`2Ξc0

√
T .

Putting these inequalities together, we conclude that:

E ‖ΨT −ΥT ‖22 ≤ (64η2c1
√
a0 + 4η2`2Ξc0)

√
T . (83)

Now we have the estimates for the quantities ‖ΨT −ΥT ‖2 and ‖MT −NT ‖2. In the following,
we first prove the CLT for NT + ΥT , and then use the error bounds to establish CLT for MT + ΨT ,
which ultimately implies the desired limiting result for

√
T (θT − θ∗)

Define νt := εt(θ
∗) + ηΞt(θ

∗)yt−1. By definition, NT + ΥT =
∑T

t=T0
νt, and we have

E(νtν
>
t ) = E(εt(θ

∗)εt(θ
∗)>) + E

(
Ξt(θ

∗)yt−1y
>
t−1Ξt(θ

∗)>
)

+ E
(
εt(θ

∗)y>t−1Ξt(θ
∗)>
)

+ E
(

(Ξt(θ
∗)yt−1εt(θ

∗)>
)
.

55



LI MOU WAINWRIGHT JORDAN

For the first term, we have E(εt(θ
∗)εt(θ

∗)>) = Σ∗ by definition.
For the second term, according to Lemma 19, we note that the time-homogeneous Markov process

{yt}t≥T0 converges asymptotically to a stationary distribution with covariance Qη. Invoking the
Birkhoff ergodic theorem, we have

1

T

T∑
t=T0+1

E
(

Ξt(θ
∗)yt−1y

>
t−1Ξt(θ

∗)> | Ft−1

)
= E(Ξ(θ∗)⊗ Ξ(θ∗))

 1

T

T∑
t=T0+1

yt−1y
>
t−1


p−→ E

(
Ξ(θ∗)QηΞ(θ∗)>

)
.

For the cross terms, we note that:

E
(
εt(θ

∗)y>t−1Ξt(θ
∗)>|Ft−1

)
= E(ε(θ∗)⊗ Ξ(θ∗))[yt−1].

Note that by Lemma 19, we have E(yt) = 0 for any t ≥ T0. By the weak law of large numbers, we
have 1

T

∑T
t=T0+1 yt

p−→ 0. Putting together these inequalities, we find that

1

T

T∑
t=T0+1

E
(
νtν
>
t | Ft−1

)
=

1

T

T∑
t=T0+1

(
Σ∗ + η2E(Ξ(θ∗)⊗ Ξ(θ∗))[yty

>
t ]

+ ηE(ε(θ∗)⊗ Ξ(θ∗))[yt−1] + ηE(Ξ(θ∗)⊗ ε(θ∗))[yt−1]
)
,

and hence the random matrix 1
T

∑T
t=T0+1 E

(
νtν
>
t | Ft−1

)
converges in probability to the matrix

Σ∗ + E
(

Ξ(θ∗)ΛηΞ(θ∗)>
)
.

To prove the limiting distribution result, we use standard martingale CLT (c.f. Corollary 3.1 in Hall
and Heyde (1980)). It remains to verify the conditional Lindeberg condition. Indeed, for any ε > 0, a
straightforward calculation yields:

RT (ε) :=

T∑
t=T0+1

E

(∥∥∥∥ νt√
T

∥∥∥∥2

2

1∥∥∥ νt√
T

∥∥∥
2
>ε
|Ft−1

)
(i)

≤ 1

T

T∑
t=T0+1

√
E
(
‖νt‖42 |Ft−1

)
·
√
P
(
‖νt‖2 > ε

√
T |Ft−1

) (ii)

≤ 1

T

T∑
t=T0+1

1

(ε
√
T )2

E
(
‖νt‖42 |Ft−1

)
.

In step (i), we use the Cauchy-Schwartz inequality, and in step (ii), we use the Markov inequality to
bound the conditional probability.

Using the condition (CLT.B) and Young’s inequality, we note that:

E
(
‖νt‖42 |Ft−1

)
≤ 8E ‖ε(θ∗)‖42 + 8(`Ξ)4 ‖yt−1‖42 .
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Plugging back to the upper bound for RT (ε), and applying Lemma 19, as T →∞, we have

E[RT (ε)] ≤ 8

Tε2
E ‖ε(θ∗)‖42 +

8(`Ξ)4

T 2ε2

T∑
t=T0+1

E ‖yt−1‖42 ≤
8

Tε2
E ‖ε(θ∗)‖42 +

8(`Ξ)4

Tε2
a′ → 0.

Note that RT (ε) ≥ 0 by definition. The limit statement implies that RT (ε)
p−→ 0, for any ε > 0.

Therefore, the conditional Lindeberg condition holds true, and we have the CLT:

NT + ΥT√
T

d−→ N (0,Σ∗ + E [Ξ(θ∗)ΛηΞ(θ∗)]) .

By the second-moment estimates (82) and (83), we have

‖ΥT −ΨT ‖2√
T

p−→ 0,
‖MT −NT ‖2√

T

p−→ 0.

With the burn-in time T0 fixed, we also have T0
T zT0

p−→ 0. By Slutsky’s theorem, we have
√
TzT

d−→ N
(

0,Σ∗ + E
(

Ξ(θ∗)ΛηΞ(θ∗)>
))

.

Note that ∇F (θt−1) = vt − zt. By Lemma 17 and Lemma 19, we have

E ‖vt‖22 ≤
2

t2
E ‖tvt − yt‖22 +

2

t2
E ‖yt‖22 ≤

2

t2

(√
a′ +

c0√
t

)
,

which implies that
√
tvt

p−→ 0. Recall that zt = vt −∇F (θt−1). By Slutsky’s theorem, we obtain:
√
T · ∇F (θT )

d−→ N (0,Σ∗ + E [Ξ(θ∗)ΛηΞ(θ∗)]) .

Finally, we note that for θ ∈ Rd, we have

‖∇F (θ)−H∗(θ − θ∗)‖2 =

∥∥∥∥∫ 1

0
∇2F (θ∗ + ρ(θ − θ∗))(θ − θ∗)dρ−H∗(θ − θ∗)

∥∥∥∥
2

≤
∫ 1

0
|||∇2F (θ∗ + ρ(θ − θ∗))−H∗|||op · ‖θ − θ∗‖2 dρ

≤ ‖θ − θ∗‖2 · sup
‖θ′−θ∗‖2≤‖θ−θ∗‖2

|||∇2F (θ′)−H∗|||op.

By Assumption (CLT.A), we have

∀v ∈ Sd−1, θ ∈ Rd
∥∥(∇2F (θ)−∇2F (θ∗))v

∥∥2

2
≤ E

∥∥(∇2f(θ; ξ)−∇2f(θ∗; ξ))v
∥∥2

2
≤ β2 ‖θ − θ∗‖22 .

