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Abstract

Facial Liveness Verification (FLV) is widely used for iden-

tity authentication in many security-sensitive domains and

offered as Platform-as-a-Service (PaaS) by leading cloud ven-

dors. Yet, with the rapid advances in synthetic media tech-

niques (e.g., deepfake), the security of FLV is facing unprece-

dented challenges, about which little is known thus far.

To bridge this gap, in this paper, we conduct the first system-

atic study on the security of FLV in real-world settings. Specif-

ically, we present LiveBugger, a new deepfake-powered at-

tack framework that enables customizable, automated security

evaluation of FLV. Leveraging LiveBugger, we perform a

comprehensive empirical assessment of representative FLV

platforms, leading to a set of interesting findings. For instance,

most FLV APIs do not use anti-deepfake detection; even for

those with such defenses, their effectiveness is concerning

(e.g., it may detect high-quality synthesized videos but fail

to detect low-quality ones). We then conduct an in-depth

analysis of the factors impacting the attack performance of

LiveBugger: a) the bias (e.g., gender or race) in FLV can

be exploited to select victims; b) adversarial training makes

deepfake more effective to bypass FLV; c) the input qual-

ity has a varying influence on different deepfake techniques

to bypass FLV. Based on these findings, we propose a cus-

tomized, two-stage approach that can boost the attack success

rate by up to 70%. Further, we run proof-of-concept attacks

on several representative applications of FLV (i.e., the clients

of FLV APIs) to illustrate the practical implications: due to

the vulnerability of the APIs, many downstream applications

are vulnerable to deepfake. Finally, we discuss potential coun-

termeasures to improve the security of FLV. Our findings have

been confirmed by the corresponding vendors.
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Figure 1: Overview of FLV. Generally, cloud platforms provide

four types of FLV including Image- (IFLV), Silence- (SFLV), Voice-

(VFLV), and Action-based FLV (AFLV).

1 Introduction
As a promising alternative to legacy passwords, Facial Live-

ness Verification (FLV), which is able to validate an identity

based on a facial image/video, has drawn increasing atten-

tion [1–3]. In particular, online-FLV is widely adopted in

practice due to its low hardware requirement for end-users [4].

As shown in Figure 1, it first requires the user to record a

specific facial image/video, which is then sent to an FLV API

for verification. FLV has been applied in many critical scenar-

ios, such as online payment, online banking, and government

services [5]. For instance, recently, OCBC Bank, the second-

largest bank in Singapore, has introduced FLV to eight of its

ATMs as an initial trial for a larger roll-out planned throughout

2021 [6]. Besides, an increasing number of cloud platforms

begin to provide FLV as Platform-as-a-Service (PaaS), which

significantly reduces the cost and lowers the barrier for com-

panies to deploy FLV in their products. These services usually

provide APIs for downstream APPs to integrate FLV. It is ex-

pected that the trend will continue growing at a rate of 67.6%

and lead to a $16.6 billion market share by 2024 [7].

In contrast to its surging popularity, the potential security

risks of FLV are fairly under-explored. Especially for the

APIs provided by FLV PaaS vendors, their vulnerability will

be inherited by downstream APPs, threatening millions of

end-users. Once the security of FLV API is compromised, the

adversary may exploit it in numerous downstream APPs. The

user authentication API is ranked second in “OWASP API

security top 10” [8]. Meanwhile, most existing studies focus

on the presentation attack (i.e., the replay attack), in which

the adversary attempts to impersonate an identity through



replaying the victim’s facial image/video [9], with strategies

including printing [10], video replay [11], and 3D mask [12].

In response, various defenses have also been proposed to

mitigate such attacks [10, 13–16]. However, they study the

security risk of FLV from the algorithmic level on public

datasets, without considering such risks in the deployed FLV

services or systems (e.g., FLV APIs), and thus are inadequate

to reflect the threat in the real-world setting.

Further, with the rapid advances in synthetic media tech-

niques (e.g., deepfake) [17], the security of FLV is facing un-

precedented challenges. Although previous work (e.g., [18])

shows that several face recognition systems are vulnerable

to synthesis attacks, the vulnerability of liveness verification

is largely unexplored. Further, the attack-defense landscape

of FLV has changed significantly recently. Little is known

about the new threats raised by state-of-the-art (SOTA) deep-

fake techniques. First, it enables more advanced and flexible

attacks [19]. For instance, it allows the adversary to easily

synthesize videos with required head/lip movements based

on a single image of the victim; in comparison, finding ex-

isting videos satisfying the move/voice requirements is ex-

tremely difficult in the presentation attack. In addition, with

the increasing commoditization of deepfake techniques (e.g.,

ZAO [20]), it now requires little expertise to create fake im-

ages/videos. For example, recently, a group of tax scammers

hacked a government-run FLV system via open-sourced deep-

fake techniques to fake tax invoices, which were valued at

$76.2 million [21].

Thus, it is imperative to assess the security implications of

deepfake for FLV. Specifically, RQ1 – How vulnerable is FLV

to deepfake-powered attacks? RQ2 – How do the threats vary

with concrete deepfake techniques? RQ3 – What are the key

factors impacting the attack effectiveness? RQ4 – How would

the practitioners improve the security of FLV? The answers

to the above key questions are crucial for the deployment and

use of FLV in practical settings.

Our Work. To answer these questions, in this paper, we de-

sign and implement LiveBugger, a framework that integrates

various SOTA deepfake techniques for evaluating the security

risks of FLV in a real-world setting. Leveraging LiveBugger,

we evaluate representative commercial FLV APIs provided

by leading PaaS vendors. Then, we conduct an in-depth ex-

ploration of the factors impacting the attack effectiveness and

conduct proof-of-concept attacks on real applications to fur-

ther assess the threats in more real-world settings. Finally, we

make a discussion of why the proposed deepfake-powered

attack can break FLV, and provide suggestions to improve its

security. We have reported our findings to the corresponding

vendors and received their acknowledgment. In summary, we

have made the following contributions.

Framework — We present LiveBugger, the first frame-

work designed specifically to serve as a security evaluation

framework for FLV in the deepfake era. At a high level,

LiveBugger consists of three key components, as illustrated

in Figure 3, namely Intelligence Engine, Deepfaker Engine,

and Analysis Engine.

1) Intelligence Engine, which provides a complete set of au-

thentication features supported by leading FLV PaaS vendors

as well as a configurable interface to incorporate new vendors.

The intelligence engine is able to automatically validate the

claimed defense features using a customizable probing dataset.

For example, BD1 (one of the vendors that tops China’s AI

cloud services market) claims that its voice-based FLV API

supports lip language detection. However, our analysis reveals

that a video without any lip movements can also bypass this

API. Overall, the intelligence engine facilitates efficient and

fine-grained evaluation.

2) Deepfaker Engine, which currently integrates six SOTA

deepfake techniques. Based on the collected intelligence, the

engine can synthesize the required fake videos for bypassing

FLV effectively. For example, for the vendor without coher-

ence detection, it concatenates pre-recorded videos satisfying

the required actions as a driving video to synthesize the fake

video for bypassing a target FLV. With a modular design, new

deepfake techniques can be readily integrated into the engine.

3) Analysis Engine, which includes a set of information-

rich, customizable metrics to support fine-grained evaluation

of FLV, including liveness evasion rate, anti-deepfake evasion

rate, face matching rate, and overall evasion rate.

Evaluation — Leveraging LiveBugger, we conduct a sys-

tematic study of the most representative FLV APIs, including

Image-, Silence-, Voice-, and action-based FLV. We make a

number of interesting observations with the following high-

lights: 1) most vendors do not consider anti-deepfake detec-

tion in their FLV APIs, which are thus vulnerable to deep-

fake and threaten thousands of downstream applications; 2)

even for the very few vendors which deploy anti-deepfake

detection, the defense performance is problematic (e.g., while

effective for videos of high visual quality, it fails to detect

some poorly synthesized videos); 3) the security gain of the

random process (e.g., random voice code or action sequence)

in current voice-based FLV and action-based FLV is marginal.

Besides, we conduct proof-of-concept attacks on real applica-

tions to illustrate the practical implication brought by deep-

fake. The attacks show that most evaluated downstream APPs

(i.e., the clients of FLV APIs) are vulnerable to deepfake,

thus threatening the security of millions of users. Our evalua-

tion raises severe concerns about the commercial FLV APIs

provided by PaaS vendors.

Exploration — We further explore the impacting factors

for the attack effectiveness, leading to a number of interesting

findings: 1) the target image has more influence on the face

reenactment methods for bypassing FLV, while the driving

video has more influence on the face-swapping methods; 2)

the adversary may exploit the bias (e.g., gender or race) in

FLV to select the victim; and 3) adversarial training may

1To minimize the ethical concern, we have replaced the vendor names

with cryptonyms in this paper.



benefit bypassing FLV. Based on such findings, we propose a

customized two-stage method that improves the attack success

rate of bypassing FLV by up to 70%.

