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Abstract

Motivated by applications to online learning in
sparse estimation and Bayesian optimization, we
consider the problem of online unconstrained non-
submodular minimization with delayed costs in
both full information and bandit feedback settings.
In contrast to previous works on online uncon-
strained submodular minimization, we focus on
a class of nonsubmodular functions with special
structure, and prove regret guarantees for several
variants of the online and approximate online ban-
dit gradient descent algorithms in static and de-
layed scenarios. We derive bounds for the agent’s
regret in the full information and bandit feedback
setting, even if the delay between choosing a deci-
sion and receiving the incurred cost is unbounded.
Key to our approach is the notion of («, 3)-regret
and the extension of the generic convex relax-
ation model from El Halabi & Jegelka (2020), the
analysis of which is of independent interest. We
conduct and showcase several simulation studies
to demonstrate the efficacy of our algorithms.

1. Introduction

With machine learning systems increasingly being deployed
in real-world settings, there is an urgent need for online
learning algorithms that can minimize cumulative costs over
the long run, even in the face of complete uncertainty about
future outcomes. There exist a myriad of works that deal
with this setting, most prominently in the area of online
learning and bandits (Cesa-Bianchi & Lugosi, 2006; Latti-
more & Szepesvari, 2020). The majority of this literature
deals with problems where the decisions are taken from
either a small set (such as in the multi armed bandit frame-
work (Auer, 2002)), a continuous decision space (as in linear
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bandits (Auer, 2002; Dani et al., 2008)) or in the case the
decision set is combinatorial in nature, the response is often
assumed to maintain a simple functional relationship with
the input (e.g., linear (Cesa-Bianchi & Lugosi, 2012)).

In this paper, we depart from these assumptions and ex-
plore what we believe is a more realistic type of model for
the setting where the actions can be encoded as selecting
a subset of a universe of size n. We study a sequential in-
teraction between an agent and the world that takes place
in rounds. At the beginning of round ¢, the agent chooses
a subset S* C [n] (e.g., selecting the set of products in a
factory (McCormick, 2005)), after which the agent suffers
cost f(S*) such that f; is an a—weakly DR-submodular
and f—weakly DL-supermodular function (Lehmann et al.,
2006). The agent then may receive extra information about
ft as feedback, for example in the full information setting
the agent observes the whole function f; and in the ban-
dit feedback scenario the learner does not receive any ex-
tra information about f; beyond the value of f;(S*). The
standard metric to measure an online learning algorithm is
regret (Blum & Mansour, 2007): the regret at time 7' is
the difference between ZtT:1 f+(S?) that is the total cost
achieved by the algorithm and min,¢ 4 ZtT: 1 f(x) that is
the total cost achieved by the best fixed action in hindsight.
A no-regret learning algorithm is one that achieves sublin-
ear regret (as a function of 7). Many no-regret learning
algorithms have been developed based on online convex
optimization toolbox (Zinkevich, 2003; Kalai & Vempala,
2005; Shalev-Shwartz & Singer, 2006; Hazan et al., 2007;
Shalev-Shwartz, 2011; Arora et al., 2012; Hazan, 2016)
many of them achieving minimax-optimal regret bounds for
different cost functions even when these are produced by
the world in an adversarial fashion. However, many online
decision-making problems remain open, for example when
the decision space is discrete and large (e.g., exponential in
the number of problem parameters) and the cost functions
are nonlinear (Hazan & Kale, 2012).

To the best of our knowledge, Hazan & Kale (2012) were
the first to investigate non-parametric online learning in
combinatorial domains by considering the setting where
the costs f; are all submodular functions. In this formula-
tion the decision space is the set of all subsets of a set of
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n elements; and the cost functions are submodular. They
provided no-regret algorithms for both the full information
and bandit settings. Their chief innovation was to propose
a computationally efficient algorithm for online submod-
ular learning that resolved the exponential computational
and statistical dependence on n suffered by all previous
approaches (Hazan & Kale, 2012). These results served as
a catalyst for a rich and expanding research area (Streeter &
Golovin, 2008; Jegelka & Bilmes, 2011; Buchbinder et al.,
2014; Chen et al., 2018c; Roughgarden & Wang, 2018;
Chen et al., 2018b; Cardoso & Cummings, 2019; Anari
et al., 2019; Harvey et al., 2020; Thang & Srivastav, 2021;
Matsuoka et al., 2021).

Even though submodularity can be used to model a few
important typical cost functions that arise in machine learn-
ing problems (Boykov et al., 2001; Boykov & Kolmogorov,
2004; Narasimhan et al., 2005; Bach, 2010), it is an insuf-
ficient assumption for many other applications where the
cost functions do not satisfy submodularity, e.g., structured
sparse learning (EI Halabi & Cevher, 2015), batch Bayesian
optimization (Gonzélez et al., 2016; Bogunovic et al., 2016),
Bayesian A-optimal experimental design (Bian et al., 2017),
column subset selection (Sviridenko et al., 2017) and so on.
In this work we aim to fill in this gap. In view of all this, we
consider the following question:

Can we design online learning algorithms when the
cost functions are nonsubmodular?

This paper provides an affirmative answer to this question
by demonstrating that online/bandit approximate gradient
descent algorithm can be directly extended from online sub-
modular minimization (Hazan & Kale, 2012) to online non-
submodular minimization when each cost functions f; sat-
isfy the regularity condition in El Halabi & Jegelka (2020).

Moreover, in online decision-making there is often a signifi-
cant delay between decision and feedback. This delay has
an adverse effect on the characterization between marketing
feedback and an agent’s decision (Quanrud & Khashabi,
2015; Héliou et al., 2020). For example, a click on an ad
can be observed within seconds of the ad being displayed,
but the corresponding sale can take hours or days to occur.
We extend all of our algorithms to the delayed feedback
setting by leveraging a pooling strategy recently introduced
by Héliou et al. (2020) into the framework of online/bandit
approximate gradient descent.

Contribution. First, we introduce a new notion of (¢, 3)-
regret which allows for analyzing no-regret online learning
algorithms when the loss functions are nonsubmodular. We
then propose two randomized algorithms for both the full-
information and bandit feedback settings respectively with
the regret bounds in expectation and high-probability sense.
We then combine the aforementioned algorithms with the

pooling strategy found in (Héliou et al., 2020) and prove that
the resulting algorithms are no-regret even when the delays
are unbounded (cf. Assumption 5.1). Specifically, when the
delay d; satisfies d; = o(t7), we establish a O(vVnT11+7)
regret bound in full-information setting and a O(nT HTW)
regret bound in bandit feedback setting. To our knowledge,
this is the first theoretical guarantee for no-regret learning
in online nonsubmodular minimization with delayed costs.
Experimental results on sparse learning with synthetic data
confirm our theoretical findings.

It is worth comparing our results with that in the existing
works (El Halabi & Jegelka, 2020; Hazan & Kale, 2012;
Héliou et al., 2020). First of all, the results concerning on-
line nonsubmodular minimization are not a straightforward
consequence of El Halabi & Jegelka (2020). Indeed, it is
natural yet nontrivial to identify the notion of («, 8)-regret
under which formal guarantees can be established for the
nonsubmodular case. This notion does not appear before
and appears to be a novel idea and an interesting conceptual
contribution. Further, our results provide the first theoretical
guarantee for no-regret learning in online and bandit nonsub-
modular minimization and generalize the results in Hazan
& Kale (2012). Even though the online and bandit learning
algorithms and regret analysis share the similar spirits with
the context of Hazan & Kale (2012), the proof techniques
are different since we need to deal with the nonsubmodular
case with («, §)-regret. Finally, we are not aware of any
results on online and bandit combinatorial optimization with
delayed costs. Héliou et al. (2020) focused on the gradient-
free game-theoretical learning with delayed costs where the
action sets are continuous and bounded. Thus, their results
can not imply ours. The only component that two works
share is the pooling strategy which has been a common
algorithmic component to handle the delays. Even though
the pooling strategy is crucial to our delayed algorithms,
we make much efforts to combine them properly and prove
(a, B)-regret bound of our new algorithms.

Notation. We let [n] be the set {1,2,...,n} and R"} be the
set of all vectors in R™ with nonnegative components. We
denote 2["l as the set of all subsets of [n]. Fora set S C [n],
we let xs € {0, 1}" be the characteristic vector satisfying
that xys(7) = 1 foreachi € S and xg(i) = 0 foreachi ¢ S.
For a function f : 2" — R, we denote the marginal gain of
adding an element i to S by f(i | ) = f(SU{i}) — f(9).
In addition, f is normalized if f(()) = 0 and nondecreasing
if f(A) < f(B) for A C B. For a vector z € R", its
Euclidean norm refers to ||x|| and its i-th entry refers to x;.
We denote the support set of = by supp(z) = {i € [n] :
x; # 0} and, by abuse of notation, we let = define a set
function z(S) = >, xi. We let Pg be the projection onto
a closed set S and dist(z, S) = inf,cg || — y|| denotes the
distance between x and S. A pair of parameters (o, 8) €
R4 x Ry in the regret refer to approximation factors of the
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corresponding offline setting. Lastly, a = O(b(«, 5,n,T))
refers to an upper bound a < C'-b(«, 8,n,T) where C > 0
is independent of «, 8, n and T'.

2. Related Work

The offline nonsubmodular optimization with different no-
tions of approximate submodularity has recently received a
lot of attention. Most research focused on the maximization
of nonsubmodular set functions, emerging as an important
paradigm for studying real-world application problems (Das
& Kempe, 2011; Horel & Singer, 2016; Chen et al., 2018a;
Kuhnle et al., 2018; Hassidim & Singer, 2018; Elenberg
et al., 2018; Harshaw et al., 2019). In contrast, we are aware
of relatively few investigations into the minimization of non-
submodular set functions. An interesting example is the
ratio problem (Bai et al., 2016) where the objective function
to be minimized is the ratio of two set functions and is thus
nonsubmodular in general. Note that the ratio problem does
not admit a constant factor approximation even when two
set functions are submodular (Svitkina & Fleischer, 2011).
However, if the objective function to be minimized is ap-
proximately modular with bounded curvature, the optimal
approximation algorithms exist even when the constrain sets
are assumed (Iyer et al., 2013). Another typical example is
the minimization of the difference of two submodular func-
tions, where some approximation algorithms were proposed
in Iyer & Bilmes (2012) and Kawahara et al. (2015) but
without any approximation guarantee. Very recently, El Ha-
labi & Jegelka (2020) provided a comprehensive treatment
of optimal approximation guarantees for minimizing non-
submodular set functions, characterized by how close the
function is to submodular. Our work is close to theirs and
our results can be interpreted as the extension of El Halabi
& Jegelka (2020) to online learning with delayed feedback.