Consequently, we have the bound:

‖∇F (θ)−H∗(θ − θ∗)‖2 ≤ ‖θ − θ
∗‖2 · sup

‖θ′−θ∗‖2≤‖θ−θ∗‖2
sup

v∈Sd−1

∥∥(∇2F (θ′)−H∗)v
∥∥

2
≤ β ‖θ − θ∗‖22 .

By Eq. (81), we have
√
T ‖∇F (θT )−H∗(θT − θ∗)‖2

p−→ 0. Invoking Slutsky’s theorem, this

leads to
√
TH∗(θT − θ∗)

d−→ N
(
0,Σ∗ + E

(
Ξ(θ∗)ΛηΞ(θ∗)>

))
, and consequently,

√
T (θT − θ∗)

d−→ N
(

0, (H∗)−1
(

Σ∗ + E
[
Ξ(θ∗)ΛηΞ(θ∗)>

])
(H∗)−1

)
,

which finishes the proof.
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Appendix E. Proofs of auxiliary lemmas in §C.3, §C.4 and §C.5

E.1. Proof of Lemma 13

Recall that we have the recursive update rule of zt as

tzt = (t− 1)zt−1 + (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1).

Taking fourth moments on both sides, we have

E ‖tzt‖42 = E ‖(t− 1)zt−1 + (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42
= E ‖(t− 1)zt−1‖42 + E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

+ 4E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖32 ‖(t− 1)zt−1‖2
+ 6E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖22 ‖(t− 1)zt−1‖22 , (84)

where one of the terms is zeroed out. By Hölder’s inequality and Young’s inequality, we bound the
third term and the fourth term of the RHS as

E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖32 ‖(t− 1)zt−1‖2

≤
(
E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

)3/4 (
E ‖(t− 1)zt−1‖42

)1/4

≤ 1

2

(
E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

)1/2 (
E ‖(t− 1)zt−1‖42

)1/2

+
1

2
E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42 ,

and

E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖22 ‖(t− 1)zt−1‖22

≤
(
E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

)1/2 (
E ‖(t− 1)zt−1‖42

)
.

Thus Eq. (84) continues as

E ‖tzt‖42 ≤ E ‖(t− 1)zt−1 + (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42
= E ‖(t− 1)zt−1‖42 + 3E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

+ 8
(
E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

)1/2 (
E ‖(t− 1)zt−1‖42

)
≤
(√

E ‖(t− 1)zt−1‖42 + 4

√
E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42

)2

,

where

E ‖(t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)‖42
≤ 27(t− 1)4E ‖εt(θt−1)− εt(θt−2)‖42 + 27E ‖εt(θt−1)− εt(θ∗)‖42 + 27E ‖εt(θ∗)‖42

≤ 27`4Ξη
4(t− 1)4E ‖vt−1‖42 +

27`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 27σ̃∗
4.
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Then

t2
√
E ‖zt‖42 ≤

√
E ‖(t− 1)zt−1‖42 + 12

√
3`2Ξη

2
√
E ‖(t− 1)vt−1‖42 +

12
√

3`2Ξ
µ2

√
E ‖∇F (θt−1)‖42 + 12

√
3σ̃∗

2.

Combining this with Eq. (91) in Lemma 20 that√
E ‖tvt‖42 ≤

(
1− ηµ

2

)√
E ‖(t− 1)vt−1‖42 +

5

ηµ

√
E ‖∇F (θt−1)‖42 + 14σ̃∗

2.

By the choice of η satisfying η ≤ 1
56L ∧

µ
64`2Ξ

, we have `2Ξ
µ2 ≤ 1

64ηµ and

t2
√
E ‖zt‖42 + t2

√
E ‖vt‖42 ≤

√
E ‖(t− 1)zt−1‖42 +

√
E ‖(t− 1)vt−1‖42 +

6

ηµ

√
E ‖∇F (θt−1)‖42 + 35σ̃∗

2.

Recursively applying the above inequality and by observing that
√
E ‖∇F (θt−1)‖42 ≤ 2

√
E ‖zt‖42 +

2
√
E ‖vt‖42, we have

T 2
√

E ‖∇F (θT−1)‖42 ≤ 2T 2
√
E ‖zT ‖42 + 2T 2

√
E ‖vT ‖42

≤ 2

√
E ‖T0zT0‖

4
2 + 2

√
E ‖T0vT0‖

4
2 +

12

ηµ

T∑
t=T0+1

√
E ‖∇F (θt−1)‖42 + 70(T − T0)σ̃∗

2. (85)

Further for T0zT0 and T0vT0 we note that by applying Khintchine’s inequality as well as Young’s
inequality we have

E ‖T0zT0‖
4
2 = E

∥∥∥∥∥
T0∑
t=1

εt(θ0)

∥∥∥∥∥
4

2

≤ E

(
T0∑
t=1

‖εt(θ0)‖22

)2

≤ T0E
T0∑
t=1

‖εt(θ0)‖42 ≤ 8T 2
0

(
`4Ξ
µ4

E ‖∇F (θ0)‖42 + σ̃∗
4

)
,

(86)

and

E ‖T0vT0‖
4
2 = E ‖T0zT0‖

4
2 + E ‖T0∇F (θ0)‖42 + 4E ‖T0zT0‖

3
2 ‖T0∇F (θ0)‖2 + 6E ‖T0zT0‖

2
2 ‖T0∇F (θ0)‖22

≤ 7E ‖T0vT0‖
4
2 + 5E ‖T0∇F (θ0)‖42 ≤ 56T 2

0

(
`4Ξ
µ4

E ‖∇F (θ0)‖42 + σ̃∗
4

)
+ 5T 4

0 E ‖∇F (θ0)‖42 .

(87)

Taking squared root on Eq. (86) and (87) and recalling that η ≤ µ
64`2Ξ

, we have√
E ‖T0zT0‖

4
2 ≤ 2

√
2T0

(
`2Ξ
µ2

√
E ‖∇F (θ0)‖42 + σ̃∗

2

)
, (88)

and √
E ‖T0vT0‖

4
2 ≤ (

√
5 + 1/8)T 2

0

√
E ‖∇F (θ0)‖42 + 8T0σ̃∗

2. (89)
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Bringing Eq. (88) and (89) into Eq. (85), we arrive at the following:

T 2
√

E ‖∇F (θT−1)‖42 ≤ 4
√

2T0

(
`2Ξ
µ2

√
E ‖∇F (θ0)‖42 + σ̃∗

2

)
+ (2
√

5 + 1/4)T 2
0

√
E ‖∇F (θ0)‖42

+ 16T0σ̃∗
2 +

12

ηµ

T∑
t=T0+1

√
E ‖∇F (θt−1)‖42 + 70(T − T0)σ̃∗

2

≤ 5T 2
0

√
E ‖∇F (θ0)‖42 +

12

ηµ

T∑
t=T0+1

√
E ‖∇F (θt−1)‖42 + 70T σ̃∗

2. (90)

Dividing both sides by T 2, summing up Eq. (90) from T = T0 + 1 to T ∗ ≥ T0 + 1 and using the fact
that η ≤ µ

64`2Ξ
, T0 ≥ 2, we have

T ∗∑
T=T0+1

√
E ‖∇F (θT−1)‖42 ≤ 5T0

√
E ‖∇F (θ0)‖42 +

12

ηµT0

T ∗∑
t=T0+1

√
E ‖∇F (θt−1)‖42 + 70σ̃∗

2 log

(
T ∗

T0

)
.

