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Abstract

Facial Liveness Verification (FLV) is widely used for iden-
tity authentication in many security-sensitive domains and
offered as Platform-as-a-Service (PaaS) by leading cloud ven-
dors. Yet, with the rapid advances in synthetic media tech-
niques (e.g., deepfake), the security of FLV is facing unprece-
dented challenges, about which little is known thus far.

To bridge this gap, in this paper, we conduct the first system-
atic study on the security of FLV in real-world settings. Specif-
ically, we present LiveBugger, a new deepfake-powered at-
tack framework that enables customizable, automated security
evaluation of FLV. Leveraging LiveBugger, we perform a
comprehensive empirical assessment of representative FLV
platforms, leading to a set of interesting findings. For instance,
most FLV APIs do not use anti-deepfake detection; even for
those with such defenses, their effectiveness is concerning
(e.g., it may detect high-quality synthesized videos but fail
to detect low-quality ones). We then conduct an in-depth
analysis of the factors impacting the attack performance of
LiveBugger: a) the bias (e.g., gender or race) in FLV can
be exploited to select victims; b) adversarial training makes
deepfake more effective to bypass FLV; c¢) the input qual-
ity has a varying influence on different deepfake techniques
to bypass FLV. Based on these findings, we propose a cus-
tomized, two-stage approach that can boost the attack success
rate by up to 70%. Further, we run proof-of-concept attacks
on several representative applications of FLV (i.e., the clients
of FLV APIs) to illustrate the practical implications: due to
the vulnerability of the APIs, many downstream applications
are vulnerable to deepfake. Finally, we discuss potential coun-
termeasures to improve the security of FLV. Our findings have
been confirmed by the corresponding vendors.
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Figure 1: Overview of FLV. Generally, cloud platforms provide
four types of FLV including Image- (IFLV), Silence- (SFLV), Voice-
(VFLV), and Action-based FLV (AFLV).

1 Introduction

As a promising alternative to legacy passwords, Facial Live-
ness Verification (FLV), which is able to validate an identity
based on a facial image/video, has drawn increasing atten-
tion [1-3]. In particular, online-FLV is widely adopted in
practice due to its low hardware requirement for end-users [4].
As shown in Figure 1, it first requires the user to record a
specific facial image/video, which is then sent to an FLV API
for verification. FLV has been applied in many critical scenar-
ios, such as online payment, online banking, and government
services [5]. For instance, recently, OCBC Bank, the second-
largest bank in Singapore, has introduced FLV to eight of its
ATMs as an initial trial for a larger roll-out planned throughout
2021 [6]. Besides, an increasing number of cloud platforms
begin to provide FLV as Platform-as-a-Service (PaaS), which
significantly reduces the cost and lowers the barrier for com-
panies to deploy FLV in their products. These services usually
provide APIs for downstream APPs to integrate FLV. It is ex-
pected that the trend will continue growing at a rate of 67.6%
and lead to a $16.6 billion market share by 2024 [7].

In contrast to its surging popularity, the potential security
risks of FLV are fairly under-explored. Especially for the
APIs provided by FLV PaaS vendors, their vulnerability will
be inherited by downstream APPs, threatening millions of
end-users. Once the security of FLV API is compromised, the
adversary may exploit it in numerous downstream APPs. The
user authentication API is ranked second in “OWASP API
security top 10” [8]. Meanwhile, most existing studies focus
on the presentation attack (i.e., the replay attack), in which
the adversary attempts to impersonate an identity through



replaying the victim’s facial image/video [9], with strategies
including printing [10], video replay [11], and 3D mask [12].
In response, various defenses have also been proposed to
mitigate such attacks [10, 13—16]. However, they study the
security risk of FLV from the algorithmic level on public
datasets, without considering such risks in the deployed FLV
services or systems (e.g., FLV APIs), and thus are inadequate
to reflect the threat in the real-world setting.

Further, with the rapid advances in synthetic media tech-
niques (e.g., deepfake) [17], the security of FLV is facing un-
precedented challenges. Although previous work (e.g., [18])
shows that several face recognition systems are vulnerable
to synthesis attacks, the vulnerability of liveness verification
is largely unexplored. Further, the attack-defense landscape
of FLV has changed significantly recently. Little is known
about the new threats raised by state-of-the-art (SOTA) deep-
fake techniques. First, it enables more advanced and flexible
attacks [19]. For instance, it allows the adversary to easily
synthesize videos with required head/lip movements based
on a single image of the victim; in comparison, finding ex-
isting videos satisfying the move/voice requirements is ex-
tremely difficult in the presentation attack. In addition, with
the increasing commoditization of deepfake techniques (e.g.,
ZAO [20]), it now requires little expertise to create fake im-
ages/videos. For example, recently, a group of tax scammers
hacked a government-run FLV system via open-sourced deep-
fake techniques to fake tax invoices, which were valued at
$76.2 million [21].

Thus, it is imperative to assess the security implications of
deepfake for FLV. Specifically, RQ1 — How vulnerable is FLV
to deepfake-powered attacks? RQ2 — How do the threats vary
with concrete deepfake techniques? RQ3 — What are the key
factors impacting the attack effectiveness? RQ4 — How would
the practitioners improve the security of FLV? The answers
to the above key questions are crucial for the deployment and
use of FLV in practical settings.

Our Work. To answer these questions, in this paper, we de-
sign and implement LiveBugger, a framework that integrates
various SOTA deepfake techniques for evaluating the security
risks of FLV in a real-world setting. Leveraging LiveBugger,
we evaluate representative commercial FLV APIs provided
by leading PaaS vendors. Then, we conduct an in-depth ex-
ploration of the factors impacting the attack effectiveness and
conduct proof-of-concept attacks on real applications to fur-
ther assess the threats in more real-world settings. Finally, we
make a discussion of why the proposed deepfake-powered
attack can break FLV, and provide suggestions to improve its
security. We have reported our findings to the corresponding
vendors and received their acknowledgment. In summary, we
have made the following contributions.

Framework — We present LiveBugger, the first frame-
work designed specifically to serve as a security evaluation
framework for FLV in the deepfake era. At a high level,
LiveBugger consists of three key components, as illustrated

in Figure 3, namely Intelligence Engine, Deepfaker Engine,
and Analysis Engine.

1) Intelligence Engine, which provides a complete set of au-
thentication features supported by leading FLV PaaS vendors
as well as a configurable interface to incorporate new vendors.
The intelligence engine is able to automatically validate the
claimed defense features using a customizable probing dataset.
For example, BD' (one of the vendors that tops China’s Al
cloud services market) claims that its voice-based FLV API
supports lip language detection. However, our analysis reveals
that a video without any lip movements can also bypass this
API. Overall, the intelligence engine facilitates efficient and
fine-grained evaluation.

2) Deepfaker Engine, which currently integrates six SOTA
deepfake techniques. Based on the collected intelligence, the
engine can synthesize the required fake videos for bypassing
FLV effectively. For example, for the vendor without coher-
ence detection, it concatenates pre-recorded videos satisfying
the required actions as a driving video to synthesize the fake
video for bypassing a target FLV. With a modular design, new
deepfake techniques can be readily integrated into the engine.

3) Analysis Engine, which includes a set of information-
rich, customizable metrics to support fine-grained evaluation
of FLV, including liveness evasion rate, anti-deepfake evasion
rate, face matching rate, and overall evasion rate.

Evaluation — Leveraging LiveBugger, we conduct a sys-
tematic study of the most representative FLV APIs, including
Image-, Silence-, Voice-, and action-based FLV. We make a
number of interesting observations with the following high-
lights: 1) most vendors do not consider anti-deepfake detec-
tion in their FLV APIs, which are thus vulnerable to deep-
fake and threaten thousands of downstream applications; 2)
even for the very few vendors which deploy anti-deepfake
detection, the defense performance is problematic (e.g., while
effective for videos of high visual quality, it fails to detect
some poorly synthesized videos); 3) the security gain of the
random process (e.g., random voice code or action sequence)
in current voice-based FLV and action-based FLV is marginal.
Besides, we conduct proof-of-concept attacks on real applica-
tions to illustrate the practical implication brought by deep-
fake. The attacks show that most evaluated downstream APPs
(i.e., the clients of FLV APIs) are vulnerable to deepfake,
thus threatening the security of millions of users. Our evalua-
tion raises severe concerns about the commercial FLV APIs
provided by PaaS vendors.

Exploration — We further explore the impacting factors
for the attack effectiveness, leading to a number of interesting
findings: 1) the target image has more influence on the face
reenactment methods for bypassing FLV, while the driving
video has more influence on the face-swapping methods; 2)
the adversary may exploit the bias (e.g., gender or race) in
FLV to select the victim; and 3) adversarial training may

I'To minimize the ethical concern, we have replaced the vendor names
with cryptonyms in this paper.



benefit bypassing FLV. Based on such findings, we propose a
customized two-stage method that improves the attack success
rate of bypassing FLV by up to 70%.

