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Abstract

We study the problem of solving strongly convex and smooth unconstrained optimization problems
using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-
Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic
gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample,
nonasymptotic sense and an asymptotic sense. On the nonasymptotic side, we prove risk bounds on
the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a
unity pre-factor, along with a higher-order term that scales at the sharp rate of O(n~3/2) under the
Hessian-Lipschitz assumption. On the asymptotic side, we show that when a mild, one-point Hessian
continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges
asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad
range of step-size choices.

Keywords: Stochastic first-order optimization, nonasymptotic finite-sample convergence rate, asymp-
totic efficiency, Cramér-Rao lower bound, variance-reduced gradient method, Polyak-Ruppert-Juditsky
(PRJ) procedure.

1. Introduction

Let f : RY x Z — R be differentiable as a function of its first argument, and consider the following
unconstrained minimization problem:

min F(6), where F () := E[f(6;¢)], (1)
fcR4

and where the expectation is taken over a random vector £ € = with distribution P. Our goal is to

. S Lid.
approximately solve this minimization problem based on samples (&;)i=1,2,... "< P, and moreover to
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do so in a way that is computationally efficient and statistically optimal. When the samples arrive as an
online stream, it is desirable to compute the approximate solution in a single pass, without storing the
data, and this paper focuses on this online setting.

Stochastic optimization problems of this type underpin a variety of methods in large-scale ma-
chine learning and statistical inference. One of the simplest methods is stochastic gradient descent
(SGD), which recursively updates a parameter vector 8; by taking a step in the direction of a single
stochastic gradient, with a (possibly) time-varying step-size 7; (Robbins and Monro, 1951). This
simple strategy has been surprisingly successful in modern large-scale statistical machine learning prob-
lems (Nemirovski et al., 2009; Bottou et al., 2018; Nguyen et al., 2019); however, it can be substantially
improved, both in theory and in practice, by algorithms that make use of more than a single stochastic
gradient. Such algorithms belong to the general family of stochastic first-order methods. Various
procedures have been studied, involving different weightings of past stochastic gradients, and also a
range of analysis techniques. The diversity of approaches is reflected by the wide range of terminology,
including momentum, averaging, acceleration, and variance reduction. All of these ideas center around
two main underlying goals—that of proceeding quickly to a minimum, and that of arriving at a final
state that achieves the optimal statistical efficiency and also provides a calibrated assessment of the
uncertainty associated with the solution.

More concretely, the former goal requires the algorithm to achieve a fast rate of convergence
and low sample complexity, ideally matching that of the noiseless case and the information-theoretic
limit. For example, gradient descent takes O(L/x) number of iterations to optimize a L-smooth and
p-strongly convex function. It is therefore desirable that the sample-size requirement for a stochastic
optimization algorithm scales linearly with O(L/u), with additional terms characterizing the effect of
random noise on optimality. On the other hand, the latter goal imposes a more fine-grained requirement
on the estimator produced by the algorithm. Roughly speaking, we need the estimator to share the
same optimal statistical properties typically possessed by the empirical risk minimizer (were it be
computed exactly in the batch setting). The notion of statistical efficiency, in both its asymptotic and
nonasymptotic forms, allows for a fine-grained study of these issues.

Let 0* denote the minimizer of F', and define the matrices

H* :=V?F(#*), and X*:=E|VfO VO],

. . . . . iid. .
Under certain regularity assumptions, given a collection of n samples (&;)ien] "0 P, classical

§ERM ._
n

statistical theory guarantees that the minimizer := argmingega y iy f(60;&;) of the associated

empirical risk has the following asymptotic behavior:
Jn (ﬁ;?RM - 9*) L N (0, (H*) I (H) L) | 2)

Furthermore, the asymptotic distribution (2) is known to be locally asymptotic minimax, i.e. given a
bowl-shaped loss function, the asymptotic risk of any estimator is lower bounded by the expectation
under such a Gaussian distribution, in a suitably defined sequence of local neighborhoods. See, for
example, Duchi and Ruan (2021) for a precise statement.

Unfortunately, the goals of rapid finite-sample convergence and optimal asymptotic behavior are in
tension, and the literature has not yet arrived at a single algorithmic framework that achieves both goals
simultaneously. Consider in particular two seminal lines of research:
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The Polyak-Ruppert-Juditsky (PRJ) procedure (Polyak and Juditsky, 1992; Ruppert, 1988) incorporates
slowly diminishing step-sizes into SGD, thereby achieving asymptotic normality with an optimal
covariance matrix (and unity pre-factor). This meets the goal of calibrated uncertainty. However,
the PRJ procedure is not optimal from a nonasymptotic point of view: rather, it suffers from large
high-order nonasymptotic terms and fails to achieve the optimal sample complexity in general (Bach
and Moulines, 2011).

On the other hand, variance-reduced stochastic optimization methods have been designed to achieve
reduced sample complexity that is the sum of a statistical error and an optimization error (Le Roux
et al., 2012; Shalev-Shwartz and Zhang, 2013; Johnson and Zhang, 2013; Lei and Jordan, 2017; Defazio
et al., 2014). These methods yield control on the optimization error, with sharp nonasymptotic rates of
convergence, but the guarantees for the statistical error term are sub-optimal, yielding an asymptotic
behavior involving constant pre-factors that are strictly greater than unity (and hence sub-optimal).

An open question: Given this state of affairs, we are naturally led to the following question: can a
single stochastic optimization algorithm simultaneously achieve optimal asymptotic and nonasymptotic
guarantees? In particular, we would like such guarantees to enjoy the fine-grained statistical properties
satisfied by the empirical risk minimizer, for a commensurate set of assumptions on the function F' and
the observations f(-;£) and including the same rate of decay of high-order terms.

In this paper, we resolve this open question, in particular by proposing and analyzing a novel
algorithm called Recursive One-Over-T Stochastic Gradient Descent (ROOT-SGD). It is very easy to
describe and implement, and we prove that it is optimal in both asymptotic and nonasymptotic senses:
On the nonasymptotic side, under suitable smoothness assumptions, we show that the estimator @OOT
produced by the last iterate of the (multi-epoch) ROOT-SGD satisfies a bound of the following form:

1
EH@{}OOT _ H*H% < ETI, ((H*)_IE*(H*)_l) + O(n_3/2). (3)

Note that the leading-order term of the bound (3) is exactly the squared norm of the Gaussian random
vector in the local asymptotic minimax limit, with unity pre-factor. Moreover, our bound is entirely
nonasymptotic, valid for all finite n. We also prove that high-order term O (n~%/2) is unavoidable
under a natural setup, and it improves upon existing O(n~7/%) and O(n~%/*) rates for the PRJ
procedure (Bach and Moulines, 2011; Xu, 2011; Gadat and Panloup, 2017). We also derive similar
bounds for the objective gap F (é}}OOT) — F(0*) and the gradient norm |V F (@}OOT) 2.

Furthermore, the nonasymptotic bound (3) holds true under a mild sample-size requirement. Indeed,
given a L-smooth and p-strongly convex population-level function F', and assuming that the noise
e(+€) == Vf(-;&) — VF(-) satisfies a stochastic Lipschitz condition with parameter ¢z, the finite-
sample bounds are viable as long as n = ﬁ + Z—%. The first term O(L/ u) matches the iteration
complexity of gradient descent, and the O (E% / MQ) term is the sample complexity needed for distin-
guishing a p-strongly convex function from a constant function. The high-order terms in Eq. (3) also
depend on the parameters (u, L, =) in a similar way. This exhibits the fast nonasymptotic convergence

of our algorithm, matching state-of-the-art variance reduction algorithms.
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(3) We also establish asymptotic guarantees for the ROOT-SGD algorithm. Assuming additionally a
Lipschitz condition on the Hessian matrix, for a broad range of step-size choices, the last iterate
@OOT converges in distribution to the optimal Gaussian law (2) whenever the Hessian matrix V2F is
continuous at 6%, a much weaker condition than the Holder or Lipschitz assumption required by the
Polyak-Ruppert averaging procedure (Ruppert, 1988; Polyak and Juditsky, 1992).

Notably, both the MSE bound of the form (3) and the asymptotic normality are fine-grained guarantees
that are satisfied by the empirical risk minimizer, under comparable assumption posed on the continuity
of Hessian matrix. To the best of our knowledge, such guarantees have not been available heretofore in
the literature on stochastic optimization. The ROOT-SGD algorithm proposed in this paper achieves
these guarantees not only simultaneously, but also with sharp nonasymptotic sample complexity.

The rest of the paper is organized as follows. We present the ROOT-SGD algorithm in §2, and
delineate the asymptotic normality and nonasymptotic upper bounds in §3. We present our conclusions
in §4. Full proofs are provided in the appendix.

Notations. Given a pair of vectors u,v € R? we write (u, v) for the inner product, and ||v|, for

the Euclidean norm. For a matrix M, the {3-operator norm is defined as || M |, := sup, =1 [[Mv][5.

For scalars a,b € R, we adopt the shorthand notation a A b := min(a,b) and a V b := max(a, b).
Throughout the paper, we use the o-fields F; := o0(&1,&2,- -+ ,&) for any ¢ > 0. Unless indicated
otherwise, C denotes some positive, universal constant whose value may change at each appearance.

For two sequences {a, } and {b, } of positive scalars, we denote a,, = b,, (resp. a,, < by,) if a,, > Cb,

(resp. a, < Cb,) for all n, and a,, < b, if a,, 2 b, and a,, < b, hold simultaneously. We also write

an =0 (by) ,an = O (by) ,an = Q(by) as ayp, S by, ap < by, an 2 by, respectively.

We finally introduce some martingale-related notations. Given vector-valued martingales (X;);>7y,, (Y2)e>1,

adapted to the filtration (F);>7,, we use the following notation for cross variation for t > Tp:

t

(XY= > (X=X, Vi = Yia).
s=To+1

We also define [X]; := [X, X]; to be the quadratic variation of the process (X )¢>1y,.

2. Constructing the ROOT-SGD algorithm

In this section, we introduce the ROOT-SGD algorithm that is the focus of our study. We first motivate
the algorithm from an averaging and variance reduction perspective. We then describe the burn-in and
restarting mechanism, which contributes to the superior theoretical guarantees in the overall algorithm.

2.1. Motivation and gradient estimator

Our choice of step-size emerges from an overarching statistical perspective—rather than viewing the
problem as one of correcting SGD via particular mechanisms such as averaging, variance reduction
or momentum, we instead view the problem as one of utilizing all previous online data samples,
&1,...,& ~ P, to form an estimate Estimator; of VF(6;_1) at each round ¢. We then perform a
gradient step based on this estimator—that is, we compute 6, = 6;_; — 1, - Estimator;.
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Concretely, our point of departure is the following idealized estimate of the error in the current
gradient:

t

S (Vf(Bs-156) — VF(Bs-1)). @

s=1

Estimator; — VF(6;—1) =

~ | =

Treating the terms V f(65-1;&s) — VF(0s—1),s = 1,...,t as martingale differences, and assuming
that the conditional variances of these terms are identical almost surely, it is straightforward to verify
that the choice of equal weights 1/¢ minimizes the variance of the estimator over all such convex
combinations. This simple but very specific choice of weights is central to our algorithm, which we
refer to as Recursive One-Over-T SGD (ROOT-SGD).

The recursive aspect of the algorithm arises as follows. We set Estimator; = V f(6p;&1) and
express (4) as follows:

1 t—1
Estimator; — VF'(6;—1) = Z(Vf(et_l; &) — VF(0:-1)) + T(Estimatort_l — VF(0;—2)).

Rearranging gives

: 1 t—1 :
Estimator; = EVf(Htfl; &)+ — (VF(0,—1) — VF(0;—2)) + Estimator;_1.
We now note that we do nor generally have access to the bracketed term VF(6;_1) — VF(6;_2), and
replace the term by an unbiased estimator, V f(0;—1;&;) — V f(0:—2;&;), based on the current sample
&;. Intuitively, the replacement should not affect much as long as the stochastic gradient noise admits
some smoothness condition. Letting v; denote Estimator, we obtain the following recursive update:

Vt—1

v = %Vf(ﬁm; &) + % (V0156 — VF(Or-2:6)) +

t
= Vf(Or-1;&) + (vi-1 = V f(0i-2; &), 5)
—_———
stochastic gradient

correction term

consisting of both a stochastic gradient and a correction term.
Finally, performing a gradient step based on our estimator yields the ROOT-SGD algorithm:

v =V f(0r—1;&) + (ve—1 — V f(Or—2:&)) (6a)
0r = 011 — nevy, (6b)

where {7, };>1 is a suitably chosen sequence of positive step-sizes. Note that v; defined in Eq. (5) is a
recursive estimate of V F'(6,_1) that is unconditionally unbiased in the sense that E[v;] = E[VF(6;—_1)].
So the -update is an approximate gradient-descent step that moves along the negative direction —v;.!

We initialize 6y € R?, and, to avoid ambiguity, we define the update (6) at t = 1 to use only
vy = V f(0o;&1). Overall, given the initialization (0, vo,0—1) = (6o, 0, arbitrary), at each step ¢t > 1
we take as input { ~ P, and perform an update of (6;,v;,0;—1). This update depends only on
(0¢—1,vi—1,0;—2) and &, and is first order and Markovian.

1. Unlike many classical treatments of stochastic approximation, we structure the subscripts so they match up with those of
the filtration corresponding to the stochastic processes.
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2.2. Two-time-scale structure and burn-in period

For the purposes of both intuition and the proof itself, it is useful to observe that the iterates (6)
evolve in a two-time-scale manner. Define the process z; := vy — VF(0;—1) fort = 1,2, --, which
characterizes the tracking error of v; as an estimator for the gradient. For each § € R% and £ ~ P we
define the noise term £(6; &) = Vg f(6;&) — VF(0), and use the shorthand notation e4(-) = &(+; &s).
Some algebra yields the decomposition

¢
t-zt:Za‘s(ﬁs 1 —I—Z 3—1 £s(0s— 1)—63((93_2)), valid fort =1,2,.... (7a)
= s=1

In this way, we see that the process (¢ - z;);>1 is a martingale difference sequence adapted to the natural
filtration (F):>0. Indeed, the quantity z; plays the role of averaging the noise as well as performing a
weighted averaging of consecutive differences collected along the path. On the other hand, the process
(t - v¢)+>1 moves rapidly driven by the strong convexity of the function F:

tog = (t = 1){v—1 + VF(0,-1) = VF(01-2)} + Vf(0r—1;&) + (t — 1) (e0(0i-1) — e0(0;-2)).
(7b)

Given an appropriate step-size 7, the first term on the RHS of Eq. (7b) exhibits a contractive behavior.
Consequently, the process (tvt)¢>1 plays the role of a fast process, driving the motion of iterates
(6¢)¢>0, and the noise-collecting process z; is a slow process, collecting the noise along the path and
contributing to the asymptotic efficiency of ;. Note that the fast process moves with a step-size 7,
making 7, u progress when F' is u-strongly convex, while the slow process works with a step-size 1/t.
In order to make the iterates stable, we need the fast process to be fast in a relative sense, requiring that
N > 1/t. This motivates a burn-in period in the algorithm, namely, in the first 7} iterations, we run
the recursion (6) with step-size zero and simply average the noise at 6y; we then start the algorithm
with an appropriate choice of step-size. Concretely, given some initial vector 6y € R?, we set 6; = 6,
forallt =1,...,Ty — 1, and compute

t
1
—;ZVf(GO;gs), forallt=1,...,Tp. (8)

As suggested by our discussion, an algorithm with step-size 1, = n will need a burn-in period of
length T < (un)~*! for a p-strongly convex function F'. Equivalently, we can view the step-sizes in
the update for 6; as being scheduled as follows:

n, fort > Ty,
N =

9)
0, fort=1,...,7Ty—1,

briefed as 7, = 7 - 1[t > Tp], and, accordingly, the update rule from Egs. (6) splits into two phases:
VO &) + 55 (i1 — Vf(0r-2;&)) fort > Tp+1,

t
%va 00755 fort=1,...,Tp,

9t 1—nvg fort > Tp,
fort=1,...,7y — 1.
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Algorithm 1 ROOT-SGD

1. Input: initialization 6; step-size sequence (7:)¢>1
2: fort=1,2,...,7T do
3 v =V f(0i—1;&) + % (vi—1 — Vf(0r—2;&))
4 O =01 —muy
5: end for

6: Output: 01

Such an algorithmic design has the length of the burn-in period for our algorithm is identical to
the number of processed samples, so it features that the iteration number is identical to the sample
complexity. The ROOT-SGD scheme is presented formally as Algorithm 1; for the remainder of this
paper, when referring to ROOT-SGD, we mean Algorithm 1 unless specified otherwise.

3. Main results

In this section, we present our main nonasymptotic and asymptotic results. We first establish a
preliminary nonasymptotic result in §3.1. With augmented smoothness and moment assumptions, we
then introduce in §3.2 sharp nonasymptotic upper bounds with unit pre-factor on the term characterizing
the optimal statistical risk. Finally, in §3.3, we establish the asymptotic efficiency of ROOT-SGD.

3.1. Preliminary nonasymptotic results

We begin by presenting preliminary nonasymptotic results for ROOT-SGD. Before formally presenting
the result, we detail our assumptions for the stochastic function f(+; £) and the expectation F'.
First, we impose strong convexity and smoothness assumptions on the objective function:

Assumption 1 (Strong convexity and smoothness) The population objective objective function F' is
twice continuously differentiable, p-strongly-convex and L-smooth for some 0 < u < L < co:

|VF(©) - VF@©)|,<L|6-¢ and (VF(0)—VF(#),0—-0)>p|6—0¢

2
92

Iy

for all pairs 0,0 € R<
Second, we assume sufficient regularity for the covariance matrix at the global minimizer 6*:

Assumption 2 (Finite variance at optimality) Ar any minimizer 6% of F, the stochastic gradient
V f(0*;€) has a positive definite covariance matrix, ©* :=E [V f(6*; &) (V f(6%;€)) "], with its trace
o2 =R ||Vf(6*;€)|5 assumed to be finite.

Note that we only assume a finite variance on the stochastic gradient at the global minimizer #*. This is

significantly weaker than the standard assumption of a globally bounded noise variance. See Nguyen

et al. (2019) and Lei and Jordan (2020) for a detailed discussion of this assumption on the noise.
Third, we impose a mean-squared Lipschitz condition on the stochastic noise:
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Assumption 3 (Lipschitz stochastic noise) The noise function 0 — £(0;€) in the associated stochas-
tic gradients satisfies the bound

E|le(6;€) —e(@;6)|> < 26— 6|3, forall pairs 6;6' € R (11)

We note that in making Assumption 3, we separate the stochastic smoothness of the noise, €(6;¢) =
Vf(6;&) — VF(6), from the smoothness of the population-level objective. The magnitude of ¢= and
L are not comparable in general. This flexibility permits, for example, mini-batch algorithms where the
population-level Lipschitz constant L remains fixed but the parameter /= decreases with batch size.
Such a separation has been adopted in nonconvex stochastic optimization literature (Arjevani et al.,
2020).2

Finally, we remark that all of these assumptions are standard in the stochastic optimization and
statistical literature; and specific instantations of these assumptions are satisfied by a broad class of
statistical models and estimators. We should note, however, that the strong convexity and smoothness
(Assumption 1) is a global condition stronger than those typically used in the asymptotic analysis of
M-estimators in the statistical literature. These conditions are needed for the fast convergence of the
algorithm as an optimization algorithm, making it possible to establish nonasymptotic bounds.> As-
sumptions 2 and 3 are standard for proving asymptotic normality of M-estimators and Z-estimators (see,
e.g., van der Vaart, 2000, Theorem 5.21). In contrast to some prior work (e.g., Ghadimi and Lan, 2012,
2013), we do not assume uniform upper bounds on the variance of the stochastic gradient noise; this
assumption fails to hold for various statistical models of interest, and theoretical results that dispense
with it are of practical interest.