Taking T0 =
⌈

24
ηµ

⌉
, we have

T ∗∑
T=T0+1

√
E ‖∇F (θT−1)‖42 ≤ 10T0

√
E ‖∇F (θ0)‖42 + 140σ̃∗

2 log

(
T ∗

T0

)
.

Again by Eq. (90), we have

T 2
√
E ‖∇F (θT−1)‖42

≤ 5T 2
0

√
E ‖∇F (θ0)‖42 +

12

ηµ

(
10T0

√
E ‖∇F (θ0)‖42 + 140σ̃∗

2 log

(
T

T0

))
+ 70T σ̃∗

2

≤ 10T 2
0

√
E ‖∇F (θ0)‖42 + 70T0σ̃∗

2 log

(
T

T0

)
+ 70T σ̃∗

2.

Dividing both sides by T 2 we conclude that√
E ‖∇F (θT−1)‖42 ≤

10T 2
0

T 2

√
E ‖∇F (θ0)‖42 + 70

(
1 +

T0

T
log

(
T

T0

))
σ̃∗

2

T

≤ 10T 2
0

T 2

√
E ‖∇F (θ0)‖42 +

140σ̃∗
2

T
.

which finishes our proof of Lemma 13.

E.2. Proof of Lemma 14

Our main technical tools is the following lemma, which bound the fourth moment of the vt recursion.
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Lemma 20 Under the setting of Proposition 1, when η ≤ 1
56L ∧

µ
64`2Ξ

, we have the following bound
for t ≥ T0 + 1√

E ‖tvt‖42 ≤
(

1− ηµ

2

)√
E ‖(t− 1)vt−1‖42 +

5

ηµ

√
E ‖∇F (θt−1)‖42 + 14σ̃∗

2. (91)

The detailed proof is relegated to §E.3.1. We are ready for the proof of Lemma 14. Indeed, from (57)
and (91)

t2
√
E ‖vt‖42 ≤

(
1− ηµ

2

)
(t− 1)2

√
E ‖vt−1‖42 +

5

ηµ

[
60 ‖∇F (θ0)‖22

η2µ2t2
+

140 σ̃∗
t

]
+ 14σ̃∗

2

≤
(

1− ηµ

2

)
(t− 1)2

√
E ‖vt−1‖42 +

310 ‖∇F (θ0)‖22
η3µ3t2

+ 714σ̃∗
2. (92)

We have from (92)

t4
√
E ‖vt‖42 ≤

(
1− ηµ

2

)
t2(t− 1)2

√
E ‖vt−1‖42 +

310 ‖∇F (θ0)‖22
η3µ3

+ 714σ̃∗
2t2

≤
(

1− ηµ

6

)
(t− 1)4

√
E ‖vt−1‖42 +

310 ‖∇F (θ0)‖22
η3µ3

+ 714σ̃∗
2t2,

since the following holds t2

(t−1)2 ≤
1− ηµ

6

(1− ηµ
6

)3 ≤
1− ηµ

6

1− ηµ
2

This gives, by solving the recursion,

T 4
√
E ‖vT ‖42 ≤

(
1− ηµ

6

)T−T0

T 4
0

√
E ‖vT0‖

4
2 +

T∑
t=T0+1

(
1− ηµ

6

)T−t [310 ‖∇F (θ0)‖22
η3µ3

+ 714σ̃∗
2t2

]

≤
(

1− ηµ

6

)T−T0

T 4
0

√
E ‖vT0‖

4
2 +

T∑
t=T0+1

(
1− ηµ

6

)T−t 310 ‖∇F (θ0)‖22
η3µ3

+
T∑

t=T0+1

(
1− ηµ

6

)T−t
714σ̃∗

2t2

≤
(

1− ηµ

6

)T−T0

T 4
0

√
E ‖vT0‖

4
2 +

6

ηµ
·

310 ‖∇F (θ0)‖22
η3µ3

+
6

ηµ
T 2 · 714σ̃∗

2

≤
(

1− ηµ

6

)T−T0

T 4
0

√
E ‖vT0‖

4
2 +

187500 ‖∇F (θ0)‖22
η4µ4

+
(714)(6)σ̃∗

2

ηµ
T 2. (93)

where the summand is increasing so

T∑
t=T0+1

(
1− ηµ

6

)T−t
t2 ≤ 6

ηµ
T 2.

All in all, this concludes√
E ‖vT ‖42 ≤

(
1− ηµ

6

)T−T0 T 4
0

T 4

√
E ‖vT0‖

4
2 +

187500 ‖∇F (θ0)‖22
η4µ4T 4

+
(714)(6)σ̃∗

2

ηµT 2

≤
(

1− ηµ

6

)T−T0 T 4
0

T 4

√
E ‖vT0‖

4
2 +

187500 ‖∇F (θ0)‖22
η4µ4T 4

+
(714)(6)σ̃∗

2

ηµT 2
.
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Bringing the burn-in upper bounds (89), we arrive at our final result for bounding
√
E ‖vT ‖42:√

E ‖vT ‖42 ≤
(

3T 4
0

T 4

√
E ‖∇F (θ0)‖42 +

8T 3
0

T 4
σ̃∗

2

)
+

187500 ‖∇F (θ0)‖22
η4µ4T 4

+
(714)(6)σ̃∗

2

ηµT 2

≤
1359375 ‖∇F (θ0)‖22

η4µ4T 4
+

4484σ̃∗
2

ηµT 2
.

E.3. Proofs of recursive bounds on vt
In this section, we prove Lemma 20 and 12, the two recursive bounds for {vt}t≥T0 used in the proof of
main theorems.

E.3.1. PROOF OF LEMMA 20

By definition, we note that:

tvt = (t− 1) (vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt)) +∇f(θt−1; ξt).

Subtracting off a ∇F (θt−1) term from both sides we have

tvt −∇F (θt−1) = (t− 1) (vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt)) +∇f(θt−1; ξt)−∇F (θt−1)︸ ︷︷ ︸
=εt(θt−1)

.