Another line of relevant works comes from online learning
literature and focuses on no-regret algorithms in different
settings with delayed costs. In the context of online con-
vex optimization, Quanrud & Khashabi (2015) proposed
an extension of online gradient descent (OGD) where the
agent performs a batched gradient update the moment gra-
dients are received and proved that OGD achieved a regret
bound of O(y/T + D) where Dr is the total delay over a
horizon T'. However, their batch update approach can not
be extended to bandit convex optimization since it does not
work with stochastic estimates of the received gradient infor-
mation (or when attempting to infer such information from
realized costs). This issue was posted by Zhou et al. (2017)
and recently resolved by Héliou et al. (2020) who proposed
a new pooling strategy based on a priority queue. The ef-
fect of delay was also discussed in the multi-armed bandit
(MAB) literature under different assumptions (Joulani et al.,
2013; 2016; Vernade et al., 2017; Pike-Burke et al., 2018;

Thune et al., 2019; Bistritz et al., 2019; Zhou et al., 2019;
Zimmert & Seldin, 2020; Gyorgy & Joulani, 2021). In
particular, Thune et al. (2019) proved the regret bound in
adversarial MABs with the cumulative delay and Gyorgy &
Joulani (2021) studied the adaptive tuning to delays and data
in this setting. Further, Joulani et al. (2016) and Zimmert
& Seldin (2020) also investigated adaptive tuning to the un-
known sum of delays while Bistritz et al. (2019) and Zhou
et al. (2019) gave further results in adversarial and linear
contextual bandits respectively. However, the algorithms
developed in the aforementioned works have little to do with
online nonsubmodular minimization with delayed costs.

3. Preliminaries and Technical Background

We present the basic setup for minimizing structured non-
submodular functions, including motivating examples and
convex relaxation based on Lovdsz extension. We extend
the offline setting to online setting and (v, 3)-regret which
is important to the subsequent analysis.

3.1. Structured nonsubmodular function

Minimizing a set function f : 2"} » R is NP-hard in
general but is solved exactly with submodular structure in
polynomial time (Iwata, 2003; Grotschel et al., 2012; Lee
et al., 2015) and in strongly polynomial time (Schrijver,
2000; Iwata et al., 2001; Iwata & Orlin, 2009; Orlin, 2009;
Lee et al., 2015). More specifically, f is submodular if it
satisfies the diminishing returns (DR) property as follows,

f(i]A) = f(i|B),

Further, f is modular if the inequality in Eq. (1) holds as an
equality and is supermodular if

[ B) = f(i| A),

Relaxing these inequalities will bring us the notions of weak
DR-submodularity/supermodularity that were introduced
by Lehmann et al. (2006) and revisited in the machine learn-
ing literature (Bian et al., 2017). Formally, we have

foral AC B, i€ [n]\B. (1)

forall AC B, i € [n]\ B.

Definition 3.1 A set function f : 2"l — R is a-weakly
DR-submodular with o > 0 if

[l A) = af(i] B),
Similarly, f is -weakly DR-supermodular with 5 > 0 if
[ B) =z Bf(i|A),

We say that f is («, 8)-weakly DR-modular if both of the
above two inequalities hold true.

forall AC B, i € [n]\ B.

forall AC B, i€ [n]\ B.

The above notions of weak DR-submodularity (or weak DR-
supermodularity) generalize the notions of submodularity
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(or supermodularity); indeed, we have f is submodular (or
supermodular) if and only if &« = 1 (or 5 = 1). They are also
special cases of more general notions of weak submodularity
(or weak supermodularity) (Das & Kempe, 2011) and we
refer to Bogunovic et al. (2018, Proposition 1) and EI Halabi
et al. (2018, Proposition 8) for the details. For an overview
of the approximate submodularity, we refer to Bian et al.
(2017, Section 6) and El Halabi & Jegelka (2020, Figure 1).
In addition, the parameters 1 — v and 1 — 3 are referred to
as generalized inverse curvature and generalized curvature
respectively (Bian et al., 2017; Bogunovic et al., 2018) and
can be interpreted as the extension of inverse curvature and
curvature (Conforti & Cornuéjols, 1984) for submodular
and supermodular functions. Intuitively, these parameters
quantify how far the function f is from being a submodular
(or supermodular) function.

Recently, El Halabi & Jegelka (2020) have proposed and
studied the problem of minimizing a class of structured
nonsubmodular functions as follows,

f(S) = F(S) = f(9), )

min

SC[n]
where f and f are both normalized (i.e., f(0)) = f(0)) = 0)'
and nondecreasing, f is a-weakly DR-submodular and f
is S-weakly DR-supermodular. Note that the problem in
Eq. (2) is challenging; indeed, f is neither weakly DR-
submodular nor weakly DR-supermodular in general since
the weak DR-submodularity (or weak DR-supermodularity)
are only valid for monotone functions.

It is worth mentioning that Eq. (2) is not necessarily theoreti-
cally artificial but encompasses a wide range of applications.
We present two typical examples which can be formulated
in the form of Eq. (2) and refer to El Halabi & Jegelka (2020,
Section 4) for more details.

Example 3.1 (Structured Sparse Learning) We aim to
estimate a sparse parameter vector whose support satisfies
a particular structure and commonly formulate such prob-
lems as mingegn £(x) + Af(supp(z)), where £ : R™ — R
is a loss function and f : 2I" — R is a set function fa-
voring the desirable supports. Existing approaches such
as (Bach, 2010) proposed to replace the discrete regular-
ization function f(supp(x)) by its closest convex relaxation
and is computationally tractable only when f is submodular.
However, this problem is often better modeled by a nonsub-
modular regularizer in practice (El Halabi & Cevher, 2015).
An alternative formulation of structured sparse learning
problems is

dnin, Af(S) = h(S), 3)

where h(S) = £(0) — mingpz)cs £(x). Note that Eq. (3)

'In general, we can let f(S) + f(S) — f(0) and f(5) +
f(S) — f(0) which will not change the minimization problem.

can be reformulated into the form of Eq. (2) under certain
conditions; indeed, h is a normalized and nondecreasing
function and El Halabi & Jegelka (2020, Proposition 5) has
shown that h is weakly DR-modular if ¢ is smooth, strongly
convex and is generated from random data. Examples of
weakly DR-submodular regularizers f include the ones used
in time-series and cancer diagnosis (Rapaport et al., 2008)
and healthcare (Sakaue, 2019).

Example 3.2 (Batch Bayesian Optimization) We aim to
optimize an unknown expensive-to-evaluate noisy function
£ with as few batches of function evaluations as possible.
The evaluation points are chosen to maximize an acquisition
function — the variance reduction function (Gonzdlez et al.,
2016) — subject to a cardinality constraint. Maximizing the
variance reduction may be phrased as a special instance of
the problems in Eq. (2) in the form of mingc|,) A|S|—G(S),
where G : 2["l s R is the variance reduction function de-
fined accordingly and El Halabi & Jegelka (2020, Proposi-
tion 6) has shown that it is also non-decreasing and weakly
DR-modular. This formulation allows to include nonlinear
costs with (weak) decrease in marginal costs (economies of
scale) with some applications in the sensor placement.

3.2. Convex relaxation based on the Lovasz extension

The Lovész extension (Lovasz, 1983) is a toolbox commonly
used for minimizing a submodular set function f : 2" — R.
It is a continuous interpolation of f on the unit hypercube
[0,1]™ and can be minimized efficiently since it is convex
if and only if f is submodular. The minima of the Lovész
extension also recover the minima of f.

Before the formal argument, we define a maximal chain of
[n]; that is, { Ao, ..., A, } is a maximal chain if ) = Ay C
Ay C ... C A, = [n]. Formally, we have

Definition 3.2 Given a submodular function f, the Lovdsz
extension is the function fr, : [0,1]™ — R given by fr.(x) =
S o Nif(A;) where {Ay, ..., A} is a maximal chain®
of [n] so that 31" Aixa, = x and Y,y A\; = 1 where
xa,(j) = 1 for¥j € A; and xa,(j) = 0 forj ¢ .

Even though Definition 3.2 implies that f1,(xs) = f(S) for
all S C [n], it remains unclear how to find the chain or the
coefficients. The preceding discussion defines the Lovasz
extension in an equivalent way that is more amenable for
computing the subgradient of f7 .

Let z = (x1,23,...,2,) € [0,1]™ and we define that 7 :
[n] — [n] is the sorting permutation of {x1,z2,...,2,}
where 7(i) = j implies that z; is the i-th largest element.
By definition, we have 1 > x,(1) > ... > T, > 0 and
let 2,0y = 1 and T (,41) = O for simplicity. Then, we set

“Both the chain and the set of \; may depend on the input z.
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Ai = Tr(i) — Tn(ip1) forall 0 < i < nandlet Ag = ) and
A; ={r(1),...,7(i)} forall i € [n]. We also have

Z Aixa, = Z Tr(i) = Tr(i+1)) XAy + €x(i))
=0

Z Z Tr(j) = Tr(j+1)) = T-
i—1 =

As such, we obtain that f1,(z) = Y1 | @) f(7(i) | Ai—1)
where Ty (1) > Tr(2) 2 ... = Tx(n) are the sorted entries
in decreasing order, Ag = ) and A; = {x(1),...,7(i)}
for all ¢ € [n]. Then, the classical results (Edmonds, 2003;
Fujishige 2005) suggest that the subgradient g of f;, at any

€ [0, 1]™ can be computed by simply sorting the entries
in decreasing order and taking

9r(i) = f(Ai) — f(Ai-

Since f7, is convex if and only if f is submodular, we can ap-
ply the convex optimization toolbox here. Recently, El Hal-
abi & Jegelka (2020) have shown that the similar idea can
be extended to nonsubmodular optimization in Eq. (2).