With the aforementioned assumptions in place, we provide our first preliminary nonasymptotic
result for single-epoch ROOT-SGD, as follows:

Theorem 1 (Preliminary nonasymptotic results, single-epoch ROOT-SGD) Under Assumptions 1,
suppose that we run Algorithm I with burn-in period Ty and step-size 1 such that

24 1 7
Ty = % and n € (O,nmax], where  NMpmaz = i A @ (12)
Then, for any iteration T' > 1, the iterate Op satisfies the bound
28 02 2700 ||[VF (o)l

T n2pu2T2

We provide a complete analysis of Theorem 1 in §C.1. In order to interpret the result, we make few
remarks in order.

2. Observe that Assumptions 1 and 3 imply a mean-squared Lipschitz condition on the stochastic gradient function:
E[V1©0:6) = VIOl = [VFO) = VEO)|; +E||le0;6) - 0 9)Il; < (£* + &) lo - 0[5,

where the final step uses the L-Lipschitz condition on the population function F'.

3. In the noiseless setting where 0. = ¢= = 0 the ROOT-SGD algorithm degenerates to gradient descent, and one would
expect the iteration complexity of ROOT-SGD to be proportional to the condition number x := L/ as of the gradient
descent complexity.

2,3,
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Note when stating the upper bound (13) we adopt the convergence metrics in expected squared gradient
norm. Theorem 1 copes with a wide range of step-sizes n: fixing the number of online samples T, (13)

2
asserts that the optimal asymptotic risk % for the squared gradient holds up to an absolute constant

whenever T > L v %

2
02”2 . When fixing the step-size, the bound (13) consists of the sum of two
terms. The leading-order first term corresponds to (a constant multiple of) the optimal statistical risk,
and is determined by the noise variance o2 at the minimizer. The higher-order second term exhibits a

polynomial forgetting of the initial condition.

Suppose that we use the maximal step-size 7,4, permitted by the conditions (12), and then convert the
convergence rate bound (13) into a sample complexity bound. We then find that it suffices to take

2 2 2
Ci(e) = max{ [ . HVF(GO)HQ, b, } = max { <i + gE) . W, Z;} (14)

Tmax € g2 w? €

samples in order to obtain an estimate of 6* with gradient norm bounded as O(e). When the asymptotics
holds as ¢ tends to zero with other problem-dependent constants being bounded away from zero, the

leading-order term =< Z—; in C () matches the optimal statistical risk up to a constant prefactor. To
the best of our knowledge, this guarantee is the first in our setting. The only work which reported a
near-optimal statistical risk under similar settings in the leading-order stochastic optimization is Nguyen
et al. (2021); Allen-Zhu (2018), and (12) achieves the first with a constant pre—factor.4 To be clear, such
polynomial decay is suboptimal which can be improved via a multi-epoch method, to be discussed
shortly in §3.2.

It is also helpful to compare Theorem 1 with existing works by Ghadimi and Lan (2012, 2013). Their
guarantees are worst-case optimal for optimizing smooth and strongly-convex objectives, depending on
the condition number L /u and a uniform upper bound on the noise variance up to a nonunity prefactor.
By way of contrast, our result does not require uniform boundedness on the variance and focuses on
the fine-grained non-asymptotic guarantees that achieve local asymptotic minimax optimality (when
measuring the risk via gradient norm, the optimal risk is characterized by the gradient noise variance
o, at 8*). That being said, our result does not admit an accelerated rate in terms of condition number
\/L/p. It is an important direction of future research to incorporate acceleration mechanism into our
framework so as to achieve all-regime optimality.

3.2. Improved nonasymptotic upper bounds

The convergence rate bound of Theorem 1 matches the optimal risk by a constant pre-factor c—to
be precise, ¢ = 28 in the provided analysis. In addition to this non-optimal prefactor, this result does
not match the efficiency of M-estimators in its higher-order dependency. So as to overcome these
limitations, we now show how to apply Theorem 1 as the building block to seek to obtain a sharp
fine-grained convergence rate via two-time-scale characterization, under additional smoothness and
moment assumptions.

First, we need the following Holder continuity condition for the Hessian at the optimum. We denote
H* := V2F(0*) throughout.

4. We highlight that in our setting here, we only assume the first-order smoothness condition holds, i.e. no continuity
assumption on the Hessians are posed.
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Algorithm 2 ROOT-SGD, multi-epoch version

1: Input: initialization 0y; fixed step-size 7; burn-in time Tp; short epochs length 7% > Tp; short
epochs number B

2: Set initialization for first epoch 9(()1) =t
3: forb=1,2,--- ,Bdo

4:  Run ROOT-SGD (Algorithm 1) for 77 iterates with burn-in time T} (i.e. step-size sequence
(m¢)¢>1 defined as in Eq. (9))

5:  Set the initialization G(ng) = Héi) for the next epoch

6: end for

7: Run ROOT-SGD (Algorithm 1) for T := n — T" B iterates with burn-in time T}

8: Output: The final iterate estimator /" := HT(FBH)

Assumption 4 (Holder continuous Hessians with exponent ) There exists an exponent vy € (0, 1]
and a constant L > 0 such that

IV2F(0) = V2E(0")lp < Ly 16— 6713 - (15)

We also need fourth-moment analogue of Assumptions 2 and 3, stated as follows. Note that these
conditions are also exploited in prior work on nonasymptotic analyses of PRJ averaging (Bach and
Moulines, 2011; Xu, 2011; Gadat and Panloup, 2017) and Streaming SVRG (Frostig et al., 2015).

Assumption 5 (Finite fourth moment at minimizers) Ler Assumption 2 hold, and let 75> := \/E ||V f (*; €) ||;1
be finite.
Observe that o, < o, by Holder’s inequality. This distinction is important, as o2 corresponds to the
optimal statistical risk (measured in gradient norm), while 7x2 does not.
For the higher-order moments of stochastic gradients, we introduce the following:

Assumption 6 (Lipschitz stochastic noise in fourth moment) 7The noise function 0 — £(6;¢€) in
the associated stochastic gradients satisfies the bound

\/E le(61;€) — e(B2;€)||3 < 21|01 — 623, for all pairs 0y, 6 € RY. (16)

Note that we slightly abuse the notation and denote £z by both moment Lipschitz constants in Assump-
tions 3 and 6. In the presentations for the rest of this subsection, the notation /= should be understood
as the parameter in Assumption 6, which is strictly stronger than Assumption 3.

Formally, we present a multi-epoch version of the ROOT-SGD algorithm in Algorithm 2. The
algorithm runs B short epochs and one long epoch. The goal of each short epoch is to “halve” the
dependency on the initial condition ||V F(6p)||,., and it suffices to take 7” = Ty, for some universal
constant ¢ > 1. In Theorem 2, we present the gradient norm bounds satisfied by the multi-epoch

ROOT-SGD algorithm:

10
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Theorem 2 (Improved nonasymptotic upper bound, multi-epoch ROOT-SGD) Under Assumptions 1,4, 5, 6,
2
suppose that we run Algorithm 2 with the number of short epochs B = B log (w)—‘ , the burn-

npo?
in time Ty = 77 , and the small epoch length T° = 72;‘:0. Then for any step-size n € (0, ﬁ A ﬁ]
and n > T° B + 1, it returns an estimate GTﬁlnal such that
2 2 2 2 —~ 24y
final\ |2 Ox tzn logT  lzlogT ) of CL,o.
E HVF(Q" )HQ T =C { i + nuT w2T T 1/2,(3427)/27(347)/2° a7

where T’ == n — TbB, and C'is a universal constant.

See §C.4 for the proof of this theorem.

In order to discuss this result, let us take n > 277 B so that we have ~ 7 < + 2T B We further
impose the mild condition that the quantity ||V F(6p)||, /o« scales as a polynomlal functlon of n.> A
few remarks are in order.

(i) By taking the (constant) step-size n = ——249 AL where o := Ly A 1 some algebra reduces
y g P Ui (z/ 2) ir 3 2 g
itz /p ne
the bound to
2 = \** L | o2logn ~
E ||V F(gfinal 2% < — + — * +H 18
IV E@n )H2 n ~ p/n un n " (182)

where the linearization-related term ﬁn takes the form:

_ (= 1—a I 1 L 812 1+3
() @A

. . P . 02 .
Given the sample size satisfying the requirement n 2> % + 3 the pre-factors in the second term

of (18a), as well as the linearization error term Hn, start to diminish. The term Z= Wlth the sharp
pre-factor hence becomes the leading-order term in the bound.

(ii) In the Hessian-Lipschitz case where v = 1, the bound (18a) can be simplified to

2 2 1 —~2 3
final\ |12 Ox l= L | o;logn l= L2 Lifo")\2
EHVF(anna)|\2—n§{M\/ﬁ+/m} - +{u\f il 2\ n ) (19)

Apart from the term 7= Wthh achieves the optimal unity-pre-factor statistical risk, the leading-order

term of the RHS of the bound (19) as n — oo scales as 8‘; . Uﬂg}%”. Other than the O(n~3/2) term

discussed above, several other higher-order terms exist in the bound (19). Given a sufficiently large
2

sample size n, these terms are dominated by the term %5 . %. On the one hand, a term of order

2
% - Z= exists, which reflects the stochastic optimization essence of the problem: in order to get

meanmgful guarantees, we need

10gn > L T which nearly matches the algorithmic complexity of

gradient descent. The linearization-related term H.,, on the other hand, scales as O(n~7/*) when the
Hessian matrix is a Lipschitz function of 6.

5. This assumption is used only to simplify the presentation. If it does not hold true, the log n terms in the bounds will be
replaced by logn + log (1 + |[VF(60)||, /o).

11
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Besides the gradient norm, we also establish guarantees on the estimation error ||6,, — 6*||,, and
the objective gap F'(6,,) — F(6*). For simplicity, we focus on the Hessian-Lipschitz case of v = 1. In
order to state the theorem, we define the following linearization error terms that appears in the bound:

572\ 3/2 2 2\ 2
J(MSE) ._ ¢ Ly (o L} (o,
o Y { e < n ) toa\n) (20a)
oy ¢ b (FNEL e 13 (@Y (20b)
' NG n Amin(H*)  pt n )’

For simplicity we only consider the multi-epoch ROOT-SGD as specified in Theorem 2, where we
have the following bound:

Corollary 3 (Nonasymptotic bounds in alternative metrics, multi-epoch ROOT-SGD) Under the
setup of Theorem 2 with v = 1, the multi-epoch ROOT-SGD algorithm with the optimal step-size
choice of n < % A ﬁ produces an estimator that satisfies the following bound forn > T°B + 1:

final _ 2 i l #\ — 1y #\—1 65 L O-z logn ) /(MSE)
E||opt — 6%, nTr((H ) IS (HY)TY) < c{#\/ﬁ + un} o (H)n +HEY, (21a)
final\ *\] 1 *\— 1§ l= L Uf logn 17(OBJ)
E [F(65") — F(6")] 2nTr((H )TIE) < c{u\/ﬁ + /m} o (H)1 + M, 0. (21b)

See §C.5 for the proof of this result. As we see in Theorem 3, the optimal step-size choice in the bound
of Corollary 3 is consistent with Theorem 2. The leading-order terms in the bound (21a) and (21b)
are both optimal in a local asymptotic minimax sense with near-unity pre-factor. In particular, they
are exactly the asymptotic risk of the limiting Gaussian random variable " (6*, 2 (H*)~'S*(H*)~1).
We also note that in the special case of well-specified maximal-likelihood estimation, Fisher’s identity
H* = ¥* holds true, and the leading-order terms in Eq. (21a) and (21b) become %Tr ((H *)_1) and %,
respectively. This is in accordance with the classical asymptotic theory for M-estimators (c.f.(van der
Vaart, 2000), Chapter 5.3).

We can compare the bounds in Corollary 3 with the gradient norm bound (19) induced by Theorem 2
in the Hessian-Lipschitz case. While their leading-order terms match the corresponding optimal
statistical risk, and the higher-order terms all scale as O(n~3/2), there are some key differences:

The linearization error terms HMSE and HOBY both decay at a rate of O(n_%). The higher-order

term {fgn + u%} 031# in the gradient norm bound is multiplied by a factor of Ay, (H*) 2

(resp. Amin (H*)™1) in the MSE (resp. objective gap) bound. Compared with the linearization term H,
in (18b), the terms ’H%SE and 7—[7? BJ also incur additional factors related to the minimum eigenvalue of
H*, or alternatively the strong-convexity parameter of F'.

1 ~
The pre-factor { /f;ﬁ + uLn } * in the bound H,, is also replaced by unity. This is because the Hessian-
Lipschitz assumption plays a key role in relating MSE and objective gap to the underlying noise

structure in the stochastic optimization problem, paying for larger linearization error; whereas in

12
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the gradient norm bound, the Hessian-Lipschitz assumption is employed only to mitigate the effect
correlation that appears at even higher-order terms of the bound. The linearization error in either MSE
or objective gap has to appear in the O(n*?’/ 2) term. This is different from our earlier result in gradient
norm (17) of Theorem 2, where the linearization-related terms are all incorporated in O(n_7/ .

3.3. Asymptotic results

In this subsection, we study the asymptotic behavior Under minimal assumptions we aim to prove
the asymptotic efficiency of the multi-epoch estimator of Algorithm 2. In this case, Assumptions 1, 2
and 3 are the standard ones needed for proving asymptotic normality of M-estimators and Z-estimators
(see e.g. van der Vaart (2000, Theorem 5.21)). We first introduce our one-point Hessian continuity
assumption as follows, as the qualitative counterpart of the continuity Assumption 4:

Assumption 7 (One-point Hessian continuity) The Hessian mapping V2 F (0) is continuous at the
minimizer 0%, i.e.,

lim ||V2F(0) — H*|,, = 0.
0—0*

Note in Assumption 7 we assume only the continuity of Hessian matrix at 8* without posing any
bounds on its modulus of continuity. This merely requires slightly more than second-order smoothness,
and is usually considered as the minimal assumption needed in the general setup. The weak condition
manifests the difference between ROOT-SGD and the Polyak-Ruppert averaging procedure.

Under this setup, we are ready to state our weak convergence asymptotic efficiency result for
in the following theorem,® whose proof is provided in §C.6:

aﬁnal

Theorem 4 (Asymptotic efficiency, multi-epoch ROOT-SGD) Under Assumptions 1, 2, 3 and 7

and for any a € (0, 1), suppose that we run the multi-epoch Algorithm 2 with burn-in time Ty = %,

2
% and number of short epochs B = % log <Mﬂ. Then as

nuo?

(n)

short-epoch length T° =

n — 00, n — 0 such that n(n — T°B) — 0o and T’ B /n — 0, the estimate 92%1’
convergence

satisfies the weak

\/,E (02“317(77) _ 9*) i) N (0’ [V2F(9*)]_12*[V2F((9*)]_1) , (22)
where X% .= [V FO5Vf(0%:¢ )T} is the covariance of the stochastic gradient at the minimizer.

We remark that in Theorem 4, we are adopting the multi-epoch ROOT-SGD with the same algorithmic
specifications as in Theorem 2 (except the step-size choices), and we achieve the asymptotic conver-
gence to the Gaussian limit that matches the Cramér-Rao lower bound. The asymptotic covariance
matrix in Eq. (22), however, carries significantly more information than the (scalar) optimal asymptotic
risk. Our asymptotic result is in a triangular-array format: we let the fixed constant step-size scale
down with n where the scaling condition is essentially  — 0, n — oo with nn/log(n~!) — oo,
which is satisfied when n < -1 for any fixed ¢; € (0,1). Although not directly comparable, the

ncl

6. We emphasize our estimator’s dependency on the step-size 17 by explicitly bracketing it in the superscript.
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range of step-size asymptotics is broader than Polyak and Juditsky (1992) and accordingly hints at
potential advantages over PRJ, primarily due to our de-biasing corrections in our algorithm design. In
Appendix §D, we establish an additional asymptotic normality result for ROOT-SGD with fixed con-
stant step-size, which exhibits exactly the same limiting behavior as constant-stepsize linear stochastic
approximation under PRJ averaging procedure under comparable asssumptions (Mou et al., 2020).

We end this subsection by remarking that Theorem 4 only requires strong convexity, smoothness,
and a set of noise moment assumptions standard in asymptotic statistics, but not any higher-order
smoothness other than the continuity of Hessian matrices at §*. This matches the assumptions for
asymptotic efficiency results in classical statistics literature (van der Vaart, 2000; van der Vaart and
Wellner, 1996).

4. Future directions

We have shown that ROOT-SGD enjoys favorable asymptotic and nonasymptotic behavior for solving
the stochastic optimization problem (1) in the smooth, strongly convex case. With this result in hand,
several promising future directions arise. First, it is natural to extend the results for ROOT-SGD to
non-strongly convex and nonconvex settings, for both nonasymptotic and asymptotic analyses. Second,
it would also be of significant interest to investigate both the nonasymptotic bounds and asymptotic
efficiency of the variance-reduced estimator of ROOT-SGD in Nesterov’s acceleration setting, in
the hope of achieving all regime optimality in terms of the sample complexity to the stochastic first-
order oracle. Finally, for statistical inference using online samples, the near-unity nonasymptotic and
asymptotic results presented in this work can potentially yield confidence intervals and other inferential
assertions for the use of ROOT-SGD estimators.
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Appendices

In this appendix, we provide deferred proofs for theorems and lemmas in the main text organized as
follows. §A provides additional work related to us. §B provides additional discussion on comparison
of our results with concurrent work. §C proves the main results for both the nonasymptotic and the
asymptotic convergence properties of our ROOT-SGD algorithm. §D complements our asymptotic
efficiency result in §3.3 and establishes an additional asymptotic result for constant-step-size ROOT-
SGD. §E presents auxiliary lemmas stated in §C.3, §C.4 and §C.5. Finally, §F proves necessary
lemmas for the proof of Proposition 2 (in §D.1).

Appendix A. Additional related work

SGD and Polyak-Ruppert-Juditsky averaging The theory of the stochastic approximation method
has a long history since its birth in the 1950s (Robbins and Monro, 1951; Bottou and Le Cun, 2004;
Zhang, 2004; Nemirovski et al., 2009; Bottou, 2010; Bubeck, 2015) and recently regains its attention
due to its superb performance in real-world application practices featured by deep learning (Goodfellow
et al., 2016), primarily due to its exceptional handling of the online samples; classics include Bertsekas
and Tsitsiklis (1989); Benveniste et al. (1990); Ljung et al. (1992); Borkar (2008) and many more.
Specially on the study of asymptotic normality which can trace back to Fabian (1968), the general
idea of iteration averaging is based on the analysis of two-time-scale iteration techniques and it
achieves asymptotic normality with an optimal covariance (Ruppert, 1988; Polyak, 1990; Polyak and
Juditsky, 1992). Recent work along this line includes Bach and Moulines (2011, 2013); Bach (2014);
Défossez and Bach (2015); Flammarion and Bach (2015); Dieuleveut and Bach (2016); Duchi and
Ruan (2021); Dieuleveut et al. (2017); Allen-Zhu (2018); Dieuleveut et al. (2020); Asi and Duchi
(2019), presenting attractive asymptotic and nonasymptotic properties under a variety of settings and
assumptions. Agarwal et al. (2012); Woodworth and Srebro (2016) provide minimax lower bounds
for stochastic first-order algorithms. Jain et al. (2017, 2018a,b) analyze SGD and its acceleration
with rail-averaging that simultaneously achieves exponential forgetting and optimal statistical risk up
to a constant prefactor. It is also worth mentioning that iteration averaging provides robustness and
adaptivity (Lei and Jordan, 2020). Instead of averaging the iterates, our ROOT-SGD algorithm averages
the past stochastic gradients with proper de-biasing corrections and achieves competitive asymptotic
performance.7 For statistical inferential purposes, recent work (Chen et al., 2020; Su and Zhu, 2018)
presents confidence interval assertions via online stochastic gradient with Polyak-Ruppert-Juditsky
averaging; analogous results for the ROOT-SGD algorithm are hence worth exploring, building upon
the asymptotic normality that our work has established.