Taking the fourth moments on both sides, we have

E ‖tvt −∇F (θt−1)‖42
= E ‖(t− 1)vt−1 + (t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42
= (t− 1)4E ‖vt−1‖42 + 4E

[
‖(t− 1)vt−1‖22

〈
(t− 1)vt−1, (t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)

〉]
︸ ︷︷ ︸

=:T2

+ 6E
[
‖(t− 1)vt−1‖22 ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖22

]
︸ ︷︷ ︸

=:T1

+ 4E
[
‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖32 ‖(t− 1)vt−1‖2

]
︸ ︷︷ ︸

=:T3

+ E
[
‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

]
. (94)

To bound term T1, we apply the Hölder’s inequality and have

T1 ≤ 6
(
E ‖(t− 1)vt−1‖42

)1/2 (
E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

)1/2
. (95)

To bound term T3, we again apply the Hölder’s inequality:

T3 ≤ 4
(
E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

)3/4 (
E ‖(t− 1)vt−1‖42

)1/4

≤ 2
(
E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

)1/2 (
E ‖(t− 1)vt−1‖42

)1/2

+ 2E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42 . (96)
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To bound term T2, we first take expectation with respect to ξt and have

T2 = 4E
[
‖(t− 1)vt−1‖22

〈
(t− 1)vt−1, (t− 1) (∇F (θt−1)−∇F (θt−2))

〉]
,

where 〈
vt−1, ∇F (θt−1)−∇F (θt−2)

〉
≤ − 1

ηL
‖∇F (θt−1)−∇F (θt−2)‖22

and 〈
vt−1, ∇F (θt−1)−∇F (θt−2)

〉
≤ −µ

η
‖θt−1 − θt−2‖22

holds true for any µ-strongly convex and L-smooth F . Then we have

T2 ≤ −(t− 1)4E
[
‖vt−1‖22

(
1

ηL
‖∇F (θt−1)−∇F (θt−2)‖22 + 3ηµ ‖vt−1‖22

)]
= −3ηµ(t− 1)4E ‖vt−1‖42 −

(t− 1)4

ηL
E ‖vt−1‖22 ‖∇F (θt−1)−∇F (θt−2)‖22

≤ −3ηµ(t− 1)4E ‖vt−1‖42 −
(t− 1)4

ηL

(
E ‖vt−1‖42

)1/2 (
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2
.

(97)

Combining Eqs. (95), (96) and (97) into Eq. (94) we have

E ‖tvt −∇F (θt−1)‖42
≤ (t− 1)4E ‖vt−1‖42 + 3E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

+ 8
(
E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

)1/2 (
E ‖(t− 1)vt−1‖42

)1/2

− 3ηµ(t− 1)4E ‖vt−1‖42 −
(t− 1)4

ηL

(
E ‖vt−1‖42

)1/2 (
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2
. (98)

We now turn to bound the term E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42 by the
following decomposition scheme:

E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42
≤ E ‖(t− 1)(∇F (θt−1)−∇F (θt−2)) + (t− 1)(εt(θt−1)− εt(θt−2)) + εt(θt−1)− εt(θ∗) + εt(θ

∗)‖42
≤ 8(t− 1)4 E ‖∇F (θt−1)−∇F (θt−2) + εt(θt−1)− εt(θt−2)‖42︸ ︷︷ ︸

=:I1

+8E ‖εt(θt−1)− εt(θ∗) + εt(θ
∗)‖42︸ ︷︷ ︸

=:I2

.

(99)

We claim that

I1 ≤ 5E ‖∇F (θt−1)−∇F (θt−2)‖42 + 7`4Ξη
4E ‖vt−1‖42 , (100)
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and

I2 ≤ 8E ‖εt(θt−1)− εt(θ∗)‖42 + 8E ‖εt(θ∗)‖42 ≤
8`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 8σ̃∗
4. (101)

Combining Eq. (99), (100) and (101) we have the bound

E ‖(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt)) + εt(θt−1)‖42

≤ 40(t− 1)4E ‖∇F (θt−1)−∇F (θt−2)‖42 + 56`4Ξη
4(t− 1)4E ‖vt−1‖42 +

64`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 64σ̃∗
4.

(102)

Then, we bring Eq. (102) into Eq. (98) and have

E ‖tvt −∇F (θt−1)‖42
≤ (t− 1)4E ‖vt−1‖42 + 120(t− 1)4E ‖∇F (θt−1)−∇F (θt−2)‖42 + 168`4Ξη

4(t− 1)4E ‖vt−1‖42

+
192`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 192σ̃∗
4 + 8

√
40(t− 1)4

(
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2 (
E ‖vt−1‖42

)1/2

+ 64`2Ξη
2(t− 1)4E ‖vt−1‖42 + 64

(
`4Ξ
µ4

E ‖∇F (θt−1)‖42 + σ̃∗
4

)1/2 (
E ‖vt−1‖42

)1/2

− 3ηµ(t− 1)4E ‖vt−1‖42 −
(t− 1)4

ηL

(
E ‖vt−1‖42

)1/2 (
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2

≤
(
1− 3ηµ+ 64`2Ξη

2 + 168`4Ξη
4
)
E ‖(t− 1)vt−1‖42

+

(
8
√

40− 1

ηL
+ 120L2η2

)
(t− 1)4

(
E ‖vt−1‖42

)1/2 (
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2

+ 64

(
`4Ξ
µ4

E ‖∇F (θt−1)‖42 + σ̃∗
4

)1/2 (
E ‖vt−1‖42

)1/2
+

192`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 192σ̃∗
4

≤ (1− ηµ)2 E ‖(t− 1)vt−1‖42 + 64

(
`4Ξ
µ4

E ‖∇F (θt−1)‖42 + σ̃∗
4

)1/2 (
E ‖vt−1‖42

)1/2

+
192`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 192σ̃∗
4,

where the last inequality is due to the choice of η ≤ µ
64`2Ξ

and η ≤ 1
56L such that

168`4Ξη
4 ≤ η2µ2, `2Ξη

2 ≤ ηµ and 8
√

40− 1

ηL
+ 120L2η2 ≤ 0.

Taking squared root on both sides, we have√
E ‖tvt −∇F (θt−1)‖42 ≤ (1− ηµ)

√
E ‖(t− 1)vt−1‖42 + 32

(
`2Ξ
µ2

√
E ‖∇F (θt−1)‖42 + σ̃∗

2

)
.