1), foralli € [n]. 4)

More specifically, we can define the convex closure f¢o for
any nonsubmodular function f; indeed, fc : [0,1]" — Ris
the point-wise largest convex function which always lower
bounds f. By definition, f¢ is the tightest convex extension
of f and mingc,) f(S) = min,epp,1j» fo(z). In general,
it is NP-hard to evaluate and optimize fco (Vondrak, 2007).
Fortunately, El Halabi & Jegelka (2020) demonstrated that
the Lovasz extension f; approximates fc such that the
vector computed using the approach in Edmonds (2003)
and Fujishige (2005) approximates the subgradient of fc.
We summarize their results in the following proposition and
provide the proofs in Appendix A for completeness.

Proposition 3.1 Focusing on Eq. (2), we let x € [0,1]"
With Tr(1) > ... > Tpny and griy = f(Ai) — f(Ai-1)
foralli € [n] where Ag = 0 and A; = {w(1),..., (i)}
forall i € [n]. Then, we have

fr(@) =gz > fo(x), (5)

and

=Y g <if

€A

— Bf(A), forall A C [n], (6)

and
9"z < Lfc(2) +B(=f)c(z), forall z € [0,1]". (7)

Proposition 3.1 highlights how f;, approximates f¢; indeed,
we see from Eq. (5) and Eq. (7) that fo(x) < fr(z) <
Lfc(x) + B(—=f)c(x) for all z € [0,1]™. As such, it
gives the key insight for analyzing the offline algorithms
in El Halabi & Jegelka (2020) and will play an important
role in the subsequent analysis of our paper.

3.3. Online nonsubmodular minimization

We consider online nonsubmodular minimization which ex-
tends the offline problem in Eq. (2) to the online setting. In
particular, an adversary first chooses structured nonsubmod-
ular functions fi, fa, ..., fr : 2" — R given by

fi(S) = fi(S) = fi(S), forall S C [n], t € [T], (8)

where f, and f, are normalized and non-decreasing, f;
is a-weakly DR-submodular and f; is (-weakly DR-
supermodular. In each round ¢t = 1,2,...,T, the agent
chooses S* and observes the incurred loss f;(S?) after com-
mitting to her decision. Throughout the horizon [0, 7],
one aims to minimize the regret — the difference between
ZtT 1 f+(S") and the loss at the best fixed solution in hind-
| i fi(S) -

sight, i.e., ST = argmingc, which is de-

fined by?

T T
T) =Y fi(S) =D fi(S]). )
t=1 =
An algorithm is no-regret if R(T')/T — 0as T — +o00 and
efficient if it computes each decision set S* in polynomial
time. In the context, the regret is used when the minimiza-
tion for a known cost, i.e., mingc, f(5), can be solved ex-
actly. However, solving the optimization problem in Eq. (2)
with nonsubmodular costs is NP-hard regardless of any mul-
tiplicative constant factor (Iyer & Bilmes, 2012; Trevisan,
2014). Thus, it is necessary to consider a bicriteria-like
approximation guarantee with the factors o, 5 > 0 as El Ha-
labi & Jegelka (2020) suggested. In particular, («, 3) are
bounds on the quality of a solution S returned by a given
offline algorithm compared to the optimal solution S that
is, f(S) < L f(S.) — Bf(S.). Such bicriteria-like approxi-
mation is optimal: El Halabi & Jegelka (2020, Theorem 2)
has shown that no algorithm with subexponential number
of value queries can improve on it in the oracle model.

Our goal is to analyze online approximate gradient descent
algorithm and its bandit variant for online nonsubmodular
minimization. Let («, 3) be the approximation factors at-
tained by an offline algorithm that solves mingc,; f(S) for
a known nonsubmodular function f in Eq. (2). The («, §)-
regret compares to the best solution that can be expected in
polynomial time and is defined by

T
T)=>"fu(S" Z L7.(ST) = Bf:(ST)), (10)
t=1 t=1

where ST = argmingcy, Zt 1 ft(S). It is analogous to
the a-regret which is Wldely used in online constrained sub-
modular minimization (Jegelka & Bilmes, 2011) and online
submodular maximization (Streeter & Golovin, 2008).

3If the sets S are chosen by a randomized algorithm, we
consider the expected regret over the randomness.
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Algorithm 1 Online Approximate Gradient Descent

Algorithm 2 Bandit Approximate Gradient Descent

1: Initialization: the point 2 € [0, 1]™ and the stepsize n > 0;

2: fort=1,2,...do

3: Let fﬂfru) > ... xfrm) be the sorted entries in the decreasing
order with A} = {r(1),...,7(3)} for all i € [n] and
A = 0. Leta} ) = land 27, 1) = 0.

: LetAl = xfrm - xfr<i+1> forall0 <4 < n.

5:  Sample S* from the distribution P(S* = AY) = Af for all
0 < i < n and observe the new loss function f.

6:  Compute g}, = ft(Ai) — f:(Ai_) foralli € [n].

7: Compute 2t = Py yn (2 — ng").

As mentioned before, we consider the algorithmic design in
both full information and bandit feedback settings. In the
former one, the agent is allowed to have unlimited access to
the value oracles of f(-) after choosing S* in each round t.
In the latter one, the agent only observes the incurred loss
at the point that she has chosen in each round ¢, i.e., f;(S?),
and receives no other information.

4. Online Approximation Algorithm

We analyze online approximate gradient descent algorithm
and its bandit variant for regret minimization when the non-
submodular cost functions are in the form of Eq (8). Due to
space limit, we defer the proofs to Appendix B and C.

4.1. Full information setting

Let [0, 1]™ be the unit hypercube and the cost function on
[0, 1]™ corresponding to f; is the function (f;)c that is the
convex closure of f;. Equipped with Proposition 3.1, we
can compute approximate subgradients of (f;)c such that
the online gradient descent (Zinkevich, 2003) is applicable.

This leads to Algorithm 1 which performs one-step projected
gradient descent that yields z* and then samples S* from
the distribution X over {4;}"_ , encoded by z*. It is worth
mentioning that \! = x;(i) — xfr(iﬂ) forall 0 < i < nand
A is thus completely independent of f;. This guarantees that
Algorithm 1 is valid in online manner since f; is realized
after the decision maker chooses S*. One of the advantages
of Algorithm 1 is that it does not require the value of v and
8 which can be hard to compute in practice. We summarize

our results for Algorithm 1 in the following theorem.

Theorem 4.1 Suppose the adversary chooses nonsubmod-
ular functions in Eq. (8) satisfying f([n]) + fi([n]) < L.

Fixing T > 1 and letting n = f% in Algorithm 1, we

have E[R, g(T)] = O(vnT) and R, g(T) = O(vVnT +
T'log(1/9)) with probability 1 — 4.

Remark 4.2 Theorem 4.1 demonstrates that Algorithm 1 is
regret-optimal for our setting; indeed, our setting includes

1: Initialization: the point z* € [0, 1]™ and the stepsize 1 > 0;
the exploration probability p € (0, 1).

2: fort=1,2,...,T do

3:  Letal ) > ...2%, be the sorted entries in decreasing
order with A = {x(1),...,m(4)} for all i € [n] and
Af = 0. Leta ) = Land 27, ) = 0.

¢ Let A} = () — iy forall0 <i < n.

5: Sample S* from the distribution P(S* = A%) = (1—p)A\i+

—#_ forall 0 < i < n and observe the loss f;(S*).

n+1
P 1(st=At .
6:  Compute f} = mﬁ(ﬁ) forall0 <i < n.

Compute . ;) = fi — fi foralli € [n].

8: Compute z'*! z!t1 = P 1yn (z' —ng").

online unconstrained submodular minimization as a special
case where («, 8)-regret becomes standard regret in Eq. (9)
and Hazan & Kale (2012) shows that Algorithm 1 is op-
timal up to constants. Our theoretical result also extends
the results in Hazan & Kale (2012) from submodular cost
functions to nonsubmodular cost functions in Eq. (8) using
the («, B)-regret instead of the standard regret in Eq. (9).

4.2. Bandit feedback setting

In contrast with the full-information setting, the agent only
observes the loss function f; at her action S, i.e., f;(S?),
in bandit feedback setting. This is a more challenging setup
since the agent does not have full access to the new loss
function f; at each round ¢ yet.

Despite the bandit feedback, we can compute an unbiased es-
timator of the gradient g* in Algorithm 1 using the technique
of importance weighting and try to implement a stochastic
version of Algorithm 1. More specifically, we notice that

ft = 1(51\7:,5’41) 1:(S") is unbiased for estimating f;(Af) for
all 0 <4 < n. Thus, ;) = fi— ft foralli € [n] gives
us an unbiased estimator of the gradient g*. However, the

variance of the estimator ¢ could be undesirably large since
the values of A} may be arbitrarily small.

To resolve this issue, we can sample S* from a mixture
distribution that combines (with probability 1 — 1) samples
from A and (with probability 1) samples from the uniform
distribution over { AL} . This guarantees that the variance
of f! is upper bounded by O(n2 /). The similar idea has
been employed in Hazan & Kale (2012) for online submod-
ular minimization. Then, we conduct the careful analysis
for the estimators §* such that the scale of the variance is
taken into account. Note that our analysis is different from
the standard analysis in Flaxman et al. (2005) which seems
oversimplified for our setting and results in worse regret of
O(T®/*) compared to our result in the following theorem.
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Theorem 4.3 Suppose the adversary chooses nonsubmodu-
lar functions fy in Eq. (8) satisfying f;([n]) + fi([n]) < L.
Fixing T > 1 and letting (0, p) = (ﬁ, Ti73) in Algo-
rithm 2, we have B[Ry 5(T)] = O(nT3) and Ry 5(T) =

O(nT3 + /nlog(1/6)T3) with probability 1 — 6.