Variance-reduced gradient methods In the field of smooth and convex stochastic optimization,
variance-reduced gradient methods represented by, but not limited to, SAG (Le Roux et al., 2012),
SDCA (Shalev-Shwartz and Zhang, 2013), SVRG (Johnson and Zhang, 2013; Kone¢ny and Richtarik,
2017; ?; Lei and Jordan, 2017), SAGA (Defazio et al., 2014), SARAH (Nguyen et al., 2017, 2021) have
been proposed to improve the theoretical convergence rate of (stochastic) gradient descent. Accelerated

7. A related but fundamentally different idea was proposed in Nesterov (2009); Xiao (2010); Lee et al. (2012) called dual
averaging for optimizing the regularized objectives. In contrast to their method, we focus in this work on the smooth
objective setting and augment our estimator to be globally unbiased. See also Duchi and Ruan (2021); Tripuraneni et al.
(2018) for first-order optimization methods on Riemannian manifolds.
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variants of SGD provide further improvements in convergence rate (Lin et al., 2015; Shalev-Shwartz,
2016; Allen-Zhu, 2017; Lan and Zhou, 2018; Kulunchakov and Mairal, 2020; Lan et al., 2019). More
recently, a line of work on recursive variance-reduced stochastic first-order algorithms have been
studied in the nonconvex stochastic optimization literature (Fang et al., 2018; Zhou et al., 2018; Wang
et al., 2019; Nguyen et al., 2021; Pham et al., 2020; Li et al., 2021). These algorithms, as well as
their hybrid siblings (Cutkosky and Orabona, 2019; Tran-Dinh et al., 2021), achieve optimal iteration
complexities for an appropriate class of nonconvex functions and in particular are faster than SGD under
mild additional smoothness assumption on the stochastic gradients and Hessians (Arjevani et al., 2020).
Limited by space, we refer interested readers to a recent survey article by Gower et al. (2020), and
while our ROOT-SGD algorithm can be viewed as a variant of variance-reduced algorithms, our goal is
substantially different: we aim to establish for strongly convex objectives both a sharp, unity pre-factor
nonasymptotic bound and asymptotic normality with Cramér-Rao optimal asymptotic covariance that
matches the local asymptotic minimax optimality (Duchi and Ruan, 2021).

Sharp nonasymptotics and asymptotic efficiency When the objective admits additional smooth-
ness, nonasymptotic rate analyses for either SGD with iteration averaging or variance-reduced stochastic
first-order algorithms have been studied in various settings. Bach and Moulines (2011) presents a
nonasymptotic analysis of SGD with PRJ averaging showing that, after processing n samples, the
algorithm achieves a nonasymptotic rate that matches the Cramér-Rao lower bound with a pre-factor
equal to one with the additional term being O(n_7/ 6) (see the discussions in §B). Xu (2011); Gadat and
Panloup (2017) improves the additional term to O(n*5/ 4) under comparable assumptions. Défossez
and Bach (2015); Dieuleveut and Bach (2016); Duchi and Ruan (2021); Asi and Duchi (2019) achieves
either sharp nonasymptotic bounds (in the quadratic case) or asymptotic efficiency that matches the
local asymptotic minimax lower bound. The asymptotic efficiency of variance-reduced stochastic
approximation methods, however, has been less studied. Frostig et al. (2015) establishes the nonasymp-
totic upper bounds on the objective gap for an online variant of the SVRG algorithm (Johnson and
Zhang, 2013), where the leading-order nonasymptotic bound on the excess risk matches the optimal
asymptotic behavior of the empirical risk minimizer under certain self-concordant condition posed on
the objective function; the additional higher-order term reported is at least Q(n~8/7).

Other related work Lakshminarayanan and Szepesvari (2018); Mou et al. (2020) studies fixed-
constant-step-size linear stochastic approximation with PRJ averaging that is not necessarily an opti-
mization algorithm, which includes many interesting applications in minimax game and reinforcement
learning. To be specific, Lakshminarayanan and Szepesvari (2018) provides general nonasymptotic
bounds which suffer from a constant prefactor on the optimal statistical risk, and Mou et al. (2020)
studies the PRJ averaging for general linear stochastic approximation and precisely characterizes the
asymptotic limiting Gaussian distribution, delineating the additional term that adds onto the Cramér-Rao
asymptotic covariance and which vanishes as 7 — 0 (Dieuleveut et al., 2020), and further establishes
sharp concentration inequalities under stronger moment conditions on the noise. Arnold et al. (2019)
proposes an extrapolation-smoothing scheme of Implicit Gradient Transportation to reduce the variance
of the algorithm (the general convergence rates of such a scheme is still open to our best knowledge),
which is further generalized to nonconvex optimization to improve the convergence rate of normalized
SGD (Cutkosky and Mehta, 2020). For the policy evaluation problem in reinforcement learning,
Khamaru et al. (2020) establishes an instance-dependent non-asymptotic upper bound on the ¢,
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Algorithm Assumption Additional Term | Reference
PRJ Hessian Lipschitz O (=5 (Bach and Moulines, 2011)
PRJ Hessian Lipschitz O ﬁ (Xu, 2011; Gadat and Panloup, 2017)

Streaming SVRG | Self-concordant multiplicative® | (Frostig et al., 2015)
ROOT-SGD Hessian Lipschitz O (#) (This work)

ROOT-SGD Hessian v-Holder | O (W) (This work)

Table 1. Comparison of our results with comparative work. For the unity pre-factor nonasymptotic
result, we only characterize the additional term to the optimal risk.

estimation error, for a variance-reduced stochastic approximation algorithm. Their bound matches the
risk of optimal Gaussian limit up to constant or logarithmic factors. Recently, Mou et al. (2022) extends
the algorithmic idea in this work and proposes the recursive variance-reduced stochastic approximation
in span seminorm, which is applicable for generative models in reinforcement learning.

Appendix B. Comparison to related works

In this section, we provide a careful comparison of our convergence results to those for stochastic first-
order gradient algorithms. For all nonasymptotic results, we compare our algorithm results with that of
vanilla stochastic gradient descent, possibly equipped with iteration averaging and variance-reduced
stochastic first-order optimization algorithms. In the Lipschitz continuous Hessian case, we can achieve
asymptotic unity. We compare our result with comparative work in Table 1 along with the following
itemized discussions:

In order to compare ROOT-SGD with SGD (without averaging), we impose Assumption 2 that
allows the noise variance to be at most quadratically growing with the distance to optimality. A
recent analysis due to Nguyen et al. (2019), which builds upon earlier analysis surveyed by Bottou
et al. (2018), makes a comparable noise assumption and applies to SGD. In special, Nguyen et al.

(2019) shows that for appropriate diminishing step-sizes 7; we have E|[|63°P — %3 < :;T We
observe that the convergence rate of SGD is in no regime better than that of ROOT-SGD presented
in (14). Moreover, generalizing their analysis to appropriate multi-epoch design for SGD further
allows the convergence to be valid for any 7" after the burn-in period, which presents the corresponding

, 02 L2g2
complexity of max { (ﬁ + ?“2) log (ﬁ) ) w2

multi-epoch SGD is also in no regime better than the optimized multi-epoch ROOT-SGD complexity
02 2 2
of max { (£ + 5 ) 1og (& + 3) - [VEgolle) 41,

Allen-Zhu (2018) developed a multi-epoch variant of SGD with averaging (under the name SGD?3)
via recursive regularization techniques and achieved a near-optimal rate for attaining an estimator of
O(e)-gradient norm. Our convergence theory of ROOT-SGD assumes the finiteness of ¢z, rendering

} after a straightforward metric conversion. Such a

8. Note that the paper Frostig et al. (2015) achieves a risk bound whose leading-order term is a 1 + O(b~")-multiplicative
approximation to the optimal risk, with some additional terms (See Corollary 5 in their paper). Since this result requires
b" < n, the additional term is at least Q(n~%/7).
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worse dependency on these parameters in their set of (more relaxed) assumptions. Despite that,
our ROOT-SGD is set under the noise assumption in the statistical learning setting that imposes
a more stringent stochastic Lipschitzness condition while allowing the noise variance to break the
boundedness.Without sketching its proof, one can (optimistically at best) impose an effective variance
bound o2 + €2€25 log (%) and achieve via a fine-grained analysis a complexity upper bound, as the
maximal of the following two terms:

(£ ) ) (22)

pnoop o3

2 2 2
max{%log (HVF(90)H2> ’U;}log:a <<L n %) . HVF(SO)\D) 7
p e £ poop o?

which cannor exactly match the complexity of our multi-epoch ROOT-SGD Algorithm 2, partly due to
at least log?’(') extra polylogarithmic factor in condition number in its leading-order optimal risk term,
letting alone matching the near-unity pre-factor.’

and

For SGD with PRJ averaging, Bach and Moulines (2011) present a convergence rate that provides a
useful point of comparison, although the assumptions are different (no Lipschitz gradient, bounded
variance). In particular, when choosing the step-size 7, = Ct~* for o € (1/2,1), Bach and Moulines
(2011) show that the following bound holds true for the averaged iterates A7 for the PRJ:

[ - Tr ((H*)~12*(H*)~! ¢
EHQT_Q*Hz_\/ $ )T( : )STQU/?”

which corresponds to an O(n*7/ 6) additional term in the squared estimation error metric ((21a) in
Corollary 3). Here, the constant cy depends on the initial distance to optimum, smoothness and strong
convexity parameters of second- and third-order derivatives, as well as higher-order moments of the
noise. Xu (2011); Gadat and Panloup (2017) further improves the higher-order term from O(n_7/ %) to
O(n~5/*). The convergence rate of (single-loop) ROOT-SGD is similar to SGD with PRJ averaging in
the nature of the leading term and the high-order terms, but the rate of ROOT-SGD is much cleaner
and easier to interpret.

The work by Frostig et al. (2015) proposes the Streaming SVRG algorithm that provides nonasymptotic
guarantees in terms of the objective gap. Under a slightly different setting where smoothness and
convexity assumptions are imposed on the individual function, their objective gap bound asymptotically
matches the optimal risk achieved by the empirical risk minimizer under an additional self-concordance
condition, with a multiplicative constant that can be made arbitrarily small. In particular, via our
notations their results take the following form:

E[F(0,) — F(6%)] < (1 n %) %Tr ((H*)™'$*) + high-order terms,

9. Their setting and analysis can be translated to our set of assumptions, where the multi-epoch ROOT-SGD achieves a
convergence rate upper bound that is no worse than their SGD3, since their variance bound scales locally as

. 2
ol + 1260 — 0*]3 < o + ﬁIIVF(Go)H%

However, this is optimistically the best-case translation, and rigorous analysis is also missing and pending future research.
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where they require n > b?P*3 for some p > 2. In order to achieve the sharp pre-factor, the additional
term in this bound is at least Q(n_S/ "), a worse rate than our Corollary 3. Additionally, to get the
corresponding nonasymptotic guarantees under such a setting, their bound requires a scaling condition
T > % where Ly .« denotes the smoothness of the individual function, which is larger than our
burn-in sample size. Without the self-concordance condition, the convergence rate bound of Streaming
SVRG suffers from an extra multiplicative factor a € [1, %] , and its leading-order term thereby
has a worse dependency on the condition number compared to SGD.

Appendix C. Proofs of nonasymptotic and asymptotic results

We provide the convergence rate analysis and the proofs of our theorems in this section. In our analysis
we utilize the central object the tracking error process z; defined as in (30), and we heavily use the fact
that the process (tz¢):>, is a martingale adapted to the natural filtration.

C.1. Proof of Theorem 1 and extended analysis

This subsection is devoted to an (extended) analysis and proof of Theorem 1. In part of our analysis, as
an alternative to our Lipschitz stochastic noise Assumption 3, we can impose the following individual
convexity and smoothness condition (Le Roux et al., 2012; Johnson and Zhang, 2013; Defazio et al.,
2014; Nguyen et al., 2017):

Assumption 8 (Individual convexity/smoothness) Almost surely, the (random) function 0 — f(6; &)
is convex, twice continuously differentiable and satisfies the Lipschitz condition

|V f(8;¢) — Vf(@';f)H2 < Liax ||0 — 0'H2 a.s., forall pairs 0;6' € R (23)

All Assumptions 1 and 2 along with either Assumption 3 or 8, are standard in the stochastic optimiza-
tion literature (cf. Nguyen et al. (2019); Asi and Duchi (2019); Lei and Jordan (2020)). Note that
Assumption 8 implies Assumption 3 with constant Ly ,; in many statistical applications, the quantity
Lpax can be significantly larger than /L2 + 625 in magnitude.

With these assumptions in place, let us formalize the two cases in which we analyze the ROOT-
SGD algorithm. We refer to these cases as the Lipschitz Stochastic Noise case (or LSN for short), and
the Individually Smooth and Convex case (or ISC for short).

LSN Case: Suppose that Assumptions 1, 2 and 3 hold, and define

i
Mhmaz = 4+ N @ (24)
ISC Case: Suppose that Assumptions 1, 2 and 8 hold, and define
1
(25)

Thmaz = 4Lmax'

As the readers shall see immediately, w44 1s @ key quantity that plays a pivotal role in our analysis for
both cases.
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Theorem 5 (Unified nonasymptotic results, single-epoch ROOT-SGD) Suppose that the conditions
in either the LSN or ISC Case are in force, and let the step sizes be chosen according to the protocol (9)
for some 1 € (0, Nmaz], and assume that we use the following burn-in time:

24
Ty = {7] . (26)
M
Then, for any iteration T > 1, the iterate O from Algorithm 1 satisfies the bound
2700 [|[VE(00)]|2 28 02

n?u?(T 4 1)2 T+1

We provide the proof of Theorem 1 in §C.1 in both the LSN and ISC cases. In accordance with
the discussion in §1, our nonasymptotic convergence rate upper bound (13) for the expected squared

0%

gradient norm consists of the addition of two terms. The first term, 7+, corresponds to the nonimprovable

statistical error depending on the noise variance at the minimizer. The second term, which is equivalent

22
to %, corresponds to the optimization error that indicates the polynomial forgetting from the

initialization. Theorem 1 copes with a wide range of step sizes n: fixing the number of online samples

T, (13) asserts that the optimal asymptotic risk %* for the squared gradient holds up to an absolute

2
constant whenever T' 2 # \Y %732)2%.
Converting the convergence rate bound in (13), we can achieve a tight upper bound on the sample

complexity to achieve a statistical estimator of §* with gradient norm bounded by O(¢):!°

2
cl<e>:max{ 74 ,llwwo)uz’%a*}

Timax b 3 g2
2
max (% + i—%) : 7HVF(€90)”2 : Z—;} , for the LSN case, (28)
") max % - w, Z—j} , for the ISC case.

In above, the step size 7 = 7Nmqy 1S Optimized as in (24) for the LSN and (25) for the ISC case,
separately, and where the asymptotics holds as € tends to zero while o, is bounded away from zero. In
both cases, the leading-order term of C () in either case is < Z—; which matches the optimal statistical
error up to universal constants. To our best knowledge, this is achieved for the first time by single-loop
stochastic first-order algorithms in the setting where only first-order smoothness condition holds, i.e. no
continuity assumption on the Hessians are posed.

Detailed proof. The rest of this subsection devotes to prove Theorem 5. It is straightforward to
show first (27) automatically holds for T < Ty since for these T, 67 = 6 and hence E||VF(07)||2 =
E|VF(0)||3, so we only need to prove the result for T > Ty.

We first define w4, Which is a key quantity in our analysis in this section for both cases, as follows

202
= for LSN
. { 5 or case, (29)

M%, for ISC case.

10. Indeed, we choose 7" in Eq. (13) to be sufficiently large such that it satisfies the inequalities 7' > Ty = [%] , as well as

2 2 2 2 . . :
% < £ and 28;* < 5. Here and on, we assume without loss of generality that e* < ||[VF(6o)||3. It is

then straightforward to see that (14) serves as a tight sample complexity upper bound.
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A central object in our analysis is the iteration of tracking error, defined as
2z i =v — VF(0i—1), fort > Tp. (30)

At a high level, this proof involves analyzing the evolution of the quantities v; and z;, and then bounding
the norm of the gradient V F'(6,_1) using their combination. From the updates (6), we can identify a
martingale difference structure for the quantity ¢z;: its difference decomposes as the sum of pointwise
stochastic noise, €;(0:_1), and the incurred displacement noise, (t — 1) [e¢(0;—1) — ¢(0¢—2)]. The
expression of the martingale structure is expressed as

tZt =1 (Ut - VF(Qt_l)) = Et(at_l) + (t - 1)(1},5_1 - VF(Ht_Q)) + (t - 1)(€t(0t—1) - Et(@t_g))
= Et(et_l) + (t — 1)Zt_1 + (t — 1)(Et(0t—1) - Et(et_g)).

€2y
Unwinding this relation recursively yields the decomposition
t t
tzy—Tozr, = », eslfs1)+ Y (5= 1)(es(Bam1) — s(0s-2)). (32)
s=To+1 s=Tp+1

We now turn to the proofs of the three auxiliary lemmas that allow us to control the relevant
quantities and the main theorem, as follows:

Lemma 6 (Recursion involving z;) Under the conditions of Theorem 1, for all t > Ty + 1, we have
t2E|| 2 (4 _1)2 2 2 12 _ 2
ztllz < (8= 1)°Ellze—1l2 + 2E|lee(0—1)[12 + 2(¢ — 1)7Ele¢(6r—1) — ee(be—2)[l2.  (33a)
On the other hand, for t = Ty, we have
T3E|lvr |5 — THE [ VF(00) 13 = ToEll2m, |15 = ToE|lex, (60) 13- (33b)

See §C.1.1 for the proof of this claim. Note we have 2, = vy, — VF(6y) which is simply the
arithmetic average of 7y i.i.d. noise terms at 0y, £1(0p), . .., 7, (0o).

Our next auxiliary lemma characterizes the evolution of the sequence (v, : ¢t > Tp) in terms of the
quantity E|[v¢]|3.

Lemma 7 (Evolution of v;) Under the settings of Theorem 1, for any n € (0, Dpaz), we have
EE||u])3 - 2E(vr, VF(Or1)) + E [VFO )| = E Jtor - VF@ )2, (G4

and

E|[tvy — VE(0:-1)ll5 < (1= np) - (£ = 1)°Elvg—15 + 2Ellee(6:-1) I3
—2(t = 1)’E[|es(6:-1) — &:(0r2)|5, (34b)

forallt > Ty + 1.
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See §C.1.2 for the proof of this claim.

Our third auxiliary lemma bounds the second moment of the stochastic noise.

Lemma 8 (Second moment of pointwise stochastic noise) Under the conditions of Theorem I, we
have

Ellet(0r-1)113 < WmazB||[VF(0i-1)|13 + 202,  forallt > Ty + 1. (35)
See §C.2 for the proof of this claim.

Equipped with these three auxiliary results, we are now ready to prove Theorem 1.
Proof [Proof of Theorem 1] Our proof proceeds in two steps.
Step 1. We begin by applying the Cauchy-Schwarz and Young inequalities to the inner product
(v, VF(6,—1)). Doing so yields the upper bound

1
2t(ve, VE(0r-1)) < 2 [t]lvellz - [IVF (Ge-1)ll2) < mpct?|[vel|3 + ﬁHVF(@—l)H%-
Taking the expectation of both sides and applying the bound (34a) from Lemma 7 yields

— MRV F (0, 1))3 < 2E|vog]|2 — 26E (v, VF(6; 1)) + E |[VF(6;1)| 2

(1 = nu)tE|lve|13 —

< (1—np) - (t = 1)’Efvi1]3 + 2E|ee(0:-1)]/3
—2(t = 1)°Elles(0—1) — et(6r—2) 3.