(103)
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Furthermore, Young’s inequality gives13

E ‖tvt −∇F (θt−1)‖42
= t4E ‖vt‖42 + E ‖∇F (θt−1)‖42 + 6E ‖tvt‖22 ‖∇F (θt−1)‖22 − 4E ‖tvt‖32 ‖∇F (θt−1)‖2 − 4E ‖tvt‖2 ‖∇F (θt−1)‖32

≥ t4E ‖vt‖42 + E ‖∇F (θt−1)‖42 + 6E ‖tvt‖22 ‖∇F (θt−1)‖22 − 2E
[

2

ηµ
‖tvt‖22 ‖∇F (θt−1)‖22 +

ηµ

2
‖tvt‖42

]
− 2E

[
ηµ

2
‖tvt‖22 ‖∇F (θt−1)‖22 +

2

ηµ
‖∇F (θt−1)‖42

]
≥ (1− ηµ)E ‖tvt‖42 +

(
1− 4

ηµ

)
E ‖∇F (θt−1)‖42 +

(
6− 4

ηµ
− ηµ

)
E ‖tvt‖22 ‖∇F (θt−1)‖22

≥ (1− ηµ)E ‖tvt‖42 −
(

4

ηµ
− 1

)
E ‖∇F (θt−1)‖42 − (1− ηµ)

(
4

ηµ
− 1

)
E ‖tvt‖22 ‖∇F (θt−1)‖22 .

Combining this we have

(1− ηµ)E ‖tvt‖42 −
(

4

ηµ
− 1

)
E ‖∇F (θt−1)‖42 − (1− ηµ)

(
4

ηµ
− 1

)
E ‖tvt‖22 ‖∇F (θt−1)‖22

≤ (1− ηµ)2 E ‖(t− 1)vt−1‖42 + 64

(
`4Ξ
µ4

E ‖∇F (θt−1)‖42 + σ̃∗
4

)1/2 (
E ‖vt−1‖42

)1/2

+
192`4Ξ
µ4

E ‖∇F (θt−1)‖42 + 192σ̃∗
4.

Now we multiply both sides by (1− ηµ)−1 , noting that (1 − ηµ)−1 ≤ (1 − ηL)−1 ≤ 56
55 ,

rearranging, and have

E ‖tvt‖42 ≤ (1− ηµ)E ‖(t− 1)vt−1‖42 +
(56)(64)

(55)

(
`4Ξ
µ4

E ‖∇F (θt−1)‖42 + σ̃∗
4

)1/2 (
E ‖vt−1‖42

)1/2

+

(56)(192)
(55) `4Ξ

µ4
E ‖∇F (θt−1)‖42 +

(56)(192)

(55)
σ̃∗

4

+

(4)(56)
(55)

ηµ
E ‖∇F (θt−1)‖42 +

4

ηµ
E ‖tvt‖22 ‖∇F (θt−1)‖22

≤
(

1− ηµ

2

)2
E ‖(t− 1)vt−1‖42 +

7

55η2µ2
E ‖∇F (θt−1)‖42 +

(56)(192)

55
σ̃∗

4

+
56

55

(
1

64η2µ2
E ‖∇F (θt−1)‖42 + 64σ̃∗

4

)1/2 (
E ‖vt−1‖42

)1/2
+

4

ηµ
E ‖tvt‖22 ‖∇F (θt−1)‖22 .

Rearranging and taking squared root on both sides we conclude that√
E ‖tvt‖42 −

2

ηµ

√
E ‖∇F (θt−1)‖42 ≤

(
1− ηµ

2

)√
E ‖(t− 1)vt−1‖42 +

3

ηµ

√
E ‖∇F (θt−1)‖42 + 14σ̃∗

2.

13. Here, a different coefficient from the analysis as in the proof of Theorem 1 is adopted.
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Further rearranging, we have√
E ‖tvt‖42 ≤

(
1− ηµ

2

)√
E ‖(t− 1)vt−1‖42 +

5

ηµ

√
E ‖∇F (θt−1)‖42 + 14σ̃∗

2,

which concludes our proof.

Proof of Eq. (100): We use similar decomposition as in the decomposition in Eq. (94) and have

I1 = E ‖∇F (θt−1)−∇F (θt−2)‖42 + E ‖εt(θt−1)− εt(θt−2)‖42
+ 4E ‖εt(θt−1)− εt(θt−2)‖32 ‖∇F (θt−1)−∇F (θt−2)‖2
+ 6E ‖∇F (θt−1)−∇F (θt−2)‖22 ‖εt(θt−1)− εt(θt−2)‖22 ,

where we note that we used the fact that one of the cross terms in the fourth moment decompo-
sition E

[
‖∇F (θt−1)−∇F (θt−2)‖22

〈
∇F (θt−1)−∇F (θt−2), εt(θt−1)− εt(θt−2)

〉]
= 0. Further

utilizing the Hölder’s inequality, we have

I1 ≤ E ‖∇F (θt−1)−∇F (θt−2)‖42 + E ‖εt(θt−1)− εt(θt−2)‖42

+ 4
(
E ‖εt(θt−1)− εt(θt−2)‖42

)3/4
(E ‖∇F (θt−1)−∇F (θt−2)‖2)1/4

+ 6
(
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2 (
E ‖εt(θt−1)− εt(θt−2)‖22

)1/2

≤ E ‖∇F (θt−1)−∇F (θt−2)‖42 + 3E ‖εt(θt−1)− εt(θt−2)‖42

+ 8
(
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2 (
E ‖εt(θt−1)− εt(θt−2)‖42

)1/2

≤ E ‖∇F (θt−1)−∇F (θt−2)‖42 + 3`4Ξη
4E ‖vt−1‖42

+ 8`2Ξη
2
(
E ‖∇F (θt−1)−∇F (θt−2)‖42

)1/2 (
E ‖vt−1‖42

)1/2

≤ 5E ‖∇F (θt−1)−∇F (θt−2)‖42 + 7`4Ξη
4E ‖vt−1‖42 .

This completes the proof of Eq. (100).

E.3.2. PROOF OF LEMMA 12

By definition, we note that:

vt =

(
1− 1

t

)
(vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt)) +

1

t
∇f(θt−1; ξt).

Taking the second moments for both sides, we have:

E ‖vt‖22 =

(
1− 1

t

)2

E ‖vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22︸ ︷︷ ︸
I1

+
1

t2
E ‖∇f(θt−1; ξt)‖22︸ ︷︷ ︸

I2

+ 2
t− 1

t2
E〈vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt), ∇f(θt−1; ξt)〉︸ ︷︷ ︸

I3

.
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For the first term, using the fact that θt−1− θt−2 = −ηvt−1, we start with the following decomposition:

E
(
‖vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22 | Ft−1

)
= ‖vt−1‖22 + 2E (〈vt−1, ∇f(θt−1; ξt)−∇f(θt−2; ξt)〉 | Ft−1) + E

(
‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22 | Ft−1

)
= ‖vt−1‖22 −

2

η
〈θt−1 − θt−2, ∇F (θt−1)−∇F (θt−2)〉+ E

(
‖∇f(θt−1; ξt)−∇f(θt−2; ξt)‖22 | Ft−1

)
.