Security Suggestion — Based on our findings, we first dis-

cuss why the deepfake-powered attack can break FLV via

comparing it with the presentation attack. Then, we provide

suggestions for improving the security of FLV. For instance,

the random code in voice-based FLV should not be limited

to digits, but should be diversified to enhance the protection;

action-based FLV should adopt actions that are difficult to syn-

thesize for deepfake. We have reported our findings to affected

vendors and received their acknowledgments. In response, one

vendor has announced its engagement in a deepfake detection

project to address this new threat.

We envision that our suggestions will shed light on devel-

oping more effective and robust FLV schemes in general.

2 Background
2.1 Facial Liveness Verification

A general overview of FLV is presented in Figure 1. Below,

we give a detailed introduction to the process of FLV, which

mainly includes three steps.

Step 1. A user interacts with the application and uses it to

record his/her facial image/video.

Step 2. After collecting a user’s facial media, the applica-

tion will call the target FLV API with the recorded media.

Step 3. The API will verify the user’s identity by analyzing

the uploaded media. During the verification, the API first

conducts the liveness detection, which is mainly used to verify

whether the voice or action requirements are met and defend

the presentation attack. After passing the liveness detection,

the API may further conduct deepfake spoofing detection

if applicable. Finally, the API will perform face matching

between the uploaded face and the reference face to verify the

identity. The video/image that passes all the processes will be

reported as a valid one.

According to the recorded media, existing FLV can mainly

be divided into four categories: 1) Image-based FLV: it per-

forms liveness detection based on a static facial image up-

loaded by the user and mainly focuses on detecting the pre-

sentation attack; 2) Silence-based FLV: it performs liveness

detection based on a facial video clip submitted by the user;

3) Voice-based FLV: the user is requested to speak the given

digits while recording the facial video, while the FLV per-

forms liveness detection by analyzing both the visual and

audio signals; 4) Action-based FLV: the user is requested to

act according to the given action sequence while recording

the facial video, while the FLV performs liveness detection

by checking whether the action requirements are met.

2.2 Threat Model
To make our evaluation more practical, we focus on eval-

uating the security of FLV APIs provided by popular cloud

vendors. Therefore, our evaluation is conducted under the

Target Image Driving Image Face Swapping Target Image Driving Image Face Reenactment

Figure 2: Face swapping and reenactment.

Figure 3: Overview of LiveBugger.

black-box setting where an adversary cannot obtain any inter-

nal knowledge of the target API, like the liveness verification

model, face matching model, etc. In this paper, we mainly

consider the one-shot setting — the adversary can obtain one

facial image of the victim since it is the lowest requirement

for the adversary to bypass an FLV system. Therefore, it can

approximately expose an API’s worst-case vulnerability.

2.3 Deepfake
For studying the new threat brought by deepfake, we use

SOTA deepfake techniques to evaluate the security risks of

FLV. In general, there are two types of deepfake techniques

to synthesize fake images/videos: face swapping and face
reenactment [22]. Both are able to synthesize the required

video/image with respect to the given target image and the

driving image/video, in which the target image provides the

identity information, while the driving image/video provides

the background/texture information (face-swapping) or mo-

tion information (face reenactment).

As shown in the left plot of Figure 2, face swapping trans-

fers the identity information from the target image to the

driving image/video. The driving video can be any video

that satisfies the move/voice requirements (e.g., the adver-

sary may use his/her own). In comparison, as shown in the

right plot of Figure 2, face reenactment uses the facial move-

ment/expression deformation of the driving image/video to

reenact the target image.

To understand the new threat comprehensively, we will

use both face-swapping and face reenactment to evaluate the

security risks of FLV.

3 Framework
To systematically evaluate the security risks of FLV APIs,

we design and implement LiveBugger, an evaluation frame-

work with high expandability. LiveBugger consists of three

main components as illustrated in Figure 3: Intelligence En-
gine, Deepfaker Engine, and Analysis Engine. Below, we will

introduce them in more detail.



3.1 Intelligence Engine
Intelligence Engine is mainly used to construct a complete

set of authentication features supported by the leading FLV

PaaS vendors. Specifically, Intelligence Engine collects the

information from the public API documents provided by the

vendors, which includes the action types, action sequence

length range, the deployment of anti-deepfake detection, etc.

Due to the marginal difference of the supported features pro-

vided by different vendors, we adopt the union set of them

as the features that can be configured by Intelligence Engine,

which enables a configuration-based intelligence interface for

new vendors to be evaluated. Intelligence Engine currently

has built-in configurations for six representative FLV vendors

(the details of these vendors are introduced in Section 4).

However, for security concerns, some implicit information

cannot be obtained from the official public information of

vendors, e.g., the deployment of coherence detection. Addi-

tionally, the vendors may not support the claimed features in

practice. To this end, we build a probing dataset inside the

Intelligence Engine to collect the implicit information and

validate the claimed features. Specifically, Intelligence En-
gine can automatically call the target API with the probing

dataset, and then obtain the needed information based on the

returned results. At present, it mainly uses the probing dataset

to collect information on three defense features, including the

deployment of coherence detection, lip language detection,

and presentation attack detection. The collected information

is shown in Table 1. Next, we introduce them in more detail.

Coherence Detection. Coherence detection checks whether

the consecutive frames of a video are visually continuous. To

check if a target API deploys coherence detection, Intelligence
Engine includes a probing dataset consisting of a normal

dataset and a corresponding disturbed one. Specifically, it

uses several randomly selected facial videos to construct a

normal dataset. Then, it scrambles the order of the frames in

each selected video to get the corresponding disturbed dataset.

If the normal dataset and the disturbed one achieve similar

success rates, then the target cloud vendor has not deployed

the coherence detection; otherwise is the opposite.

Lip Language Detection. Lip language detection is to detect

whether the lip movement in a video matches the correspond-

ing audio signal. Intelligence Engine includes three probing

datasets for this detection: 1) a normal dataset containing

videos whose audio signal matches the lip movement; 2)

one perturbed dataset consisting of videos whose audio signal

does not match the lip movement; 3) another perturbed dataset

that includes videos with only audio signals but without any

lip movement. If the bypass rate of the latter two datasets is

much lower than that of the normal dataset, then the target

cloud vendor has deployed the lip language detection; other-

wise is the opposite. Besides, by comparing the bypass rate

of the latter two datasets, Intelligence Engine can check the

level of lip language detection deployed by a cloud vendor.

Presentation Attack Detection. Similar to previous meth-

ods, Intelligence Engine uses several randomly selected

videos to construct two probing datasets, including a nor-

mal dataset and a replayed one, to check the deployment of

presentation attack detection. Specifically, if the bypass rate

of the replayed dataset is much lower than that of the nor-

mal dataset, then the presentation attack detection has been

deployed by the target vendor; otherwise is the opposite.

3.2 Deepfaker Engine
Leveraging Intelligence Engine, the configuration informa-

tion for a target API can be specified, which is then used by

Deepfaker Engine to synthesize the fake videos/images to

evaluate the target API automatically. Specifically, Deepfaker
Engine incorporates several SOTA deepfake techniques that

can work well in the one-shot setting. Below, we briefly in-

troduce the workflow of synthesizing the images/videos for

bypassing different types of FLV API and defer the imple-

mentation details to Section 4.1.

Image-based FLV. Many target images are unable to pass

image-based FLV due to their background information (e.g.,

brightness and posture). To this end, this module takes sev-

eral images that can pass image-based FLV as the driving

images. Then, since face reenactment methods cannot change

the background information, LiveBugger utilizes SOTA face-

swapping methods to replace the background information of

the target image with that of the driving image (i.e., replacing

the identity of the driving image with that of the target image)

for bypassing image-based FLV.

Silence-based FLV. It takes some randomly selected videos

as the driving videos. Then, along with the target image, it uses

SOTA face swapping and reenactment methods to synthesize

the fake videos for bypassing silence-based FLV.

Voice-based FLV. From the results returned by Intelligence
Engine (see the details in Table 1), we find that most evaluated

vendors have not deployed lip language detection in their

voice-based FLV APIs. Therefore, we can directly import

the required audio signal to the synthesized video to evaluate

voice-based FLV APIs. Specifically, this module synthesizes

fake videos based on the target image and a randomly selected

driving video with lip movement (some APIs only detect lip

movement). Then, after receiving the random digits, it uses a

voice synthesis model, which can be the voice synthesis API

provided by cloud vendors, to synthesize the required audio

signal and import it to the synthesized video. For the few

APIs that deploy lip language detection, one needs to record

a driving video with the matched lip movement interactively.