Moreover, since we have n < Nmar < ﬁ under condition (12), we can multiply both sides by
(1 — np)~L, which lies in [1, 3]. Doing so yields the bound

1
2B v |3 — %EIIVF(%A)H% < (¢ = 1)’Ellog1]3 + 3E[le(0p-1)lI5 — 2(t = 1)*B[er(6:-1) — e(-2)[5 -
Combining with the bound (33a) from Lemma 6 gives

t*Ellze]13 + *Ellve]l3 — (¢ = 1)°Ellze-1]13 — (¢t = 1)°El|ve—1 13
1
< 5E|le¢(fe-1)13 + %EHVFWH)H%-

By telescoping this inequality from 7Ty + 1 to 7', we find that
TEllor |3 + T*Ellvr || — TEEll2n, |3 — TO2]EHUT0||%

S [Eﬂawa OB+ EIVFODE] . GO
t=Top+1
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Next, applying the result (33b) from Lemma 6 yields

T2
- EIVEF(Or- DI < T°E|lzr|3 + T?Ellvr|3

T

1
< T3z, I3 + TEEllon I3+ |:5E||5t(9t—1)H% + EHVF(Gt—l)||%:|
t=To+1 Mk
T 1 T
= TGIIVF(00)[13 + 2ToEller, ()5 +5 Y Eller(be-) 3+ — D E[VF(6:-1)]3-
t=To+1 t=Tpo+1

Following some algebra, we find that

213V F(09)]13 + 4ToE|ler, (60)]]3

E|VF(0r-1)|3 <

T2
10 & 2 &
2 2
+ 72 > E||5t(9t—1)“2+m > E|VF(@6 )l (37)
t=Tp+1 t=Tp+1

Combining inequality (37) with the bound (35) from Lemma 8 gives

2TV F(00)|13 + AT [wimaa Bl VF (80)]I3 + 202]

E|VF(0r-1)|3 <

< T
10 < 2 &
t7m 2 [emaBIVFO-)IE+202] + s 30 EIVF(@-)I
t=To+1 t=Top+1
T
o (dw + 2T0)ToE || VE(6o) |13 10w + 2~y 2002
SR T > EIVF@O-)3+ =5
t=To+1

concluding the following key gradient bound that controls the evolution of the gradient norm ||V F(07_1)||2:

T
1
IEHVF(@T_l)H%gﬁ aE[VF@0)3+ 02 Y E[VF(B:1)l3 ¢ +
t=To+1

2002

Sk 38
7 G9

where a1 1= (4dwpmaz + 270) To and ag := 10wz + %

Step 2. Based on the estimation bound (38), the proof of Theorem 1 relies on a bootstrapping argument

in order to remove the dependence of the right-hand side of Eq. (38) on the quantity E||V F(6;_1)||3.

Let T > Ty + 1 be arbitrary. Telescoping the bound (38) over the iterates 7' = Ty + 1,..., T yields

T* T* T*

9 IVF(60)ll3 a2 2002
Y. EIVFOr)li<ar Y, 03 Z Z EIVF@-I3+ > =5

T=Tp+1 T=Tp+1 T= T0+1 t To+1 T=Tp+1

Q1 Q2 Q3
Let us deal with each of these quantities in turn, making use of the integral inequalities
1@ /T dr _ 1 1 @) (T dr T*

Z — < — < — and Z — < / — =log (—) 39)
2 = 2 = g =

i T rn 70 To i T oo T To
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We clearly have
Q< HVF(GO)”2 = (dwmaz + 2T0) [[VF(00)|3-

Moreover, by using the fact that 7" > T, interchanging the order of summation, and then using
inequality (39)(i) again, we have

Z a S gwreoB= Y (Y 2 VEIVF@1)I3

T= T0+1 t To+1 t=To+1 T= T0+].
T*

6%
<= D, EIVF@-)]3.
t=Tp+1

Finally, turning to the third quantity, we have Q3 < 2002 log (%), where we have used inequal-
ity (39)(ii). Putting together the pieces yields the upper bound

T* T*
e} T

> EIVF@r-1)IE < Uoas + 2IVFEIE+ 5 Y BIVFO-0)IE + 2002108 (7. ).
T=To+1 t=To+1 0

Egs. (12) imply that, for either case under consideration, we have the bound w4, < #, and, since

0<nu<?t 1 < 1, we have from (12) that Ty = {ﬁ—‘ < #, resulting in

4 1 54
dmaz + 2T < — + 2 <> =)
nu ny ny

where we have the choice of burn-in time 7 from Eq. (12). Similarly, we have as = 10wz + %

%ﬁ <3 Lo Pputting together the pieces yields

T*

LS BRI < BT+ 20 o (7, ) (@0)
0

t To+1

Now substituting the inequality (40) back into the earlier bound (38) with T = T" allows us to obtain
abound on E||VF(07_1)||2. In particular, for any T > T + 1, we have

T
54T, E|VFE@®)|2 Tp 1 2002
2 0 0/112 0 2 *
EHVF(QTfl)Hz < i : T2 + ﬁ : 5 § E||VF(0t—l)||2+ T
t=To+1
54Ty E|VE(@)|3 To T 2002
< : F(6 20021
= T2 +T2 HV (60)|I3 + 2007 log 7 + T
2(54) Ty E|VF(6)|3 200* T
: 1 —1
T onu T* M A
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log(z)

2054)Ty E|VF(6)|2 2002 T, T

Using the inequality < %, valid for x > 1, we conclude that

n T? T To
1 1 E|VF()|3 2002 1
<108 L EIVEGE 202, 1)
ne o np T T
2700 |[VF(0o)|5 2802
200 V@) | 2807
npeT T
Shifting the subscript forward by one yields Theorem 1. |

C.1.1. PROOF OF LEMMA 6

The claim (33b) follows from the definition along with some basic probability. In order to prove the
claim (33a), recall from the ROOT-SGD update rule for v; in the first line of (6) that for t > Ty + 1
we have:

tog = (t — D)vg—1 +tVf(0i—15&) — (t = 1)V f(Or—2:&)- (41)
Subtracting the quantity ¢tV F'(6;_1) from both sides yields
tzg = (t = D1 + V(015 &) — (= DV f(Or—2; &) — tVF(0—1).
Thus, we arrive at the following recursion for the estimation error z;:

tZt = (t - 1) ['l)t_l - VF(Qt_Q)]
+t[Vf(Or—1;8) — VE(Or—1)] — (t = 1) [Vf(0r—2;&) — VF(0r—2)]
= (t = a1 +e(0—1) + (t = 1) [e(01—1) — e¢(0r—2)] -

Observing that the variable e;(0;_1)+(t—1) [e4(6;_1) — £¢(6;_2)], defines an L2-martingale-difference
sequence, we see that

tEl|zt]3 = E||(t = Dze—1ll3 +E lee(6i-1) + (t = 1) [ee(Be—1) — (8213
< (t = D’Ellze-1l3 + 2E[lee(0-1) 13 + 2(t = 1)*Ellee(0e-1) — er(Be-2)13,

where in the last step follows from Young’s inequality. Computing the constants out completes the
proof of the claim (33a).

C.1.2. PROOF OF LEMMA 7

Eq. (34a) follows in a straightforward manner by expanding the square and taking an expectation. As
for the inequality (34b), from the update rule (6) for v;, we have

tvy = VF(0i—1) =tV f(0i—1:&) + (t — 1) [vi—1 — Vf(0i—2:&)] — VF(0i-1)
=t —1Dve1+ (t = 1) [V (Or-1:&) — Vf(Or—2;&)] +ee(0-1).
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Using this relation, we can compute the expected squared Euclidean norm as

Eltv; — VF(0—1)|3 = E||[(t — Dvemr + (¢t — 1) [VF(Or—15&) — VF(0r—2:&)] + 1(01-1)]13
=E|(t— Dve1]3 + E[|(t — 1) [Vf(0r—15&) — Vf(—2;&)] + et (0-1) I3
+2E((t — Dvg1, (t = 1) [V f(0r—1:&) — V[ (Or—2:&)] + €6(0-1)) -

Further rearranging yields

E|tv; = VE(O-1)[3 = (t = D?Ellv—1 13 +2(t = 1’E [V f(Or-15&) = Vf(0—-2:0)l5
+2E ||5t(9t—1)H§ +2(t - 1)2E (Ve-1, Vf(Or-1;6) — Vf(0i—2:&)) . (42)
We split the remainder of our analysis into two cases, corresponding to the LSN Case or the ISC Case.

The difference in the analysis lies in how we handle the term (v;_1, VF(6;—1) — VF(0;—2)).

Analysis in the LSN Case: From L-Lipschitz smoothness of F'in Assumption 1, we have

1
(vi—1, VF(0i—1) = VF(0;-2)) = _;<0t—1 — 012, VF(:—1) — VF(0;2))
(43)
1
< —E’\VF(Ht—l) — VF(0-2)|3-

Now consider the inner product term (v;—1, VE(6;—1) — VF(6;—2)) in Eq. (42). We split it into two
terms, and upper bound them using equations (45) and (43) respectively. Doing so yields:
E|tv; — VF (6-1)lI3
< (t=1Ellorall3 + 20t = D)’E [V (0r-15&) — VF(0r2:&0)13
+ 2E [|er(6;-1) I3 + 2(t — 1)°E (vi—1, VF(6;-1) — VF(6;-2))
< (t = DElloe[l3 + 2(¢ = D’E [VF(6i-1) = VF(O-2)ll3 + 2(¢ = 1)’E lee(61-1) — e0(6i—2)13
3np

1
+ 2E|le¢(6r-1) |3 — — (= 1)’Eljve1]13 ~ 277:(?5 — 1)’E|[VF(-1) = VF(01-2)|3

3
= <1 - ZM) (t = 1?ElJve1]3 + 2E]lee(8r1) I3 + 4t — 1B [lee(6r-1) — 2u(612) 3
—2(t — 1)°E |lee(0s-1) — e4(0s-2)|3

3
< (1 — +4n2£%) (t = 1 °Ellve-1])3 + 2Eller(B-1)3 — 2(t = 1)°E [le0(81-1) — £1(61-2)][3

From the condition (25), we have 1 — %nu + 4n2€25 < 1 — nu, which completes the proof.

Analysis in the ISC Case: We deal with the last summand in the last line of Eq. (42), where we use
the iterated law of expectation to achieve

E <'Ut—1a Vf(ﬁt_u §t) - Vf(et—% ft)> =EK <'Ut—1; E [vf(et—IS ft) - Vf(et—% ft) | ]:t—l]>
=K <Ut71, VF(Qtfl) - VF(Ht,Q» .
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The update rule for v; implies that v;_; = —% for all t > Ty + 1. The following analysis
uses various standard inequalities (c.f. §2.1 in Nesterov (2018)) that hold for individually convex and
Lpax-Lipschitz smooth functions. First, we have

<Ut—1, Vf(et—l; ft) - Vf(et—% §t)> = —717 <9t—1 — 02, Vf(et—l; ft) - Vf(et—% ft)>
(44)
< - V(136 - VO )R,

where the inequality follows from the Lipschitz condition. On the other hand, the u-strong convexity of
F implies that

1

(v—1, VF(04—1) — VF(0;—2)) = 7 (O—1 — 042, VF(0r—1) — VF(0;_2))

i (45)
< _EHQH — 0215 = —npullvi1]]3.

Plugging the bounds (44) and (45) into Eq. (42) yields

E|tv, — VF(0;-1) |3
< (t-— 1)2E||Ut71”% +2(t - 1)2]E IV f(Or-15&) — Vf(9t—2;ft)||§ +2E ||5t(9t71)||3
+(t = 1)*E (vy—1, VF(0—1) — VF(0i—2)) + (t — 1)°E (v—1, Vf (0r—1;&) — V(0125 &))

< (t—1)Eljog_1 3+ 2(t = D’E |V (0r-13&) — V(0—2:&) |5 + 2El[e¢(6:-1) 13
1
—nu(t — 1)°Ellve1]|3 — L (t— 1)’E(|V£(0i—1:&) — V(021 &) |3

< (1= nu)(t — 1)°Eljvi—1]3 + 2Ele(0—1) |15 — 2(t — 1)’E||V f(61—1; &) — Vf (Or—2: &) 13,

where in the last inequality relies on the fact that n € (0, ﬁ] (see Eq. (25)), leading to the
bound (34b).

C.2. Proof of Lemma 8

We again split our analysis into two cases, corresponding to the LSN and ISC cases. Recall that the
main difference is whether the Lipschitz stochastic noise condition holds (cf. Assumption 3), or the
functions are individually convex and smooth (cf. Assumption 8).

Analysis in the LSN Case: From the ¢=-Lipschitz smoothness of the stochastic gradients (Assump-
tion 3) and the p-strong-convexity of F' (Assumption 1), we have

Elle(0e-1)113 < 2E|let(0e-1) — ee(07)113 + 2Elle(67)]13
< 202E[|0,—1 — 07|13 + 2El|e(67) 13

202 2 2
< MQHEHVF(Ht—l)‘b + 20*7

(40)

which establishes the claim.
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Analysis in the ISC Case: Using Assumption 8 and standard inequalities for L, ,x-smooth and
convex functions yields

1
2Lmax

FO5:8) + (Vf(67:6),0) + IV£(0;€) = VIO 95 < f(6;€).

Taking expectations in this inequality and performing some algebra'! yields

E[Vf(6;€) — V(%5613 = 2Lmax(E[V (0% €)],6) + B[V £(6;€) — V£(6%:€)|3
S 2LmaxE [f(ea g) - f(e*af)]
= 2Lnax [F(e) - F(e*)] :

Recall that VF(6*) = 0 since 6* is a minimizer of F'. Using this fact and the p-strong convexity

condition, we have F'(§) — F(6*) < i [VE(6)||3. Substituting back into our earlier inequality yields

Lmax
E|Vf(8;€) = VF(03)]3 < p IVE©)]3.

We also note that!?
E [ler(6e-1) — 5t(9*)||§ =E[[Vf(0r—1;&) — V(05 &) — [VF(6i-1) — VF(H*)]HS
<E|VF(Or1:6) — VO &)|3
< LZaXEHVF(eH)n%-

Finally, applying the argument of (46) yields the claim (35).

C.3. Intermediate result Proposition 1 and its proof

En route our proof of Theorem 2 we state and prove an intermediate upper-bound result for single-epoch

version of ROOT-SGD.

Proposition 1 (Improved nonasymptotic upper bound, single-epoch ROOT-SGD) Under Assump-
tions 1, 4, 5, 6, suppose that we run Algorithm I with step-size n € (0 == A L] Then for any

7 B6L T 640Z
T > 1, the iterate O satisfies the bound

2 2 2 2 ~2+y
9 0% tzn logT (tzlogT o; CL,o,
E[VF(Or)|; — T < C{i + T 2T }? + N\ /2342027 (3+7)/2
CIVE@l; , __ CLy IVE@0)ls” @)
n2p2T? n(5+27)/2  (T+dy) /2 (5+27) /2

11. In performing this algebra, we assume exchangeability of gradient and expectation operators, which is guaranteed because
the function z — V f(x; £) is Lmax-Lipschitz for a.s. &.

12. This proof strategy is forklore and appears elsewhere in the variance-reduction literature; see, e.g., the proof of Theorem
1 in Johnson and Zhang (2013), and also adopted by Nguyen et al. (2019, 2021)).
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2
A few remarks are in order. When setting 7' — oo the leading-order term (1 + CZE")%% of the

nonasymptotic bound (47) nearly matches the optimal statistical risk for the gradient norm with unit
pre-factor when 7 is prescribed as positively small, and as will be seen later it matches the asymptotic
Proposition 2 under a shared umbrella of assumptions. It can be observed that the dependence on the
initial gradient norm ||V F(6)||, decays polynomially, which is generally unavoidable for single-epoch
ROOT-SGD, as the gradient noise at the initial point 6 is also averaged along the iterates. However,
as we will see anon, an improved guarantee can be obtained by appropriately re-starting the algorithm,
leading to near-optimal guarantees in terms of the gradient norm. In addition, we note that the high-
order terms of Eq. (47) contains terms that depend on the step-size 7 at opposite directions which
demands a trade-off. We forgo optimizing the step-size as is the conduct in our multi-epoch result.

For the rest of §C.3 we prepare to prove Proposition 1. From the discussions in §2.2 we decomposes
E|[VF(6;_1)|3 as the summation of three terms:

E|[VE 60l =E [[ve — ztll3 = E Jlvey +E 23 — 2w, 2). (48)

En route our proof, we provide estimations for E |[tv||5, E ||tz and E(tz, tv;) separately, where
our main focus will be on bounding the cross term. On a very intuitive and high-level viewpoint, when
comparing with the Polyak-Ruppert-Juditsky analysis, we can roughly think of the (ntv; : ¢ > 0)
process acts like a last-iterate SGD (as it is in the quadratic minimization case) and is fast and small. The
tz; process more resembles random walk at a slower rate driven by the same noise sequence. The two
timescale intuitions beneath is that, in the Hessian Lipschitz v = 1 scenario, two fast-slow discounted
random walks processes driven by the same noise has an inner product that is approximately the second
moment of the fast process. In our case this results in the “asymptotically independence” of the two
processes in the sense that E(tz¢, tv; ) scales as E ||tv 3 so VF(0;—1) = vy — z is approximately of
the same scale as z; in its first and second orders.
We first introduce the following lemma which is an essential part of the proof:

Lemma 9 (Sharp bound on v;) Under the setting of Theorem 1, there exists a universal constant
c > 0, such that for'T' > Ty + 1, we have:

co? c 9
- F(6 . 49
+ o IVE@O); @9)

E [lor|l3 <
Jor < 222,

We defer the proof of Lemma 9 to §C.3.1. This lemma, along with Theorem 1, helps conclude the
following bound on z, that has a leading-order term of near-unity pre-factor, that is, (1 + 0(1))%:

Lemma 10 (Sharp bound on z;) Under settings of Theorem 1, the following bounds hold true for
T>Ty+ 1:

2 2 log (A4 ) 2, 2 2
) O €E77 55 (T0> =) oy 650* TQ T 2
Blerlf =G <o S04 ot g T e IVF @)l +egh IVF@)IE,

(50)

for some universal constant ¢ > 0.
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See §C.3.2 for the proof of this lemma.

Finally, we need the following lemma, which bounds the cross term E [(vt, zt>]. Under Holder
condition on the Hessian matrix and additional moment conditions, this lemma provides significant
sharper bound than the naive bound obtained by applying the Cauchy-Schwartz inequality and invoking
the previous two lemmas.

Lemma 11 (Sharp bound on the cross term) Under settings of Theorem 1, we have the following
bound for any T > Ty + 1:

2 2
E(or, =) < ( L ”VF<9°>’2) s T

n ,U«TZ 774 /1«4T4

el 25 L IVR@IET 1)
Y\ /2B 2B /2 T (B+20)/2, (T 2T () /2 |

for some universal constant ¢ > 0.