Remark 4.4 Theorem 4.3 demonstrates that Algorithm 2 is
no-regret for our setting even when only the bandit feedback
is available, further extending the results in Hazan & Kale
(2012) from submodular cost functions to nonsubmodular
cost functions in Eq. (8) using the («, 8)-regret instead of
the standard regret in Eq. (9).

5. Online Delayed Approximation Algorithm

We investigate Algorithm 1 and 2 for regret minimization
even when the delay between choosing an action and receiv-
ing the incurred cost exists and can be unbounded.

5.1. The general framework

The general online learning framework with large delay that
we consider can be represented as follows. In each round
t =1,...,T, the agent chooses the decision S* C [n] and
this generates a loss f;(S?). Simultaneously, S* triggers a
delay d; > 0 which determines the round ¢ + d; at which
the information about f; will be received. Finally, the agent
receives the information about f; from all previous rounds
Ri={s:s+ds; =t}

The above model has been stated in an abstract way as the
basis for the regret analysis. The information about f; is
determined by whether the setting is full information or
bandit feedback. Our blanket assumptions for the stream of
the delays encountered will be:

Assumption 5.1 The delays d; = o(t") for some v < 1.

Assumption 5.1 is not theoretically artificial but uncovers
that long delays are observed in practice (Chapelle, 2014);
indeed, the data statistics from real-time bidding company
suggested that more than 10% of the conversions were > 2
weeks old. More specifically, Chapelle (2014) showed that
the delays in online advertising have long-tail distributions
when conditioning on context and feature variables available
to the advertiser, thus justifying the existence of unbounded
delays. Note that Assumption 5.1 is mild and the delays can
even be adversarial as in Quanrud & Khashabi (2015).

5.2. Full information setting

At the round ¢, the agent receives the loss function f(-) for
R: = {s: s+ ds =t} after committing her decision, i,e.,
gets to observe fs(A!) forall s € Ry and all 0 < i < n. To
let Algorithm 1 handle these delays, the first thing to note
is that the set R, received at a given round might be empty,

Algorithm 3 Delay Online Approximate Gradient Descent

1: Initialization: the point z' € [0, 1] and the stepsize 7; > 0;
Po + P and foo = 0.

2: fort=1,2,...do

3: Letal ) > ...&%, bethe sorted entries in the decreasing
order with A = {x(1),...,m(4)} for all i € [n] and
Af = 0. Leta ) = Land 27, ) = 0.

¢ Let A} = () — iy forall0 <i < n.

5:  Sample S* from the distribution P(S* = AY) = A! for
0 < i < n and observe the new loss function f.

6:  Compute Gy = fe(AD) — fe(Af_y) forall i € [n] and
then trigger a delay d; > 0.

70 LetRi={s:s+ds =t}and Py + Pi—1 UR;. Take
¢+ = min Py and set Py < P; \ {g+}.

8:  Compute z'** using Eq. (11).

i.e., we could have R; = () for some ¢ > 1. Following up
the pooling strategy in Héliou et al. (2020), we assume that,
as information is received over time, the agent adds it to an
information pool P; and then uses the oldest information
available in the pool (where “oldest” stands for the time at
which the information was generated).

Since no information is available at ¢t = 0, we have Py = ()
and update the agent’s information pool recursively: P; =
Pi—1 UR: \ {g+} where ¢; = min(P;_1 UR;) denotes the
oldest round from which the agent has unused information at
round ¢. As Héliou et al. (2020) pointed out, this scheme can
be seen as a priority queue where {f(-),s € R;} arrives
at time ¢ and is assigned in order; subsequently, the oldest
information is utilized at first. An important issue that arises
in the above computation is that, it may well happen that
the agent’s information pool P, is empty at time ¢ (e.g., if
we have d; > 0 at time ¢ = 1). Following the convention
that inf ) = +oo, we set ¢z = +oo and g = 0 (since it
is impossible to have information at time ¢ = +o00). Under
this convection, the computation of a new iterate z‘*! at
time ¢ can be written more explicitly form as follows,

. .
t+1 _ ) T if Py =0,
o= { Py,1p» (2" —n9%), otherwise. an

We present a delayed variant of Algorithm 1 in Algorithm 3.
There is no information aggregation here but the updates of
2!+ follows the pooling policy induced by a priority queue.
We summarize our results in the following theorem.

Theorem 5.2 Suppose the adversary chooses nonsubmod-
ular functions in Eq. (8) satisfying fi([n]) + fi([n]) < L
and let the delays satisfy Assumption 5.1. Fixing T > 1 and
letting n; = L\/% in Algorithm 3, we have E[R,, g(T)] =
O(VnT™ ) and Ry 5(T) = O(VnT™7 ++/Tlog(1/5))
with probability 1 — 4.

Remark 5.3 Theorem 5.2 demonstrates that Algorithm 3
is no-regret if Assumption 5.1 hold. To our knowledge, this
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Algorithm 4 Delay Bandit Approximate Gradient Descent

1: Initialization: the point z' € [0, 1] and the stepsize 7; > 0;
Po + 0 and fo = 0; the exploration probability u: € (0,1).
2: fort=1,2,...do
3: Letalqy > ...&5,) bethe sorted entries in the decreasing
order with A} = {x(1),...,n(3)} for all i € [n] and
Ab = 0. Leta ) = Land 27, ) = 0.
o Let Aj = () — iy forall0 <i < n.
5:  Sample S* from the distribution P(S* = AY) = (1 —
pe)X; + ;24 for 0 < i < n and observe the loss f:(S*).
6: Compute f = __ust=A) f: (8%
: PUIE Jo = oo x e/ T4 -
7. Compute g ;) = f{ — f{_1 foralli € [n] and then trigger
adelay d; > 0.
8 LetRi;={s:s+ds=t}and P, + Pi—1 UR,. Take
g+ = min Py and set Py < Pr \ {q:}-
9:  Compute ' using Eq. (12).

is the first theoretical guarantee for no-regret learning in
online nonsubmodular minimization with delayed costs and
also complement similar results for online convex optimiza-
tion with delayed costs (Quanrud & Khashabi, 2015).

5.3. Bandit feedback setting

As we have done in the previous section, we will make use
of an unbiased estimator g of the gradient for the bandit
feedback setting. However, we only receive the old esti-
mator g9 at the round ¢ due to the delay d;. Following
the same reasoning as in the full information setting, the
computation of a new iterate x**! at time ¢ can be written
more explicitly form as follows,

" .

t+1 X lf Pt = @,
o= { Pyo,1pn (2" —ng%), otherwise. (12)
Algorithm 4 follows the same template as Algorithm 3 but
substituting the exact gradients with the gradient estimator.
We summarize our results in the following theorem.

Theorem 5.4 Suppose the adversary chooses nonsubmodu-

lar functions in Eq. (8) satisfying fi([n]) + fi([n]) < L and

let the delays satisfy Assumption 5.1. Fixing T' > 1 and let-

ting (g, pe) = (W, =573 ) in Algorithm 4, we have

E[Ro 5(T)] = O(nT*5) and Ro3(T) = O(nT*5 +
n log(l/é)Tél_Tw) with probability 1 — 4.

Remark 5.5 Theorem 5.4 demonstrates that Algorithm 4
attains the regret of nT*5* which is worse that that of
VT for Algorithm 3 and reduces to that of nT3 for
Algorithm 2. Since v < 1 is assumed, Algorithm 4 is the
first no-regret bandit learning algorithm for online nonsub-
modular minimization with delayed costs to our knowledge.

6. Experiments

We conduct the numerical experiments on structured sparse
learning problems and include Algorithm 1-4, which we
refer to as OAGD, BAGD, DOAGD, and DBAGD. All the
experiments are implemented in Python 3.7 with a 2.6 GHz
Intel Core 17 and 16GB of memory. For all our experiments,
we set total number of rounds 7' = 10,000, dimension
d = 10, number of samples (for round ¢) n = 100, and
sparse parameter £k = 2. For OAGD and DOAGD, we
set the default step size 1, = /n/(Lv/T) (as described in
Theorem 4.1). For BAGD and DBAGD, we set the default
step size n, = 1/(LT?/?) (as described in Theorem 4.3).

Our goal is to estimate the sparse vector z* € R? using
the structured nonsubmodular model (see Example 3.1).
Following the setup in El Halabi & Jegelka (2020), we let
the function f” be the regularization in Eq. (3) such that
f(S) = f7(S) = max(S) — min(S) + 1 forall S #
and f7 () = 0. We generate true solution 2* € R? with
k consecutive 1’s and other n — k elements are zeros. We
define the function h(.S) for the round ¢ as follows: let
Yy = A;x* + ¢, where each row of A, € R™*% is an i.i.d.
Gaussian vector and each entry of ¢, € R"™ is sampled from
a normal distribution with standard deviation equals to 0.01.
Then, we define the square loss ¢;(x) = || Ay — y¢||3 and
let h:(S) = £:(0) — mingpp(z)cs £¢(x). We consider the
constant delays in our experiments, i.e., the delay max; d; <
d forall t > 1 where d > 0 is a constant.

Figure 1 summarizes some of experimental results. Indeed,
we see from Figure 1(a) that the bigger delays lead to worse
regret for the full-information setting which confirms The-
orem 4.1 and 5.2. The result in Figure 1(b) demonstrates
the similar phenomenon for the bandit feedback setting
which confirms Theorem 4.3 and 5.4. Further, Figure 1(c)
demonstrates the effect of bandit feedback and delay si-
multaneously; indeed, OAGD and DOAGD perform better
than BAGD and DBAGD since the regret will increase if
only the bandit feedback is available. We implement all
the algorithms with varying step sizes and summarize the
results in Figure 2 and 3. In the former one, we use step
sizes 1,/2 = /n/(2LV/T) for OAGD and DOAGD and
/2 = 1/(2LT?/3) for BAGD and DBAGD. In the latter
one, we use step sizes 1,/5 = /n/(5L\/T) for OAGD and
DOAGD, and 7, /5 = 1/(5LT?%/3) for BAGD and DBAGD.
Figure 1-3 demonstrate that our proposed algorithms are not
sensitive to the step size choice.