Security Suggestion — Based on our findings, we first dis-
cuss why the deepfake-powered attack can break FLV via
comparing it with the presentation attack. Then, we provide
suggestions for improving the security of FLV. For instance,
the random code in voice-based FLV should not be limited
to digits, but should be diversified to enhance the protection;
action-based FLV should adopt actions that are difficult to syn-
thesize for deepfake. We have reported our findings to affected
vendors and received their acknowledgments. In response, one
vendor has announced its engagement in a deepfake detection
project to address this new threat.

We envision that our suggestions will shed light on devel-
oping more effective and robust FLV schemes in general.

2 Background

2.1 Facial Liveness Verification

A general overview of FLV is presented in Figure 1. Below,
we give a detailed introduction to the process of FLV, which
mainly includes three steps.

Step 1. A user interacts with the application and uses it to
record his/her facial image/video.

Step 2. After collecting a user’s facial media, the applica-
tion will call the target FLV API with the recorded media.

Step 3. The API will verify the user’s identity by analyzing
the uploaded media. During the verification, the API first
conducts the liveness detection, which is mainly used to verify
whether the voice or action requirements are met and defend
the presentation attack. After passing the liveness detection,
the API may further conduct deepfake spoofing detection
if applicable. Finally, the API will perform face matching
between the uploaded face and the reference face to verify the
identity. The video/image that passes all the processes will be
reported as a valid one.

According to the recorded media, existing FLV can mainly
be divided into four categories: 1) Image-based FLV: it per-
forms liveness detection based on a static facial image up-
loaded by the user and mainly focuses on detecting the pre-
sentation attack; 2) Silence-based FLV: it performs liveness
detection based on a facial video clip submitted by the user;
3) Voice-based FLV: the user is requested to speak the given
digits while recording the facial video, while the FLV per-
forms liveness detection by analyzing both the visual and
audio signals; 4) Action-based FLV: the user is requested to
act according to the given action sequence while recording
the facial video, while the FLV performs liveness detection
by checking whether the action requirements are met.

2.2 Threat Model

To make our evaluation more practical, we focus on eval-
uating the security of FLV APIs provided by popular cloud
vendors. Therefore, our evaluation is conducted under the
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Figure 3: Overview of LiveBugger.

black-box setting where an adversary cannot obtain any inter-
nal knowledge of the target API, like the liveness verification
model, face matching model, etc. In this paper, we mainly
consider the one-shot setting — the adversary can obtain one
facial image of the victim since it is the lowest requirement
for the adversary to bypass an FLV system. Therefore, it can
approximately expose an API’s worst-case vulnerability.

2.3 Deepfake

For studying the new threat brought by deepfake, we use
SOTA deepfake techniques to evaluate the security risks of
FLV. In general, there are two types of deepfake techniques
to synthesize fake images/videos: face swapping and face
reenactment [22]. Both are able to synthesize the required
video/image with respect to the given target image and the
driving image/video, in which the target image provides the
identity information, while the driving image/video provides
the background/texture information (face-swapping) or mo-
tion information (face reenactment).

As shown in the left plot of Figure 2, face swapping trans-
fers the identity information from the target image to the
driving image/video. The driving video can be any video
that satisfies the move/voice requirements (e.g., the adver-
sary may use his/her own). In comparison, as shown in the
right plot of Figure 2, face reenactment uses the facial move-
ment/expression deformation of the driving image/video to
reenact the target image.

To understand the new threat comprehensively, we will
use both face-swapping and face reenactment to evaluate the
security risks of FLV.

3 Framework

To systematically evaluate the security risks of FLV APIs,
we design and implement LiveBugger, an evaluation frame-
work with high expandability. LiveBugger consists of three
main components as illustrated in Figure 3: Intelligence En-
gine, Deepfaker Engine, and Analysis Engine. Below, we will
introduce them in more detail.



3.1 Intelligence Engine

Intelligence Engine is mainly used to construct a complete
set of authentication features supported by the leading FLV
PaaS vendors. Specifically, Intelligence Engine collects the
information from the public API documents provided by the
vendors, which includes the action types, action sequence
length range, the deployment of anti-deepfake detection, etc.
Due to the marginal difference of the supported features pro-
vided by different vendors, we adopt the union set of them
as the features that can be configured by Intelligence Engine,
which enables a configuration-based intelligence interface for
new vendors to be evaluated. Intelligence Engine currently
has built-in configurations for six representative FLV vendors
(the details of these vendors are introduced in Section 4).

However, for security concerns, some implicit information
cannot be obtained from the official public information of
vendors, e.g., the deployment of coherence detection. Addi-
tionally, the vendors may not support the claimed features in
practice. To this end, we build a probing dataset inside the
Intelligence Engine to collect the implicit information and
validate the claimed features. Specifically, Intelligence En-
gine can automatically call the target API with the probing
dataset, and then obtain the needed information based on the
returned results. At present, it mainly uses the probing dataset
to collect information on three defense features, including the
deployment of coherence detection, lip language detection,
and presentation attack detection. The collected information
is shown in Table 1. Next, we introduce them in more detail.

Coherence Detection. Coherence detection checks whether
the consecutive frames of a video are visually continuous. To
check if a target API deploys coherence detection, Intelligence
Engine includes a probing dataset consisting of a normal
dataset and a corresponding disturbed one. Specifically, it
uses several randomly selected facial videos to construct a
normal dataset. Then, it scrambles the order of the frames in
each selected video to get the corresponding disturbed dataset.
If the normal dataset and the disturbed one achieve similar
success rates, then the target cloud vendor has not deployed
the coherence detection; otherwise is the opposite.

Lip Language Detection. Lip language detection is to detect
whether the lip movement in a video matches the correspond-
ing audio signal. Intelligence Engine includes three probing
datasets for this detection: 1) a normal dataset containing
videos whose audio signal matches the lip movement; 2)
one perturbed dataset consisting of videos whose audio signal
does not match the lip movement; 3) another perturbed dataset
that includes videos with only audio signals but without any
lip movement. If the bypass rate of the latter two datasets is
much lower than that of the normal dataset, then the target
cloud vendor has deployed the lip language detection; other-
wise is the opposite. Besides, by comparing the bypass rate
of the latter two datasets, Intelligence Engine can check the
level of lip language detection deployed by a cloud vendor.

Presentation Attack Detection. Similar to previous meth-
ods, Intelligence Engine uses several randomly selected
videos to construct two probing datasets, including a nor-
mal dataset and a replayed one, to check the deployment of
presentation attack detection. Specifically, if the bypass rate
of the replayed dataset is much lower than that of the nor-
mal dataset, then the presentation attack detection has been
deployed by the target vendor; otherwise is the opposite.

3.2 Deepfaker Engine

Leveraging Intelligence Engine, the configuration informa-
tion for a target API can be specified, which is then used by
Deepfaker Engine to synthesize the fake videos/images to
evaluate the target API automatically. Specifically, Deepfaker
Engine incorporates several SOTA deepfake techniques that
can work well in the one-shot setting. Below, we briefly in-
troduce the workflow of synthesizing the images/videos for
bypassing different types of FLV API and defer the imple-
mentation details to Section 4.1.

Image-based FLV. Many target images are unable to pass
image-based FLV due to their background information (e.g.,
brightness and posture). To this end, this module takes sev-
eral images that can pass image-based FLV as the driving
images. Then, since face reenactment methods cannot change
the background information, LiveBugger utilizes SOTA face-
swapping methods to replace the background information of
the target image with that of the driving image (i.e., replacing
the identity of the driving image with that of the target image)
for bypassing image-based FLV.

Silence-based FLV. It takes some randomly selected videos
as the driving videos. Then, along with the target image, it uses
SOTA face swapping and reenactment methods to synthesize
the fake videos for bypassing silence-based FLV.

Voice-based FLV. From the results returned by Intelligence
Engine (see the details in Table 1), we find that most evaluated
vendors have not deployed lip language detection in their
voice-based FLV APIs. Therefore, we can directly import
the required audio signal to the synthesized video to evaluate
voice-based FLV APIs. Specifically, this module synthesizes
fake videos based on the target image and a randomly selected
driving video with lip movement (some APIs only detect lip
movement). Then, after receiving the random digits, it uses a
voice synthesis model, which can be the voice synthesis API
provided by cloud vendors, to synthesize the required audio
signal and import it to the synthesized video. For the few
APIs that deploy lip language detection, one needs to record
a driving video with the matched lip movement interactively.