See §C.3.3 for the proof of this lemma.
Taking the aforementioned lemmas as given, we are ready to prove the sharp bound. In particular,
by substituting these three lemmas into the decomposition (48), we have the following bound

2 03 2 03 2 Uf 2
E ”VF(QT—l)Hz T =E|jvr — ZTHQ T =|E HZTH2 T +E HUTHQ - 2E<UT7 ZT>
T 2
2y 0z log (%) =) 52 (=0, Ty 2 T )
< =l £ Z* =% 20w E( LN Ava Al
oSS — = | Fre (B BIVE@IL+ 5 - 7 IVFE0IS)
of  IVE(o)ll3 7 IVE o)™
e (WLT2 T AT log T+ 6Co Ly /2 B+ 2T+ /2 + G+20)/2,(T+10) 2T (5+27)/2
T
<C Zn l=  logT log (TO) (2 o? CLW(/J':Q—PY
S W VT o T e T nL/21,(3+20) /2 (3+7)/2
~——
IVE@0)l5 | tzox T L, |V F(60)ll5"
+C e 7z IVE@o)lly | + C77(54—27)/2M(7+47)/2T(5+2'y)/2'

Absorbing the bracketed cross terms into corresponding sum of the squares, this gives Eq. (47) and
concludes Proposition 1.

C.3.1. PROOF OF LEMMA 9

Our main technical tools is the following Lemma 12, which recursively bound the second moments of
Ve:

Lemma 12 Under the setting of Theorem I, when n < ﬁ A for Ty = 24p~'n~! we have the

following bound fort > Ty + 1

K

802’
10

CEuly < (1= 75) (= DB o3+ EIVE@)I + 407 (52)
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See §E.3.2 for the proof of this lemma.
On the other hand, invoking Theorem 1, we have that:

2700 ||V F(60)]/3 L 28 o2

E[|VF(6:-1)[|3 <
H ( t 1)”2 = 772,U2t2 +

fort > Ty + 1.

Now, to combine everything together, we conclude from (13) and (52) that

2 2
i ) , 10 [2700 [VF@0)3  2802] .
PE ol < (1= ") (¢t = D?E Juor-allf + = + + 407
2 2 > 2 plt? t
VF(0)]3
< (1= 2 (= 7R s+ TN 2 (53)

Multiplying both sides by ¢?, we obtain that:

c|[VF@)l3 | -

t'E vl < (1 — L”‘) 2t —1)E ol + — 552 + ot
2 UMZ
VF(00)l5
<(1- %‘) (t— 1B Juy |2 + DVE G2 773230)”2 + co?t?,

for time index ¢ satisfying ¢ > Ty > %. This gives, by solving the recursion,

T 2
T—T Tt VFE(0
T'E ||ur||? < (1 - 16“) "THE Jon 24 (1 - L’“) (” Go)lly | 03T2>

3.3
t=Tp+1 6 mp
2 2
np\T=To 4 2 IVE(6o)]]3 T 2
S (1— F) TOEHUTOHQ“FGCW—FGCﬁT .

It suffices to bound the initial condition E ||vr, ||§ Recall that vy, = T%) ZZ&I V f(00;&s), which is
average of i.i.d. random vectors. It immediately follows from Assumptions 2 and 3 that:

202 22| VF(60)ll3
To 12Ty '

2 2
Ellvn I3 < [IVF(0o)ll5 +
Putting them together, we complete the proof of this lemma.

C.3.2. PROOF OF LEMMA 10
Recalling that the recursive update rule of z; reveals an underlying martingale structure
tZt = (t — 1)Zt,1 + (t — 1)(5t(9t71) — 6t(9t72)) + 5t(9t71)-
Adding and subtracting the £,(6*) term in the above display we express the noise increment as

tzy — (t — 1)21571 = st(ﬁ*) =+ (t — 1)(515(91571) — St(et—Q)) + z—:t(ﬁt,l) — et(ﬁ*) .
= ¢
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In words, the increment of ¢z; splits into two parts: the additive part £,(6*) and the multiplicative
part (;. Taking expectation on the squared norm in above and using the property of square-integrable
martingales, we have via further expanding the square on the right hand
2 2 2 2 _ * 2 _ *\ 12 2 *
EE [2elly = (¢ = 1)°E[Jze-1ll; = Elee(67) + Gell; = E[lee(67) 3 + E G2 + 2E(=(67), C)-
Telescoping the above equality fort =Ty + 1,...,7 gives
T°E |lor 3 — TOE||2n |15 = Z E [|e(6)I3 + Z E||Gill3 +2 Z E(e(6

t=Tp+1 t=Top+1 t=To+1

By definition, we have E ||.(6") Hg = o2. For the additional noise (;, Young’s inequality leads to the

bound:
E 2 2 12 2
G2 < (éaos ~)\E s — ol + /B 601 — 6 ||2)
l= 2
< (neau S INCIESHNE ||VF<9H>||§)

£2

< 20%2(t — 1)’E Jlo |13 +

(Oe-1)ll3 - (54)

It remains to bound the summation of the cross term. Observing that:

T T

> BE(07), &) = D Ee(6), er6i1) —eu(67) + (¢ — 1) (24(6:-1) — €1(61-2)))
t=Tp+1 t=Tp+1
T

-3 {tE(st(G*),st(Gt_l)—51;(9*))—(t—l)E(at(H*),5t(9t_2)—5t(6*)>}.

t=Top+1

Since the random samples (§;)¢>1 are i.i.d. and the iterate 6;_5 is independent of the sample &1, we
have that:

E(er(07), et(bi—2) — e(07)) = E(er—1(0"), et-1(01—2) — et-1(0%)).

Consequently, we can re-write the quantity of interests as a telescope sum, leading to the following
identity:

T T

S B0, G = 3 {EBEE), i) - 28) - (¢ - DEGE), 261-2) — =i(6)}
t=Tp+1 t=Top+1
T

-y {tE(Et(Q*),Et(Gt_l)—at(é*))—(t—l)E(at_l(H*),Et_l(Ht_g)—st_l(G*))}

t=Tp+1
=T -E(er(0%), er(0r-1) —er(0%)) — To - E(e,, (07), ex (O1,—1) — €1, (67))-
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In order to bound the inner product terms, we invoke the Cauchy-Schwartz inequality and Assumption 3.
For each t > T}, we have that:

[t - E{er(0%), e(0-1) —eu(07)) < ¢ \/IE ()15 - \/IE lee(0e-1) — £0(6%)15

to,l=
< tol=y/E|f_1 — 0%|% < "M E|VEG_1)|3 (55

Substituting with £ = T and ¢ = T" and combining with Eq. (54), we have that:

T

262 T
T°E ||2r[l; < TR ||zn|l5 + (T — To)o? +20°¢2 > (t—1)°E orall5 + > EIVF@O1)l3
t=Tp+1 t=Top+1
26:0'*
+ 22 (1 RV F ) I+ T TR ). 56

Above bound involves the second moments of the vectors v; and VF'(6;). We recall the following
bounds from Theorem 1 and Lemma 9, for each ¢t > Tj:
co? LS
nﬂt2 774 444
c||VE@Bo)|5 , co?
7’]2,U,2t2 t
Substituting these bounds to Eq. (56), we note that:

E |lull; < [VE(6o)l3, and

E[VE()|; <

T

2 2
coT  c||[VF(0
> = 1)Ellual; < ——+ HT E(L)Hz nd
t=Tp+1 un on*p
T
c||VF(0
Z E|VF(6,- 1)H2 < co?log <T ) + HQ(TO)”Q.
t=To+1 0 pn=To
Finally, for the burn-in period, we note that:
2Ty 02

T3E ||21, |5 < 2T0E [|e1 (o) — e1(67)|3 + 2ToE [le1 (67)]]5 < IV F(60)|3 + 2Too?.

112
Some algebra yields the conclusion of this lemma.

C.3.3. PROOF OF LEMMA 11

First, by Cauchy-Schwartz inequality, we can easily observe that:

] VE () o« IVE(0)]
< 2 2 o o I 012y . nv = \Fo/l2
|E<UT7 ZT>‘ = \/]E HUTHQ \/E HZTHQ = c(T\/TTU, + T]2M2T2 ) (\/T T nul’ >

So for T' < cTplogTp, the conclusion of this lemma is automatically satisfied. For the rest of this
section, we assume that % > (I} for some universal constant ¢ > 0.

The proof requires some bounds on the fourth moment of the stochastic process defined by the
algorithm. In particular, we need the following two lemmas. The first lemma is analogous to the bound
in Theorem 1:
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Lemma 13 (Higher-order-moment bound on VF(0;_1)) Under Assumptions 1, 6 and 5. Let the

step-size n < ﬁ A 64% and the burn-in time Ty = {%w Then for any T > Ty, the estimator Op

produced by the ROOT-SGD algorithm satisfies the bound

/2 1405, 60 ||VF(60)ll3
(EIvFEnE)" < 00 OITE, )

- T+1 AT+ 1)2°

Proof can be found in §E.1.
We also need a lemma on the fourth-moment bound of v, analogous to Lemma 9:

Lemma 14 (sharp higher-order-moment bound on v;) Under the setting of Proposition 1 we have
the following bound for'T' > Ty + 1

448457 1359375 )
\E o3 < + VF(6)]?. (58)
H ||2 UMT2 774N4T4 H ( )||2

Proof can be found in §E.2.

Taking these two lemmas as given, we proceed with the proof. Following the two-time-scale
intuition discussed in Section 2.2, the process v; moves faster than the averaging process z;. Therefore,
it is reasonable to expect the correlation between vy and z 47 10 be small, for sufficiently large time
window T* > 0. For the rest of this section, we choose the window size:

T = £ logT, for some universal constant ¢ > 0. (59)
un

Since we have assumed without loss of generality that % > clp = %, the window size guarantees

the relation T’ — T* > T'/2.
We subtract off a (t — T*)zt_f* term the tz; expression above, and decompose the absolute value
of the cross term |E(vy, t2;)| as:

IE(tz, ve)| < (t —T%)

E<zt7f*, vt>‘ + ‘E<tzt —(t— f*)zt,f*» vt>‘ . (60)

=:I1 =:15

For bounding the term I2, we make use of the recursive rule of ¢z; to obtain the bound:

2
t—=T* 2

—E| > {5 DesBo1) — 20(0s2)) + £0(0s1) — £(67) +2(67) }

s:t—f* “+1 2

E |tz — (t —T%)z

t
2
< 2 {6 PEE el + SEIVF@) I+ o2
s=t—T*+1

~ [ o IIVF(00)3

40



ROOT-SGD: SHARP RATES IN A SINGLE ALGORITHM

Consequently, we have the bound:

~ ~ 2
’]E(tzt — (= T")z s, m) < \/IEJ tht =Tz g, VE il

~ . F(6, F(o 2 F(6,)?
<ec T*< o +IIV (o)b) <J*+”77V3/2L30/)2|l2> §c<0* +HV (0)||2> gt

o n? ut? npt ntutts

The bound for the term /; in the decomposition (60) is given by the following analysis:

‘E<zt_f*, vt>’ — )E<zt_f*, (v, | ft_f*)>‘ < \/IE‘ z . \/IE HE(vt | oz

where the last inequality comes from applying the Cauchy-Schwarz inequality.
The second moment for z, 7, is relatively easy to estimate using Lemma 10. It suffices to study
the conditional expectation E[v; | 7, 7.]. We claim the following bound:

2 _cly ((on  |[VE(b)] o IVF@®0)ll2 "
_ < =0 2 2 .
\/IE HE (vt | ft‘T*) H2 Bz (\/nut e p/t MY 2

We prove this inequality at the end of this section. Taking this bound as given, we now proceed with
the proof for Lemma 11.
Bringing this back to the inequality (61) and by utilizing the z; bound by Lemma 10, we have

BT+

E ||z-1]l3
t 2
2002y 120z 904log <T) Z\ o2 Y=o, Tp 18302 Ty
I+ n )2 /ﬂto -+ 'p’\VF(90)||2+7“'p\\VF(90)||§
2 ||[VE(6y)]?
<o (0* N 2<203u2> |
t n-p-t

and thus

5 2
‘E<zt7f*, 'Ut>‘ < \/E Hztff* 9 \/E HE (Ut | ]:t*f*) H2

— —~ Y
<0Lw<f7*+HVF(90)||2> o IVF@I3\ (7 IVF@o)l;
Top AWt nut Vit n? uAt? V't nu?t

<0Lv< G IV E(B0)]13" )

1 nl/2p(A+27)/2¢B+7) /2 p(5+27)/2 1 (5+47)/2¢(5+27) /2

Combining the bounds for I; and I together, we estimate the cross term as:

Ly ot IVE(60)ll5"
‘E<tzt7 Ut>} Sct-T )7 (771/2“(1+2'y)/2t(3+’y)/2 + 1(5+27)/2 ,(5+47) /24 (5+27) /2

2 2
+e (U* + WM) N 63)

nput ntutts
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We conclude by dividing both sides of Eq. (63) by 7" and arrive at the following bound:

[E(vr, 27)]
o IVF@)l3\ o IVF(6o)ll5"
= ¢ (WT2 + AT log T+ cLy N2 G 2T ) /2 + G+ 2, 2T G+2 2 |

This finishes our bound on the cross term and conclude Lemma 11.

Proof of Eq (62): We note the following expansion:

1
VF(0_1) — VF(01_2) = / V2F (Ms—a + (1 = No_1) (Bs—1 — 0;_o)d,
0

which leads to the following bound under the Holder’s continuity condition for the Hessians (Assump-
tion 4):

IVF(0: 1) = VF(6_2) — V2F(0°) (01 — 6, 5)],
1
_ / [(V2F (M2 + (1= Ny 1) — VEF(0%)) (61 — 01_2)||,, dA
0
1
<ok ol [ NGz = 0%) + (1= X) (01 — )3 2
0
<Ly [Jve-lly - max (01 — 0%[l5 , [|0—2 — 07[13) - (64)
Since H* = V2F(6*) we have

tHIE(vt | Fy 7o)

.

- HE (t = 1) (041 + VF(1_1) — VF(61—2)) + VF(6,_1) | ftif*) ‘2
= |E((t = 1) (vp—1 + H*(04—1 — 01—2)

+ V(1) = VF(0r_5) — H* (01 — 01_3)) + VE(0r_1) | F,_ )H
< 0017 o 7],

+ H]E ((t = 1) (VFO1) = VFOr2) = H* (001 — 0-2)) | F,_7.) 2

(65)

Further by rearranging the terms, and dividing both sides by (¢ — 1), we obtain

7 2], < o017
* HE VEF(0i-1) = VF(0r—2) — H* (011 — 01-2)) | F,_7.
< (1 —np) HE<'U1‘,1|]: )H

0L, (ol - max (1601 — %13 1oz — 0°13) | F, )

42



ROOT-SGD: SHARP RATES IN A SINGLE ALGORITHM

where in the last inequality we apply the result in Eq. (64). Next by calculating the second moment of
both the RHS and the LHS of the above quantity and the Holder’s inequality, we have

ele (o 7))

< (1B [ (ver 1 7 )|+ B B (s - (16002 = 04187 + 1rs 1) 1 7|
<= (vcr 70

+ 77L (E ||'Ut 1||2+2’Y) 2+2'~/ {(E ||9t 1 — 9*|’§+27)ﬁ i (E |"9t_2 B 0*”34—2'7)ﬁ}

Recursively applying the above inequality from ¢ — T* to ¢ and we have that

ele (o 7))

<(1-nu)"E Hvt_f*

2

L Ty -
+ 20 max (Bo)3) 77 max (B —60°3) T
Hot—T*<s<t t—T*<s<t
(66)
We recall from Lemmas 13 and 14 the following

1 —~2 2
* VE(6
(E ||,UTH§+2“{) T+v <C (nZT2 + || ?74/1(470—‘)4”2) ’ and

% VF(0
(vrior i)™ < (% LT7AE)

Bringing this into Eq. (66) and we have that

2

el (1 7n ) = 0w s o

eL, ( 5 IVF@), )( 7 +||VF<90>~||2>”
o\ yap(t—=T%) 2t =12 ) \uvt—T+ nu(t—T%)

Substituting with the window size T* defined in Eq (59), the above inequality reduces as follows:

& & y
Vel ot 7 [ = e (2 LEEOLY (% IO

C.4. Proof of Theorem 2

Utilizing the intermediate Proposition 1 in §C.3, we now aim to improve the dependency on initialization
and turn to the proof of our multi-epoch nonasymptotic result. Invoking Eq. (57) in Lemma 13, we
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obtain for b = 1,2, - - - , B the bound for 7° > ¢Tj:
o2

Tb , and

E HVF(H(()Z’H))H ]E HVF o) H

2
—~2
COx

Mwwgb+”>u >

where our setting of 77 gives a discount factor of 1 /e2. Solving the recursion, we arrive at the bound:

< aE[vred],+

co?

2
E va(e)gB“))HQ < T+ eIV E0)]3, and

—~2
\/IEHVF (B+1)y H &—ke’w\/EHVF(OO)H;‘.

Ourtakeisleog% such that ¢ 2PE | VF(6)[|2 < % and e~25/E||VF ()3 <
we have
E||VE@S )] < e PR IVE@0)IE + 0 < <O and
0 5 = OM2 ™ "y = T
—~2 1 —~2
B+1). |4 _2B 4 COy o
\/IEHVF(G(() ))H2 < e PIVEIVF@0)ll; + —5 < 5 and
24y ~24ny
B+1) 2+V H (B+1) H4 T do.
E|[vred™)|| (E VEGT),) < e and
B+1) COox
e|[vea™ ), <

where constants ¢, ¢’ change from line to line. Substituting this initial condition into the bound (47), we
obtain the final bound:

2 g2
EH FQ(BH)’ O
vEET )|, - %
- L uT/2  nuT 2T T ' pl/2,G+29)/27G+)/2
Lo IVE@0)ll3 , =0+ |[VE(6o)ll, CLy [VF(60)[5"
n2p2T? nu2T? n( +2W)/2 p(7+40)/27(5+27)/2
2 —~2
<C “n l= logT+10g( )6 134_ CLyo." "
=Y\ TR T ur 2T | T TG areie
ey g Lo,
A e TP RV g CRE T
2 —
cof®n, = | lsT 10%( )5 o2 CL,5, >

0 MT1/2 nuT 12T T + 771/2H(3+27)/2T(3+’Y)/2’
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which proves the bound (17).
Finally, substituting 7 by the final epoch length n — BT” and adopt similar reasoning as the
previous one, we arrive at the conclusion:

2
2 2 = 1 log (ﬂ) 2 52 CLya. 2™
E ||VF(92nal)“2 Oy <C =7 + =4 ogn . To Ty ~O 7
2 n wo opunt/2 0 nun wn n o pl/2pB3+27)/2p6+7)/2
which proves the bound (17). Plugging 7 as givenby n = ——S1—— A ﬁ with ¢ = 0.49, we have
n(02/p2) " “ne
2
2 /= 1 log (%) L= 2 CL.G.2H
EHVF(egnal)Hg ¢ =1+ T/z oy 20 o 1/2 (3+;(;/2 (3+7)/2
Boopn nun p=n /e A S
— o\ 2 2 (20-1)/2pl—cpa/2 | [1/2Y], F72+7
<C(log (L = L L ﬁJrc’('u be "+ L )Ly .
To p/n un | n p(3+27)/20,3+7)/2

This concludes (18a) and hence Theorem 2.

C.5. Proof of Corollary 3

The proof consists of two parts: bounds on the mean-squared error EE ||§7 — 6*||5 and bounds on the
expected objective gap E[F(07) — F(6*)]. Two technical lemmas are needed in the proofs for both
cases. (Recall we fix our v = 1)

The first lemma is analogous to Lemma 10, which provides a sharp bound on Gz; for any matrix
G € RIx4,

Lemma 15 Under settings of Theorem 1, for any matrix G € R¥*?, the following bounds hold true
forT > Ty + 1:

T 2
! - 2y tz  loelzw)E) o2
B lGarl; | < 7T (GE'GT) + el GIE {20 + = + ELZOT> b7
EEO'* T() T2
+ cH!GH\fp{ 72 IV F(00)ll; + T% IV F(60)]2 } 67)

for some universal constant ¢ > 0.

The second lemma is analogous to Lemma 11, and provides sharp bound on the cross term
E(Gzt, G’Ut>.