7. Concluding Remarks

This paper studied online nonsubmodular minimization with
special structure through the lens of («, 3)-regret and the
extension of generic convex relaxation model. We proved
that online approximate gradient descent algorithm and its
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Figure 1. Comparison of our algorithms on sparse learning with delayed costs. In (a) and (b), we examine the effect of delay in the
full-information and bandit settings respectively where the maximum delay d € {500, 1000, 2000}. In (c), we examine the effect of
bandit feedback by comparing the online algorithm with its bandit version where the maximum delay d = 500.
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Figure 2. Comparison of our algorithms on sparse learning with delayed costs and step size n = \/n/ (2L\/T ) for OAGD and DOAGD,
andnp =1/ (2LT2/ 3) for BAGD and DBAGD. Note that (a), (b) and (c) follow the same setup as Figure 1.
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Figure 3. Comparison of our algorithms on sparse learning with delayed costs and step size n = v/n/(5L+/T) for OAGD and DOAGD,
andn =1/ (5LT2/ 3) for BAGD and DBAGD. Note that (a), (b) and (c) follow the same setup as Figure 1.

bandit variant adapted for the convex relaxation model could
achieve the bounds of O(v/nT) and O(nT'%) in terms of
(a, B)-regret respectively. We also investigated the delayed
variants of two algorithms and proved new regret bounds
where the delays can even be unbounded. More specifi-
cally, if delays satisfy d; = o(¢7) with v < 1, we showed
that our proposed algorithms achieve the regret bound of
O(vVnT'™7) and O(nTHTv) for full-information setting
and bandit setting respectively. Simulation studies validate
our theoretical findings in practice.
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A. Proof of Proposition 3.1

‘We have

fole)= max {972 +p:9(A)+p < f(A),VAC [n]}. (13)

First, we prove Eq. (5) using the definition of f7, and Eq. (13). Indeed, we have f,(z) = g = where we let z € [0, 1]™ with
Tr(1) = ... = Ty and gr(sy = f(m(i) | Ai—1) for all i € [n]. Then, it suffices to show that g "« > gz + § in which
g(A) 4+ p < f(A) forall A C [n]. We have

g xr — g x+p Z:Eﬂ'(l |Al 1) gﬂ(l))_ﬁ

n—1

= > (@) — Teern) (F(A) = §(AD)) + @r(y (F([0]) = 3([])) = 5.

i=1
Since §(A) + p < f(A) for all A C [n], we have

f(n]) = g([nl) = p,  f(Ai) = g(Ai) = p, foralli € [n].
Putting these pieces together with z,(1) > ... > T (,) yields that

n—1

g =G 2+p) 2> (Tnp) = Tr(it1) P+ Tr)p — P = (Tr1) — 1)

i=1
Since z € [0,1]", we have x, (1) < 1. Since §(A) + p < f(A) forall A C [n] and f(()) = 0, we derive by letting A = ()
that p < f(0) — g(0) < 0. This implies the desired result.

Further, we prove Eq. (6) using the definition of weak DR-submodularity. Indeed, we have g(A) = >, 4 gi;. Since
9r(i) = f(m(i) | A;—1) forall i € [n], we have

= D f@@) Ay = D0 (F@() | Aimy) — £(n(0) | Aim))
m(i)€A w(1)EA
Since f is a-weakly DR-submodular, f is B-weakly DR-supermodular and AN A; 1 € A; 1, we have
@) AN Aimy) > af (7(i) | Aima), f(r(i) | Aica) > Bf(w(i) | AN Aa). (14)
Putting these pieces together yields that
g(A) < Y (G (@) [ AN Aia) = Bf(w (i) | AN Aimr))
w(i)EA
Then, we have

g(4) < (Z FANAy) f(AmAil))> -8B (Z (f(ANA)) _f(AmAil))>

N i=1
= L17(A)-Bf(4), forall AC[n].
This implies the desired result.

Finally, we prove Eq. (7) using Eq. (13). Indeed, we have g = § — g where gr(;y = f(m(i) | A;—1) and gr(;y = f(m(i) |
A;_q) forall i € [n]. For any A C [n], we obtain by using Eq. (14) that

A<t ( > fr) [ AN A n) =3 (Z (F(An4)) —f(AﬂAi—l))> =3/,

m(i)€A i=1

- ( > fr@) AN A 1)) = (_Z (f(Aon—f(AmAi_l))) = —B1(4).

m(i)EA
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Equivalently, we have ag(A4) +0 < f(A) and %(fg(A)) +0 < —f(A) forany A C [n]. Using Eq. (13), we have
ag' 240 < fo(2), %(—Q)Tz +0<(=f)c(z), forallz e [0,1]".

Since g =g —gand o, 8 > 0, we have g 2z < £ fo(2) + B(—f)c(z). This implies the desired result.

B. Regret Analysis for Algorithm 1

In this section, we present several technical lemmas for analyzing the regret minimization property of Algorithm 1. We also
give the missing proof of Theorem 4.1.

B.1. Technical lemmas

We provide two technical lemmas for Algorithm 1. The first lemma gives a bound on the vector g¢ and the difference
between z¢ and any fixed z € [0, 1]".

Lemma B.1 Suppose that the iterates {a'}1>1 and the vectors {g"'}1>1 be generated by Algorithm 1 and x € [0, 1]" and
let fy = fi — fi satisfy that fi([n]) + fi([n]) < L forallt > 1 and both f; and f; are nondecreasing. Then, we have
|zt — z|| < /nand ||gt|| < L forallt > 1.

Proof. Since z* € [0,1]" and = € [0, 1]" is fixed, we have ||z* — z|| < /Y1, 1 = \/nforall ¢ > 1. By the definition of
g', wehave gl ) = fi(Af) — fe(Af_,) forall i € [n] where A} = {n(1),...,m(i)} forall i € [n]. Then, we have

Ig' 11 <D 1f(AD) = F(ALDI < D 1(AD = F(ALD+ D 1fi(AD = fi(AL)]-
i=1 i=1 i=1
Since ft and ft are both normalized and non-decreasing, we have
D OIA(AD = (AL DI+ D 1fu(AD) = fu(AL)] = fulln]) + fi(In]) < L.
i=1 i=1

Putting these pieces together yields that ||gt|| < L forallt = 1,2,...,T. O

The second lemma gives a key inequality for analyzing Algorithm 1.

Lemma B.2 Suppose that the iterates {x'},>1 are generated by Algorithm 1 and x € [0,1]" and let f, = f, — fi satisfy
that f([n]) + fi([n]) < L forallt > 1. Then, we have

T T
S E[(fo)u(ah)] < (Z L(f)o(@) + ﬁ(—ﬁ)o(@) +g i T

t=1 t=1

Proof- Since 't = Py 11 (2" — ng"), we have
(x — 2T (2 — 2t yng') >0, forallz € [0,1]™.

Rearranging the above inequality and using the fact that > 0, we have

1
~(z =" )T —a") = g (llz = 2'|* = [lz — 2"H* — [|l2" — ") (15)

($t+1 _ JJ)Tgt <
n

Using Young’s inequality, we have

(.%‘t _ xt+1>Tgt S %th _ $t+1||2 + g||9t||2~ (16)
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Combining Eq. (15) and Eq. (16) yields that

(' —2)"g" < 55 (o = 2'* = [l = 2 H%) + Flg")1*.

Since f, = f; — ft where f: and [t are both non-decreasing, fi is a-weakly DR-submodular and [t is B-weakly DR-
supermodular, Proposition 3.1 implies that

(@' —2)"g" > (fi)r (") — ((F)c(@) + B(=fo)e(z)).
By Lemma B.1, we have ||g*|| < Lforallt =1,2,...,T. Then, we have

(f)r(at) < L(f)e(@) + B(—f)o@) + & (lz — 2'? = [lz — 2 1%) + 2=

Summing up the above inequality over ¢t = 1,2, ..., 7T and using ||z' — z|| < /n (cf. Lemma B.1), we have

T T
S (fLleh) < (Z L(F)ele) + B(ft)c(o:)) + &+ 25T

t=1 t=1

Taking the expectation of both sides yields the desired inequality. (|

B.2. Proof of Theorem 4.1

By the definition of the Lovész extension, we have

(fo)r(z) = Z(%’;(i) = @) fe(AD) + (1= 2l ) fi(AG) + 2y fo(A Z i fe (A7)

By the update formula, we have E[f;(S?) | '] = (f¢)z(z*) which implies that E[f;(S*)] = E[(f;)£(z")]. By the definition
of the convex closure, we obtain that the convex closure of a set function f agrees with f on all the integer points (Dughmi,
2009, Page 4, Proposition 3.3). Letting ST = argmin SCn] EtT:l f:(S), we have ST is an integer point and

(f)e(xsr) = fi(ST).  (=fi)e(xsr) = =BL(ST),

which implies that ~ ~
é(ft)C(XST) +B(=fi)c(xsr) = éft(S*T) - Bft(sf)-

Putting these pieces together and letting = X7 in the inequality of Lemma B.2 yields that

T
> Elf(S")] (Z L7.(8T) ﬂft(53)>+£,+"L;T-
t=1

Plugging the choice of n = ‘G into the above inequality yields that E[R,, 5(T")] = O(v/nT) as desired.

We proceed to derive a high probability bound using the concentration inequality. In particular, we review the Hoeffding
inequality (Hoeffding, 1963) and refer to Cesa-Bianchi & Lugosi (2006, Appendix A) for a proof. The following proposition
is a restatement of Cesa-Bianchi & Lugosi (2006, Corollary A.1).

Proposition B.3 Let X1,..., X, be independent real-valued random variables such that for each v = 1, ..., n, there exist
some a; < b; such that P(a; < X; < b;) = 1. Then for every € > 0, we have
2¢?

IP’(Z”:XZ-—IE ix >+e> < exp(_w>,

3 |
-
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Since the sequence of points x!, 22 T"is obtained by several deterministic gradient descent steps, we have this

sequence is purely deterministic. Since each of S* is obtained by independent randomized rounding on the point z¢, we
have the sequence of random variables X; = f;(S?) is independent. By definition of f;, we have

|Xe| = [£:(S") = £i(S] < fu(S") + fi(ST).