Action-based FLV. From Table 1, we find that all the evalu-
ated APIs have not deployed the coherence detection. There-
fore, the driving video can be prepared by directly stitching
the pre-recorded videos of the required actions. Accordingly,
this module provides built-in videos of different actions from
volunteers. Based on the stitched driving video and the tar-
get image, it synthesizes the corresponding fake video for



bypassing action-based FLV. At the same time, we notice that
a few demo APPs evaluated in Section 6 use the coherence
detection (see details in Section 6). For evaluating them, after
receiving the action sequence, one needs to record a video as
the driving video since its natural coherence.

3.3 Analysis Engine

Different vendors provide FLV in various forms. For flex-
ibility, some vendors separate face matching from FLV and
offer it as an independent API. When conducting verification,
FLV often returns a frame for testing (test frame). The Analy-
sis Engine uses the test frame and a facial image of the target
individual (reference image) to call the corresponding face
matching API to perform verification. For a few APIs which
do not return the test frame, we randomly sample frames to
conduct face matching and report average results. For several
other vendors, face matching is integrated into their FLV APIs,
which return both liveness and face matching results. To quan-
titatively characterize the threats, we propose the following
metrics.
Liveness Evasion Rate. It measures the rate of im-
ages/videos that meet the action/voice requirements (if appli-
cable) and pass the presentation attack detection. A higher
liveness evasion rate implies lower security of the FLV.
Anti-deepfake Evasion Rate. Certain cloud vendors deploy
anti-deepfake detection mechanisms. The anti-deepfake de-
tection results are returned to the users separately. Therefore,
we use anti-deepfake evasion rate to measure the rate of syn-
thesized images/videos that evade the anti-deepfake detection.
A larger evasion rate implies higher attack effectiveness.
Face Matching Rate. It measures the rate of synthesized me-
dia that pass the face matching mechanism. A larger matching
rate implies better quality of the synthesized media.
Overall Evasion Rate. It assesses the overall security of the
target API by measuring the fraction of synthesized media
that evade liveness detection, deepfake spoofing detection, and
face matching simultaneously. A larger rate implies higher
attack effectiveness or less security of the target APL

These metrics allow us to characterize the threats from
various defense perspectives (e.g., liveness detection, deep-
fake detection, face matching) and in a fine-grained manner,
leading to a set of interesting findings.

4 Evaluation
In this section, we first introduce the overall experimental
setting, including the vendors, datasets, and deepfake methods.

Then, leveraging LiveBugger, we systematically evaluate the
FLV APIs provided by the leading FLV PaaS vendors.

4.1 Opverall Experimental Setting

Target Vendors. To make the evaluation more practical, we
leverage LiveBugger to evaluate the FLV APIs provided by
popular commercial cloud vendors according to the facial
recognition market share [23]. Specifically, we evaluate the

six most representative FLV vendors, including BD, TC, HW,
CW, ST, and iFT (to minimize the ethical concern, we have
replaced the vendor names with cryptonyms). The reasons be-
hind considering these vendors are as follows. 1) BD and TC
are one of the vendors with the largest China’s Al cloud ser-
vices market and the greatest number of face-related API calls,
respectively; 2) HW is one of the vendors with the largest
China’s public cloud market; 3) CW is one of the vendors
with the fastest growth rate in computer vision and is becom-
ing the leader; 4) ST is one of the largest computer vision
vendor; 5) iFT is one of the vendors with the largest China’s
Al software market. LiveBugger collects the configurations,
as shown in Table 1, for the supported authentication features
of the FLV APIs provided by these vendors. Table 1 shows
the supported authentication features for each target vendor
such as voice code length range and supported the action,
which facilitates an automated evaluation. Given an evalua-
tion configuration, LiveBugger automatically evaluates the
target APIs using the target images and the synthesized im-
ages/videos. To better illustrate the threat surface, we also
evaluate some representative FLV APIs from the global mar-
ket in Section 6.

Datasets. First, our evaluation needs an image dataset to
provide the target images for deepfake synthesis and the refer-
ence images for face matching. Therefore, we use the live im-
ages from CelebA-Spoof [24] as the image dataset. CelebA-
Spoof is a face anti-spoofing dataset that has 625,537 images
crawled from social media, which includes 43 rich attributes
on the face, environment, and spoof types.

Second, our study needs a video dataset to provide driving
videos. Therefore, we use the live videos from SiW-M [25]
as the video dataset. SiW-M provides live and spoof (e.g.,
replay) videos from 165 subjects [25].

Deepfake Methods and Implementation. According to the
threat model, the used deepfake method to evaluate an FLV
API should meet the following requirements: 1) it should be
identity-agnostic, i.e., it does not need to train a new model
for a new target person; 2) it can synthesize the required video
based on one facial image of the target person; 3) when syn-
thesizing videos/images, its latency needs to be acceptable;
otherwise, a timeout of the target FLV API will occur. There-
fore, LiveBugger incorporates six SOTA deepfake methods
that meet the above requirements, including X2Face [26], IC-
face [27], FSGANg [22], FSGANE [22], First Order Method
Model (FOMM) [28] and FaceShifter [29]. We present their
details, like technical highlights and categories, in Appendix
A.1. Note that, except for FaceShifter, we use the open-source
code published by the authors. Since FaceShifter is not open-
source, we reproduce it according to our understanding of
the original paper. All of our experiments are conducted on
a server with two Intel Xeon E5-2640 v4 CPUs running at
2.40GHz, 256 GB memory, 4TB HDD, and 4 GeForce GTX
1080 Ti GPU cards.

Before diving into the detailed evaluation results, we
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Table 1: API intelligence collected from cloud platforms. @ denotes full support; © denotes partial support; O denotes no support.

Platform Liveness Anti-deepfake  Face Overall
Evasion Evasion Matching Evasion
BD 75% 90 % 99% 68%
TC 53% 85% 100% 42%
HW 70% - 99% 70%
CcwW 97% - 100% 97%
iFT 99% - 100% 99 %

Table 2: Evaluation of legitimate images against FLV (false positive rate =
100% - evasion/matching rate).

present an overview of the core insights (Remarks 1 to 4)
in Figure 4. For each vendor, we evaluate four types of FLV
APIs if available, including image-based FLYV, silence-based
FLV, voice-based FLV, and action-based FLV, the insights of
which correspond to Remarks 1 - 4, respectively.

4.2 Image-based FLV

Recall that image-based FLV performs liveness detection
based on the uploaded static image and focuses on detect-
ing the presentation attack. To assess the performance of a
given API, we first measure its false-positive rate (FPR) using
200 legitimate images sampled from the image dataset, with
results presented in Table 2. A lower overall evasion rate im-
plies higher FPR. Observe that although the live image may
be directly used to evade image-based FLV, many of them fail

to pass the target API due to the background information (e.g.,
brightness and posture). Below, we consider an adversarial
setting: the adversary attempts to transform the failed image
into a successful one via deepfake techniques.

Target Images and Driving Images. For each vendor, we
first sample 100 images that fail to pass the target image-based
FLV API from the image dataset as the target images. Then,
for each target image, we select another image with the same
identity as the reference image for identity verification. For
the driving images, LiveBugger randomly selects 10 images
with other identities that pass the target image-based FLV API
from the image dataset. Utilizing the face detector [30], we
crop every image to 256 x256 pixels, and without explicitly
specified, the video preprocessing in the rest of the paper is
the same as that of the image.

Security Evaluation. Since ST does not provide image-
based FLV, we evaluate the image-based FLV APIs from
the other five vendors. For a given target API and each target
image in the corresponding evaluation dataset, LiveBugger
transforms the image using its Deepfaker Engine and then
uses the transformed one to evaluate the target APIL. Note that,
as stated in Section 3.2, since face reenactment methods can-
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Figure 5: Evaluation of transformed images against image-based FLV APIs
(note: HW, CW, and iFT have not deployed anti-deepfake detection, their
default anti-deepfake evasion rates are set as 100%).

Platform Liveness  Anti-deepfake Face Overall
Evasion Rate Evasion Rate Matching Rate Evasion Rate
BD 67% 37% 100% 25%
TC 72% 100% 100% 72%
ST 62% - 99% 62%
CwW 97% - 100% 97%
iFT 62% - 100% 62%

Table 3: Evaluation using legitimate videos to measure false positive rate.

not swap the background information of the failed image, we
focus on face-swapping methods (FaceShifter and FSGAN)
in this section.