Action-based FLV. From Table 1, we find that all the evalu-

ated APIs have not deployed the coherence detection. There-

fore, the driving video can be prepared by directly stitching

the pre-recorded videos of the required actions. Accordingly,

this module provides built-in videos of different actions from

volunteers. Based on the stitched driving video and the tar-

get image, it synthesizes the corresponding fake video for



bypassing action-based FLV. At the same time, we notice that

a few demo APPs evaluated in Section 6 use the coherence

detection (see details in Section 6). For evaluating them, after

receiving the action sequence, one needs to record a video as

the driving video since its natural coherence.

3.3 Analysis Engine
Different vendors provide FLV in various forms. For flex-

ibility, some vendors separate face matching from FLV and

offer it as an independent API. When conducting verification,

FLV often returns a frame for testing (test frame). The Analy-
sis Engine uses the test frame and a facial image of the target

individual (reference image) to call the corresponding face

matching API to perform verification. For a few APIs which

do not return the test frame, we randomly sample frames to

conduct face matching and report average results. For several

other vendors, face matching is integrated into their FLV APIs,

which return both liveness and face matching results. To quan-

titatively characterize the threats, we propose the following

metrics.

Liveness Evasion Rate. It measures the rate of im-

ages/videos that meet the action/voice requirements (if appli-

cable) and pass the presentation attack detection. A higher

liveness evasion rate implies lower security of the FLV.

Anti-deepfake Evasion Rate. Certain cloud vendors deploy

anti-deepfake detection mechanisms. The anti-deepfake de-

tection results are returned to the users separately. Therefore,

we use anti-deepfake evasion rate to measure the rate of syn-

thesized images/videos that evade the anti-deepfake detection.

A larger evasion rate implies higher attack effectiveness.

Face Matching Rate. It measures the rate of synthesized me-

dia that pass the face matching mechanism. A larger matching

rate implies better quality of the synthesized media.

Overall Evasion Rate. It assesses the overall security of the

target API by measuring the fraction of synthesized media

that evade liveness detection, deepfake spoofing detection, and

face matching simultaneously. A larger rate implies higher

attack effectiveness or less security of the target API.

These metrics allow us to characterize the threats from

various defense perspectives (e.g., liveness detection, deep-

fake detection, face matching) and in a fine-grained manner,

leading to a set of interesting findings.

4 Evaluation
In this section, we first introduce the overall experimental

setting, including the vendors, datasets, and deepfake methods.

Then, leveraging LiveBugger, we systematically evaluate the

FLV APIs provided by the leading FLV PaaS vendors.

4.1 Overall Experimental Setting
Target Vendors. To make the evaluation more practical, we

leverage LiveBugger to evaluate the FLV APIs provided by

popular commercial cloud vendors according to the facial

recognition market share [23]. Specifically, we evaluate the

six most representative FLV vendors, including BD, TC, HW,

CW, ST, and iFT (to minimize the ethical concern, we have

replaced the vendor names with cryptonyms). The reasons be-

hind considering these vendors are as follows. 1) BD and TC
are one of the vendors with the largest China’s AI cloud ser-

vices market and the greatest number of face-related API calls,

respectively; 2) HW is one of the vendors with the largest

China’s public cloud market; 3) CW is one of the vendors

with the fastest growth rate in computer vision and is becom-

ing the leader; 4) ST is one of the largest computer vision

vendor; 5) iFT is one of the vendors with the largest China’s

AI software market. LiveBugger collects the configurations,

as shown in Table 1, for the supported authentication features

of the FLV APIs provided by these vendors. Table 1 shows

the supported authentication features for each target vendor

such as voice code length range and supported the action,

which facilitates an automated evaluation. Given an evalua-

tion configuration, LiveBugger automatically evaluates the

target APIs using the target images and the synthesized im-

ages/videos. To better illustrate the threat surface, we also

evaluate some representative FLV APIs from the global mar-

ket in Section 6.

Datasets. First, our evaluation needs an image dataset to

provide the target images for deepfake synthesis and the refer-

ence images for face matching. Therefore, we use the live im-

ages from CelebA-Spoof [24] as the image dataset. CelebA-

Spoof is a face anti-spoofing dataset that has 625,537 images

crawled from social media, which includes 43 rich attributes

on the face, environment, and spoof types.

Second, our study needs a video dataset to provide driving

videos. Therefore, we use the live videos from SiW-M [25]

as the video dataset. SiW-M provides live and spoof (e.g.,

replay) videos from 165 subjects [25].

Deepfake Methods and Implementation. According to the

threat model, the used deepfake method to evaluate an FLV

API should meet the following requirements: 1) it should be

identity-agnostic, i.e., it does not need to train a new model

for a new target person; 2) it can synthesize the required video

based on one facial image of the target person; 3) when syn-

thesizing videos/images, its latency needs to be acceptable;

otherwise, a timeout of the target FLV API will occur. There-

fore, LiveBugger incorporates six SOTA deepfake methods

that meet the above requirements, including X2Face [26], IC-

face [27], FSGANS [22], FSGANR [22], First Order Method

Model (FOMM) [28] and FaceShifter [29]. We present their

details, like technical highlights and categories, in Appendix

A.1. Note that, except for FaceShifter, we use the open-source

code published by the authors. Since FaceShifter is not open-

source, we reproduce it according to our understanding of

the original paper. All of our experiments are conducted on

a server with two Intel Xeon E5-2640 v4 CPUs running at

2.40GHz, 256 GB memory, 4TB HDD, and 4 GeForce GTX

1080 Ti GPU cards.

Before diving into the detailed evaluation results, we



Figure 4: Overview of the insight in our work. Remarks 1-4 denote the evaluation insights, and Remarks 5-10 denote the exploration insights.

Platform

Liveness Type

Image

Video

Type Common Detection

Silence
Voice Action Anti-

deepfake

Detection

Coherence

Detection

Replay

Attack

Detection

Voice Cide

Length

Range

Voice

Code

Type

Default

Code

Length

Lip

Language

Detection

Action

Length

Range

Default

Action

Length

Action

Type

BD 3 - 6 Digits 3 - 6 1 - 3 1 - 3

Blink, Turn Right

Turn Left, Look Up

Chin Down,

Turn Right and Left

TC 1 - 6 Digits 4 1 - 2 2
Blink,

Open Mouth

HW 1 - 4 1
Turn Left, Turn Right,

Blink, Open Mouth

CW 4 - 6 Digits 4 - 6

ST 4 Digits 4

iFT

Table 1: API intelligence collected from cloud platforms. denotes full support; denotes partial support; denotes no support.

Platform
Liveness

Evasion

Anti-deepfake

Evasion

Face

Matching

Overall

Evasion

BD 75% 90% 99% 68%

TC 53% 85% 100% 42%

HW 70% - 99% 70%

CW 97% - 100% 97%

iFT 99% - 100% 99%
Table 2: Evaluation of legitimate images against FLV (false positive rate =

100% - evasion/matching rate).

present an overview of the core insights (Remarks 1 to 4)

in Figure 4. For each vendor, we evaluate four types of FLV

APIs if available, including image-based FLV, silence-based

FLV, voice-based FLV, and action-based FLV, the insights of

which correspond to Remarks 1 - 4, respectively.

4.2 Image-based FLV
Recall that image-based FLV performs liveness detection

based on the uploaded static image and focuses on detect-

ing the presentation attack. To assess the performance of a

given API, we first measure its false-positive rate (FPR) using

200 legitimate images sampled from the image dataset, with

results presented in Table 2. A lower overall evasion rate im-

plies higher FPR. Observe that although the live image may

be directly used to evade image-based FLV, many of them fail

to pass the target API due to the background information (e.g.,

brightness and posture). Below, we consider an adversarial

setting: the adversary attempts to transform the failed image

into a successful one via deepfake techniques.

Target Images and Driving Images. For each vendor, we

first sample 100 images that fail to pass the target image-based

FLV API from the image dataset as the target images. Then,

for each target image, we select another image with the same

identity as the reference image for identity verification. For

the driving images, LiveBugger randomly selects 10 images

with other identities that pass the target image-based FLV API

from the image dataset. Utilizing the face detector [30], we

crop every image to 256×256 pixels, and without explicitly

specified, the video preprocessing in the rest of the paper is

the same as that of the image.

Security Evaluation. Since ST does not provide image-

based FLV, we evaluate the image-based FLV APIs from

the other five vendors. For a given target API and each target

image in the corresponding evaluation dataset, LiveBugger
transforms the image using its Deepfaker Engine and then

uses the transformed one to evaluate the target API. Note that,

as stated in Section 3.2, since face reenactment methods can-



Figure 5: Evaluation of transformed images against image-based FLV APIs

(note: HW, CW, and iFT have not deployed anti-deepfake detection, their

default anti-deepfake evasion rates are set as 100%).