Since f; and f; are non-decreasing and f,([n]) + f;([n]) < L forallt > 1, we have P(—L < X; < L) = 1forall ¢t > 1.
Then, by Proposition B.3, we have

P (Z £(SY —E lz ft(St)] > e) < exp (— 2:LL2> .

Equivalently, we have Y. | fi(S") — E[>;_, fi(S")] < L\/2T log(1/8) with probability at least 1 — &. This together
with E[R, 3(T)] = O(v/nT) yields that R, g(T) = O(vVnT + /T log(1/6)) with probability at least 1 — § as desired.

C. Regret Analysis for Algorithm 2

In this section, we present several technical lemmas for analyzing the regret minimization property of Algorithm 2. We also
give the missing proofs of Theorem 4.3.

C.1. Technical lemmas

We provide several technical lemmas for Algorithm 2. The first lemma is analogous to Lemma B.1 and gives a bound on the
vector §' (in expectation) and the difference between x* and any fixed x € [0, 1]™.

Lemma C.1 Suppose that the iterates {x'} >, and the vectors {j'};>1 be generated by Algorithm 2 and x € [0, 1]" and
let fi = f; — f: satisfy that f;([n]) + fi([n]) < L forallt > 1 and both fi and [+ are nondecreasing. Then, we have
|zt — x| < /nforallt > 1 and

R R 272 N 2 212
E[g | 2" =g, E[§")? | "] < 8L, |jgt|? < 2t

where we have g ;) = fi(A}) — fe(Ai_y) for all i € [n].

Proof. Using the same argument as in Lemma B.1, we have ||zt — z|| < y/n for all ¢ > 1. By the definition of g*, we have

~t . 1(S*=A%) 1(S*=A]_,) t ;
Gr(i) = ((1—M)>‘f+n11 R e e )ft(S ), forallie [n].

This together with the sampling scheme for S* implies that
E[ﬁi(i) | '] = fi(A}) — fi(Ai_y), forallie [n],

Since g! ;y = fi(A})— fi(Aj_;) foralli € [n], wehave E[¢" | 2'] = ¢". Since f, = f,— f, satisfy that fy([n])+ fi([n]) < L
forall ¢ > 1 and f; and f+ are both normalized and non-decreasing, we have

2 2(fi(AY) 2(n+1)%L? 8n2 L2
GtI% | ! <le Ws < R

Further, let S* = A;, in the round ¢, we can apply the same argument and obtain that

t 2 P
1 <2 (it ) < 2

A=p)Al, +75+ w2

This completes the proof. (]

The second lemma is analogous to Lemma B.2 and gives a key inequality for analyzing Algorithm 2.
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Lemma C.2 Suppose that the iterates {x'},>1 are generated by Algorithm 2 and x € [0,1]" and let f, = f, — fi satisfy
that f([n]) + fi([n]) < L forallt > 1. Then, we have

T T
SCEl(f)o ()] < (Z L(f)o(x) + B(ft)c(x)> g LT

t=1 t=1

Proof. Using the same argument as in Lemma B.2, we have

T A A
(@' —2)"g" < g (o — ")) = [la — 2" *) + 319"

By Lemma C.1, we have E[¢' | 2] = ¢* and E[||g||? | 2!] < % for all t > 1. This implies that

T 4n? L2
(' —2)Tg" < & (lr — 2| — B[}z — 2"V|? | 2]) + L0,

Since f; = f; — ft where f: and [t are both non-decreasing, fi is a-weakly DR-submodular and [t is B-weakly DR-
supermodular, Proposition 3.1 implies that

(@' —2)"g" > (fi)r(@") = (3 (f)e (@) + B(-fr)e(@)) -

By Lemma B.1, we have ||g!|| < L forallt = 1,2,...,T. Then, we have

- 7),2 2
(fL(a') < Z(foel@) + B(=foe(@) + g5 (o — 2'[* = Bl — "% | ) + #70
Taking the expectation of both sides and summing up the resulting inequality overt = 1,2,...,T, we have
T T B ) s
S E[(fi)r(ah)] < (Z L(f)e(@) + 5(—ft)c(x)> + o[l — 2| 4 it
t=1 t=1

Using ||z — z|| < v/n (cf. Lemma C.1) yields the desired inequality. O

To prove the high probability bound, we require the following concentration inequality. In particular, we review the Bernstein
inequality for martingales (Freedman, 1975) and refer to Cesa-Bianchi & Lugosi (2006, Appendix A) for a proof. The
following proposition is a consequence of Cesa-Bianchi & Lugosi (2006, Lemma A.8).

Proposition C.3 Let X1, ..., X,, be a bounded martingale difference sequence with respect to the filtration F = (F;)1<i<n

such that | X;| < K foreachi = 1,...,n. We also assume that E[|| X;1||? | ;] <V foreachi =1,...,n — 1. Then for
every § > 0, we have
P(

Then we provide our last lemma which significantly generalizes Lemma C.2 for deriving the high-probability bounds.

> Xi —E[X; | Fiil

i=1

> \/2TV log(1/8) + {fmogu/é)) <.

Lemma C.4 Suppose that the iterates {x'}>1 are generated by Algorithm 2 with i = =i and x € [0,1]" and let

ft = fo— fy satisfy that fy([n])+ f,([n]) < L forallt > 1. Fixing a sufficiently small § € (0,1) and letting T > log%(l/d).
Then, we have

T T
S (fo)r(ah) < (Z L7,(5) - ﬁft(5)> o LT TR \/n?  nlog(1/0) + 6nLPT\/nlog(1/0),
t=1

t=1

with probability at least 1 — 34.
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Proof. Using the same argument as in Lemma C.2, we have

(¢f = 2) "' < 55 (o =2 = lla = =) + Fg°)1%,

and
(@' —2)"g" > (fi)r(e") = (2(f)o(@) + B(—fo)e (@)

For simplicity, we define e; = §* — g. Then, we have
(f)o(@) = (5 (F)e@) + B(=f)e(@) < (x—a") e+ 55 (lo —2'* — |l =" °) + 311> (a7

Summing up Eq. (17) over t = 1,2,...,T and using ||z! — z|| < \/n and E[||g|* | 2!] < # forall t > 1 (cf.
Lemma C.1), we have

T T
Y (felah) < (Z s(f)e(@) + B(=foolx) + (x — ') Tee + (19"1* — Elllg"]|* | wt}))

By the definition of the convex closure, we obtain that the convex closure of a set function f agrees with f on all the integer
points (Dughmi, 2009, Page 4, Proposition 3.3). Letting S C [n], we have (f;)c(xs) = f¢(S) and (= fi)c(xs) = =B f:(S)

which implies that ~
L(felxs) + B(=fo)olxs) = 2 fi(S) — Bfe(S).
Letting x = x g, we have

T T
Z<ft>L<xt><(Z;m&—ﬁﬁw))w+4”L"T+Z xs — )T +1 (Zu 2 - ||2|xt]>.<18>

I 1T

In what follows, we prove the high probability bounds for the terms I and II in the above inequality.

Bounding I. Consider the random variables X; = () T §? for all 1 < ¢ < T that are adapted to the natural filtration
generated by the iterates {z; };>1. By Lemma C.1 and the Holder’s inequality, we have

. fi(AL) 2(n+1)L
|Xt‘ S ||ng1||xt||OO S 2 (1_'15)\2‘:_”11 S ("?M )
Since pu = 7175, we have | X < ALTS3 . Further, we have
n t\\2 272
2 AE11 20t ]2 _ 4(f+ (A7) 2(n+1)°L 2%
BIX? | o] < Bl It I2, | o = D (el < 2000 < gop2rd,

=0

Since E[g" | '] = ¢' and e; = §* — g*, Proposition C.3 implies that

T
P ( Z(xt)Tet > ALT3\/nlog(1/6) + 2LT3 10g(1/6)> <4

2

Since T' > 1og%(1/5), we have T'3 y/log(1/8) > T's log(1/6). This implies that

&

Similarly, we fix a set S C [n] and consider the random variable X; = (xs) ' ¢* for all 1 < t < T that are adapted to the
natural filtration generated by the iterates {x; };>1. By repeating the above argument with -2, we have

|

T

Z(zt)'l'et

t=1

> 6LT3 nlog(1/5)> <é

on»

T

Z(XS)Tet

t=1

> 6LT§\/nlog(2"/6)> < 2.
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By taking a union bound over the 2" choices of S, we obtain that

&

Since \/n10g(2"/8) < v/n2 + nlog(1/5), we have I < 12LT'5 \/n? + nlog(1/8) with probability at least 1 — 24.

T

Z(XS)Tet

t=1

> 6LT3 nlog(2“/5)> <4, foranyS C [n].

Bounding II. Consider the random variables X; = ||g¢||? for all 1 < ¢ < T that are adapted to the natural filtration

2r2
generated by the iterates {z'};>1. By Lemma C.1, we have | X;| < W Since y1 = —iz, we have | X;| < 8L2T2/3,
Further, we have

2 - 2(fr(AD)* 2(n+1)4L* 4
E[X7 | 2] <) ooy < 2 <32nL'T.
=0

Applying Proposition C.3, we have

T
]P> <
t=1

> 13" 1% —Elllg")* | «*)

2

Since T > log? (1/6), we have T'\/log(1/d) > T3 log(1/§). This implies that

( > lg*1% —Efllg")©* | «*)

Therefore, we conclude that IT < 12L2T'/nlog(1/6) with probability at least 1 — §.

> 8L2T+\/nlog(1/0) + AL*T3 log(1/5)> <4

> 12L°T nlog(1/5)> <94

Putting these pieces together with Eq. (18) yields that

T
> (f) (Z fi(S) = Bfi( )) =+ an” L LT 4 19175 \/n2 + nlog(1/8) + 6nL3T/nlog(1/5),
t=1
with probability at least 1 — 34. |

C.2. Proof of Theorem 4.3

By the definition of the Lovasz extension and \!, we have
(F)o(a') = (ahy = whaay) F(AD + (1= k1) fi(AD) + by, fo(A Z/\tft (47).
By the update formula of S?, we have

BIf(S") | #'] - =uz(n“—xt) ) wz(W) A9

Since f; = f; — f; satisfy that f;([n]) + fi([n]) < Lforall ¢ > 1 and f; and f, are both normalized and non-decreasing,
we have

E[f,(S") | 2] ~ (F)r(a") < uz ( L) =2 (19

which implies that
]E[ft(St)] - E[(ft)L(l”t)} < 2Lu.
Using the same argument as in Theorem 4.1, we have

T
S(f)e(xsr) +B(=fi)e(xsr) = S i(ST) = Bf(ST),  where ST = argmin’y _ f,(S).