The results are shown in Figure 5, and we have the
following observations. 1) Image-based FLV systems are
highly vulnerable to deepfake-powered attacks. For instance,
FaceShifter achieves a 95%+ overall evasion rate on CW and
iFT. While for Vendor and TC, as shown in Figure 5 and Table
2, the synthesized images even achieve a higher overall eva-
sion rate than the legitimate images (BD: 78% vs. 68%, TC:
56% vs. 42%). 2) The anti-deepfake detection deployed by
TC and BD is unreliable. Specifically, FaceShifter achieves
94% and 99% anti-deepfake evasion rate on BD and TC, re-
spectively, even higher than the legitimate images (BD: 94%
vs. 90%, TC: 99% vs. 85%). 3) Combining with Table 2
(from which the FPR of each vendor can be derived), we ob-
serve that a target API with higher FPR often offers stronger
security. For example, TC has higher FPR but also more ro-
bustness compared to other evaluated vendors. We speculate
that this is due to the utility-security trade-off: FLV often uses
a threshold to adjust this trade-off. The threshold may vary
in different scenarios (e.g., different lighting conditions). We
use the thresholds recommended by the target vendors in our
evaluation.

4.3 Silence-based FLV

Silence-based FLV utilizes an uploaded video to verify the
identity of a target person. It does not require any additional
action, like speaking digits or head movements. Like image-
based FLV, we first evaluate the FPR of the target silence-
based FLV APIs using randomly selected legitimate videos.
Table 3 shows that the FPR of silence-based FLV is much
higher than the vendors’ claims. However, according to the
threat model, we cannot obtain the video of a target person.
Therefore, in this section, we want to answer the following
question: can an adversary utilize a victim’s facial image to
bypass the silence-based FLV via deepfake?

FSGANs FSGANg ICface
§ 100% q 1
=
o
: LLL[L
& 0% 15 L n
§LESE §L68¢ §868¢
FaceShifter FOMM X2Face
§ 100% q q
=
: iilllwtilllaLLLtL
Q
o
o 0% - - E

SKEESE §h53E §065¢

N

Face Matching Rate
Overall Evasion Rate

B Liveness Evasion Rate
I Anti-deepfake Evasion Rate

Figure 6: Evaluation of silence-based FLV APIs. Since ST, CW, and iFT
have not deployed anti-deepfake detection, we assign 100% to their anti-
deepfake evasion rate.

Driving Videos and Target Images. We randomly select 40
images from the image dataset as the target images. Simi-
larly, for each target image, we select another image with the
same identity as the reference image for identity verification.
Besides, LiveBugger randomly selects five videos from the
video dataset as the driving videos.

Security Evaluation. We utilize LiveBugger to synthesize
fake videos based on the selected driving videos and target
images and then evaluate the target API with the synthesized
videos. Since HW does not provide silence-based FLV, we
do not show its evaluation. Figure 6 shows the evaluation
results of silence-based FLV. Note that certain deepfake meth-
ods (e.g., ICface) attain the overall evasion rate/liveness eva-
sion rate of 0, which results in an invisible overall evasion
rate/liveness evasion rate in the plots. According to Figure
6, we have the following observations. 1) An adversary can
easily bypass the silence-based FLV API. The overall evasion
rate on each platform can reach up to 40%-+. Especially, for
CW, its overall evasion rate can reach up to 90%-+, which
means that the silence-based FLV API of CW practically
performs almost no function. 2) Anti-deepfake detection is
necessary for liveness verification. For example, the results
using ICface in Figure 6 show that although BD’s liveness
evasion rate is near 100%, its overall evasion rate is O thanks
to the deployment of anti-deepfake detection. The importance
of deploying anti-deepfake detection is also confirmed by the
results of FOMM, which show that although BD and CW have
similar liveness evasion rate, BD has a much lower overall
evasion rate than that of CW due to its better anti-deepfake
detection ability. 3) The anti-deepfake detection deployed
by a few vendors may be problematic. Figure 6 shows that
compared to FaceShifter, FOMM achieves higher face match-
ing rate but lower anti-deepfake evasion rate. This is due
to that it may successfully detect synthesized videos with
high quality (i.e., high face matching rate) but fail to detect
low-quality ones. For example, Figure 11 in Appendix B.1
shows several frames extracted from a low-quality synthe-
sized video and a high-quality one, respectively. In Figure 11,
each frame of the second row has high quality, while the cor-
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Figure 7: Performance (overall evasion rate) comparison of FaceShifter and
FOMM on different vendors.
responding video cannot bypass the anti-deepfake detection.
However, the video consisting of the low-quality frames in
the first row is able to bypass the detection. Secondly, fake
videos can achieve a much higher anti-deepfake evasion rate
than real live videos. As shown in Figure 6 and Table 3, the
videos synthesized by FaceShifter can achieve around 60%
anti-deepfake evasion rate on BD, while the real live videos
only achieve 37%. Therefore, anti-deepfake detection should
be further improved.

Compared to other methods, FaceShifter and FOMM have
a much higher overall evasion rate. For comparing them more
clearly, we show their overall evasion rates on different ven-
dors in Figure 7. They both have a very high overall evasion
rate on CW. For BD and TC, FaceShifter performs better,
while FOMM performs better on ST and iFT. This indicates
that different deepfake methods have different adaptability
on different vendors. Therefore, a vendor should consider as
many deepfake methods as possible to develop a more general
and robust defense method.

4.4 Voice-based FLV

Voice-based FLV requires a user to speak given digits while
recording the corresponding facial video to verify his/her iden-
tity. Intuitively, since voice-based FLV introduces a random
process based on silence-based FLYV, it should largely mitigate
the security risks. Similar to Section 4.3, we use only one
facial image to synthesize the required video for bypassing
voice-based FLV. Here, the experiments focus on evaluating
the security impact of the following key factors: 1) the ran-
dom voice process, 2) the lip language detection, and 3) the
digit length.

Driving Videos and Target Images. We keep the target im-
ages and reference images the same as the images selected in
Section 4.3. Then, LiveBugger randomly selects five videos
with lip movements from the video dataset as the driving
videos, since some vendors (e.g., TC) consider lip movements
during the verification.

Security Evaluation. According to Table 1, four vendors,
including BD, TC, CW, and ST, provide voice-based FLV.
Therefore, we will evaluate the security risks of the voice-
based FLV APIs on these vendors. During the evaluation,
LiveBugger utilizes the voice synthesis API from TC to
synthesize the required audio signal. Note that, the choice of
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Figure 8: Evaluation of voice-based FLV APIs. Since ST and CW have
not deployed anti-deepfake detection, we assign 100% to their anti-deepfake
evasion rate.

the voice synthesis API does not affect the evaluation result
since the voice recognition process in voice-based FLV can
correctly recognize the synthesized voice.

The evaluation results are shown in Figure 8. Comparing
the results of Figures 6 and 8, we can see that except for CW,
voice-based FLV APIs can also be easily bypassed. For ex-
ample, for FaceShifter in Figure 8, the overall evasion rate of
BD can reach up to 60%+, which is even higher than that in
silence-based FLV. We speculate that this is because the target
API detects the facial liveness and the audio signal separately.
Specifically, the target API imports an independent speech
recognition process on the basis of the silence-based FLV API
to check whether the audio signal matches the given digits
without considering lip language detection. Based on the re-
turned API results from BD, we can observe that the audio
signal perfectly matches the given digits. Thus, no security
gain can be obtained based on the current implementation
of voice-based FLV. Interestingly, BD claims that their API
supports lip language detection. However, we find that it is not
valid. Even the video without any lip movement can bypass it.
Similar security risks also exist in TC and ST. However, the
voice-based FLV API of TC shows a slightly better defense
performance than its silence-based FLV. The reason is that TC
additionally detects lip movements but does not require the
movements to match the given digits. Due to the imperfection
of deepfake methods, the lip movements in some synthesized
videos are not obvious, which results in a slight security im-
provement of the API. As for CW, since it deploys the lip
language detection, we give a separate evaluation below.

Lip Language Detection. As shown in Figures 6 and 8,
since the driving video has unmatched lip movements with
the given digits, the overall evasion rate of CW’s voice-based
FLV API decreases to 0. To this end, we use the customized
driving videos with matched lip movements to evaluate CW
and show the results in Figure 12 of Appendix B.2. We find
that even though the voice-based FLV API deploys lip lan-
guage detection, it still has high-security risks.

Length of Given Digits. Intuitively, because of the trade-off
between security and utility, increasing the length of the given
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Figure 9: Evaluation of action-based FLV APIs. Since HW has not deployed
the anti-deepfake detection, we assign 100% to its anti-deepfake evasion rate.
digits (decreasing the utility) should improve the security of
voice-based FLV. However, the evaluation results show that
increasing the length of the digits at the cost of utility does
not improve such security. Due to the space limitations, we
place the details in Appendix B.2.