Lemma 16 Under settings of Theorem 1, we have the following bound for any T > Ty + 1:

2 VF(6)l?
\E<GUT,GZT>|Scme3,,< o | <0>”2>10gT

nuT? At
Ox V(6
[%)Ll < + ” ( 0)”2 ) , (68)

+ |G nl/2p5/272 T T/211/27/2

for some universal constant ¢ > 0.
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See §E.4 for the proof of both lemmas.
Taking these two lemmas as given, we now proceed with the proof of Corollary 3.

C.5.1. PROOF OF THE MSE BOUND (21a)

We start with the following decomposition of the gradient:

1
VF(0r) = [ V(0" + (1= 0)r) (07 = 07)dp

which leads to the following bound under Assumption 4:

1
|(H*) T VEOr) = (0r — 07|, < /0 [(F) ™ (VEF (p0" + (1= p)Or) — H") (07 — 07)]|, dp

Ll x12 1 2
<= — <1 WwWF .
= HGT 0 ||2 =\ in(H*) 2 H (GT)HQ (69)

)\min (H*)
We can then upper bound the mean-squared error using the processes (z¢):>7, and (v¢)¢>1;:

Ly 2 2
22 () IVE(Or)|l5

2L, .

IVE©r)]3]. (70)

E |67 — 6°|2 <E (\\(H*>-1VF<9T>H2 -

<E|[(H") ™ (vr41 — 2r41) |5 +

L
T S
Amin(H*)zluéL

The first term in the bound (70) admits the following decomposition:

E||(H*)™ (o741 — vr1) |5
=E H(H*VlZTHH; +E H(H*)AUT%-IH; — 2E((H*) ' 2ry1, (H*) lorya).

Note that the re-starting scheme in Algorithm 2 gives the initial conditions:

cof 12 co,?
E|VF@);< 5 and (BIVF@);) <

—= TO .

(71)

Using these initial conditions, and invoking the Lemma 15 with test matrix G = (H*)~!, we obtain
the bound:

c Zn U= Toy o2logT
{ s

1
E[ [ 2l ] < T () 'S )T + —=
H( ) ZTHQ - T r ( ) ( ) +)\min(H*)2 i +,U«\/T T T
Similarly, invoking Lemma 16 with test matrix G = (H*)~!, we have that:
2/log T L s
|E<(H*)71UT, (H*)71ZT>‘ < coy v 10g + cLy ) (o}

n )\min(H*)2"7MT2 )\min(H*)Qru2 (UM)WTQ '
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For the term E H (H*) top ;, Lemma 9 along with the initial condition yields:

2
E||(H5*) o < Ellorl < 5s—7;
mi

1
)\min(H*)z n H*)QILL??T2.

Collecting above bounds, we conclude that

1 Gy =z | 1 YollogT
E|(H")'VF(Or), < 7 Tr ((H*)_lz*(H*)_T)JF#H*)?{ R A

. . (72
T N (HZ2 e 7P

In order to bound the last two terms of the decomposition (70), we recall from Lemma 13 and the initial
condition (71) that:
Cox

T

(=Ivren)” <

Combining with Eq. (72) and substituting into the decomposition (70), we conclude that:

y 1 1k /T — c (Zn l= 1 YyollogT
B 1or -0l < 7 ()= ey +W{T+ T WT} T
el & & L

Amin(H*)2p® | (qu)'/?T2 75 p? T2 |

Note in the last line, the second O(T*3/ 2) term is always no smaller than the previous first term. Taking
T =n — BT® with n > 2BT", some algebra then completes the proof of the desired bound.
C.5.2. PROOF OF THE OBJECTIVE GAP BOUND (21b)

Applying second-order Taylor expansion with integral remainder, for any 6 € R¢, we note the following
identity.

F(0) = F(0*)+ (0 — 6%, VE(0*)) + (0 — 6*) " /1 V2E(pd + (1 — p)0*)dp - (6 — 6%).
0

Noting that VF'(6*) = 0 and invoking assumption 4, we have that:

F(6)

* 1 * * * * ! * * *
< F(07) + 50 -0 )TH (0 —6%) + 16— 6 ||2'/0 IV?E(pb + (1 = p)8") — H*|lwdp - |6 — 6%,

1
SE(0%) + (0= 0")TH* (0~ 07) + Ly 10— 07
(73)
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Analogous to Eq. (69), we have the bound:

|y 200 = 07) = (1) 712V R (o) |

1
< [ oy (9 (o0 + (1= )~ 8 (00— %) o
0 2
14
<

. Ly
HGT -0 ||2

—_—— — __||VF(p)]3.
o () o () IVEO7)]l3

Denote the residual g; := (H*)'/2(6; — 6*) — (H*)~'/2V F(8;). Substituting into the bound (73), we
have that:

E[F(6r)] - F(6")
1 * —1/2 2 *1(13
SE || 2V E0) + ar | +L1E||9T—e I3

IA

IA

1 o~
SE [ v Een)|) + [ lall - IVFOn)l, | + 5B Il + AEIVF@DS.

(74)

mm )

For the first term, by applying Lemma 16 and 15 with G = (H *)_1/ 2, we can obtain the following
bound analogous to Eq. (72):

*\—1/2 2 L *\— 1y c 623777 l= 1 U% IOgT
E H(H ) VF(HT)HQ = 2TTr ((H ) ) + Amin (H ){ M\f ,unT} T
cly a°

T T2 () 2T

For the rest of the terms, we recall that Lemma 13 with the initial condition (71) gives the bound
(E|VF(0r) || )1/ ? <oyl /T. Substituting into the decomposition (73), we obtain that:

N s ¢ fGn  tz 1 \oilogT
E[F(QT)]_F(Q)SﬁTr((H) 12)+m{ +M\f /mT} T

cL, @0 L2 Ox

2 ' /LT% E . )\min(H*)Tz.

Noting that T = n — BT” with n > 2BT”, we completes the proof of the desired bound.

C.6. Proof of Theorem 4

Here we provide a two-step proof of Theorem 4. We continue to adopt the v;—=z; decomposition as
earlier used, and we proceed with the proof in two steps:
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Step 1: We first claim the following single-epoch result, Eq. (75), that under the setting of Theorem 4

along with [|[VF(6p)|| = O(y/npuo?), the single-epoch estimator produced by Algorithm 1 with burn-
in time T = Zﬂ as T' — oo, n — 0 such that nT" — oo satisfies the following convergence in

probability:

TZT — Z 85 . (75)

Taking this as given, we now combine Eq. (75) with our multi-epoch design Algorithm 2 we can
essentially assume without loss of generality that ||V F(6y)|| = O(y/nuc?2). Under the current scaling

condition, the final long epoch in Algorithm 2 will be triggered with length T" = n — TbB and hence

we apply Eq. (49) so for some C' < 56 we have the initial condition holds: E||V F ( )||2 < CTUb =

O(nuo?), so that as T — o,

2 2
npo?
TE <0 ——— ] =0
HUTHQ (nuT + 774,u4T3>

Therefore, \/TUT 2y 0 holds.
Now to put together the pieces, note that X Z <1 €s(07) is the average of i.i.d. random vectors of
finite second moment. By standard CLT, we have

1 r d
— ) &, (0" N(0,3%).
= ;1 (0%) = N(0,%7)

Consequently, replacing T by n — T’ B we can apply Slutsky’s rule of weak convergence and obtain
the desired weak convergence: as 17 — 0, n — oo such that n(n — T°B) — oo

VIVF(O,) = VTvor — VTzr
T
:\/TUT_<\/TZT_\/1TZE )—Zas ) 4 N(0,5%).

s=1

Due to our additional scaling condition, we can further replace T = n — T°B by n, concluding
Theorem 4.

Step 2:  We proceed to prove Eq. (75) with the extra initialization condition | VF ()| = O(\/nuc?).
By Egs. (49) and (50), we have for T' > T there exist constants a1, az, a3 > 0 independent of n, T" but
depends on the problem parameters (u, L, {=, 0, 0, @), such that

2a
2 2
E|larll} < 2,
and consequently, we have from Eq. (49) that
75202 69175 a; (1 n 2a1
E [lor|f; < . VE6)|3 < = | — <=1
lorll < 2% 4 S IV F 0 < 5 (o ) < 2o
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and hence

40,1 4a2 4a3
EIVF@r1)l; <2 (Elerl + Ellerl}) < 75+ 7 < -

Note from the definition in Eq. (31)
tzy = e¢(0p—1) + (t — 1)zg—1 + (t — 1) (ee(Or—1) — €(0r—2)).

By setting Ay = (t — 1)(e¢(0s—1) — €t(0t—2)) + €+ (0r—1) — (67), the process Tz — ZST:1 es(0) =
23:1 Ay, is a martingale. To conclude the bound (75), we only need to show the following relation as
T — ooandn — O:

2

T
1 2
E TzT——Zss Q—TZ;IEHASII — 0. (76)
Since we have
2
T T
E Z (s = 1)(es(0s-1) —es(05-2))|| = Z (s — 1)2]E les(Bs—1) — 53(95—2)”5
s=Tp+1 2 s=Tp+1
T T
<2 Z (s = 1)°E[[fs-1 — 93—2”3 =tz Z (s —1)°E Hvs—ng
s=To+1 s=To+1
T 2a1 2a1€2
<PE Y (-1 1< o
T (s —1)* = n°Ty
We note that
T 2 T
E Z (es(0s—1) — &5(0%))|| = Z E|les(0s-1) — 55(9*)“3
s=Tp+1 2 s=To+1
d 02 T
*1(2 =
< Y B0 — 075 < e - 4aslog <T0> .
s=Tp+1
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Therefore, combining this with E|| 4;]|3 = E ||(t — 1)(e¢(01—1) — e¢(01—2)) + (01—1) — £4(6%) Hg <

2
2020%(t — 1)°E ve_1ll3 + 25251['3 IVF(8;_1)||3 we have as T — oo, 17 — O:
T T
LS B <5 Y BN - D(E01) — c0r2) + 20l8i1) — 20672
T -7 2
t=Top+1 t=Tp+1
20 1 % 2 ;22 1 ¢ 2
<26zn” 5 > (t=1’Elvallz + =5 - T > E|VF@O:-1)l;
t=Top+1 K t=Top+1
T T
1 2a1 QE% 1 dag
< 202p? . = 5 t—1)72—— .- E -
> 2z Tt:TO+1( )n(t—1)2+ /~L2 Tt=T0+1 t
T
2[2 4a310g (76>
_gayn+ 22 B0
a1t=zn + 2 T )

i.e. the limit (76) holds, which implies v/Tzp — ﬁ 23:1 £5(6*) & 0, completing our proof of
Eq. (75).

Appendix D. Asymptotic results for single-epoch fixed-step-size ROOT-SGD

In this section, we complement Theorem 4 in §3.3 and establish an additional asymptotic normality
result for ROOT-SGD with large step-size. Notably, the covariance of such asymptotic distribution is
the sum of the optimal Gaussian limit and a correction term depending on the step-size, which exactly
corresponds to existing results on fine-grained CLT for linear stochastic approximation with fixed
step-size (Mou et al., 2020).

First, in order to obtain asymptotic results for single-epoch constant-step-size ROOT-SGD, we
impose the following slightly stronger assumptions on the smoothness of stochastic gradients and
Hessians:

(CLT.A) Forany 0 € R4 we have
sup E[[(V2£(6:6) — V2£(0%:€))o][; < 82110 — 073 (778)

vesSd-1
(CLT.B) The fourth moments of the stochastic gradient vectors at 8* exist, and in particular we have

E|VfO5E)|s<oo, and = sup (E|[V2F(0%&0];)"" <oo.  (77b)
veSd—1

Note that both conditions are imposed solely at the optimal point §*; we do not impose globally uniform
bounds in R,
Defining the random matrix Z(6) := V2f(0;¢) — V2F(0) for any § € R%, we consider the
following matrix equation (a.k.a. modified Lyapunov equation):
AH*+ H*A —nE [E(G*)AE(G*)] —nH*AH* = nX*. (78)

in the symmetric matrix A. It can be shown that under the given assumptions, this equation has a unique
solution—denoted A, —which plays a key role in the following theorem.
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Proposition 2 (Asymptotic efficiency, single-epoch ROOT-SGD) Suppose that Assumptions 1, 2,
and 3 are satisfied, as well as (CLT.A) and (CLT.B). Then there exist constants c1, co, given the step-size

i 1 u1/3 o _
n e <0, Cl(g AT A 6,24/3) , and burn-in time Ty = /737 we have

VT(0r — 6%) & N (0, (H*) ™ (5 + E[2(6%)A,E(6%)]) (H*) 1) . (79)

See §D.1 for the proof of this theorem.

A few remarks are in order. First, we observe that the asymptotic covariance in Eq. (79) is the sum
of the matrix (H*)~!3*(H*)~! and an additional correction term defined in Eq. (78). The asymptotic
covariance of (H*)~!¥*(H*)~! matches the standard Cramér-Rao lower bound in the asymptotic
statistics literature (van der Vaart and Wellner, 1996; van der Vaart, 2000) and matches the optimal
rates achieved in the theory of stochastic approximation (Kushner and Yin, 2003; Polyak and Juditsky,
1992; Ruppert, 1988). The correction term is of the same form as that of the constant-step-size linear
stochastic approximation of the Polyak-Ruppert-Juditsky algorithm derived in (Mou et al., 2020), while
our Proposition 2 is applicable to more general nonlinear stochastic problems. For instance in our
setting, the correction terms tends to zero as the (constant) step-size decreases to zero, which along
with a trace bound leads to the following asymptotics as T' — oo (see (Mou et al., 2020)):

2
TE HVF(HT)Hg ~ Tr (X" + E[Z(0%)A,2(0%)]) < (1 + gi”) o2
The message conveyed by the last display is consistent with the leading two terms in our earlier
nonasymptotic bound Eq. (47) in Proposition 1 in the Hessian-Lipschitz case, and thanks to our
additional smoothness assumptions (CLT.A) and (CLT.B) we are able to characterize this correction
term in a more fine-grained fashion as in the asymptotic covariance of Eq. (79). Second, we note
that Proposition 2 has an additional requirement on the step-size, needing it to be upper bounded by
pl/3 / 6/54/ % This is a mild requirement on the step-size. In particular, for applications where the noises

are light-tailed, ¢/Z and ¢z are of the same order, and the additional requirement 7 < cpt/3 / 6/54/ % s
usually weaker than the condition n < Z—é‘ needed in the previous section.

D.1. Proof of Proposition 2

Denote H;(0) := V2f(0;&) and Z4(0) := Hy(0) — V2F(0). Intuitively, since the sequence 6; is
converging to 6* at a 1/+/% rate, replacing fs_; with §* will only lead to a small change in the sum.
For the martingale W, each term can be written as:

1
t(ee(Or—1) — et(O1—2)) = 75/0 Ei (pOi—2 + (1 — p)Oi—1) (01 — O1—2)dp.

By Assumption (CLT.A), this quantity should approach n=;(6*) - (tv;—1). If we can show the conver-
gence of the sequence {tv; };>7, to a stationary distribution, then the asymptotic result follows from
the Birkhoff ergodic theorem and a martingale CLT. While the process {tv; }+>1, is not Markovian, we
show that it can be well-approximated by a time-homogeneous Markov process that we construct in the
proof.
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In particular, consider the auxiliary process {y: }+>,. initialized as yp;, = Tovr, and updated as
Yr = Yi—1 — NH (0" )y—1 +,(0%), forallt > Ty + 1. (80)

Note that {y: };>7, is a time-homogeneous Markov process that is coupled to {(6:, v, z¢) }>1,- We
have the following coupling estimate:

Lemma 17 Supposing that Assumptions 1, 2 and 3, as well as Conditions (CLT.A) and (CLT.B) hold,
then for any iteration t > Ty and any step-size n € (0, ﬁ A 85%), we have
co

%,

for a constant cq depending on the smoothness and strong convexity parameters L, l=, i, 5 and the
step-size 1), but independent of t.

E [[tve — yell3 <

See §F.1 for the proof of this lemma.

We also need the following lemma, which provides a convenient bound on the difference H;(6) —
H,(6*) for a vector 6 chosen in the data-dependent way.

Lemma 18 Suppose that Assumptions 1, 2 and 3, as well as Conditions (CLT.A) and (CLT.B) hold.

Then for any iteration t > Ty, any step-size n) € (0, ﬁ A ﬁ) and for any random vector 0;_1 € F;_1,

~ 2 ~ 2
E H [Ht(gt—l) - Ht<9*)} yt—1H2 <c\/E H9t—1 — 0" )

where ¢y is a constant independent of t and the choice of 0;_1.

we have

See §F.2 for the proof of this lemma.

Finally, the following lemma characterizes the behavior of the process {y; }+>7, defined in Eq. (80):

Lemma 19 Suppose that Assumptions 1, 2 and 3, as well as Conditions (CLT.A) and (CLT.B) hold.

. . . 1/3
Then for any iteration t > Ty and any step-size 1) € (0, ﬁ A 1az N W), we have

E(y:) =0 forallt > Ty, and tS;lYI“) E ||yt||;1 <d,
=410

for a constant o' > 0, which is independent of t. Furthermore, the process {y. }1>0 has a stationary
distribution with finite second moment, and a stationary covariance (), that satisfies the equation

H*Qy + QuH* — 1 [H*QuH* + E(2(0")Qy2(0"))] = ,172*.
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See §F.3 for the proof of this lemma.

Taking these three lemmas as given, we now proceed with the proof of Proposition 2. We first
define two auxiliary processes:

T T
Np = Z e(0%), Tr:=n Z Ee(07)ye-1.
t=Tp+1 t=To+1

Observe that both Ny and Y7 are martingales adapted to (F);>7,. In the following, we first bound
the differences || M7 — Nr||, and || U7 — Yr||,, respectively, and then show the limiting distribution
results for Npo + Y.

2
By Theorem 1, define ag := 2?;* T]QQZQOTO IV E(6o)|)5, we have

2700 |VF(60)]3 28 02 _

forall ¢t > Tj.
TSV RO DR R

1
E |6 — 6*|)3 < Tk IVE(6:)II5 <

(81)
Applying the bound (81) with Assumption 3, we have
T T
El|Mp = Nrlf= 37 Ellew@1) — @3 <2 Y Bl - 0'l3 < aolk logT. (82
t=Top+1 t=Top+1

For the process Y7, by the Cauchy-Schwartz inequality, we have

T

ETr —Yrl3= Y ElnZ0 )y1— (t — D(e(bi1) — (0-2))|
t=To+1

T 1
<7’ Z E/O IZe(6%) g1 — Ze(pbe1 + (1 = p)by—2; &) (t — Dveal3dp < Ir + I,
t=To+1

where we define

T 1
1:=2n Ei(0%) — E¢(pbi—1 —p)0i—2)) yi—1|53dp, an
I :=2n° EOH( (%) (P11 + (1 = p)0i—2)) ye1l3 4 d
t=To+1

T 1
Iy := 21 Z E/ IZe(pb—1 + (1 = p)8e2) (g1 — (t = Dyvi—1)|3 dp.
t=Tp+1 70

We bound each of these two terms in succession.