Platform
Liveness

Evasion Rate

Anti-deepfake

Evasion Rate

Face

Matching Rate

Overall

Evasion Rate

BD 67% 37% 100% 25%

TC 72% 100% 100% 72%

ST 62% - 99% 62%

CW 97% - 100% 97%

iFT 62% - 100% 62%

Table 3: Evaluation using legitimate videos to measure false positive rate.

not swap the background information of the failed image, we

focus on face-swapping methods (FaceShifter and FSGANS)

in this section.

The results are shown in Figure 5, and we have the

following observations. 1) Image-based FLV systems are

highly vulnerable to deepfake-powered attacks. For instance,

FaceShifter achieves a 95%+ overall evasion rate on CW and

iFT. While for Vendor and TC, as shown in Figure 5 and Table

2, the synthesized images even achieve a higher overall eva-

sion rate than the legitimate images (BD: 78% vs. 68%, TC:

56% vs. 42%). 2) The anti-deepfake detection deployed by

TC and BD is unreliable. Specifically, FaceShifter achieves

94% and 99% anti-deepfake evasion rate on BD and TC, re-

spectively, even higher than the legitimate images (BD: 94%

vs. 90%, TC: 99% vs. 85%). 3) Combining with Table 2

(from which the FPR of each vendor can be derived), we ob-

serve that a target API with higher FPR often offers stronger

security. For example, TC has higher FPR but also more ro-

bustness compared to other evaluated vendors. We speculate

that this is due to the utility-security trade-off: FLV often uses

a threshold to adjust this trade-off. The threshold may vary

in different scenarios (e.g., different lighting conditions). We

use the thresholds recommended by the target vendors in our

evaluation.

4.3 Silence-based FLV
Silence-based FLV utilizes an uploaded video to verify the

identity of a target person. It does not require any additional

action, like speaking digits or head movements. Like image-

based FLV, we first evaluate the FPR of the target silence-

based FLV APIs using randomly selected legitimate videos.

Table 3 shows that the FPR of silence-based FLV is much

higher than the vendors’ claims. However, according to the

threat model, we cannot obtain the video of a target person.

Therefore, in this section, we want to answer the following

question: can an adversary utilize a victim’s facial image to

bypass the silence-based FLV via deepfake?

Figure 6: Evaluation of silence-based FLV APIs. Since ST, CW, and iFT

have not deployed anti-deepfake detection, we assign 100% to their anti-

deepfake evasion rate.

Driving Videos and Target Images. We randomly select 40

images from the image dataset as the target images. Simi-

larly, for each target image, we select another image with the

same identity as the reference image for identity verification.

Besides, LiveBugger randomly selects five videos from the

video dataset as the driving videos.

Security Evaluation. We utilize LiveBugger to synthesize

fake videos based on the selected driving videos and target

images and then evaluate the target API with the synthesized

videos. Since HW does not provide silence-based FLV, we

do not show its evaluation. Figure 6 shows the evaluation

results of silence-based FLV. Note that certain deepfake meth-

ods (e.g., ICface) attain the overall evasion rate/liveness eva-

sion rate of 0, which results in an invisible overall evasion

rate/liveness evasion rate in the plots. According to Figure

6, we have the following observations. 1) An adversary can

easily bypass the silence-based FLV API. The overall evasion

rate on each platform can reach up to 40%+. Especially, for

CW, its overall evasion rate can reach up to 90%+, which

means that the silence-based FLV API of CW practically

performs almost no function. 2) Anti-deepfake detection is

necessary for liveness verification. For example, the results

using ICface in Figure 6 show that although BD’s liveness

evasion rate is near 100%, its overall evasion rate is 0 thanks

to the deployment of anti-deepfake detection. The importance

of deploying anti-deepfake detection is also confirmed by the

results of FOMM, which show that although BD and CW have

similar liveness evasion rate, BD has a much lower overall

evasion rate than that of CW due to its better anti-deepfake

detection ability. 3) The anti-deepfake detection deployed

by a few vendors may be problematic. Figure 6 shows that

compared to FaceShifter, FOMM achieves higher face match-

ing rate but lower anti-deepfake evasion rate. This is due

to that it may successfully detect synthesized videos with

high quality (i.e., high face matching rate) but fail to detect

low-quality ones. For example, Figure 11 in Appendix B.1

shows several frames extracted from a low-quality synthe-

sized video and a high-quality one, respectively. In Figure 11,

each frame of the second row has high quality, while the cor-



Figure 7: Performance (overall evasion rate) comparison of FaceShifter and

FOMM on different vendors.

responding video cannot bypass the anti-deepfake detection.

However, the video consisting of the low-quality frames in

the first row is able to bypass the detection. Secondly, fake

videos can achieve a much higher anti-deepfake evasion rate

than real live videos. As shown in Figure 6 and Table 3, the

videos synthesized by FaceShifter can achieve around 60%

anti-deepfake evasion rate on BD, while the real live videos

only achieve 37%. Therefore, anti-deepfake detection should

be further improved.

Compared to other methods, FaceShifter and FOMM have

a much higher overall evasion rate. For comparing them more

clearly, we show their overall evasion rates on different ven-

dors in Figure 7. They both have a very high overall evasion

rate on CW. For BD and TC, FaceShifter performs better,

while FOMM performs better on ST and iFT. This indicates

that different deepfake methods have different adaptability

on different vendors. Therefore, a vendor should consider as

many deepfake methods as possible to develop a more general

and robust defense method.

4.4 Voice-based FLV
Voice-based FLV requires a user to speak given digits while

recording the corresponding facial video to verify his/her iden-

tity. Intuitively, since voice-based FLV introduces a random

process based on silence-based FLV, it should largely mitigate

the security risks. Similar to Section 4.3, we use only one

facial image to synthesize the required video for bypassing

voice-based FLV. Here, the experiments focus on evaluating

the security impact of the following key factors: 1) the ran-

dom voice process, 2) the lip language detection, and 3) the

digit length.

Driving Videos and Target Images. We keep the target im-

ages and reference images the same as the images selected in

Section 4.3. Then, LiveBugger randomly selects five videos

with lip movements from the video dataset as the driving

videos, since some vendors (e.g., TC) consider lip movements

during the verification.

Security Evaluation. According to Table 1, four vendors,

including BD, TC, CW, and ST, provide voice-based FLV.

Therefore, we will evaluate the security risks of the voice-

based FLV APIs on these vendors. During the evaluation,

LiveBugger utilizes the voice synthesis API from TC to

synthesize the required audio signal. Note that, the choice of

Figure 8: Evaluation of voice-based FLV APIs. Since ST and CW have

not deployed anti-deepfake detection, we assign 100% to their anti-deepfake

evasion rate.

the voice synthesis API does not affect the evaluation result

since the voice recognition process in voice-based FLV can

correctly recognize the synthesized voice.

The evaluation results are shown in Figure 8. Comparing

the results of Figures 6 and 8, we can see that except for CW,

voice-based FLV APIs can also be easily bypassed. For ex-

ample, for FaceShifter in Figure 8, the overall evasion rate of

BD can reach up to 60%+, which is even higher than that in

silence-based FLV. We speculate that this is because the target

API detects the facial liveness and the audio signal separately.

Specifically, the target API imports an independent speech

recognition process on the basis of the silence-based FLV API

to check whether the audio signal matches the given digits

without considering lip language detection. Based on the re-

turned API results from BD, we can observe that the audio

signal perfectly matches the given digits. Thus, no security

gain can be obtained based on the current implementation

of voice-based FLV. Interestingly, BD claims that their API

supports lip language detection. However, we find that it is not

valid. Even the video without any lip movement can bypass it.

Similar security risks also exist in TC and ST. However, the

voice-based FLV API of TC shows a slightly better defense

performance than its silence-based FLV. The reason is that TC

additionally detects lip movements but does not require the

movements to match the given digits. Due to the imperfection

of deepfake methods, the lip movements in some synthesized

videos are not obvious, which results in a slight security im-

provement of the API. As for CW, since it deploys the lip

language detection, we give a separate evaluation below.

Lip Language Detection. As shown in Figures 6 and 8,

since the driving video has unmatched lip movements with

the given digits, the overall evasion rate of CW’s voice-based

FLV API decreases to 0. To this end, we use the customized

driving videos with matched lip movements to evaluate CW

and show the results in Figure 12 of Appendix B.2. We find

that even though the voice-based FLV API deploys lip lan-

guage detection, it still has high-security risks.

Length of Given Digits. Intuitively, because of the trade-off

between security and utility, increasing the length of the given



Figure 9: Evaluation of action-based FLV APIs. Since HW has not deployed

the anti-deepfake detection, we assign 100% to its anti-deepfake evasion rate.

digits (decreasing the utility) should improve the security of

voice-based FLV. However, the evaluation results show that

increasing the length of the digits at the cost of utility does

not improve such security. Due to the space limitations, we

place the details in Appendix B.2.