4.5 Action-based FLV

Similar to voice-based FLV, action-based FLV also intro-
duces a random process based on silence-based FLV. The
difference is that it requires a person to make head move-
ments according to the given action sequence when recording
the corresponding facial video. According to the threat model,
we also utilize one single facial image of the victim to evaluate
the security of action-based FLV. In this section, we mainly
answer the following key questions: 1) does the random ac-
tion sequence improve the security of silence-based FLV?
2) is there any security difference between different actions?
3) does the action sequence length affect the security of an
action-based FLV API?

Driving Videos and Target Images. We also keep the
target and reference images the same as those in silence-
based FLV. Additionally, we recruit five volunteers to record
videos for each of the actions supported by the vendors. Then,
LiveBugger can stitch the videos of the required actions to
construct the driving video.

Security Evaluation. According to Table 1, three vendors,
including BD, TC, and HW, provide action-based FLV. How-
ever, we find that the action-based FLV API on BD has an
implementation problem: a video with the required actions
incurs a calling error of the action-based FLV API but works
normally with the silence-based FLV API. After contacting
customer service, it is confirmed to be a video encoding prob-
lem. Since it has not been resolved so far, we evaluate TC and
HW in this section.

The evaluation results of action-based FLV are shown in
Figure 9. From Figures 6 and 9, we have the following ob-
servations. 1) Action-based FLV can be bypassed very easily.
For example, as shown by the FaceShifter of Figure 9, the
liveness evasion rate on HW can reach up to 97%, and the
overall evasion rate can reach up to 80%, which brings se-
rious risks to the downstream applications. 2) Compared to
silence-based FLV, the security gain of action-based FLV is

Platform  Attributes Liven.css P-value Anti-de§pfake P-value Over‘all
Evasion Evasion Evasion

. Race Cﬁ%}? %,Z 0.049 72222"2 0.0055 gg%
Gender ponale 96% 00001 62% 053 629
R CVEE{? %Z%: 0.00058 92322% 0.78 %%g
Gender Female 78% 0.0000016 999 0.31 78%

Table 4: Evaluation of bias and statistical tests.
marginal. Especially, as shown by the FOMM results in Fig-
ures 6 and 9, the overall evasion rate of action-based FLV on
TC is even slightly higher than that of silence-based FLV. 3)
As action-based FLV requires large movements like looking
up and turning left, the synthesized videos usually have poor
visual quality. However, even if a synthesized video is un-
real to humans, it can still bypass the current anti-deepfake
detection mechanism with a very high success rate. For ex-
ample, the result of FaceShifter in Figure 9 shows that the
anti-deepfake evasion rate on TC can still achieve as high as
100%. Therefore, the current anti-deepfake detection should
be further improved to enhance the security of the target API.

Security of Different Actions and Lengths. An action-
based FLV API usually supports different actions and action
sequence lengths. Then, we evaluate the security variance for
different action requirements, and find that they do not result
in security variance. Due to the space limitations, more details
are deferred to Appendix B.3.

5 Exploration

In this section, we explore various factors that may af-
fect the attack effectiveness from the perspective of deepfake
in-depth and discuss potential improvements in bypassing
FLV”. To better demonstrate the impacts of various factors,
we consider the two most effective methods (FaceShifter and
FOMM) during the exploration. The overview of insights
found in this section is shown in Remarks 5 - 8 of Figure 4,
which correspond to the core insights found in the exploration
on the bias of API, adversarial training, influence factors, and
the customized two-stage attack, respectively.

5.1 Biasof API

To explore the bias in FLV, we first divide the video dataset
into two groups according to a particular attribute that might
have bias. Then, we sample 100 videos from each group and
use LiveBugger to directly evaluate a target API with these
sampled videos (not use Deepfaker Engine). As the video
dataset provides a large number of live videos sampled from
different environments (e.g., lighting), to limit the influence of
other factors, we manually select two groups of videos to en-
sure that they have the same number of videos from the same
environment. Considering the simplicity of distinguishing
attributes, we mainly explore the potential bias in gender and

2Withou explicit specification, the exploration experiment is conducted
on silence-based FLV.
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Platform  Method . P-value . P-value .
Evasion Evasion Evasion

FOMM 95% 33% 33%

BD FOMM (Adv) 97% 0.14 46 % 0.00000039 46 %

FOMM 29% 59% 19%

€ rommadv) 36% %% 69% 0042 559

Table 5: Evaluation of adversarial training.

race. In the future, we will explore the bias of more attributes
in FLV. We show the evaluation results and the corresponding
t-test statistics in Table 4, respectively. Note that, since the
overall evasion rate depends on liveness evasion rate and anti-
deepfake evasion rate, we omit the statistical test for overall
evasion rate.

From Table 4, we can see the bias in FLV. 1) The racial
and gender biases exist in the presentation attack detection
(measured by liveness evasion rate) of FLV API, and all the
P-values for liveness evasion rate are less than 0.05 (many of
them are even less than 0.01), which means that such biases
are significant. For example, the liveness evasion rate of males
on TC is only 46%, while that of females can achieve as high
as 78%, and the corresponding P-value is 0.0000016, which
indicates a significant gender bias. 2) Although the bias of anti-
deepfake evasion rate is not significant as that of the liveness
evasion rate, it also exists in some cases. For example, the
anti-deepfake evasion rate of the colored on BD can achieve
as high as 72%, while that of the white is only 58%, and the
P-value is 0.0055, which means a statistically significant bias.

In summary, there are biases in FLV, which may bring
significant security risks to a particular group of people. How
to eliminate the biases in FLV is an interesting future work.

5.2 Adversarial Training and Anti-deepfake
Detection

According to Figures 6, 8 and 9, compared to FOMM,
FaceShifter can bypass the anti-deepfake detection more effi-
ciently. We speculate that this is due to the adversarial train-
ing used in FaceShifter. Specifically, in adversarial training
(widely used in Generative Adversarial Networks [31]), the
goal of the discriminator is to distinguish the synthesized
videos from real ones, which is similar to the goal of anti-
deepfake detection, while the goal of the generator is to de-
ceive the discriminator. Therefore, the adversarial training
may make the synthesized video more likely to bypass the
anti-deepfake detection (i.e., higher anti-deepfake evasion
rate). Note that, without the discriminator, FaceShifter fails
to synthesize satisfying videos. We thus utilize FOMM to
explore the role adversarial training (i.e., discriminator) for
bypassing FLV. We present the results and the corresponding
t-test statistics in Table 5.

According to Table 5, adversarial training significantly im-
proves the attack effectiveness of FOMM, especially in terms
of bypassing the anti-deepfake detection. For example, af-
ter adversarial training, the anti-deepfake evasion rate is in-
creased from 33% to 46% on BD, and the corresponding
P-value is 0.00000039, which indicates a significant improve-

Platform  Method Successful / Failed Image

Liveness Anti-deepfake Face Overall
Evasion Evasion Matching Evasion
FOMM 100% /87% 49% /29% 100% / 100% 49% [ 26 %
FaceShifter 96% /95% 57% /65%  94% /95% 54% | 60%
TC FOMM  32% /5%  55%158% 99% /100% 27% /5%
FaceShifter 60% /50% 100% /100% 93% /96% 58% / 50%
Table 6: Evaluation of the target image.
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Figure 10: Evaluation of the driving video.

ment. In addition, the adversarially trained FOMM is also
more effective in terms of other metrics, although the im-
provement is not as significant. In summary, even though no
visible visual difference exists between the videos synthe-
sized by normal and adversarially trained FOMM, the latter
can bypass FLV more effectively.

5.3 Driving Videos

Intuitively, whether a driving video passes FLV or not may
affect the success of the synthesized video. To validate this,
we utilize LiveBugger to evaluate the role of the driving
video for bypassing FLV. Specifically, we first sample 20
images from the image dataset as the target images. Then, we
configure the driving videos in LiveBugger as videos that
can pass silence-based FLV and cannot pass it, respectively,
and utilize LiveBugger to evaluate a target FLV APIL.