Since F is µ-strongly convex and L-smooth, we have the following standard inequality:

〈θt−1 − θt−2, ∇F (θt−1)−∇F (θt−2)〉 ≥
‖θt−1 − θt−2‖22 µL

µ+ L
+
‖∇F (θt−1)−∇F (θt−2)‖22

µ+ L
.

Hence, when the step-size satisfies the bound ηt ≤ 1
2L ∧

µ
2`2Ξ

, there is the bound:

I1 ≤ E ‖vt−1‖22 −
2

η
E

(
‖θt−1 − θt−2‖22 µL

µ+ L
+
‖∇F (θt−1)−∇F (θt−2)‖22

µ+ L

)
+ 2E ‖∇F (θt−1)−∇F (θt−2)‖22

+ 2E
(
‖ε(θt−1; ξt)− ε(θt−2; ξt)‖22

)
≤ (1− ηµ+ 2η2`2Ξ)E ‖vt−1‖22 + 2

(
1− 1

η(µ+ L)

)
E ‖∇F (θt−1)−∇F (θt−2)‖22

≤ (1− 3ηµ/4)E ‖vt−1‖22 .

Now we study the second term I2, note that

E ‖∇f(θt−1; ξt)‖22 ≤ E ‖∇f(θt−1; ξt)−∇f(θ∗; ξt)‖22 + 4E ‖∇f(θ∗; ξt)‖22
≤ 2E ‖∇F (θt−1)‖22 + 2E ‖ε(θt−1; ξt)− ε(θ∗; ξt)‖22 + 4E ‖∇f(θ∗; ξt)‖22
≤ 2E ‖∇F (θt−1)‖22 + 2`2ΞE ‖θt−1 − θ∗‖22 + 4σ2

∗

≤ 2

(
1 +

`2Ξ
µ2

)
E ‖∇F (θt−1)‖22 + 4σ2

∗.

For the cross term I3, we note that:

E (〈vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt), ∇f(θt−1; ξt)〉 | Ft−1)

= E (〈vt−1, ∇f(θt−1; ξt)〉 | Ft−1) + E (〈∇f(θt−1; ξt)−∇f(θt−2; ξt), ∇F (θt−1)〉 | Ft−1)

+ E (〈∇f(θt−1; ξt)−∇f(θt−2; ξt), εt(θt−1)〉 | Ft−1)

= 〈vt−1, ∇F (θt−1)〉+ 〈∇F (θt−1)−∇F (θt−2), ∇F (θt−1)〉︸ ︷︷ ︸
:=T1

+ E (〈ε(θt−1, ξt)− ε(θt−2; ξt), ε(θt−1, ξt)〉 | Ft−1)︸ ︷︷ ︸
:=T2

.

For the term T1, we note that:

T1 ≤ ‖vt−1‖2 · ‖∇F (θt−1)‖2 + ‖∇F (θt−1)−∇F (θt−2)‖2 · ‖∇F (θt−1)‖2 ≤ (1 + ηL) ‖vt−1‖2 · ‖∇F (θt−1)‖2 .
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For the term T2, we have:

T2 ≤ E (‖ε(θt−1; ξt)− ε(θt−2; ξt)‖2 · ‖ε(θt−1; ξt)‖2 | Ft−1)

≤
√
E(‖ε(θt−1; ξt)− ε(θt−2; ξt)‖22 | Ft−1) · E(‖ε(θt−1, ξt)‖22 | Ft−1)

≤ `2Ξη ‖vt−1‖2 · ‖θt−1 − θ∗‖2

≤
`2Ξ
µ
η ‖vt−1‖2 · ‖∇F (θt−1)‖2 .

So we have:

I3 ≤
3

2
E (‖vt−1‖2 · ‖∇F (θt−1)‖2) ≤ 3

2

√
E ‖vt−1‖22 · E ‖∇F (θt−1)‖22

≤ tηµ

8
E ‖vt−1‖22 +

9

2tµη
E ‖∇F (θt−1)‖22 .

Putting above estimates together, we obtain:

E ‖vt‖22 ≤
(

1− 1

t

)2

(1− 3ηµ/4)E ‖vt−1‖22 +
1

t2

(
4σ2
∗ + 2

(
1 +

`2Ξ
µ2

)
E ‖∇F (θt−1)‖22

)
+

(t− 1)ηµ

4t
E ‖vt−1‖22 +

9

t2µη
E ‖∇F (θt−1)‖22

≤
(

1− 1

t

)2 (
1− ηµ

2

)
E ‖vt−1‖22 +

10

t2µη
E ‖∇F (θt−1)‖22 +

4σ2
∗

t2
,

which completes the proof of this lemma.

E.4. Proof of Lemma 15 and 16

In this section, we present the proofs of lemma 15 and 16, the two technical lemmas involving a test
matrix G ∈ Rd×d.

E.4.1. PROOF OF LEMMA 15

The proof is similar to that of Lemma 10, and we follow the notation in such lemma throughout. Indeed,
we note the following telescope result:

T 2E ‖GzT ‖22 − T
2
0 E ‖GzT0‖

2
2 =

T∑
t=T0+1

E ‖Gεt(θ∗)‖22 +
T∑

t=T0+1

E ‖Gζt‖22 + 2
T∑

t=T0+1

E〈Gεt(θ∗), Gζt〉.

Clearly, for each t, we have the following identity:

E ‖Gεt(θ∗)‖22 = Tr
(
GΣ∗G>

)
.
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For the additional terms, we note that E ‖Gζt‖22 ≤ |||G|||2opE ‖ζt‖
2
2, and following the derivation in the

proof of Lemma 10, we have the following identity:

T∑
t=T0+1

E〈Gεt(θ∗), Gζt〉

= T · E〈GεT (θ∗), GεT (θT−1)−GεT (θ∗)〉 − T0 · E〈GεT0(θ∗), GεT0(θT0−1)−GεT0(θ∗)〉.

Applying the Cauchy-Schwartz inequality, we obtain bounds similar to Eq. (55), for t ∈ {T0, T}:

|t · E〈Gεt(θ∗), Gεt(θt−1)−Gεt(θ∗)〉| ≤ t|||G|||2op ·
√

E ‖εt(θ∗)‖22 ·
√
E
[
‖εt(θt−1)− εt(θ∗)‖22

]
≤ |||G|||2op

tσ∗`Ξ
µ

√
E
[
‖∇F (θt−1)‖22

]
.

For the burn-in period, we have that:

T 2
0 E ‖GzT0‖

2
2 ≤ 2T0E

∥∥G(ε1(θ0)− ε1(θ∗)
)∥∥2

2
+ 2T0E ‖Gε1(θ∗)‖22 ≤

2T0`
2
Ξ

µ2
‖∇F (θ0)‖22 + 2T0Tr

(
GΣ∗G

)
.