Bound on /;: In order to bound the term I, we apply Lemma 18 with the choice

0,1 = pl_1 + (1—p)Oi_o € Fi_1,
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SO as to obtain

E H (Ht(gt—l) - Ht(e*)> yt—1Hz <cy/E Hgt —0* z

Applying the Cauchy-Schwartz inequality yields

E H <v2F(§t—1) - VzF(Q*)> yt—le <E H (Ht(at—l) - Ht(a*)) yt—lHj <ciy/E Hgt —0* z

Putting the two bounds together, we obtain:

E H (Et(gt—l) - Et(g*)) yt—le

< 2B ||(H:(0r-1) - Hi(6")) yt_l\)j +2E | (V2F (@) - V2P (07)) yHHj

~ 2
< 4\ [E Het AR

Thus, we find that

E|[(Z:(6%) = Er(pb—1 + (1 = p)0i—2)) ye1f5 < 4c1\/IE 11 + (1= p)bi—2 — 6%|3

1 1 16¢c1+/a
<4y <\/E |6r—1 — 9*||§ + \/IE |6s—2 — 9*||§) <deciv/ag <\/t—71 + m) < \1[;/?7

where in the last step we used the inequality (81). Summing over ¢ from 7Ty + 1 to T yields the bound

T
16¢1+/
L < 2772 Z % < 6477201\/a0T.
t=To+1 t

Bound on /5:  Turning to the term I, by Assumption 3 and Lemma 17, we note that:

T T
L<2? Y BE|ys — (- Dol <222 Y 2L < aPZegVT.
t=To+1 t=Top+1 \/E
Putting these inequalities together, we conclude that:

E s — T3 < (64n%c1/ap + 4n°l2co)VT. (83)

Now we have the estimates for the quantities || U7 — Y|, and ||M7 — N7||,. In the following,
we first prove the CLT for Nt 4+ Y7, and then use the error bounds to establish CLT for Mp + ¥,
which ultimately implies the desired limiting result for v/T' (67 — 6*)

Define vy := €4(60*) + nZ¢(0*)y¢—1. By definition, Np + T = Zf:TO v, and we have

E(iv,) = B((0)2:(0) ) + E (S0 -1 Z(0)T)

+E (gt(e*)y; 1st(9*)T) +E ((Et(Q*)yt_lat(Q*)T) .
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For the first term, we have E(g;(6*)e(6*)T) = X* by definition.

For the second term, according to Lemma 19, we note that the time-homogeneous Markov process
{y¢}+>m, converges asymptotically to a stationary distribution with covariance @),,. Invoking the
Birkhoff ergodic theorem, we have

T T
1 — * — * =(0* =(A* 1
= O E(S0)-1yZ00)T | Fio) =EGE) 9E07) |7 . wewl
t=Tph+1 t=To+1

For the cross terms, we note that:
E (=001 20(0") 1 Fi) = B(=(67) @ Z(0") ).

Note that by Lemma 19, we have E(y;) = 0 for any ¢ > Tj. By the weak law of large numbers, we
have % EZ;TO L1 Yt 2 0. Putting together these inequalities, we find that

T T

S E(wd 1 F) =5 X (54 PEEE) @ 20yl

t=Top+1 t=Tp+1
+ nE(e(0%) ® E(0%))[ye—1] + nE(E(0") ® 5(9*))[%—1]),
and hence the random matrix Z";TO 1 E (v | Fi—1) converges in probability to the matrix
S+ E (E(@*)Ana(e*)T) .

To prove the limiting distribution result, we use standard martingale CLT (c.f. Corollary 3.1 in Hall
and Heyde (1980)). It remains to verify the conditional Lindeberg condition. Indeed, for any € > 0, a
straightforward calculation yields:

|-7:t1>

T
RT(S) = Z E( —
t=Tp+1

(i) T i)
S \/E(||Vt||§|ft1)-\/P(||Vt||2>€ﬁ!ft1) <7 z
t=To+ et

B (el 1)

In step (i), we use the Cauchy-Schwartz inequality, and in step (i7), we use the Markov inequality to
bound the conditional probability.
Using the condition (CLT.B) and Young’s inequality, we note that:

E (el |Fi1) < 8B le(6")]13 + 8(¢2)" 13

56



ROOT-SGD: SHARP RATES IN A SINGLE ALGORITHM

Plugging back to the upper bound for Rr(¢), and applying Lemma 19, as T' — oo, we have

T
8 %\ 14 8(£5)4 4 8 *\ 14 8(65)4/
BRrE) < IO T 2 Bl £ g IOl S =0
=10

Note that Ry (g) > 0 by definition. The limit statement implies that Ry(¢) 2 0, for any £ > 0.
Therefore, the conditional Lindeberg condition holds true, and we have the CLT:

N +T * =(A* =(0*
% L N(0,5% + E[E(0%)A,Z(0%))) .

By the second-moment estimates (82) and (83), we have

ITr = ¥rlly p o 1Mz = Nrlly p,
VT VT

With the burn-in time 7§ fixed, we also have %zTO 0. By Slutsky’s theorem, we have
VTor & N (0, S 4+ E (E(Q*)AnE(e*)T» .
Note that VF'(0;—1) = v; — z;. By Lemma 17 and Lemma 19, we have

2 2 2 c
2 2 2 0
E |l < —tQE ltve — yell5 + tjE yell5 < =z (\/67+ t) ’

Vi

which implies that Vv 25 0. Recall that zt = vy — VF(0;_1). By Slutsky’s theorem, we obtain:
VT -VF(0r) S N (0,S* + E[E(6%)A,Z(6%)]) .

Finally, we note that for 6 € R9, we have

1
IVF@) 6~ 0, = | [ 2RO+ (0 - )60~ 0o~ (6~ )

2
1
< /O IV2F (0" + p(0 = %)) — Hllop - 10 — 071y dp

<665 sup IV2F(0) — H* [l
167 =6% 1, <[16—=6"l

By Assumption (CLT.A), we have
Voe ST B R [[(VIF(0) — VEF(O)o]l; < E|(V2F(8:6) = V2F(6":€)o]; < 576 - 6°]]3.
Consequently, we have the bound:

IVE®) — H* (0 —07)ll, < 10— 67, sup sup [|(V2F (') — H*)oll, < 5116 — 6713
00+ l,<[l6—6", vesi-!

By Eq. (81), we have VT |VF(6r) — H* (61 — 6%)||, 2 0. Invoking Slutsky’s theorem, this
leads to /T H* (67 — 6*) 4N (0,2 + E (2(6*)A,Z(6*) 7)), and consequently,

VT (0r — %) 4 N (o, (H*)~! (z* +E [E(@*)Anz(e*)T]) (H*)—l) :

which finishes the proof.

57



L1 MoU WAINWRIGHT JORDAN

Appendix E. Proofs of auxiliary lemmas in §C.3, §C.4 and §C.5
E.1. Proof of Lemma 13

Recall that we have the recursive update rule of z; as
tZt = (t — 1)Zt_1 + (t — 1)(5t(‘9t—1) — 5t(9t_2)) + Et(‘gt—l)‘
Taking fourth moments on both sides, we have

E|tzly =E(t — Dzt + (t — 1)(ee(0i-1) — e1(01-2)) + ee(0e-1)l3
=E||(t — Dze—1lly + E|(t — 1)(ee(0r—1) — et(0e—2)) + ee(0-1) 13
+AE||(t — 1)(ee(0—1) — €t(B1—2)) + £e(Br—1) |15 [|(£ — D ze1ll,
) (t—1)

t—1
+6E||(t — 1)(et(0-1) — et(01-2)) + 0(Be—1) || |(t — 1)ze-1]3 (84)

where one of the terms is zeroed out. By Holder’s inequality and Young’s inequality, we bound the
third term and the fourth term of the RHS as

E (|t — 1)(ee(Bi-1) — e(Bi-2)) + e(B-)|3 1t = Dziall,
< (Bt~ D(eBrr) — Br)) + B)E)” (B - Dz
= (BN~ DEO) — c0l2) + eO)lE) T (B~ Dz )

+ RN~ D(eBir) — eiBi2) + 2B,

1/4

1/2

IN

and
BI|(t = 1)(et(0e-1) — 4(0i-2)) + e(0—1) 15 (£ = Dzef3
< (BNt~ DEulmr) — -2 + eBrn)lE) (BN~ Dzcalt)
Thus Eq. (84) continues as

E[tzll2 < B (£ = 1)zt + (£ = 1)(e(6i1) — 1(Br-2)) + 20(Br_1)|
=E||(t — Dze1ll3 + 3E || (t — 1)(ee(fr—1) — (B1—2)) + ee(0r—1) 3

8 (B - D) - 0(Bi-2)) + @l) " (EN - Dz )

2
< WE 1t = Dzerlls + 4VE N = 1)(ei(0r1) — ei(0-2)) + atwt_l)r\;‘) ,
where

E[|(t — 1)(e(6e—1) — e1(6i—2)) + €¢(0-1) |3
< 27(t — 1)'E ||er(0e—1) — e2(01-2) 13 + 27E [le(01—1) — £4(0%) |13 + 27E [|e¢(6%)|5
2704 N
<2700 (t — D)'E vl + T{E IVF(6:-1)ll + 2703
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Then

12v/302 __
VE 24 < VENE = Dzl +12V3202 E ([t — Do |3+ ——r = \JE V(01|13 + 12v/357°.

W

Combining this with Eq. (91) in Lemma 20 that

5 —
VE [ltog]l5 < (1 - %) \/E It — Dwg_y || + ﬁ\/]E IVE(O_)||2 + 1455°.

1

. . . 1 KQE
By the choice of 7 satisfying ) < =57 A @, we have W2 < Zrm and
6 —
EVE Jaly + £ VE ol < VEIE - Daall + VENE = Duaally + - EIVFG-)]3 + 355"

Recursively applying the above inequality and by observing that /E ||V F'(6;_1) ||‘2l < 24/E ||z ||‘2l +

24/E Hth%, we have
T\ EIVE 071l < 2T°\JE |2r]ld + 27\ JE [lor

T
12 i
s2JE||TUZT0||§+2WE||TovTo||§+nE E|[VF(60:-1)l5 + 70(T = To)as”. (85
t=Tp+1

Further for Tz, and Thvy, we note that by applying Khintchine’s inequality as well as Young’s
inequality we have

4

To To 2 To 4
& —
E|Tozmll; =E |3 _eu(bo)| <E (mewu%) <TEY [lec(bo)ll; < 875 (L;EIIVF(%)HE‘Hf),
t=1 2 t=1 t=1
(86)
and

E || Tovn, |3 = E | Tozn |3 + E | ToVE(00) |5 + 4E || Tozz, |3 (| ToVE(60) ||, + 6E | Tozg, |15 | ToV F (60)||3

0 N
< TE | Tovn,||5 + 5E | ToV F (60) |5 < 56T (J;E IVF(6o)|5 + 0*4> +5T0E [ VE(00) |5
(87)

Taking squared root on Eq. (86) and (87) and recalling that n < ﬁ, we have

2 N
VE [ Tozn I3 < 2V2T (;f? E||[VF (6|5 + 0*2> , (88)
VE | Tovn I3 < (V5 + 1/8)TEA\/E | VF(60)|3 + 8T0ox. (89)
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Bringing Eq. (88) and (89) into Eq. (85), we arrive at the following:

2 N
2\ &IV F(Br_) |} < V2T, (M E[VE@)|l! + af) - (V5 + 8T E [VE 6]

T
— 12 —
+16T00%" + — > A/EVF(01)|5 + T0(T — Tp)o,”
t=Top+1

T
12 __
<STAEIVE(0)y + — Y VEIVFE(G:1)|5 + 70T (90)
t=To+1

Dividing both sides by 7, summing up Eq. (90) from 7' = Ty + 1 to T* > Tj + 1 and using the fact
that n < L5 Ty > 2, we have

6402
= 12 - T
> VEITFGrI < ST RIVFOIE+ 2 Y RIVF@DI+ 107 0g (7 )
T=Tp+1 L0 S 0

Taking T = {%W , we have

T*
— T*
> \/EHVF(QT_l)”;* < 10To\/E |[VF(6o) |5 + 1405,2 log <T0> .

T=Tp+1

Again by Eq. (90), we have

TQ\/E IVE(Or-1)]l3

12 . T _
< STE\E||VE(6o)]l5 + - <IOT0\/E IV F(60)]5 + 140557 log <T>> +70T5,>
0
. T .
< 10TZ\/E |V F(80)|3 + 70Tp5%" log <T> + 70752
0

Dividing both sides by T we conclude that

1 10T 1 Ty T\\ 02
VEIVFOr-0lI3 < = EIVE@)I3+70 (1+ P1og () ) %

107 1 1405.°
< 2 VEIVE@)I; + ——

which finishes our proof of Lemma 13.

E.2. Proof of Lemma 14

Our main technical tools is the following lemma, which bound the fourth moment of the v; recursion.
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Lemma 20 Under the setting of Proposition 1, when n <
fort >Th+1

Euwméé(l——f)vﬁut—lwtub+—fvEHVFwtnm+&4i? ©1)

The detailed proof is relegated to §E.3.1. We are ready for the proof of Lemma 14. Indeed, from (57)
and (91)

56 AN 4’22 , we have the following bound

e 2 4 5
Evt4§(1——)t—1 E ||lve_1|/% + —
ol < (1= 2 ¢ - 02y R ol + = | t

2
Ny 2 4 310 ||VF(90)”2 —~2
< (1 - 7) (t = D VE Jvemally + = 5 52 + 7145 92)

F(6o)] ox 5
60 ||VF(00)|5 + 1400 ] + 14,2

We have from (92)

1+ 7140, 212

310 ||[VF(6o)|?
IE‘:H'UtHZQL < (1 — ?77“) tQ(t _ 1)2 EHW—IH% + H : 3( 0)”2

[ 1. 310 |[VF(60)|3 _
S (1 _ %) (t _ 1)4 EHvt—IH% + Hngu?’( 0)”2 + 7140'*2t2,

since the following holds @ 21) < (ll:if“) < 7% This gives, by solving the recursion,
6 2
- Tt |31 F(0 —
Bl < (1= ) T E e + > (1- 1) (ST +714a*2t2]
t=Tp+1 17 N
T
T— T-t 310 ||VF(6 —
< (1- %) Elunlic Y (1- %) IVE@o)l | Z (1" g
t=To+1 77 ,U/ =To+1
6 310 [VF 0 —
6 77N s nu
187500 |[VE(6o)l3  (714)(6)7%
( - %) T3 \/E |lvg, |13 + 77‘4‘1”4 ol . { 27(u) T, (93)

where the summand is increasing so

All in all, this concludes

nu\T—To T 187500 ||[VE(00)|2  (714)(6)5>
VEIorl} < (1= %) 2B lon I+ T e - L

T—Ty T4 187500 |[VE(0)||?  (714)(6)5,2
< (1 — @) % E||UT0||§—|— 4”4 4( 0)Il2 + (714)( )20
6 T ntptT npT
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Bringing the burn-in upper bounds (89), we arrive at our final result for bounding 1/ E ||vp H;l:

1_ (3T 1, 8T o\ | 187500 |[VF(6o)ll3 | (714)(6)7.”
Vel < (2 VEIVFeoIE+ i) + B Tl | (D0

- 1359375 | VF(6)|3 ~ 44847.,>
— 774/1«4T4 WTQ ’

E.3. Proofs of recursive bounds on v;
In this section, we prove Lemma 20 and 12, the two recursive bounds for {v; };>7, used in the proof of
main theorems.
E.3.1. PROOF OF LEMMA 20
By definition, we note that:
top = (t = 1) (Vi1 + Vf(0r-1;8) = VF(Or—2;&)) + VF(Or-15&)-

Subtracting off a VF(6;_1) term from both sides we have

tog = VF(0i—1) = (t = 1) (vt—1 + Vf(01-1; &) — VF(0r—2;&)) + VF(Or-15&) — VEF(0-1) -

=e¢(0r—1)

Taking the fourth moments on both sides, we have
E |[to; — VF(0;-1)]l5
=E|(t— Vo1 + (t = D)(Vf(lr=1;&) — VI (0i—2:&)) + ee(0-1) |5
= (¢ = 1) Joea 3 + 4B It = Do a3 ((t = Do, (6= DTS O 1:6) — TF(Or2:6) +=0(0-1))]
—Ty
6 [t — D21~ DV FBr-1:6) — V F(8r-2:60) + (b))
-7

B[~ 1)(TF (0 1:6) = VF(Or2:60) + ()31~ Dvrally)

~~

I3
+E [[I(t = D(VF(Or13&) = V(0125 €)) + ec(0-1)113] - ©4)
To bound term 77, we apply the Holder’s inequality and have

A\ 1/2 2\ 1/2
T <6 (Bt —Duali) " (BIE- DTS O1:6) = VI O2:6)) +20)3) - 05)
To bound term 73, we again apply the Holder’s inequality:

T <4 (B[t = D)(VFO1:6) — VFO-2:6)) +G)l2) (BN = Do)

<2 (Bt = )T G138 = TGz &) + 2 0-)lE) (Bl = Dua )
+2E||(t — D)(Vf(Or-1:&) — V. (0i-2,&)) + (01 |5 - (96)
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To bound term 75, we first take expectation with respect to &, and have

Ty = 4B [l[(t = Do I3 {(t = Do, (6= 1) (VF(B-1) = VF(0r-2)))]

where

1
(vie1, VF(0;-1) — VF(0;—2)) < L IVF(0;_1) — VF(6:2)|3
and
1% 2
{(vi—1, VF(0;—1) — VF(0;—2)) < o 10i—1 — Or—2]|5

holds true for any pu-strongly convex and L-smooth F'. Then we have

1
Th<—(t-1)'E [Hvt_lné (nL IV F (1) — VF@0 )| + 30 uvt_lné)]

t—1)*
“smp(t — DB [ 3 - L1

E|jve1|2 [VF(6i-1) — VF(6;_9)]|2

t—1)4 1/2 1/2
< =3nu(t — 1)'E [Joi1 5 - ( 77L) (E HvHH‘é) (E IVE(0r—1) — VF(9t72)||421) :

O7)

Combining Egs. (95), (96) and (97) into Eq. (94) we have
E |[to; — VF(0:-1)ll3
< (t—1)*E lvi1]ly + 3E[[(t = D(V (=13 &) — V(0i-2:&)) + ee(0-1)l5

8 (Bt~ )TG3~ T FOzi) + = 0)lE) T (Bl = v )

t—1)4 1/2 1/2
—anplt = ' Jora [ = 2 (B i) (BIVE@) - VEG-IE) L 08)

We now turn to bound the term E ||(t — 1)(Vf(6;_1;&) — Vf(0i—2:&)) + €:(6:-1)]|5 by the
following decomposition scheme:

E|(t—1)(VF(Or—15&) — V(Or-2:&)) + ee(0-1) 5

<E|(t—1)(VF(0i-1) — VF(0i—2)) + (t — 1)(e1(0e—1) — e0(01—2)) + er(—1) — £2(07) + £0(6%)|]5

<8(t—D)*E|VE(0i—1) — VF(0-2) + 1(0i-1) — e(0r—2) |5 +8E || (Be—1) — e¢(07) + €¢(87) |5 -
=:I;

=:15

(99)
We claim that

It < BE | VF(0i-1) — VF(0i_2)||3 + 7020 "E |Jve-1 5., (100)
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and

804 N
I < 8E |le¢(6—1) — £:(07)]|5 + 8E [|£(67)[|5 < MZE IVF (0,15 + 85" (101)

Combining Eq. (99), (100) and (101) we have the bound

E|[(t—1)(Vf(O-1:&) — VF(0ro2:&)) + ee(0-1) 15

6402 .
<40(t — 1)*E |[VF(i—1) — VF(0-2)||5 + 56¢20* (t — 1)*E [[vi—1]]5 + T{E IVF(0;-1)]|5 + 645"

(102)
Then, we bring Eq. (102) into Eq. (98) and have

E |[tvy — VE(6i-1)|5

< (= 1)'E o1 |4 + 120(t = 1)'E [V (0—1) — VF (B—)|3 + 168620" (£ — 1)'E vy

19204 . 1/2 1/2
B IVE@)l3 +1927. 4 8V~ 1)* (EIVF(61) = VF(@-2)l3) (B s 3)

1/2
+ 640202 (t — 1)*E 4164 éE VF(6 i) E 1)'/?
zn°(t = 1)°E |lvg-1ll; + i IVE(Or-1)l5 + o« llve—1ll;

{—1)4 1/2
= (e~ 0B i = 2 (B i) (BIVEG) - VFO-2)18)

< (1= 3np + 64020% + 168¢4*) E ||t — 1)vr_1 3

1 1/2 1/2
+ (8@0 —ort 120L2772> (t =D (Eual3) " (EIVF(-1) - VF@-)Il3)

1/2

2 A2 s 1920 B
+64(M~4EIIVF(9t_1)H§+a*4> (Euvt_l”g) + M4“E”VF(9t—1)H§+192a*4

04
< (- B - Dol + o1 (5

19202 N
+ u4~E||VF(9t_1)||§+1920*4,

4 —~4 1/2 4 1/2
EIVFG-I+5)  (Eluoil)

where the last inequality is due to the choice of n < ﬁ and n < 56% such that

1
168020 < n?p?, (En* < np and 8v40 — " +120L%5? < 0.
n
Taking squared root on both sides, we have

2 _
VElto,— VE@-)I < (1= m) B (¢ — Dvra |3 432 (WE IVE@- Il + oﬁ) -

(103)
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Furthermore, Young’s inequality gives'?