Figure 10 shows the influence of the driving video on the
bypass rate, where the driving video that can pass silence-
based FLV is denoted as ‘successful’ and ‘failed” otherwise.
From Figure 10, we can see that the influence of the driving
video on FaceShifter is more significant than that on FOMM.
For example, FaceShifter with the passed driving video can
achieve an overall evasion rate of 96% on CW, while with the
failed driving video, it can only achieve an overall evasion
rate of 51%. As for FOMM, the successful and failed driving
videos result in similar overall evasion rate. After analysis, we
speculate that this is because FaceShifter is a face-swapping
method, while FOMM is a face reenactment method. The
face-swapping method swaps the identity (face) of the driv-
ing video with the identity (face) of the target image. The
obtained video is more similar to the driving video, including
background, expression, and posture. Therefore, the driving
video has a significant influence on face swapping methods.
On the contrary, face reenactment methods fuse the action
of the driving video to the target image to reenact the target
image, i.e., the synthesized video is more similar to the target
image. Therefore, face reenactment methods are less affected



Liveness Anti-deepfake Overall

Platform Method . . .
Evasion Evasion Evasion
FOMM 9% /10% 22% /52% 22% /5%
BD FOMM (Stagel) 100% / 14% 86% / 94% 86% /13%
/ TC FOMM (Stage2) 94% /1 10% 39% /52% 39% / 6%

FOMM (Stagel+Stage2) 100% /20% 92% /99% 92% /20%
Table 7: Evaluation of the two-stage approach.

by the driving video.

5.4 Target Images

Based on the analysis in Section 5.3, intuitively, the target
image may greatly influence face reenactment methods for
bypassing FLV compared to face swapping methods. Now,
we discuss the influence of the target image on the bypass
rate. For exploring its influence, we randomly sample 20
images that can pass image-based FLV from the image dataset
and 20 images that cannot pass, respectively. Then, we use
LiveBugger to explore such influence. The evaluation results
are shown in Table 6.

As shown in Table 6, the target image has different influ-
ences on different deepfake techniques for bypassing FLV.
Specifically, for FOMM, the synthesized video based on the
passed target image is more likely to bypass FLV than the
failed one. For instance, for FOMM, the successful image
can achieve an overall evasion rate of 49% on BD, much
higher than that (26%) achieved by the failed image. While
for FaceShifetr, the successful and failed images achieve simi-
lar overall evasion rate. Note that, FaceShifter and FOMM are
face-swapping and face-reenactment methods, respectively.
We conjecture that this is because each frame in a synthesized
video by a face reenactment method is more similar to the
target image, such as background and identity. Therefore, the
target image has more impact on face reenactment methods.

5.5 A Customized Two-stage Attack

According to the above interesting insights, the driving
video and the target image can improve the attack effective-
ness of face swapping methods and face reenactment methods,
respectively. For face swapping, since the driving video is un-
der full control of an adversary, he/she can adopt the passed
driving video to improve the attack effectiveness; while for
face reenactment, the obtained target image is not under full
control of an adversary. To this end, we propose a two-stage
approach to improve the performance of face reenactment
methods further.

Stage 1: After we get a target image, we transform it to an
image that can pass image-based FLV, which helps synthesize
a video that can bypass silence-based FLV. For simplicity, we
use FaceShifter to transform the image, which can be trivially
extended to other face swapping methods.

Stage 2: According to the analysis in Section 5.2, adver-
sarial training can improve the effectiveness of bypassing FLV.
Therefore, at this stage, we use a face reenactment method that
incorporates adversarial training to synthesize fake videos.

Name Type FLV Area Result
BI (Basic) Silence-based 84%
BI (with Assistance) API Action-based Germany 82%
PI API Image-based French 90%
AC API Image-based Korea 52%
NT Demo APP Silence-based Lithuania v/
BD Demo APP Action-based China v
TC Demo APP Silence-based China v
FPP Demo APP Action-based China X

Table 8: Evaluation of FLV APIs from the global market. v denotes a
successful attack; x denotes a failed attack.

Now, we explore the effectiveness of the customized two-
stage attack. Specifically, we first randomly select 20 tar-
get images and transform them with FaceShifter to make
them pass image-based FLV. Then, due to the effectiveness of
FOMM for bypassing FLV, we utilize it to synthesize videos
based on five driving videos and the transformed images. Fi-
nally, we use the synthesized videos to evaluate the target FLV
API. The evaluation and ablation studies of the customized
two-stage approach are shown in Table 7.

From Table 7, we have the following observations. 1) Both
Stage 1 and Stage 2 can improve the effectiveness of bypass-
ing FLV. For example, the original FOMM can achieve an
overall evasion rate of 22% on BD, while the FOMM with
Stage 1 and Stage 2 can improve the overall evasion rate to
86% and 39% respectively, which indicates a big improve-
ment. 2) The two-stage approach (Stage 1 + Stage 2) achieves
the highest overall evasion rate. For example, it can increase
the overall evasion rate on BD to 92%. These observations
further confirm the insights observed in previous sections.

6 Evaluation on Global FLV Services

In Section 4, we have evaluated the most representative
FLV APIs in China. Different from the Al cloud vendors
evaluated in Section 4, most of the global FLV vendors often
provide a specific type of FLV. For better representing the
threat surface, we also utilize LiveBugger to evaluate these
leading global vendors. According to the FLV service forms,
we evaluate them in the following ways. For the vendors that
provide the FLV API, we directly evaluate them in a way
similar to Section 4. For some vendors, we only have access
to their demo APPs, which limits the flexibility for calling the
low-level FLV API. Thus, we evaluate them in a more real-
world setting. Specifically, we first hijack the camera video
stream of a local device, which runs the evaluated demo APP.
Since evaluating the demo APPs in a large-scale manner is
challenging, in the evaluation, we randomly select five identi-
ties from the image dataset as the victims. Then, we utilize
LiveBugger to synthesize the corresponding fake videos and
push them into the demo APPs in a real-time manner. For
each demo APP, we consider the attack successful if more
than three out of five trials are successful.

We evaluate the APIs or demo APPs provided by represen-
tative vendors from the global market. The reason to consider
these vendors is as follows: 1) BI is one of the leading bio-
metric vendors, which was successfully tested for level A and



level B attacks according to ISO 30107-3; 2) PI was selected
as a finalist for the “Best Use of Al in fintech" in IFTA2020;
3) NT is among the eight most accurate face recognition algo-
rithm vendors; 4) AC is one of the leading visual recognition
Al firms in Korea; 5) FPP is widely evaluated by previous
work [32]; 6) due to the large market share of BD and TC, we
further evaluate their demo APPs’ vulnerability. We present
the service types provided by these vendors and the evalua-
tion results in Table 8. Note that, we report attack success rate
and binary attack result (i.e., a successful or failed attack) for
APIs and demo APPs, respectively.

From Table 8, we can see that the security risks also exist
in FLV vendors from the global market. (1) All the evaluated
APIs can be bypassed effectively. For example, as shown in
Table 8, we can achieve an attack success rate of 90% on
PI. (2) Besides, compared to the basic FLV provided by BI
(i.e., silence-based FLV), the FLV with assistance (i.e., action-
based FLV) brings limited security gain, which is the same
as the observations in Section 4. (3) For demo APPs, most
of them can be attacked successfully, further threatening the
security of downstream clients. As for FPP, since it deploys
coherence detection, the synthesized video via the stitched
driving video can be detected with high confidence. Therefore,
we alternatively manually record the required driving video.
Although we cannot fully bypass it in this way, we decrease
the confidence that a fake video is detected as an attack from
0.99 to around 0.5 (the detection threshold).

In summary, similar to the evaluation results in Section 4,
the evaluation on the global FLV vendors confirms that most
of them are vulnerable to deepfake-powered attacks, which is
a severe and widely existing threat.

7 Proof-of-concept Attack

As the source of the software supply chain, the security
risks of APIs will threaten many downstream applications and
clients. In previous sections, we have illustrated that the secu-
rity risks are widespread in various FLV APIs and demo APPs.
In this section, we evaluate such risks in a more real-world
setting. We conduct proof-of-concept attacks on representa-
tive clients of these APIs via a manner similar to the demo
APP evaluation in Section 6, demonstrating the feasibility of
conducting such attacks in the real world. Specifically, we
hijack the camera video stream of the evaluated applications
and feed them with the synthesized video stream in a real-
time manner. The evaluated applications are selected from
the representative clients of the corresponding FLV vendors
according to their official websites, including HN Airlines,
TK Insurance, R360 and HZ Citizen Card. HN Airlines is
rated as Skytrax five-star airline and one of the best airlines
in China. R360 is one of the most valued fintech unicorns in
the world. TK Insurance is one of the largest life insurers by
premium income in China. HZ Citizen Card is a widely-used
government service application in one of the smartest cities
in China. All of these applications have a vast amount of

Type Name Attack Result Users/Downloads
HN Airlines v 30 million
R360 v 0.33 billion
APPs TK Insurance v 15 million
HZ Citizen Card v 35 million

Table 9: Evaluation of proof-of-concept attacks. v'denotes a successful
attack; x denotes a failed attack.

users. For each APP, we recruit five volunteers from the uni-
versity as its users. Note that one volunteer may use multiple
APPs. These volunteers register accounts for the correspond-
ing APPs, which can be considered as an enrollment process.
All the APPs provide services that require FLV. Then, we use
the volunteers’ accounts (authorized by them) to evaluate the
security of FLV services. We present the evaluation results in
Table 9.