SCn] 1
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Putting these pieces together and letting = x g7 in the inequality of Lemma C.2 yields that

T T
ZMM%M{ZEMﬁ)ﬁM$g+;+“LW+nm

Plugging the choice of = ﬁ and p = 775 into the above inequality yields that E[R, 5(T)] = O(nT?#) as desired.

We proceed to derive a high probability bound using Lemma C.4. Indeed, we first consider the case of 7' < 2 log% (1/9).
Since f; = f; — f; satisfy that f;([n]) + fi([n]) < L forallt > 1, we have

T T
<SRN =D EAST) = BA(ST) < (14 L+ 8) LT = O(T% \/log(1/5)).

t=1

For the case of T > 2 log% (1/68), we obtain by combining Lemma C.4 with Eq. (19) that

T

D E[fi(SY) | 2] _<Z Fi(S) = B ))

t=1
+a5 LT3 + 4nL*nT5 + 12LT3 \/n? + nlog(1/0) + 6nL>T+/nlog(1/5),
with probability at least 1—34. Then, it suffices to bound the term ", f;(S*)—3"1_, E[f;(S?) | =] using Proposition C.3.

Consider the random variables X; = f;(S?) for all 1 < ¢ < T that are adapted to the natural filtration generated by the
iterates {z'}¢>1. Since f; = f; — f; satisfy that fi([n]) + f¢([n]) < L forall t > 1, we have | X;| < L. Further, we have

E[X? | ;] < L?. Applying Proposition C.3, we have

(e

Since T' > log%(l/é), we have /2T log(1/6) > 1

(Z (5" |

Therefore, we conclude that 31, f:(S%) — 37, E[f:(S?) | 2] < 3L\/T log(1/8) with probability at least 1 — §. Putting
these pieces together yields that

T T
th( <Z(1y - Bfi(S ) + 3, +3L Tlog(1/6) +2nLT3
t=1 t=1

+4nL*nT5 + 12nLT5 + 120735 \/nlog(1/8) + 6nL>*T+/nlog(1/),

with probability at least 1 — 44. Plugging the choice of = ﬁ yields that

fu(8") | 2]

> L+/2T log(1/6) + glogu/(s)) <6

log(1/6). This implies that

> 3L+/Tlog(1/0) ) <.

th St < (Z L7(S) = Bfe( )>+327nLT§+21LT§ nlog(1/6),

with probability at least 1 — 44. Letting S = ST = argmin SCn Zt 1 ft(S) and changing § to % yields that R, g(T) =
O(nTS + y/nlog(1/9) T3 with probability at least 1 — § as desued.

D. Regret Analysis for Algorithm 3

In this section, we present several technical lemmas for analyzing the regret minimization property of Algorithm 3. We also
give the missing proofs of Theorem 5.2.
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D.1. Technical lemmas

We provide one technical lemma for Algorithm 3 which is analogues to Lemma B.2. It gives a key inequality for analyzing
the regret minimization property of Algorithm 3. Note that the results in Lemma B.1 still hold true for the iterates {z'};>1
and {¢'};>1 generated by Algorithm 3.

Lemma D.1 Suppose that the iterates {x'},;>1 are generated by Algorithm 3 and x € [0,1]" and let f, = f, — f. satisfy
that f([n]) + fi([n]) < L forallt > 1. Then, we have

t—1

T T T ¢
D El(f)ea)] < (Z 2 (el + ALl >> tmr an 2 (S %

t=1 t=1
where T > 0 in the above inequality satisfies that g7 = T.

Proof. Using the same argument as in Lemma B.2, we have

(af =) g™ < g (o — 2 = llz — 2"7H%) + B lg™ .

Since f; = f; — ft where f; and [+ are both normalized and non-decreasing, f: is a-weakly DR-submodular and feis
[-weakly DR-supermodular, Proposition 3.1 implies that

(2% —2) 9" > (fo) (") = (3 (fa)c(@) + B(=fo.)o(x)) -
By Lemma B.1, we have ||g*|| < L for all ¢ > 1. Then, we have

(fa)n(x%) < S (fa)e(@) + B(—fo,)c(@) + 5 (o — 2| = |z —2""?) + Lfja% —2*|| + L% (20
Further, we have

t—1 t—1
2% — 2 < D mallg® < L (Z n) @1)

S5=q¢ 5$=q¢

Plugging Eq. (21) into Eq. (20) yields that

(Fa)r (@) < 2(Fa)e@) + B(=fa)o(@) + 5 (|l = 'l = |lz — o 2) + 25 4 L2 (Z m) S )

5=qt

For a fixed horizon T' > 1, we have g = T for some T > T. Then, by summing up Eq. (22) overt = 1,2,..., T and
using ||z* — z|| < y/nforall ¢ > 1 (cf. Lemma B.1) and that {7, };>1 is nonincreasing, we have

T T T t—1
> (aia) < | L dFadelo) +8-fuel) | + 5+ & Zm I m

t=1 t=1 s=q;

Since g7 = T and our pooling policy is induced by a priority queue (note that f,, = [ o = Jq =0if Py = (), we have

T T
Z(f(h) (xqf) = Z(ft)L(xt)v
t=1 t=1
T T
Y )o@ +B8(=fu)o@) = > EHF)o(@) + B(=fi)o(x)
Therefore, we conclude that
S () < (Z;m)c(x) +5<—ft>c(x>> T AR b
t=1 t=1 t=1 t=1 s=q:

Taking the expectation of both sides yields the desired inequality. (]
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D.2. Proof of Theorem 5.2

By Héliou et al. (2020, Corollary 1), we have ¢ — ¢; = o(t”) under Assumption 5.1; in particular, we have t — ¢; = o(t) and
q: = O(t). Since g7 = T, we have T = ©(T') which implies that T = ©(T). Recall that 1; = \/% we have

= LT — Oo(VnTi+),

207
T
nL nL 71— / —
E 771‘) = \/; E /7t}+,y < 1 =7 = O(VnT'=),

IA
SN
NE!
=
|
=]
=1
Q
5
h
hE!
Q
=
s
|
iy
|
o
s
|
]

T t-1
Do s
t=1 s=q;

Putting these pieces together with Lemma D.1 yields that

T T
Z [(fe)r( <Zi f)e(@) + B(=fi)e(x )) = O(VnI'*7). (23)
t=1 t=1
By the definition of the Lovasz extension, we have
n—1
(f)o(a') = (ahy = ) F(AD + (1= k) fi(AD) + 2l fo(AL).
i=1

By the update formula, we have E[f;(S?) | '] = (f;)(x") which implies that E[f;(S*)] = E[(f;)(«")]. Further, by using
the same argument as in Theorem 4.1, we have

é(ﬁ)c(Xs*T) + B(=fi)e(xsr) = éft(S*T) - Bft(S*T)-
Putting these pieces together and letting © = x g7 in Eq. (23) yields that

T

> E[f(8")] (Z fe(ST) = Bfi(ST >> = O(VnTH).
t=1

which implies that E[R, g(T)] = O(vVnT+7) as desired.

We proceed to derive a high probability bound using the concentration inequality in Proposition B.3. Indeed, we have

P (z_j fi(SH —E [Z fASf)] > ) < exp (—an> .

< L+/2Tlog(1/4) with probability at least 1 — §. This together
O(VnT™7 + /Tlog(1/5)) with probability at least 1 — 4.

Equivalently, we have Y " | f(5") —E[>_1, f:(SY)]
with E[R, 5(T)] = O(VnT1+7) yields that Ry (T =

E. Regret Analysis for Algorithm 4

In this section, we present several technical lemmas for analyzing the regret minimization property of Algorithm 4. We also
give the missing proofs of Theorem 5.4.

E.1. Technical lemmas

We provide two technical lemmas for Algorithm 4 which are analogues to Lemma C.2 and C.4. It gives a key inequality for
analyzing the regret minimization property of Algorithm 3. Note that the results in Lemma C.1 still hold true for the iterates
{x'}1>1 and {§'}+>1 generated by Algorithm 4.
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Lemma E.1 Suppose that the iterates {z'},>1 are generated by Algorithm 4 and x € [0,1)" and let f, = f, — f. satisfy
that f([n]) + fi([n]) < L forallt > 1. Then, we have

T

T T T t—1
SE[(f)n ()] < (Z L(F)o(x) +6(ft)c(x)> ot Al [ | panr? (33 )

t=1 t=1 t=1 =1s=
where T > 0 in the above inequality satisfies that g7 = T.
Proof. Using the same argument as in Lemma B.2, we have
(af —2) " g% < o (o — '|* =l — «"FH%) + % [1g% ]|

Since our pooling policy is induced by a priority queue, §% has never been used before updating z'*!. Thus, we have
E[g% | z'] = E[g% | 2%] and E[||g%||? | 2'] = E[||g%|* | #%]. By Lemma C.1, we have E[g% | 9] = g9 and
E[||g9]]? | 2] < 8’;27L2 for all t > 1. Putting these pieces together yields that

qat

4 2L2
(o' =) Tg" < 5i (o = 2P ~ Ella = 2t+? | 21]) o 227

Since f; = f; — Jft where f: and [+ are both normalized and non-decreasing, f: is a-weakly DR-submodular and Jiis
(B-weakly DR-supermodular, Proposition 3.1 implies that