Putting them together, and following the derivation in Lemma 10, we obtain the conclusion of this
lemma.

E.4.2. PROOF OF LEMMA 16

The proof is similar to that of Lemma 11. Following the notation in Lemma 11, we have the decompo-
sition:

|E〈tGzt, Gvt〉| ≤ (t− T̃ ∗)
∣∣∣E〈Gzt−T̃ ∗ , Gvt〉∣∣∣+

∣∣∣E〈G(tzt − (t− T̃ ∗)z
t−T̃ ∗

)
, Gvt〉

∣∣∣ .
Noting that∣∣∣E〈G(tzt − (t− T̃ ∗)z

t−T̃ ∗

)
, Gvt〉

∣∣∣ ≤ |||G|||2op

√
E
∥∥∥tzt − (t− T̃ ∗)z

t−T̃ ∗

∥∥∥2

2
·
√

E ‖vt‖22,

and that ∣∣∣E〈Gzt−T̃ ∗ , Gvt〉∣∣∣ ≤ |||G|||2op

√
E
∥∥∥zt−T̃ ∗∥∥∥2

2
·

√
E
[∥∥∥E[vt | Ft−T̃ ∗]∥∥∥2

2

]
.

The rest of the proof simply follows that of Lemma 11, with an additional factor of |||G|||2op in each term.

Appendix F. Proofs of auxiliary lemmas in §D.1

In this section, we prove the three auxiliary lemmas used in the proof of Proposition 2. Note that the
proofs of the lemmas have inter-dependencies. In the following, we first prove Lemma 17 assuming
Lemma 18, and then prove Lemma 18 assuming Lemma 19. Finally, we give a self-contained proof for
Lemma 19.
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F.1. Proof of Lemma 17

We begin by making note of the identities

tvt = (t− 1)(vt−1 +∇f(θt−1; ξt)−∇f(θt−2; ξt)) +∇f(θt−1; ξt), and

yt = yt−1 − η∇2f(θ∗; ξt)yt−1 +∇f(θ∗; ξt).

Defining the quantity et := tvt − yt, we see that the two identities above imply that

et = et−1 +
(
(t− 1)(∇f(θt−1; ξt)−∇f(θt−2; ξt))− η∇2f(θ∗; ξt)yt−1

)
+ (∇f(θt−1; ξt)−∇f(θ∗; ξt))

= Q1(t) +Q2(t) +Q3(t),

where we define

Q1(t) := et−1 − η
∫ 1

0
∇2f(ρθt−1 + (1− ρ)θt−2; ξt)et−1dρ, Q2(t) := (∇f(θt−1; ξt)−∇f(θ∗; ξt)),

Q3(t) := η

∫ 1

0

(
∇2f(ρθt−1 + (1− ρ)θt−2; ξt)−∇2f(θ∗; ξt)

)
yt−1dρ.

By the triangle inequality, we have

E ‖et‖22 ≤
(√

E ‖Q1(t)‖22 +

√
E ‖Q2(t)‖22 +

√
E ‖Q3(t)‖22

)2

.

In the following, we bound each term E ‖Qi(t)‖22 in succession.

Upper bound on E ‖Q1(t)‖22: Assumption 1 and Assumption 3 together imply that

E ‖Q1(t)‖22

= E ‖et−1‖22 − 2ηE
∫ 1

0
e>t−1∇2F (ρθt−1 + (1− ρ)θt−2)et−1dρ

+ η2

∫ 1

0
E
∥∥∇2f(ρθt−1 + (1− ρ)θt−2; ξt)et−1

∥∥2

2
dρ

= E ‖et−1‖22 − E
∫ 1

0
e>t−1

(
2η∇2F (ρθt−1 + (1− ρ)θt−2)− η2(∇2F (ρθt−1 + (1− ρ)θt−2))2

)
et−1dρ

+ η2

∫ 1

0
E ‖Ξt(ρθt−1 + (1− ρ)θt−2)et−1‖22 dρ

(i)

≤ E ‖et−1‖22 − (2η − η2L)

∫ 1

0
e>t−1∇2F (ρθt−1 + (1− ρ)θt−2)et−1dρ+ η2`2Ξ

∫ 1

0
‖et−1‖22 dρ

(ii)

≤ E ‖et−1‖22 − µ
(
2η − η2L

)
E ‖et−1‖22 + `2Ξη

2E ‖et−1‖22 .

In step (i), we are using the fact that 0 � ∇2F (ρθt−1 + (1− ρ)θt−2) � LId, and in step (ii), we use
the strong convexity of F .

For η < 1
2L ∧

µ
2`2Ξ

, we have E ‖Q1(t)‖22 ≤ (1− µη)E ‖et−1‖22.
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Upper bound on E ‖Q2(t)‖22: By Assumption 3 and Eq. (81), we have

E ‖Q2(t)‖22 ≤ `
2
ΞE ‖θt−1 − θ∗‖22 ≤

a0`
2
Ξ

t
,

where the last inequality follows from Theorem 1.

Upper bound on E ‖Q3(t)‖22: Applying Lemma 18 with θ̃t−1 := ρθt−1 + (1− ρ)θt−2 ∈ Ft−1, we
have

E ‖(Ht(ρθt−1 + (1− ρ)θt−2)−Ht(θ
∗)) yt−1‖22 ≤ c1

√
E ‖ρθt−1 + (1− ρ)θt−2)− θ∗‖22

≤ c1

(√
E ‖θt−1 − θ∗‖22 +

√
E ‖θt−2 − θ∗‖22

)
≤ c1
√
a0

(
1√
t− 1

+
1√
t− 2

)
≤

16c1
√
a0√
t

.

Putting the bounds for (Q1, Q2, Q3) together, we obtain:

√
E ‖et‖22 ≤

(
1− ηµ

2

)√
E ‖et−1‖22 +

4c
1/2
1 a

1/4
0

t1/4
+
`Ξ
√
a0√
t
.

Solving the recursion, we have

√
E ‖eT ‖22 ≤ (4c

1/2
1 a

1/4
0 + `Ξ

√
a0)

t∑
s=T0+1

s−
1
4 exp

(
−µη

2
(T − s)

)
+ e−

µη(T−T0)
2

√
E ‖eT0‖

2
2.

For the first term, we note that:

T∑
s=T0+1

s−
1
4 exp

(
−µη

2
(T − s)

)
≤

T/2∑
s=1

exp
(
−µη

2
T
)

+
1

(T/2)1/4

T∑
s=T/2

e−
µη(T−s)

2

≤ T

2
e−

µηT
2 +

4

µηT 1/4
.