From Table 9, we can see that all the evaluated APPs can
be attacked successfully, and thus threaten the security of
millions of users of these APPs. Taking HN Airlines (a rep-
resentative client of BD’s FLV services) as an example, we
show the attack screenshot in Figure 16 of Appendix C. As
shown in Figure 16(a), the application requires the user to
shake his head. Therefore, we reenact the target facial image
to shake his head, which can be recognized by the applica-
tion. We repeat the above reenactment process for each of the
required actions, and then the corresponding verification can
be bypassed. It makes compromising the account of the target
user possible, e.g., stealing his/her accumulated miles.

8 Discussion
8.1 Ethical Consideration

In this work, we conduct a comprehensive security evalu-
ation on FLV using deepfake, which may raise some ethical
concerns. Similar to the previous studies about the security
of Al-powered systems [33-35], we pay special attention to
the legal and ethical boundaries. First, we use open-source
datasets to conduct deepfake synthesis and security evaluation,
which is a legitimate and common practice in face-related se-
curity research [29, 36]. Besides, since we directly call the
target APIs with the target image and the synthesized im-
ages/videos, no fake accounts were created for the celebrities.
Second, our evaluation of the commercial FLV APIs strictly
follows the official instructions, and we paid for the APT us-
age. Besides, we limit the Queries Per Second (QPS) to the
recommended value. Therefore, our evaluation does not affect
the normal service of the target vendor. For demo APPs pro-
vided by some vendors, since it is provided for trial use, the
evaluation on them will not affect the normal business affairs.
Thirdly, for the proof-of-concept attacks, we evaluate some
widely used applications with the accounts of volunteers and
get their authorization, which does not affect other users and
the business affairs of the corresponding company. Besides,
we have reported our results to the corresponding vendors and
got their acknowledgments. Finally, we replace the vendor
and APP name with cryptonyms, which can minimize the
potential security risks to the affected vendors.



8.2 Vulnerability of FLV Services

In this work, we utilize deepfake-powered attacks to eval-
uate the vulnerability of existing representative FLV APIs
and find that almost all of them can be compromised. As
the source of the FLV service supply chain, the vulnerability
will be inherited by downstream APPs, further threatening
millions of end-users. After fine-grained analysis, we spec-
ulate that the following reasons cause it. (1) The design of
the verification process of some FLV APIs is problematic.
For example, the voice-based FLV API of BD detects the
audio signal and facial liveness in a separate manner, which is
highly vulnerable. We can easily bypass it via importing the
required audio to the video. (2) The effectiveness of FLV’s
defense mechanism is concerning. Specifically, it seldom con-
siders stronger attacks (e.g., the proposed deepfake-powered
attacks). For comparison, we evaluate the effectiveness of
FLV APIs for defending against the presentation attacks and
show the results in Table 11 of Appendix C. It can be seen
that the presentation attack can hardly pose any threat to the
current FLV APIs. However, as we can see from Section 4, the
effectiveness of the deepfake-powered attack is much higher
than that of the presentation attack. Therefore, it is urgent
for FLV designers to integrate the defense capability of FLV
against stronger attacks, especially the new arising attacks.

In summary, the imperfection of underlying FLV mecha-
nisms and the inadequate defense capabilities make current
FLV services vulnerable to deepfake-powered attacks.

8.3 Variations of Attack Effectiveness

The evaluation in Section 4 shows that some deepfake
methods show higher effectiveness to evade FLV. For instance,
Figures 6 and 8 show that FaceShifter and FOMM often at-
tain higher overall evasion rate on different vendors compared
with other deepfake methods. In general, more advanced deep-
fake methods (e.g., FaceShifter and FOMM) often obtain
better visual results, leading to higher attack effectiveness.
Meanwhile, different deepfake methods also show variations
across different vendors. Figure 7 indicates that FaceShifter
performs better on BD and TC, while FOMM performs bet-
ter on ST and iFT. Without access to the technical details
of the target FLV vendors, we speculate that such variations
are attributed to the defense measures deployed by different
vendors. For instance, certain vendors may deploy defenses
against specific deepfake attacks.

8.4 Security Suggestions

Below, we provide security suggestions based on the valu-
able insights observed in Sections 4 and 5. Specifically, we
provide customized suggestions for different types of FLV.
a) Image-based FLV. According to the evaluation in Section
4.2, an adversary can utilize one facial image to bypass the
FLV systems. We recommend abandoning image-based FLV
in the future. b) Silence-based FLV. Since silence-based FLV
does not require any auxiliary information, an adversary can

easily utilize deepfake to bypass it. Therefore, anti-deepfake
detection becomes necessary for silence-based FLV. However,
a big gap exists between current anti-deepfake detection and
human perception. Therefore, anti-deepfake detection should
draw more research attention in the future. Note that, anti-
deepfake detection is also necessary for voice-based FLV and
action-based FLV. ¢) Voice-based FLV. Voice-based FLV can
adopt a cross-modal manner in the future. Specifically, during
verification, it can consider the match of lip movements with
the audio signal, or even voiceprint to improve the security.
Besides, the form of the random process should not be lim-
ited to digits, but a random process with much more diversity.
d) Action-based FLV. Head movements often cause visual
incoherence and unnatural distortion in the synthesized video.
Therefore, coherence and anti-deepfake detection should play
a vital role in developing secure action-based FLV in the fu-
ture. Besides, action-based FLV may adopt actions that are
hard to be synthesized by deepfake.

8.5 Limitations and Future Work

Firstly, our goal is to evaluate the security of FLV. There-
fore, we integrate several SOTA deepfake methods, which
can efficiently bypass FLV. Since many deepfake methods
are based on a similar methodology, LiveBugger does not
include all the deepfake methods. However, thanks to its high
extendability, LiveBugger is ready to be extended to incor-
porate new deepfake methods. Moreover, we plan to open-
source LiveBugger to facilitate the FLV security research
and encourage the community to contribute more techniques.

Secondly, in this study, we mainly focus on the one-shot set-
ting. Indeed, an adversary usually can obtain more than one fa-
cial image of the victim, which may bring more security risks
to FLV. Note that, few-shot deepfake methods [37,38] can be
easily incorporated into LiveBugger if the threat model is re-
laxed to the few-shot setting. According to [37,38], compared
to the one-shot setting, the few-shot setting can output more
realistic results, which may pose greater threats to FLV. We
plan to extend our work to the few-shot setting in the future.

Finally, extending the current work to other domains, such
as speaker recognition, is an interesting future work. Besides,
according to the security suggestions, developing effective
and robust defense schemes is also a promising future work.

9 More Related Work

In Black Hat 2009, researchers first showed how to eas-
ily bypass facial authentication using one facial image [39].
Later, based on the facial disclosure shared on social net-
works, Li et al. systematically studied the threat brought by
the presentation attack [40].

To mitigate such attacks, many defenses have been pro-
posed via [10, 13, 14,41,42]. In early times, researchers used
hand-crafted features to detect face spoofing. For example,
eye blinking detection is a common heuristic used by many
FLV systems [43]. Later on, with the rapid progress of deep



learning, many researchers used deep features to detect the
presentation attack. Jorabloo et al. proposed a CNN archi-
tecture with proper constraints and supervisions for decom-
position to detect fake faces [44]. George et al. also utilized
CNN for face spoofing detection with deep pixel-wise su-
pervision [45]. Recently, Spatio-Temporal Anti-Spoof Net-
work (STASN) achieved SOTA performance on public anti-
spoofing datasets [46]. Except for these detection methods,
researchers also proposed many defenses from the perspective
of FLV design [47-49]. Chetty et al. proposed a challenge-
response-based liveness detection mechanism that involves
user interaction (speaking given digits), which can signifi-
cantly improve FLV security [47]. More recently, Tang et al.
proposed a liveness detection protocol based on light reflec-
tions [50]. It requires the screen emitting light of random
colors and uses a camera to capture the light reflected from
the face as the liveness clue. Uzun et al. presented a Captcha-
based liveness detection system, which requires the user to
record a video when answering a Captcha to complete the
verification [18].