E |[tvy — VE(6i-1)|5
= t'E |[vg]|y + E|VF(8-1) 5 + 6E [[to]|5 [ VE(0e—1)|l5 — 4E [[tve]l3 [ VE(B1—1) ||y — 4E |[tvello [ VF (0e—1) 13

2 np

> t'E [|vg]ls + E[VE(0i—1) 13 + 6E [tug]|5 [ VF (8,-1) |5 — 2E [nu ||tvt|!§IIVF(Gt_l)Hg+7Htvtllé1

—2E[ e B IV F @I + 2 VPO
>(1—nu)E 41—iEF0 4 E 2IVF6,_)?
> (1 —np) E togl|y + IVF(0;-1)|]5+ (6 np ) Etoely [[VE(Oc-1)l]5

N um
>(1—nu)E s (A E|VF( 1— 4 )k 2IvVE( 2
> (1 —np) E[tvel, IVF(0-1)]l5 — (1 — ) ltvell5 [[VF(0-1)]]5 -
u N

Combining this we have

4 4
(1= ) E ltwg} (W - 1) E[VF@ )L — (1 - np) (W - 1) E [[tor |21V F (6|2

d
< (- BN - Dl + o1 (15

19254

4 —~4 12 4 1/2
EIVFG-I+5)  (Eloil?)

+ "ER|VF(0,_1)|3 + 192"

Now we multiply both sides by (1 —nu)~" , noting that (1 — nu)™' < (1 — L)™' < %
rearranging, and have

(55)

(56)(192)
(55) "

56)(64) [ (% 1/2 1/2
Elluld < (= m Bl - Dol + T8 (SR IVFOIS+7) (B )

(56)(192) y4
(55) ‘=
4

+ E|VF(6: 1|3+

e ;
+ LB VF O3+ Bl IVF(60)

7 (56)(192)
55 QEIIVF(@ Dy + —%—0a."

= g = 1o
< (1= ) El¢ - Doralls + =

1/2
+ O EIVEO I 615 )  (Elueald) 4 R el [VEG)E.
55 64772/J'2 2 2 np 2 2

Rearranging and taking squared root on both sides we conclude that

2 3
VEItl; = EIVEG)IE < (1= 5) VENE - Do+ 2 E[VF6) 5 + 14527

13. Here, a different coefficient from the analysis as in the proof of Theorem 1 is adopted.
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Further rearranging, we have

) —
VE [[tve]l; < (1 - %) \/E It = Dyveally + iV E||VF(0;1)|l; + 14537,

which concludes our proof.

Proof of Eq. (100): We use similar decomposition as in the decomposition in Eq. (94) and have

I =E||VF(0i—1) = VE(01-2)|l5 + Elee(01—1) — e1(0i—2) |5
+4E [l (01—1) — e1(0-2)[[3 | VF (01—1) — VE(0i-2) ||,
+6E |[VE(0i—1) — VF(0-2)|3 llee(8i—1) — e (0r—2)][5 .

where we note that we used the fact that one of the cross terms in the fourth moment decompo-
sition E [||VF(9H) — VF (O, 9)|12 (VF(01) — VF(6;_3), e1(0,1) — st(eH)ﬂ — 0. Further
utilizing the Holder’s inequality, we have

I SE|VF(0i—1) — VE(O1-2)|l5 + E|ler(0i—1) — e1(6i—2)|5

P4 (Bt — b)) EIVEO) ~ VFO)],)

1/2 1/2
+6 (E[VF(O1) = VFO2)l3)  (Ell(0-1) = 2e(0r-2)13)

<E(VF(0-1) = VF(6;-2)|l3 + 3E [|e1(6:-1) — e1(6:—2) I3
+8 (BIVE@) - VEO)IE) " (ElleBir) —20a)l3)
<E|VF(0:-1) = VF(6:-2)[l5 + 3¢2n"E [vr1 5
+ 82 (E[VF0) - VFO-2)1E) " (B fualt)
<S5E|[VF(6;-1) — VF(0-2)||3 + T6An"E [vr 13
This completes the proof of Eq. (100).

E.3.2. PROOF OF LEMMA 12

By definition, we note that:

Ut = (1 - 1) (Ut—l + Vf(at—l;ft) - Vf(at—%ft)) + %Vf(et—ﬁ ft)-

Taking the second moments for both sides, we have:

1\? 1
Blluld = (1-1) Ellos + V/0156) - V02 6+ EIV/ 01813

Il 12

+ 2%1 E(vi + Vf(0i-15&) = VI(0i—2:&), VI(0i1:€)) -
I3
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For the first term, using the fact that 6;_1 — 6;_o = —nv;_1, we start with the following decomposition:

E (i1 + VS (0r-1:&) = VI (023113 | Fia)

= v l3 + 2E (o1, VI (Or1:6) = VI 0236} | Foor) + E (IVF(0r-1:8) = VO &3 | Fir)
= [lve—1ll5 — 727(9t—1 =02, VF(01—1) = VF(0i—2)) + E (”Vf(et—IS &) — V(0265 | ft—l) :

Since F' is p-strongly convex and L-smooth, we have the following standard inequality:

||9t—1 915*2”3/" H (91‘/*1) (et*Q)H%
0,1 — Oy_o, VF(0,_1) — VF(0;_0)) > L IV V1 .
(Or—1 — 01— (0-1) (0r—2)) T o+ L

Hence, when the step-size satisfies the bound 7; < ﬁ A 25% there is the bound:

10,—1 — 01_o||2 uL L IVE@G) - WA

2
I <Elv1|? - ZE
1> ||t1||2 n ( IU_I_L M+L

) +2E||VF(0,_1) — VF(6,_2)|?

+2E <||€(9t—1; &) — e(Or—2; 5t)”§>
1 2
< (1 —nu+ 202 2)E [|Jvi 242 (1 — > E||VF(0i—1) — VF(0—2)]|
( JE e D) B 2
< (1= 3np/4)E [[vra]]
Now we study the second term I, note that

E(VF(Oi-1;&) |5 SEV (015 &) — VO35 +4E [V F(0%5€)l3
< 2R | VF(0,1) )1 + 2E [|e(0,1; &) — (6% &)||% + AR |V £(6%; )|

< 2E||VE(0;1)|5 + 262E [|6,—1 — 075 + 402
02
<2 <1 + M;) E|VF(0;1)|3+ 402

For the cross term I3, we note that:

E((vie1 + Vf(0i-1:&) = Vf(0i—2:&), V(0i-1:&)) | Fi-1)
=K (<Ut—1, vf(et—l; ft)> | ]:t—l) +E (<vf(9t—1; ft) - vf(et—% 5t)7 VF(et—l» | ]:t—l)
+E((Vf(0i—1:&) — V(0r—2:&), €t(6i—1)) | Fi—1)
= <'l)t_1, VF(Ht_l» + <VF(9t_1) - VF(Qt_g), VF(Gt_1)>
::\%1
+E ((e(0i—1,&) — €(0r—2; &), €(0r—1,&)) | Fi1) -
=15

For the term 77, we note that:

T <|lvi—illy - IVE(Or—1)lly + [VF(Or—1) — VE(Or2)ll5 - [VE(Or-1)|ly < (1 +nL) lvially - [[VF(0i-1)]l5 -
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For the term 75, we have:

Ty < E([le(0r—1;&) — e(0r—2; &) 5 - le(@e—15 &) llo | Fe—1)

< \/E(||€(9t-1;€t) — e(0—2:&)5 | Fem1) - E(lle(0r—1,&)1I5 | Fi—1)
< 5277 ||Ut—1”2 |01 — 9*||2

€2
jn\lvt g - IVE@e—1)ll5 -
So we have:
3 3
Iy < SE (vl - [VE(Or-1)ll2) < 5\/1[*3 [ve-1ll5 - EVF (01|15

IN

t
4 Ello-l3 + 5 —E[VFO-)];-

2tpm

Putting above estimates together, we obtain:

1\? 2
Bl < (1-) (=308 sl + 5 (402 + 200+ SEIVFO-)IB)

(t—1)nu 2 9 2
+ TE lve—1ll5 + tziE IVF(0:-1)ll5

402

1 1
g(l—t> (1= 5 ) Blloal + 5 EIVE@)I + 5

which completes the proof of this lemma.

E.4. Proof of Lemma 15 and 16

In this section, we present the proofs of lemma 15 and 16, the two technical lemmas involving a test
matrix G € R4,

E.4.1. PROOF OF LEMMA 15

The proof is similar to that of Lemma 10, and we follow the notation in such lemma throughout. Indeed,
we note the following telescope result:

T T
T°E(|Garll; - ToR|Gzg s = Y ElGe(09)3+ Y. EIGGIS +2 Z (Gey(67), GG).
t=To+1 t=Tp+1 t=Tp+1

Clearly, for each ¢, we have the following identity:

E||Ge(6%)]5 = Tr(GZ*GT).
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For the additional terms, we note that E || G¢;||5 < IGIZE 1|3
proof of Lemma 10, we have the following identity:

5» and following the derivation in the

Z E Gc‘it GQ>

t=To+1
=T. E<GET(9*), GET(HT_l) — GET(Q*» — To . E<G€TO («9*), GETO (HTO—I) — GETO (9*)>

Applying the Cauchy-Schwartz inequality, we obtain bounds similar to Eq. (55), for t € {7y, T'}:

[t - E(Ger(67), Ger(6i-1) — Ger(67))] < tIGIZ - \/E llee(67)]3 - \/ HEt (8t-1) —ee(6") 13

tol=
<1613 22, Ji 19 6-1E)

For the burn-in period, we have that:

2T0

TEE ||Gery|l5 < 2T0E |G (21(80) — €1(87)) || + 2T0E [|Ge1(67) |5 < = |VF(60)|l5 + 2T0Tr (GE*G).

D]

Putting them together, and following the derivation in Lemma 10, we obtain the conclusion of this
lemma.

E.4.2. PROOF OF LEMMA 16

The proof is similar to that of Lemma 11. Following the notation in Lemma 11, we have the decompo-
sition:

IE(tGz, Gu)| < (t — T%)

E(Gz, 7., th>) + ‘E<G (tzt . T*)zt_f*) , th>‘ .

Noting that

B(G (12— (1~ T2, 1.) . G| <Gl B VEImE
and that
(G5 6o < K0y e [ 11 7]

The rest of the proof simply follows that of Lemma 11, with an additional factor of [|G[|2 in each term.

tz — (t —T%)z

t—T*

Appendix F. Proofs of auxiliary lemmas in §D.1

In this section, we prove the three auxiliary lemmas used in the proof of Proposition 2. Note that the
proofs of the lemmas have inter-dependencies. In the following, we first prove Lemma 17 assuming
Lemma 18, and then prove Lemma 18 assuming Lemma 19. Finally, we give a self-contained proof for
Lemma 19.
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F.1. Proof of Lemma 17

We begin by making note of the identities

toy = (t —1)(vem1 + VF(Or—1:&) — V(0—2:&)) + Vf(0-1:&), and
ye = Y1 — NV2F(0" &)1 + V(07 &),

Defining the quantity e; := tvy — y;, we see that the two identities above imply that

e =er1 4+ ((t = D)(Vf(O—15&) — VI (0i—2:&)) —nV2F (05 &)ye—1) + (Vf(0rm1:&) — V(01 &))
= Q1(t) + Q2(t) + Qs(2),

where we define
1
Q1(t) :==ei—1 — 77/0 V2 f(pi—1 + (1 — p)0i—2; & )er—1dp, Q2(t) == (Vf(0i—1:&) — V(05 &),

1
Qs(t) == 1 /0 (V2 £ (0001 + (1 — p)0rn: &) — V2 F(0%:61)) e_1dlp.

By the triangle inequality, we have

2
Elled < (VEIQOIE +VEIQOIE + VEIQIE) -

In the following, we bound each term E ||Q;(t)||3 in succession.

Upper bound on E [|Q;(t)[|3:  Assumption 1 and Assumption 3 together imply that
E[Q()]3
1
—Eeral} - 208 | &l \VF (@1 + (1= p)-)eiadp
0
1
2
+ 772/ E||V2f(pbi—1 + (1 — p)bi—2; &)er ||, dp
0
1
=E|les1l5 - E/ i1 (2nV2F(p0—1 + (1= p)0i—2) — > (V?F(pbi1 + (1 = p)6i—2))?) er-1dp
0
1
07 [ EIZobor + (1= p)bi-)eral3ap
0
(3) 1 1
< Elerally — (20— 772L)/ el 1V (pbr-1 + (1 — p)bi—2)er—1dp + 77213%/ lee—1l3 dp
0 0

YE ; ’L)E 5+ EZ0°E ;
< Elles1ll; — 1 (20 —n°L) E flec—1l5 + Z0°E [les—1]]5 -
In step (i), we are using the fact that 0 < V2F(pf;_1 + (1 — p)6;—2) < LI, and in step (i), we use

the strong convexity of F'.
Forn < 57 A ﬁ, we have E [|Q1(t)||5 < (1 — un)E |ler1])3.
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Upper bound on E ||Q,(t)[|3: By Assumption 3 and Eq. (81), we have

2 _ 2 w2 aol®
E[|Q2)l3 < LZE[|0;—1 — 07[]5 < e

where the last inequality follows from Theorem 1.

Upper bound on E ||Q3(t)[|5:  Applying Lemma 18 with 01 = pOy_1 + (1 — p)by_o € Fy_1, we
have

E||(Hi(pb:—1 + (1 = p)bi—2) — Hi(6%)) g1 I3 < Cl\/IE P61 + (1= p)bi—a) — 6%|3
1 16¢
<o (VElbr -0+ VEIG2-015) < v (g + ) < X

Putting the bounds for (Q1, Q2, @3) together, we obtain:

1/2,,1/4

/ ey / dey l=y/ag
EHBtHg < (1*?) EHQAH% t1/40 + \\//ii

Solving the recursion, we have

1/2 1/4 un _ un(T=Tp)
VElerll < (4%l t2y) Y s Trexp (<EUT =) + e E flen

s=Tp+1

For the first term, we note that:

T/2
un(T
> ston(Bhr-9) < e (41 o >
s=To+1 s=T/2
<Ze_M 1

2 _
<3 T

For T large enough, the exponentially decaying term is dominated by the 7~/4 term. So there
exists a constant ¢g > 0, depending on the constants (ag, 1, a’, 7, 1, Tp) but independent of ¢, such that

Co
E |[tv; — w2 < —,
[tor — yelly < 7

which finishes the proof.

F.2. Proof of Lemma 18

Observe that Assumption (CLT.A) guarantees that

E ([(10) - @[ 1Fir ) < 8 s = 0 e .

71



L1 MoU WAINWRIGHT JORDAN

On the other hand, by Assumption 3, we have

~ 2
E (H(Ht(H*) - Ht(et—l))yt—lH2 \ft—1> < AL [|ys 3 -
Taking a geometric average and applying the tower law yields the bound

O T e A

(i) _ 2
< 2028\ [E 6,1 - 0° L VE ez

where step (i) follows from the Cauchy-Schwarz inequality. Applying Lemma 19, we are guaranteed
the existence of a constant a’ > 0 such that

sup E Hytﬂg <d < .
t>To

Setting ¢; = 2/=+/a’ completes the proof of the claim.

F.3. Proof of Lemma 19

Throughout this section, we adopt the shorthand notation Hy := Hy(6*) and Z; := =;(0*). We also
use = to denote a generic random variable have the same law as =;. Beginning with the proof of the
first claim, we take expectations on both sides of Eq. (80), thereby finding that

E(yt) = E (yt—1 — nHe(0")yr—1 +e(07)) = (I — UH*)E(% 1) = (I —nH*) " E(yg) = 0.

Our next step is to control the fourth moment. For n < we observe that:

oL < 2#
E llyells = Ellye—r — nH(0")yr—1 + il
< BT — nHy) g1 |4+ 4B (T — nHo)ye |13 - ldlly) + 6B — nH)yo1 ]2 - llee]1?)
HAE([ledll3 - 11( — nHy)ye—2lly) +Ellet]l3

(@) 24 216 24
< (1+ 3 ) BN = il + 5B lledly + S E el + 1B el + B el
157 ¥
(1+—)EH(I nHy)ye—1 |3 + WEIIE(H)H;‘,

where in step (i), we use Young’s inequality for the last four terms.
Now we study the term E ||(1 — nHy)ye—1 ||421 For n < 1, straightforward calculation yields:

E (|1 = nHo)ye I3 | Fior)

< I = nH Yyl + 4B (a1, (L= nH ) |0 = nH a3 | Foor ) +E (ISl | Fior)
+ 6E ( 1 = 0y I3 InZey-1 3 | For ) + 4E ((nZeyes, (1= nH i) [nEeei |13 | Fios)

< I = nH Yol +0'E (IZewi-a 3 | For ) +60°2 1ol
+ 2E (HnEtyt—1H3 | Foor ) + 2B (I = 0B Yo 13- InZem ]3| Fior)

< (1 - 3np) lye—1lls + 802 lye—1lls + 30 2 lye—1]5 -
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. 1/3
For a step-size n < ﬁ A ﬁ A 6’;,%, we have E <||(I — nHt)yt,ng | ]-'t,l) < (1—2un) Hyt,lﬂg.

Putting together these bounds, we find that
157
(un)?

with the initial condition E ||y, H;l = 0. Solving this recursion leads to the bound

4 4 x\ (14
Ellyelly < (1= pn) Ellye-all; + E fle(@)ll2,

157 4
sup E < T Rle(0M)2.
sup [yelly < () [e(6) 1l

Letd = (;%4, we prove the second claim.

Finally we study the stationary covariance of the process {y; }+>7,. The existence and uniqueness
of the stationary distribution was established in (Mou et al., 2020). Let 7, denote the stationary
distribution of (y)¢>7,, and let Q;, := Ey r, (YY'T). From the first part of this lemma, we can see
that Ey ., (Y') = 0. For y; ~ 7, we have y;,1 ~ m,, and consequently,

Qy = E(ytJrlyt—:-l)
= E (I = nHes)ysy! (= nH) + eonel) +E (se9! (1= nHL) + (= nHe)yel, )
= Qu = n(H"Qy + QuH") + 1 (H*QuH" + E(2Q,Z)) + ="

In the last equation, we use the fact that E(y;) = 0 and that y, is independent of (H;41,&¢+1), which
leads to the following equation:

E (ceny! (1= 1H[0)) = Eeera(8) @ (I = nHun (0°)) [E(n)] = 0.

Therefore, the matrix (), satisfies the equation
H*Qn + QnH* - n(H*QnH* + E(EQ,]E)) =

which completes the proof of the last part of the lemma.
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