4.5 Action-based FLV
Similar to voice-based FLV, action-based FLV also intro-

duces a random process based on silence-based FLV. The

difference is that it requires a person to make head move-

ments according to the given action sequence when recording

the corresponding facial video. According to the threat model,

we also utilize one single facial image of the victim to evaluate

the security of action-based FLV. In this section, we mainly

answer the following key questions: 1) does the random ac-

tion sequence improve the security of silence-based FLV?

2) is there any security difference between different actions?

3) does the action sequence length affect the security of an

action-based FLV API?

Driving Videos and Target Images. We also keep the

target and reference images the same as those in silence-

based FLV. Additionally, we recruit five volunteers to record

videos for each of the actions supported by the vendors. Then,

LiveBugger can stitch the videos of the required actions to

construct the driving video.

Security Evaluation. According to Table 1, three vendors,

including BD, TC, and HW, provide action-based FLV. How-

ever, we find that the action-based FLV API on BD has an

implementation problem: a video with the required actions

incurs a calling error of the action-based FLV API but works

normally with the silence-based FLV API. After contacting

customer service, it is confirmed to be a video encoding prob-

lem. Since it has not been resolved so far, we evaluate TC and

HW in this section.

The evaluation results of action-based FLV are shown in

Figure 9. From Figures 6 and 9, we have the following ob-

servations. 1) Action-based FLV can be bypassed very easily.

For example, as shown by the FaceShifter of Figure 9, the

liveness evasion rate on HW can reach up to 97%, and the

overall evasion rate can reach up to 80%, which brings se-

rious risks to the downstream applications. 2) Compared to

silence-based FLV, the security gain of action-based FLV is

Platform Attributes
Liveness

Evasion
P-value

Anti-deepfake

Evasion
P-value

Overall

Evasion

BD

Race
Colored 82% 0.049 72% 0.0055 63%

White 89% 58% 55%

Gender
Male 74% 0.0001 59%

0.53
50%

Female 96% 62% 62%

TC

Race
Colored 43% 0.00058 93%

0.78
42%

White 67% 92% 63%

Gender
Male 46% 0.0000016 96%

0.31
41%

Female 78% 99% 78%

Table 4: Evaluation of bias and statistical tests.

marginal. Especially, as shown by the FOMM results in Fig-

ures 6 and 9, the overall evasion rate of action-based FLV on

TC is even slightly higher than that of silence-based FLV. 3)

As action-based FLV requires large movements like looking

up and turning left, the synthesized videos usually have poor

visual quality. However, even if a synthesized video is un-

real to humans, it can still bypass the current anti-deepfake

detection mechanism with a very high success rate. For ex-

ample, the result of FaceShifter in Figure 9 shows that the

anti-deepfake evasion rate on TC can still achieve as high as

100%. Therefore, the current anti-deepfake detection should

be further improved to enhance the security of the target API.

Security of Different Actions and Lengths. An action-

based FLV API usually supports different actions and action

sequence lengths. Then, we evaluate the security variance for

different action requirements, and find that they do not result

in security variance. Due to the space limitations, more details

are deferred to Appendix B.3.

5 Exploration
In this section, we explore various factors that may af-

fect the attack effectiveness from the perspective of deepfake

in-depth and discuss potential improvements in bypassing

FLV2. To better demonstrate the impacts of various factors,

we consider the two most effective methods (FaceShifter and

FOMM) during the exploration. The overview of insights

found in this section is shown in Remarks 5 - 8 of Figure 4,

which correspond to the core insights found in the exploration

on the bias of API, adversarial training, influence factors, and

the customized two-stage attack, respectively.

5.1 Bias of API
To explore the bias in FLV, we first divide the video dataset

into two groups according to a particular attribute that might

have bias. Then, we sample 100 videos from each group and

use LiveBugger to directly evaluate a target API with these

sampled videos (not use Deepfaker Engine). As the video

dataset provides a large number of live videos sampled from

different environments (e.g., lighting), to limit the influence of

other factors, we manually select two groups of videos to en-

sure that they have the same number of videos from the same

environment. Considering the simplicity of distinguishing

attributes, we mainly explore the potential bias in gender and

2Withou explicit specification, the exploration experiment is conducted

on silence-based FLV.



Platform Method
Liveness

Evasion
P-value

Anti-deepfake

Evasion
P-value

Overall

Evasion

BD
FOMM 95%

0.14
33% 0.00000039 33%

FOMM (Adv) 97% 46% 46%

TC
FOMM 29%

0.29
59% 0.042 19%

FOMM (Adv) 36% 69% 25%
Table 5: Evaluation of adversarial training.

race. In the future, we will explore the bias of more attributes

in FLV. We show the evaluation results and the corresponding

t-test statistics in Table 4, respectively. Note that, since the

overall evasion rate depends on liveness evasion rate and anti-

deepfake evasion rate, we omit the statistical test for overall

evasion rate.

From Table 4, we can see the bias in FLV. 1) The racial

and gender biases exist in the presentation attack detection

(measured by liveness evasion rate) of FLV API, and all the

P-values for liveness evasion rate are less than 0.05 (many of

them are even less than 0.01), which means that such biases

are significant. For example, the liveness evasion rate of males

on TC is only 46%, while that of females can achieve as high

as 78%, and the corresponding P-value is 0.0000016, which

indicates a significant gender bias. 2) Although the bias of anti-

deepfake evasion rate is not significant as that of the liveness

evasion rate, it also exists in some cases. For example, the

anti-deepfake evasion rate of the colored on BD can achieve

as high as 72%, while that of the white is only 58%, and the

P-value is 0.0055, which means a statistically significant bias.

In summary, there are biases in FLV, which may bring

significant security risks to a particular group of people. How

to eliminate the biases in FLV is an interesting future work.

5.2 Adversarial Training and Anti-deepfake
Detection

According to Figures 6, 8 and 9, compared to FOMM,

FaceShifter can bypass the anti-deepfake detection more effi-

ciently. We speculate that this is due to the adversarial train-

ing used in FaceShifter. Specifically, in adversarial training

(widely used in Generative Adversarial Networks [31]), the

goal of the discriminator is to distinguish the synthesized

videos from real ones, which is similar to the goal of anti-

deepfake detection, while the goal of the generator is to de-

ceive the discriminator. Therefore, the adversarial training

may make the synthesized video more likely to bypass the

anti-deepfake detection (i.e., higher anti-deepfake evasion

rate). Note that, without the discriminator, FaceShifter fails

to synthesize satisfying videos. We thus utilize FOMM to

explore the role adversarial training (i.e., discriminator) for

bypassing FLV. We present the results and the corresponding

t-test statistics in Table 5.

According to Table 5, adversarial training significantly im-

proves the attack effectiveness of FOMM, especially in terms

of bypassing the anti-deepfake detection. For example, af-

ter adversarial training, the anti-deepfake evasion rate is in-

creased from 33% to 46% on BD, and the corresponding

P-value is 0.00000039, which indicates a significant improve-

Platform Method
Successful / Failed Image

Liveness

Evasion

Anti-deepfake

Evasion

Face

Matching

Overall

Evasion

BD
FOMM 100% / 87% 49% / 29% 100% / 100% 49% / 26%

FaceShifter 96% / 95% 57% / 65% 94% / 95% 54% / 60%

TC
FOMM 32% / 5% 55% / 58% 99% / 100% 27% / 5%

FaceShifter 60% / 50% 100% / 100% 93% / 96% 58% / 50%

Table 6: Evaluation of the target image.

Figure 10: Evaluation of the driving video.

ment. In addition, the adversarially trained FOMM is also

more effective in terms of other metrics, although the im-

provement is not as significant. In summary, even though no

visible visual difference exists between the videos synthe-

sized by normal and adversarially trained FOMM, the latter

can bypass FLV more effectively.

5.3 Driving Videos
Intuitively, whether a driving video passes FLV or not may

affect the success of the synthesized video. To validate this,

we utilize LiveBugger to evaluate the role of the driving

video for bypassing FLV. Specifically, we first sample 20

images from the image dataset as the target images. Then, we

configure the driving videos in LiveBugger as videos that

can pass silence-based FLV and cannot pass it, respectively,

and utilize LiveBugger to evaluate a target FLV API.

Figure 10 shows the influence of the driving video on the

bypass rate, where the driving video that can pass silence-

based FLV is denoted as ‘successful’ and ‘failed’ otherwise.

From Figure 10, we can see that the influence of the driving

video on FaceShifter is more significant than that on FOMM.