Compared to existing studies, our work differs in several
major aspects. 1) Most previous work focuses on developing
new liveness detection mechanisms [18,47,50]; in contrast,
our work aims to raise concerns about the change of attack
surfaces caused by deepfake and shed light on the future di-
rections of improving the security assurance of current FLV
services. 2) Prior work evaluates face recognition without live-
ness detection. For example, the services evaluated in Uzun’s
work [18], including Face API MS Azure and Amazon Rekog-
nition, do not assume liveness detection capabilities. Although
Uzun et al. used smile detection as a liveness clue, it is not of-
ficially provided by the above services. Thus, it dose not fully
expose the security risks of the latest FLV services enhanced
by liveness detection. 3) The attack-defense landscape of
FLV has since changed significantly. On one hand, FLV ven-
dors have greatly improved their security. For instance, some
vendors claim that their services are equipped with deepfake
detection capabilities. On the other hand, recent years have
witnessed striding advances in deepfake techniques, which
pose unprecedented challenges for FLV. Therefore, it is im-
perative to re-evaluate the security assurance of the latest FLV
services facing SOTA deepfake techniques. In this paper, to
bridge the gap, we conduct the first systematic evaluation and
exploration of the threats of deepfake against FLV.

10 Conclusion

We design and implement LiveBugger, a first-of-its-kind
security evaluation framework for FLV. An extensive evalua-
tion using LiveBugger demonstrates that most representative
FLV systems are highly vulnerable to deepfake-based attacks.
Further, from the adversary’s perspective, we explore the fac-
tors that may impact the attack effectiveness of deepfake.
Based on the findings in this exploration, we propose a cus-
tomized two-stage approach that can further boost the attack

success rate by up to 70%. To assess the threats in realistic
settings, we perform proof-of-concept attacks in real-world
applications. Lastly, we provide a set of suggestions to im-
prove the security of FLV. We hope this work can shed light
on developing more effective and robust FLV schemes.
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Appendix
A Overall Setting

A.1 Deepfake Methods

LiveBugger incorporates six SOTA deepfake methods, in-
cluding X2Face [26], ICface [27], FSGAN [22], First Or-
der Method Model (FOMM) [28] and FaceShifter [29]. We
present their categories in Table 10. Below, we give them a
brief introduction respectively.

X2Face uses an embedding network and a driving network
to generate fake videos. The embedding network maps pixels
from the source frame/image to the embedded face, which

can provide identity information. Then, based on the driving
frame/image, the driving network maps pixels from the em-
bedded face to the generated frame, which has the identity of
the source frame/image and the pose/expression of the driving
frame/image [27].

ICface is a two-stage generative adversarial network
(GAN) based model trained in a self-supervised manner,
which can use human interpretable signals (e.g., head pose
angles) to control the pose and expressions of a given face
image [27].

FSGAN is a GAN-based approach that can be used for face
swapping (FSGANy) and face reenactment (FSGANg). It first
uses a recurrent reenactment generator to estimate the reen-
acted face and its segmentation from the source frame/image,
and a segmentation generator to estimate the face and hair
segmentation from the target frame/image. Then, based on
the above information, it uses an inpainting generator to esti-
mate the complete reenacted face. Finally, it uses a blending
generator to completely blend the reenacted face and target
face [22].

FOMM first uses an unsupervised keypoint detector to ex-
tract first-order motion representation, including sparse key-
points and local affine transformations with respect to the
reference frame/image. Then, the dense motion network uses
the motion representation to generate dense optical flow from
the driving frame/image to the source frame/image. Finally,
the generator uses the source frame/image and the outputs of
the dense motion network to generate the fake frame. Note
that, the discriminator is optional during FOMM training [28].

FaceShifter is a novel two-stage GAN-based framework
for high fidelity and occlusion aware face-swapping. It re-
quires two input frames/images, i.e., a source frame/image
to provide identity and a target frame/image to provide at-
tributes (e.g., posture, scene lighting). In the first stage, it uses
an Adaptive Embedding Integration Network (AEINet) to
generate a high fidelity face-swapping result based on infor-
mation integration (i.e., identity and attributes information).
In the second stage, it uses the Heuristic Error Acknowledg-
ing Network (HEARNet) to handle the facial occlusions and

refine the result, and generate the final frame/image [29].
Deepfake Method Type
X2Face [26] Face Reenactment
ICface [27] Face Reenactment
FSGAN; [22] Face Swapping
FSGANEg [22] Face Reenactment
FOMM [28] Face Reenactment
FaceShifter [29]  Face Swapping

Table 10: Deepfake methods used in our work.

B Additional Evaluation

B.1 Silence-based FLV

FaceShifter vs. FOMM. Since FaceShifter and FOMM
achieve a much higher overall evasion rate, we further com-
pare them on different vendors. The evaluation results are



shown in Figure 7. It can be seen that FaceShifter and FOMM
have different adaptability on different vendors.

Figure 11: The extracted frames from synthesized videos. The first row
denotes frames extracted from videos that can pass deepfake detection, while
the second row denotes frames extracted from videos that cannot pass deep-
fake detection.

B.2 Voice-based FLV

Lip Language Detection. When the adversary obtains the
given digits, he/she can interactively record a customized
video with the matched lip movements as the driving video to
synthesize the fake video. Below, we utilize the customized
driving videos to evaluate CW’s voice-based FLV API, as
shown in Figure 12.

From Figure 12, we can clearly see that even though the
voice-based FLV API deploys lip language detection, it still
suffers high risks. For example, FOMM can still achieve
around 60% overall evasion rate on CW. Therefore, although
lip language detection brings security gain, it alone is not
enough.
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Figure 12: Evaluation with the customized driving video. Since CW has
no anti-deepfake detection mechanism, we do not show its anti-deepfake
evasion rate.

Length of Given Digits. We evaluate the influence of the
digit length on the security of FLV on BD, TC, and CW,
since they support changeable length. As CW deploys the lip
language detection, we evaluate it with the customized driving
videos. For the overall evasion rate under each length, we use
the highest overall evasion rate that the deepfake methods can
achieve. We present the evaluation results in Figure 13.

From Figure 13, we can clearly see that increasing the
length of the digits at the cost of utility does not improve the
security of a voice-based FLV API. For example, for BD and
TC, the overall evasion rate barely changes. This is because
the length of the digits does not influence voice recognition.
While for CW, even though it deploys the lip language de-
tection, since the driving video has matched lip movements,
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Figure 13: Evaluation of the influence of the digit length on the voice-based
FLV APL

the influence of the digit length is limited if the deepfake
method is proper in synthesizing the lip movements. The ob-
servation further illustrates that the current implementation
of voice-based FLV may be problematic.

B.3 Action-based FLV

Security of Different Actions. An action-based FLV API
usually supports many actions, including blink, looking up,
turning right, etc. In this way, the target API can randomly
select a sequence of the supported actions. This random pro-
cess is expected to improve the security of action-based FLV.
Intuitively, different actions might have different security guar-
antees since different synthesis difficulties. To this end, we
utilize LiveBugger to evaluate the security of different ac-
tions and show the evaluation results in Figure 14.

From Figure 14, we can find that the overall evasion rate of
different actions for the same vendor is similar. For example,
the result on HW in Figure 14 shows that the overall evasion
rate of all actions is around 80%, which indicates that the
security guarantees of different actions are not much different.
Since the visual effect of the synthesized videos with actions
involving large movements is much worse than that involving
small movements, the former should be detected easily. How-
ever, the target APIs do not behave differently. One reason
could be that the target APIs do not deploy the coherence de-
tection. Overall, the anti-deepfake detection ability in current
action-based FLV APIs needs to be significantly improved.

Length of Action Sequence. Intuitively, increasing the
length of the action sequence should bring better security gain
to action-based FLV. Under each length of action sequence
that the target API supports, we randomly sample from the
supported actions to form the action sequence and then uti-
lize LiveBugger to evaluate the target API. We present the
evaluation results in Figure 15.

From Figure 15, we can see that the security of the action-
based FLV API is insensitive to the action sequence length.
For example, as shown by the result on HW, with the length
of action sequence increased from 1 to 4, the overall evasion
rate is kept at around 80%.

C Other Experimental Results
Proof-of-concept Attack. To better understand the pro-
cess of a proof-of-concept attack, we take HN Airlines as an
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Figure 15: Evaluation of the length of action sequence.

example and show the attack screenshot in Figure 16.
Evaluation of the Presentation Attacks. For analyzing
the vulnerability of FLV against the deepfake-powered attacks,
we also evaluate the effectiveness of the presentation attacks.
We randomly select the replayed images or videos to evaluate

the corresponding FLV services and present the results in
Table 11. It can be seen that the presentation attacks can
hardly pose any threat to the current FLV APIs.

Liveness Anti-deepfake Overall

FLV Evasion Evasion Evasion
BD 2.5% 100% 2.5%
Image-based FLV TC 0 1.5% 0
. BD 4.9% 100% 4.9%
Silence-based FLV < 2.5% 19% 0

Table 11: Evaluation of the presentation attacks.
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Figure 16: Screenshots for evaluating HN Airlines.