For T large enough, the exponentially decaying term is dominated by the T−1/4 term. So there
exists a constant c0 > 0, depending on the constants (a0, c1, a

′, η, µ, T0) but independent of t, such that

E ‖tvt − yt‖22 ≤
c0√
t
,

which finishes the proof.

F.2. Proof of Lemma 18

Observe that Assumption (CLT.A) guarantees that

E
(∥∥∥(Ht(θ

∗)−Ht(θ̃t−1))yt−1

∥∥∥2

2
|Ft−1

)
≤ β2

∥∥∥θ̃t−1 − θ∗
∥∥∥2

2
· ‖yt−1‖22 .
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On the other hand, by Assumption 3, we have

E
(∥∥∥(Ht(θ

∗)−Ht(θ̃t−1))yt−1

∥∥∥2

2
|Ft−1

)
≤ 4`2Ξ ‖yt−1‖22 .

Taking a geometric average and applying the tower law yields the bound

E
∥∥∥(Ht(θ̃t−1)−Ht(θ

∗)
)
yt−1

∥∥∥2

2
≤ 2`ΞβE

(∥∥∥θ̃t−1 − θ∗
∥∥∥

2
· ‖yt−1‖22

)
(i)

≤ 2`Ξβ

√
E
∥∥∥θ̃t−1 − θ∗

∥∥∥2

2
·
√
E ‖yt−1‖42,

where step (i) follows from the Cauchy-Schwarz inequality. Applying Lemma 19, we are guaranteed
the existence of a constant a′ > 0 such that

sup
t≥T0

E ‖yt‖42 ≤ a
′ <∞.

Setting c1 = 2`Ξβ
√
a′ completes the proof of the claim.

F.3. Proof of Lemma 19

Throughout this section, we adopt the shorthand notation Ht := Ht(θ
∗) and Ξt := Ξt(θ

∗). We also
use Ξ to denote a generic random variable have the same law as Ξ1. Beginning with the proof of the
first claim, we take expectations on both sides of Eq. (80), thereby finding that

E(yt) = E (yt−1 − ηHt(θ
∗)yt−1 + εt(θ

∗)) = (I − ηH∗)E(yt−1) = (I − ηH∗)t−T0E(yT0) = 0.

Our next step is to control the fourth moment. For η ≤ 1
2L <

1
2µ , we observe that:

E ‖yt‖42 = E ‖yt−1 − ηHt(θ
∗)yt−1 + εt‖42

≤ E ‖(I − ηHt)yt−1‖42 + 4E(‖(I − ηHt)yt−1‖32 · ‖εt‖2) + 6E(‖(I − ηHt)yt−1‖22 · ‖εt‖
2
2)

+ 4E(‖εt‖32 · ‖(I − ηHt)yt−2‖2) + E ‖εt‖42
(i)

≤
(

1 +
ηµ

2

)
E ‖(I − ηHt)yt−1‖42 +

24

(ηµ)3
E ‖εt‖42 +

216

(ηµ)2
E ‖εt‖42 +

24

(ηµ)
E ‖εt‖42 + E ‖εt‖42

≤
(

1 +
ηµ

2

)
E ‖(I − ηHt)yt−1‖42 +

157

(µη)3
E ‖ε(θ∗)‖42 ,

where in step (i), we use Young’s inequality for the last four terms.
Now we study the term E ‖(I − ηHt)yt−1‖42. For η < 1

L , straightforward calculation yields:

E
(
‖(I − ηHt)yt−1‖42 | Ft−1

)
≤ ‖(I − ηH∗)yt−1‖42 + 4E

(〈
ηΞtyt−1, (I − ηH∗)yt−1

〉
‖(I − ηH∗)yt−1‖22 | Ft−1

)
+ E

(
‖ηΞtyt−1‖42 | Ft−1

)
+ 6E

(
‖(I − ηH∗)yt−1‖22 ‖ηΞtyt−1‖22 | Ft−1

)
+ 4E

(〈
ηΞtyt−1, (I − ηH∗)yt−1

〉
‖ηΞtyt−1‖22 | Ft−1

)
≤ ‖(I − ηH∗)yt−1‖42 + η4E

(
‖Ξtyt−1‖42 | Ft−1

)
+ 6η2`2Ξ ‖yt−1‖42

+ 2E
(
‖ηΞtyt−1‖42 | Ft−1

)
+ 2E

(
‖(I − ηH∗)yt−1‖22 · ‖ηΞtyt−1‖22 | Ft−1

)
≤ (1− 3ηµ) ‖yt−1‖42 + 8η2`2Ξ ‖yt−1‖42 + 3η4`′4Ξ ‖yt−1‖42 .
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For a step-size η < 1
4L ∧

µ
16`2Ξ
∧ µ1/3

6`
′4/3
Ξ

, we have E
(
‖(I − ηHt)yt−1‖42 | Ft−1

)
≤ (1− 2µη) ‖yt−1‖42.

Putting together these bounds, we find that

E ‖yt‖42 ≤ (1− µη)E ‖yt−1‖42 +
157

(µη)3
E ‖ε(θ∗)‖42 ,

with the initial condition E ‖yT0‖
4
2 = 0. Solving this recursion leads to the bound

sup
t≥T0

E ‖yt‖42 ≤
157

(µη)4
E ‖ε(θ∗)‖42 .

Let a′ = 157
(ηµ)4 , we prove the second claim.

Finally we study the stationary covariance of the process {yt}t≥T0 . The existence and uniqueness
of the stationary distribution was established in (Mou et al., 2020). Let πη denote the stationary
distribution of (yt)t≥T0 , and let Qη := EY∼πη(Y Y >). From the first part of this lemma, we can see
that EY∼πη(Y ) = 0. For yt ∼ πη, we have yt+1 ∼ πη, and consequently,

Qη = E(yt+1y
>
t+1)

= E
(

(I − ηHt+1)yty
>
t (I − ηH>t+1) + εt+1ε

>
t+1

)
+ E

(
εt+1y

>
t (I − ηH>t+1) + (I − ηHt+1)ytε

>
t+1

)
= Qη − η(H∗Qη +QηH

∗) + η2(H∗QηH
∗ + E(ΞQηΞ)) + Σ∗.

In the last equation, we use the fact that E(yt) = 0 and that yt is independent of (Ht+1, εt+1), which
leads to the following equation:

E
(
εt+1y

>
t (I − ηH>t+1)

)
= E (εt+1(θ∗)⊗ (I − ηHt+1(θ∗))) [E(yt)] = 0.

Therefore, the matrix Qη satisfies the equation

H∗Qη +QηH
∗ − η(H∗QηH

∗ + E(ΞQηΞ)) =
Σ∗

η
,

which completes the proof of the last part of the lemma.
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