For example, FaceShifter with the passed driving video can

achieve an overall evasion rate of 96% on CW, while with the

failed driving video, it can only achieve an overall evasion

rate of 51%. As for FOMM, the successful and failed driving

videos result in similar overall evasion rate. After analysis, we

speculate that this is because FaceShifter is a face-swapping

method, while FOMM is a face reenactment method. The

face-swapping method swaps the identity (face) of the driv-

ing video with the identity (face) of the target image. The

obtained video is more similar to the driving video, including

background, expression, and posture. Therefore, the driving

video has a significant influence on face swapping methods.

On the contrary, face reenactment methods fuse the action

of the driving video to the target image to reenact the target

image, i.e., the synthesized video is more similar to the target

image. Therefore, face reenactment methods are less affected



Platform Method
Liveness

Evasion

Anti-deepfake

Evasion

Overall

Evasion

FOMM 91% / 10% 22% / 52% 22% / 5%
BD FOMM (Stage1) 100% / 14% 86% / 94% 86% / 13%
/ TC FOMM (Stage2) 94% / 10% 39% / 52% 39% / 6%

FOMM (Stage1+Stage2) 100% / 20% 92% / 99% 92% / 20%
Table 7: Evaluation of the two-stage approach.

by the driving video.

5.4 Target Images
Based on the analysis in Section 5.3, intuitively, the target

image may greatly influence face reenactment methods for

bypassing FLV compared to face swapping methods. Now,

we discuss the influence of the target image on the bypass

rate. For exploring its influence, we randomly sample 20

images that can pass image-based FLV from the image dataset

and 20 images that cannot pass, respectively. Then, we use

LiveBugger to explore such influence. The evaluation results

are shown in Table 6.

As shown in Table 6, the target image has different influ-

ences on different deepfake techniques for bypassing FLV.

Specifically, for FOMM, the synthesized video based on the

passed target image is more likely to bypass FLV than the

failed one. For instance, for FOMM, the successful image

can achieve an overall evasion rate of 49% on BD, much

higher than that (26%) achieved by the failed image. While

for FaceShifetr, the successful and failed images achieve simi-

lar overall evasion rate. Note that, FaceShifter and FOMM are

face-swapping and face-reenactment methods, respectively.

We conjecture that this is because each frame in a synthesized

video by a face reenactment method is more similar to the

target image, such as background and identity. Therefore, the

target image has more impact on face reenactment methods.

5.5 A Customized Two-stage Attack
According to the above interesting insights, the driving

video and the target image can improve the attack effective-

ness of face swapping methods and face reenactment methods,

respectively. For face swapping, since the driving video is un-

der full control of an adversary, he/she can adopt the passed

driving video to improve the attack effectiveness; while for

face reenactment, the obtained target image is not under full

control of an adversary. To this end, we propose a two-stage

approach to improve the performance of face reenactment

methods further.

Stage 1: After we get a target image, we transform it to an

image that can pass image-based FLV, which helps synthesize

a video that can bypass silence-based FLV. For simplicity, we

use FaceShifter to transform the image, which can be trivially

extended to other face swapping methods.

Stage 2: According to the analysis in Section 5.2, adver-

sarial training can improve the effectiveness of bypassing FLV.

Therefore, at this stage, we use a face reenactment method that

incorporates adversarial training to synthesize fake videos.

Name Type FLV Area Result

BI (Basic)
API

Silence-based
Germany

84%

BI (with Assistance) Action-based 82%

PI API Image-based French 90%

AC API Image-based Korea 52%

NT Demo APP Silence-based Lithuania �
BD Demo APP Action-based China �
TC Demo APP Silence-based China �
FPP Demo APP Action-based China ×

Table 8: Evaluation of FLV APIs from the global market. � denotes a

successful attack; × denotes a failed attack.

Now, we explore the effectiveness of the customized two-

stage attack. Specifically, we first randomly select 20 tar-

get images and transform them with FaceShifter to make

them pass image-based FLV. Then, due to the effectiveness of

FOMM for bypassing FLV, we utilize it to synthesize videos

based on five driving videos and the transformed images. Fi-

nally, we use the synthesized videos to evaluate the target FLV

API. The evaluation and ablation studies of the customized

two-stage approach are shown in Table 7.

From Table 7, we have the following observations. 1) Both

Stage 1 and Stage 2 can improve the effectiveness of bypass-

ing FLV. For example, the original FOMM can achieve an

overall evasion rate of 22% on BD, while the FOMM with

Stage 1 and Stage 2 can improve the overall evasion rate to

86% and 39% respectively, which indicates a big improve-

ment. 2) The two-stage approach (Stage 1 + Stage 2) achieves

the highest overall evasion rate. For example, it can increase

the overall evasion rate on BD to 92%. These observations

further confirm the insights observed in previous sections.

6 Evaluation on Global FLV Services
In Section 4, we have evaluated the most representative

FLV APIs in China. Different from the AI cloud vendors

evaluated in Section 4, most of the global FLV vendors often

provide a specific type of FLV. For better representing the

threat surface, we also utilize LiveBugger to evaluate these

leading global vendors. According to the FLV service forms,

we evaluate them in the following ways. For the vendors that

provide the FLV API, we directly evaluate them in a way

similar to Section 4. For some vendors, we only have access

to their demo APPs, which limits the flexibility for calling the

low-level FLV API. Thus, we evaluate them in a more real-

world setting. Specifically, we first hijack the camera video

stream of a local device, which runs the evaluated demo APP.

Since evaluating the demo APPs in a large-scale manner is

challenging, in the evaluation, we randomly select five identi-

ties from the image dataset as the victims. Then, we utilize

LiveBugger to synthesize the corresponding fake videos and

push them into the demo APPs in a real-time manner. For

each demo APP, we consider the attack successful if more

than three out of five trials are successful.

We evaluate the APIs or demo APPs provided by represen-

tative vendors from the global market. The reason to consider

these vendors is as follows: 1) BI is one of the leading bio-

metric vendors, which was successfully tested for level A and



level B attacks according to ISO 30107-3; 2) PI was selected

as a finalist for the “Best Use of AI in fintech" in IFTA2020;

3) NT is among the eight most accurate face recognition algo-

rithm vendors; 4) AC is one of the leading visual recognition

AI firms in Korea; 5) FPP is widely evaluated by previous

work [32]; 6) due to the large market share of BD and TC, we

further evaluate their demo APPs’ vulnerability. We present

the service types provided by these vendors and the evalua-

tion results in Table 8. Note that, we report attack success rate

and binary attack result (i.e., a successful or failed attack) for

APIs and demo APPs, respectively.

From Table 8, we can see that the security risks also exist

in FLV vendors from the global market. (1) All the evaluated

APIs can be bypassed effectively. For example, as shown in

Table 8, we can achieve an attack success rate of 90% on

PI. (2) Besides, compared to the basic FLV provided by BI

(i.e., silence-based FLV), the FLV with assistance (i.e., action-

based FLV) brings limited security gain, which is the same

as the observations in Section 4. (3) For demo APPs, most

of them can be attacked successfully, further threatening the

security of downstream clients. As for FPP, since it deploys

coherence detection, the synthesized video via the stitched

driving video can be detected with high confidence. Therefore,

we alternatively manually record the required driving video.

Although we cannot fully bypass it in this way, we decrease

the confidence that a fake video is detected as an attack from

0.99 to around 0.5 (the detection threshold).

In summary, similar to the evaluation results in Section 4,

the evaluation on the global FLV vendors confirms that most

of them are vulnerable to deepfake-powered attacks, which is

a severe and widely existing threat.

7 Proof-of-concept Attack
As the source of the software supply chain, the security

risks of APIs will threaten many downstream applications and

clients. In previous sections, we have illustrated that the secu-

rity risks are widespread in various FLV APIs and demo APPs.

In this section, we evaluate such risks in a more real-world

setting. We conduct proof-of-concept attacks on representa-

tive clients of these APIs via a manner similar to the demo

APP evaluation in Section 6, demonstrating the feasibility of

conducting such attacks in the real world. Specifically, we

hijack the camera video stream of the evaluated applications

and feed them with the synthesized video stream in a real-

time manner. The evaluated applications are selected from

the representative clients of the corresponding FLV vendors

according to their official websites, including HN Airlines,

TK Insurance, R360 and HZ Citizen Card. HN Airlines is

rated as Skytrax five-star airline and one of the best airlines

in China. R360 is one of the most valued fintech unicorns in

the world. TK Insurance is one of the largest life insurers by

premium income in China. HZ Citizen Card is a widely-used

government service application in one of the smartest cities

in China. All of these applications have a vast amount of

Type Name Attack Result Users/Downloads

APPs

HN Airlines � 30 million

R360 � 0.33 billion

TK Insurance � 15 million

HZ Citizen Card � 35 million

Table 9: Evaluation of proof-of-concept attacks. �denotes a successful

attack; × denotes a failed attack.

users. For each APP, we recruit five volunteers from the uni-

versity as its users. Note that one volunteer may use multiple

APPs. These volunteers register accounts for the correspond-

ing APPs, which can be considered as an enrollment process.