(2% —2) g% > (fo)r(2%) = (3 (o) o (@) + B(=fa ) (@) .
By Lemma B.1, we have ||g*|| < L for all ¢ > 1. Then, we have
(fe)r(@®) < 3 (fa)e (@) + B(=fo)c(@) + g (lz — 2| = Efz — 22 | ']) + Ll|la% — 2*|| + M (24)
Further, by Lemma C.1, we have
t—1
= tH<Zns| ||<2n+1)L<ZZ‘:)- (@3)
s=qy s=q¢

Plugging Eq. (25) into Eq. (24) yields that
(fo)o(@®) < 3 (fa)e (@) + B(=fo)c(x)
t—1
+55 (Il — 2|2 — Ellz — 2*+1)? | 2]) + 2220 4 4n 2 (Z ) :

S=qt

By using the same argument as in Lemma D.1, we have

T T
> (f)elah) < (Z s(f)o(@) + 6(—1%)0(93)) +> o (le =21 = Efllz — «*+1* | 27])
t=1 t=1 t=1
T T t—1
AL (Y| fdnL? | YN
t=1 t=1 s=q¢

Taking the expectation of both sides of the above inequality and using ||z* — x| < /n forall ¢ > 1 (cf. Lemma C.1) and
that {7, };>1 is nonincreasing yields the desired inequality. O

Then, we provide our second lemma which significantly generalizes Lemma E.1 for deriving the high-probability bounds.
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Lemma E.2 Suppose that the iterates {x'};>1 are generated by Algorithm 4 with 1, = W, Wt = s and
z € [0,1]" and let f, = f, — f satisfy that f,([n]) + fi([n]) < L for all t > 1. Fixing a sufficiently small § € (0,1) and
letting T > log% (1/0). Then, we have

~

t—1

T T T
> o) < (Z Si(8) - Bft(5)> +om AL (D) Al | Y
t=1

t=1 t=1 t=1s
F12LT 5 \/n2 + nlog(1/8) + 6Ly/nT log(1/5),

with probability at least 1 — 35 where T > 0 in the above inequality satisfies that g7 = T.

(It

Proof. Using the same argument as in Lemma E.1, we have
(@' —2) T g% < o ([l = 2'* = [l — 2" %) + Lg% %,
and B
(2% — ) "g% > (fo)(2%) = (2(fo)o(@) + B(—fa,)c()) .

For simplicity, we define e; = g — ¢g*. By Lemma B.1, we have ||g*|| < L for all ¢ > 1. Then, we have

(fa)p(z%) = (2(fa.)o(x) + B(—fq,)c () (26)

< (@—ah)Teq + 5y (lo =21 = llo = a™H?) + Lila® — 2| + Fllg"|1*.
Plugging Eq. (25) into Eq. (26) yields that
(th)L(‘TQt) - (é(ﬁh)c(‘r) + B(_IQt)C(xD
t—1
272
< w—mw%%+;hux—fW—wx—ﬁ“W)+%m¢P—Em¢P|ﬂn+4;y“+@w2<§jx>.

5=qt

By using the same argument as in Lemma D.1, we have

T T T
> (f)e(ah) S<Zﬂﬁ<>6< >+Zxx %+Zmuw E[|g°]% | #])
t=1 t=1 t=1
T T t—1
+gn +4n’L? Z;— +anL? [y L

t=1 t=1 s=q;

By the definition of the convex closure, we obtain that the convex closure of a set function f agrees with f on all the integer
points (Dughmi, 2009, Page 4, Proposition 3.3). Letting S C [n], we have (f;)c(xs) = f:(S) and (= f)c(xs) = —Bf+(S)
which implies that

L(felxs) + B(=fo)olxs) = 2 fi(S) = Bfe(S).

Letting x = x5, we have

D (foela') < <Z S fi(8) = Bf(S ) +> (s —a)Teq + | D0 %31 —ENG*)* | <)

t=1 t=1
I Il
T T t—1
+a o+ 4n’L? > ol anL? (D)8 27)
t=1 t=1 s=q;

In what follows, we prove the high probability bounds for the terms I and II in the above inequality.
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Bounding I. Consider the random variables X; = (:vt)T gt foralll <t < T that are adapted to the natural filtration
generated by the iterates {z;};>1. By Lemma C.1 and the Holder’s inequality, we have

~ ¢ L
1X4] < 11 lu ]l oo < 2ELE

Since p = ;7=%575, we have | X < ALT 5 forall 1 < t < T. Further, we have

2752 _
E(X7 | 2] < E[|g* 1} la")% | 2] < 22E0E < gnr?T75,

Since E[¢? | 2] = g% and e,, = g% — g, Proposition C.3 implies that

T
P Z(xt)—reqt > ALT' vnlog(1/6) + LT " log(1/9) | <.
t=1
Since T > T > log%(l/é), we have 775" /log( 1/6) > T75 log(1/6). This implies that

P Teq | > 6LT 5 \/nlog(1/8) | <.

HMH\

Similarly, we fix a set S C [n] and consider the random variable X; = (xs) ' §* for all 1 < t < T that are adapted to the

natural filtration generated by the iterates {x; };>1. By repeating the above argument with 2 5w > WE have

N

P[> (xs) eq | > 6LT5" /nlog(27/3) | < 2.

By taking a union bound over the 2" choices of S, we obtain that

P s) eq > 6LT 5 \/nlog(27/8) | <6, forany S C [n].

-
=<

Since /nlog(2"/8) < \/n2 +nlog(1/5), we have I < 1207 \/n2 + nlog(1/4) with probability at least 1 — 20.

Bounding II.  Consider the random variables X; = g% for all 1 < ¢ < T that are adapted to the natural filtration
generated by the iterates {z'};>;. By Lemma C.1, we have | X;| < %

we have | X;| < 4L. Further, we have

. _ 1 _ n
. Since m = i3 and Mt = TA—7/3°

E[X? | 2] < SHLE0 < 812,
Applying Proposition C.3, we have
T
P S % 015" 1P — Ellg*|P | «")| > 4L/nT 1og(1/8) + 2L10g(1/5) | < 4.
t=1

Since T > T > log%(l/(s), we have \/T'log(1/8) > log(1/6). This implies that
T
P (D %9 I1° —E[lg*|* | «)| > 6Ly/nT log(1/6) | <.

t=1

Therefore, we conclude that I < 6L+/nT log(1/§) with probability at least 1 — &. Putting these pieces together with
Eq. (27) yields that

T T T t—1
tzl(ft) (Z fi(S 5ft(5)> + oz 4n’L? tzl /?Ttt +4nL? tzl Z T
— = =1 5s=q¢

F12LT5 \/n2 + nlog (1/8) + 6L/nT log(1/9),
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with probability at least 1 — 30. ]

E.2. Proof of Theorem 5.4

By Héliou et al. (2020, Corollary 1), we have ¢ — ¢; = o(t”) under Assumption 5.1; in particular, we have t — ¢; = o(t) and

q: = ©(t). Since g7 = T', we have T = O(T') which implies that T' = ©(T)). Recall that n; = ;=77 and pu; = %57
we have
_ 24~ .
s = ML = o,
T T, T o
(2| = 4L (Y ) =0 (nl) m | = OMLT 7)) = 0T 7)),
= =1 7 =1t °
T t-1 T T
2 Ns. oo\ Me | 1 _ =24y 24y
AnL? (D N ) < ALY (t—g)e | =0 thl% = O(LT ) = O(T5),
t=1 s=q; t=1 t=1
Putting these pieces together with Lemma E.1 yields that
T T .
g 247
Y El(f)e(zh)] - (Zi(ft) () +B(=f)o(x )) =0T s). (28)
t=1 t=1
By using the similar argument as in Theorem 4.3, we have
E[fi(8") | 2] = (f)e(a) < L Y (747 + AF) = 2Ly (29)
i=0
which implies that
T
> _Elf (8]~ El(f)r(a")] < 2Lzut ).
t=1
Using the same argument as in Theorem 4.1, we have
B T
L(F)e(xsr) + B(—fi)o(xsr) = 2 £:(ST) = Bfi(ST),  where ST = ag%ﬁnz fu(S).
= ¢=1

Putting these pieces together and letting = x5z in Eq. (28) yields that

T
> E[f(SY)] (Z L7.(50) ﬁﬁ(SI)):O(nT“s”).
t=1

which implies that E[R,, g(T')] = O(nTHTW) as desired.

We proceed to derive a high probability bound using Lemma E.2. Indeed, we first consider the case of T' < 2log?+~ 7 (1/6).
Since f; = f; — [t satisfy that fi([n]) + fi([n]) < Lforall t > 1, we have

T
T) <Y fi(8) - Z —BL(ST) < (14 5+ B) LT = O(T"F /1og(1/9)).
=1 =1
For the case of T > 2 log% (1/9), we obtain by combining Lemma E.2 with Eq. (29) that
T T T T
D E[£(S") | 2] (Z L7.(S) - Bf( )) + 5+ 2L (Z ut> +an?L? (3 e
t=1 t=1 t=1 t=1

t—1

T
+4nL? [ SN 2 ) 4 1205 /2 + nlog(1/8) + 6Ly/nT log(1/0),

t=1 s=q;
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with probability at least 1 —34. Then, it suffices to bound the term 23:1 fi(SH)— Zle E[f:(S") | 2] using Proposition C.3.
By using the same argument as in Theorem 4.3, we have

(e

which implies that 1 f:(S%) — 321, E[f:(S?) | #'] < 3L\/Tlog(1/5) with probability at least 1 — 4. Putting these
pieces together yields that

T T T T
th<st>g<z;f<> /3ft<s>>+2:,;+2L (Zm)wn%? >

t=1 t=1 t=1

f:(SY) | ')

> 3L+/Tlog(1/0) ) <4,

t—1

2| +3L Tlog(1/8) + 12LT 5 /n? + nlog(1/8) + 6Ly/nT log(1/5),

qt

+4nL?

M~ 7

t

1s

with probability at least 1 — 4¢. Plugging the choices of 1, = m and py = ;7% and T = O(T) yields that

ift( (Z (S = Bfi( )) (nT 3 +\/WT )

with probablhty atleast 1 — 44. Letting S = ST = argmin sCin Zt 1 f+(S) and changing 6 to % yields that R, g(T) =
O(nT s nlog(l/é)T 5 ) with probability at least 1 — & as desired.