All the APPs provide services that require FLV. Then, we use

the volunteers’ accounts (authorized by them) to evaluate the

security of FLV services. We present the evaluation results in

Table 9.

From Table 9, we can see that all the evaluated APPs can

be attacked successfully, and thus threaten the security of

millions of users of these APPs. Taking HN Airlines (a rep-

resentative client of BD’s FLV services) as an example, we

show the attack screenshot in Figure 16 of Appendix C. As

shown in Figure 16(a), the application requires the user to

shake his head. Therefore, we reenact the target facial image

to shake his head, which can be recognized by the applica-

tion. We repeat the above reenactment process for each of the

required actions, and then the corresponding verification can

be bypassed. It makes compromising the account of the target

user possible, e.g., stealing his/her accumulated miles.

8 Discussion
8.1 Ethical Consideration

In this work, we conduct a comprehensive security evalu-

ation on FLV using deepfake, which may raise some ethical

concerns. Similar to the previous studies about the security

of AI-powered systems [33–35], we pay special attention to

the legal and ethical boundaries. First, we use open-source

datasets to conduct deepfake synthesis and security evaluation,

which is a legitimate and common practice in face-related se-

curity research [29, 36]. Besides, since we directly call the

target APIs with the target image and the synthesized im-

ages/videos, no fake accounts were created for the celebrities.

Second, our evaluation of the commercial FLV APIs strictly

follows the official instructions, and we paid for the API us-

age. Besides, we limit the Queries Per Second (QPS) to the

recommended value. Therefore, our evaluation does not affect

the normal service of the target vendor. For demo APPs pro-

vided by some vendors, since it is provided for trial use, the

evaluation on them will not affect the normal business affairs.

Thirdly, for the proof-of-concept attacks, we evaluate some

widely used applications with the accounts of volunteers and

get their authorization, which does not affect other users and

the business affairs of the corresponding company. Besides,

we have reported our results to the corresponding vendors and

got their acknowledgments. Finally, we replace the vendor

and APP name with cryptonyms, which can minimize the

potential security risks to the affected vendors.



8.2 Vulnerability of FLV Services
In this work, we utilize deepfake-powered attacks to eval-

uate the vulnerability of existing representative FLV APIs

and find that almost all of them can be compromised. As

the source of the FLV service supply chain, the vulnerability

will be inherited by downstream APPs, further threatening

millions of end-users. After fine-grained analysis, we spec-

ulate that the following reasons cause it. (1) The design of

the verification process of some FLV APIs is problematic.

For example, the voice-based FLV API of BD detects the

audio signal and facial liveness in a separate manner, which is

highly vulnerable. We can easily bypass it via importing the

required audio to the video. (2) The effectiveness of FLV’s

defense mechanism is concerning. Specifically, it seldom con-

siders stronger attacks (e.g., the proposed deepfake-powered

attacks). For comparison, we evaluate the effectiveness of

FLV APIs for defending against the presentation attacks and

show the results in Table 11 of Appendix C. It can be seen

that the presentation attack can hardly pose any threat to the

current FLV APIs. However, as we can see from Section 4, the

effectiveness of the deepfake-powered attack is much higher

than that of the presentation attack. Therefore, it is urgent

for FLV designers to integrate the defense capability of FLV

against stronger attacks, especially the new arising attacks.

In summary, the imperfection of underlying FLV mecha-

nisms and the inadequate defense capabilities make current

FLV services vulnerable to deepfake-powered attacks.

8.3 Variations of Attack Effectiveness
The evaluation in Section 4 shows that some deepfake

methods show higher effectiveness to evade FLV. For instance,

Figures 6 and 8 show that FaceShifter and FOMM often at-

tain higher overall evasion rate on different vendors compared

with other deepfake methods. In general, more advanced deep-

fake methods (e.g., FaceShifter and FOMM) often obtain

better visual results, leading to higher attack effectiveness.

Meanwhile, different deepfake methods also show variations

across different vendors. Figure 7 indicates that FaceShifter

performs better on BD and TC, while FOMM performs bet-

ter on ST and iFT. Without access to the technical details

of the target FLV vendors, we speculate that such variations

are attributed to the defense measures deployed by different

vendors. For instance, certain vendors may deploy defenses

against specific deepfake attacks.

8.4 Security Suggestions
Below, we provide security suggestions based on the valu-

able insights observed in Sections 4 and 5. Specifically, we

provide customized suggestions for different types of FLV.

a) Image-based FLV. According to the evaluation in Section

4.2, an adversary can utilize one facial image to bypass the

FLV systems. We recommend abandoning image-based FLV

in the future. b) Silence-based FLV. Since silence-based FLV

does not require any auxiliary information, an adversary can

easily utilize deepfake to bypass it. Therefore, anti-deepfake

detection becomes necessary for silence-based FLV. However,

a big gap exists between current anti-deepfake detection and

human perception. Therefore, anti-deepfake detection should

draw more research attention in the future. Note that, anti-

deepfake detection is also necessary for voice-based FLV and

action-based FLV. c) Voice-based FLV. Voice-based FLV can

adopt a cross-modal manner in the future. Specifically, during

verification, it can consider the match of lip movements with

the audio signal, or even voiceprint to improve the security.

Besides, the form of the random process should not be lim-

ited to digits, but a random process with much more diversity.

d) Action-based FLV. Head movements often cause visual

incoherence and unnatural distortion in the synthesized video.

Therefore, coherence and anti-deepfake detection should play

a vital role in developing secure action-based FLV in the fu-

ture. Besides, action-based FLV may adopt actions that are

hard to be synthesized by deepfake.

8.5 Limitations and Future Work
Firstly, our goal is to evaluate the security of FLV. There-

fore, we integrate several SOTA deepfake methods, which

can efficiently bypass FLV. Since many deepfake methods

are based on a similar methodology, LiveBugger does not

include all the deepfake methods. However, thanks to its high

extendability, LiveBugger is ready to be extended to incor-

porate new deepfake methods. Moreover, we plan to open-

source LiveBugger to facilitate the FLV security research

and encourage the community to contribute more techniques.

Secondly, in this study, we mainly focus on the one-shot set-

ting. Indeed, an adversary usually can obtain more than one fa-

cial image of the victim, which may bring more security risks

to FLV. Note that, few-shot deepfake methods [37, 38] can be

easily incorporated into LiveBugger if the threat model is re-

laxed to the few-shot setting. According to [37,38], compared

to the one-shot setting, the few-shot setting can output more

realistic results, which may pose greater threats to FLV. We

plan to extend our work to the few-shot setting in the future.

Finally, extending the current work to other domains, such

as speaker recognition, is an interesting future work. Besides,

according to the security suggestions, developing effective

and robust defense schemes is also a promising future work.

9 More Related Work
In Black Hat 2009, researchers first showed how to eas-

ily bypass facial authentication using one facial image [39].

Later, based on the facial disclosure shared on social net-

works, Li et al. systematically studied the threat brought by

the presentation attack [40].

To mitigate such attacks, many defenses have been pro-

posed via [10, 13, 14, 41, 42]. In early times, researchers used

hand-crafted features to detect face spoofing. For example,

eye blinking detection is a common heuristic used by many

FLV systems [43]. Later on, with the rapid progress of deep



learning, many researchers used deep features to detect the

presentation attack. Jorabloo et al. proposed a CNN archi-

tecture with proper constraints and supervisions for decom-

position to detect fake faces [44]. George et al. also utilized

CNN for face spoofing detection with deep pixel-wise su-

pervision [45]. Recently, Spatio-Temporal Anti-Spoof Net-

work (STASN) achieved SOTA performance on public anti-

spoofing datasets [46]. Except for these detection methods,

researchers also proposed many defenses from the perspective

of FLV design [47–49]. Chetty et al. proposed a challenge-

response-based liveness detection mechanism that involves

user interaction (speaking given digits), which can signifi-

cantly improve FLV security [47]. More recently, Tang et al.

proposed a liveness detection protocol based on light reflec-

tions [50]. It requires the screen emitting light of random

colors and uses a camera to capture the light reflected from

the face as the liveness clue. Uzun et al. presented a Captcha-

based liveness detection system, which requires the user to

record a video when answering a Captcha to complete the

verification [18].

Compared to existing studies, our work differs in several

major aspects. 1) Most previous work focuses on developing

new liveness detection mechanisms [18, 47, 50]; in contrast,

our work aims to raise concerns about the change of attack

surfaces caused by deepfake and shed light on the future di-

rections of improving the security assurance of current FLV

services. 2) Prior work evaluates face recognition without live-

ness detection. For example, the services evaluated in Uzun’s

work [18], including Face API MS Azure and Amazon Rekog-

nition, do not assume liveness detection capabilities. Although

Uzun et al. used smile detection as a liveness clue, it is not of-

ficially provided by the above services. Thus, it dose not fully

expose the security risks of the latest FLV services enhanced

by liveness detection. 3) The attack-defense landscape of

FLV has since changed significantly. On one hand, FLV ven-

dors have greatly improved their security. For instance, some

vendors claim that their services are equipped with deepfake

detection capabilities. On the other hand, recent years have

witnessed striding advances in deepfake techniques, which

pose unprecedented challenges for FLV. Therefore, it is im-

perative to re-evaluate the security assurance of the latest FLV

services facing SOTA deepfake techniques. In this paper, to

bridge the gap, we conduct the first systematic evaluation and

exploration of the threats of deepfake against FLV.

10 Conclusion
We design and implement LiveBugger, a first-of-its-kind

security evaluation framework for FLV. An extensive evalua-

tion using LiveBugger demonstrates that most representative

FLV systems are highly vulnerable to deepfake-based attacks.

Further, from the adversary’s perspective, we explore the fac-

tors that may impact the attack effectiveness of deepfake.

Based on the findings in this exploration, we propose a cus-

tomized two-stage approach that can further boost the attack

success rate by up to 70%. To assess the threats in realistic

settings, we perform proof-of-concept attacks in real-world

applications. Lastly, we provide a set of suggestions to im-

prove the security of FLV. We hope this work can shed light

on developing more effective and robust FLV schemes.
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Appendix
A Overall Setting
A.1 Deepfake Methods
LiveBugger incorporates six SOTA deepfake methods, in-

cluding X2Face [26], ICface [27], FSGAN [22], First Or-

der Method Model (FOMM) [28] and FaceShifter [29]. We

present their categories in Table 10. Below, we give them a

brief introduction respectively.

X2Face uses an embedding network and a driving network

to generate fake videos. The embedding network maps pixels

from the source frame/image to the embedded face, which

can provide identity information. Then, based on the driving

frame/image, the driving network maps pixels from the em-

bedded face to the generated frame, which has the identity of

the source frame/image and the pose/expression of the driving

frame/image [27].

ICface is a two-stage generative adversarial network

(GAN) based model trained in a self-supervised manner,

which can use human interpretable signals (e.g., head pose

angles) to control the pose and expressions of a given face

image [27].

FSGAN is a GAN-based approach that can be used for face

swapping (FSGANS) and face reenactment (FSGANR). It first

uses a recurrent reenactment generator to estimate the reen-

acted face and its segmentation from the source frame/image,

and a segmentation generator to estimate the face and hair

segmentation from the target frame/image. Then, based on

the above information, it uses an inpainting generator to esti-

mate the complete reenacted face. Finally, it uses a blending

generator to completely blend the reenacted face and target

face [22].

FOMM first uses an unsupervised keypoint detector to ex-

tract first-order motion representation, including sparse key-

points and local affine transformations with respect to the

reference frame/image. Then, the dense motion network uses

the motion representation to generate dense optical flow from

the driving frame/image to the source frame/image. Finally,

the generator uses the source frame/image and the outputs of

the dense motion network to generate the fake frame. Note

that, the discriminator is optional during FOMM training [28].

FaceShifter is a novel two-stage GAN-based framework

for high fidelity and occlusion aware face-swapping. It re-

quires two input frames/images, i.e., a source frame/image

to provide identity and a target frame/image to provide at-

tributes (e.g., posture, scene lighting). In the first stage, it uses

an Adaptive Embedding Integration Network (AEINet) to

generate a high fidelity face-swapping result based on infor-

mation integration (i.e., identity and attributes information).

In the second stage, it uses the Heuristic Error Acknowledg-

ing Network (HEARNet) to handle the facial occlusions and

refine the result, and generate the final frame/image [29].
Deepfake Method Type

X2Face [26] Face Reenactment

ICface [27] Face Reenactment

FSGANS [22] Face Swapping

FSGANR [22] Face Reenactment

FOMM [28] Face Reenactment

FaceShifter [29] Face Swapping

Table 10: Deepfake methods used in our work.

B Additional Evaluation
B.1 Silence-based FLV

FaceShifter vs. FOMM. Since FaceShifter and FOMM

achieve a much higher overall evasion rate, we further com-

pare them on different vendors. The evaluation results are



shown in Figure 7. It can be seen that FaceShifter and FOMM

have different adaptability on different vendors.

Figure 11: The extracted frames from synthesized videos. The first row

denotes frames extracted from videos that can pass deepfake detection, while

the second row denotes frames extracted from videos that cannot pass deep-

fake detection.

B.2 Voice-based FLV
Lip Language Detection. When the adversary obtains the

given digits, he/she can interactively record a customized

video with the matched lip movements as the driving video to

synthesize the fake video. Below, we utilize the customized

driving videos to evaluate CW’s voice-based FLV API, as

shown in Figure 12.

From Figure 12, we can clearly see that even though the

voice-based FLV API deploys lip language detection, it still

suffers high risks. For example, FOMM can still achieve

around 60% overall evasion rate on CW. Therefore, although

lip language detection brings security gain, it alone is not

enough.

Figure 12: Evaluation with the customized driving video. Since CW has

no anti-deepfake detection mechanism, we do not show its anti-deepfake

evasion rate.

Length of Given Digits. We evaluate the influence of the

digit length on the security of FLV on BD, TC, and CW,

since they support changeable length. As CW deploys the lip

language detection, we evaluate it with the customized driving

videos. For the overall evasion rate under each length, we use

the highest overall evasion rate that the deepfake methods can

achieve. We present the evaluation results in Figure 13.

From Figure 13, we can clearly see that increasing the

length of the digits at the cost of utility does not improve the

security of a voice-based FLV API. For example, for BD and

TC, the overall evasion rate barely changes. This is because

the length of the digits does not influence voice recognition.

While for CW, even though it deploys the lip language de-

tection, since the driving video has matched lip movements,

Figure 13: Evaluation of the influence of the digit length on the voice-based

FLV API.

the influence of the digit length is limited if the deepfake

method is proper in synthesizing the lip movements. The ob-

servation further illustrates that the current implementation

of voice-based FLV may be problematic.

B.3 Action-based FLV
Security of Different Actions. An action-based FLV API

usually supports many actions, including blink, looking up,

turning right, etc. In this way, the target API can randomly

select a sequence of the supported actions. This random pro-

cess is expected to improve the security of action-based FLV.

Intuitively, different actions might have different security guar-

antees since different synthesis difficulties. To this end, we

utilize LiveBugger to evaluate the security of different ac-

tions and show the evaluation results in Figure 14.

From Figure 14, we can find that the overall evasion rate of

different actions for the same vendor is similar. For example,

the result on HW in Figure 14 shows that the overall evasion

rate of all actions is around 80%, which indicates that the

security guarantees of different actions are not much different.

Since the visual effect of the synthesized videos with actions

involving large movements is much worse than that involving

small movements, the former should be detected easily. How-

ever, the target APIs do not behave differently. One reason

could be that the target APIs do not deploy the coherence de-

tection. Overall, the anti-deepfake detection ability in current

action-based FLV APIs needs to be significantly improved.

Length of Action Sequence. Intuitively, increasing the

length of the action sequence should bring better security gain

to action-based FLV. Under each length of action sequence

that the target API supports, we randomly sample from the

supported actions to form the action sequence and then uti-

lize LiveBugger to evaluate the target API. We present the

evaluation results in Figure 15.

From Figure 15, we can see that the security of the action-

based FLV API is insensitive to the action sequence length.

For example, as shown by the result on HW, with the length

of action sequence increased from 1 to 4, the overall evasion

rate is kept at around 80%.

C Other Experimental Results
Proof-of-concept Attack. To better understand the pro-

cess of a proof-of-concept attack, we take HN Airlines as an



Figure 14: Evaluation towards different actions.

Figure 15: Evaluation of the length of action sequence.

example and show the attack screenshot in Figure 16.

Evaluation of the Presentation Attacks. For analyzing

the vulnerability of FLV against the deepfake-powered attacks,

we also evaluate the effectiveness of the presentation attacks.

We randomly select the replayed images or videos to evaluate

the corresponding FLV services and present the results in

Table 11. It can be seen that the presentation attacks can

hardly pose any threat to the current FLV APIs.

FLV
Liveness

Evasion

Anti-deepfake

Evasion

Overall

Evasion

Image-based FLV
BD 2.5% 100% 2.5%

TC 0 1.5% 0

Silence-based FLV
BD 4.9% 100% 4.9%

TC 2.5% 19% 0

Table 11: Evaluation of the presentation attacks.

(a) Shaking Head (b) Pass

Figure 16: Screenshots for evaluating HN Airlines.


