
Label Inference Attacks Against Vertical Federated Learning

Chong Fu1, Xuhong Zhang1,2, Shouling Ji1,2, Jinyin Chen3, Jingzheng Wu4, Shanqing Guo5, Jun Zhou6,
Alex X. Liu6, and Ting Wang7

1Zhejiang University, 2Binjiang Institute of Zhejiang University, 3Zhejiang University of Technology, 4Institute of Software, Chinese

Academy of Sciences, 5Shandong University, 6Ant Group, 7Pennsylvania State University

E-mails: {fuchong, zhangxuhong, sji}@zju.edu.cn, chenjinyin@zjut.edu.cn, jingzheng08@iscas.ac.cn, guoshanqing@sdu.edu.cn,

{jun.zhoujun, alexliu}@antfin.com, inbox.ting@gmail.com

Abstract
As the initial variant of federated learning (FL), horizontal fed-
erated learning (HFL) applies to the situations where datasets
share the same feature space but differ in the sample space,
e.g., the collaboration between two regional banks, while
trending vertical federated learning (VFL) deals with the cases
where datasets share the same sample space but differ in the
feature space, e.g., the collaboration between a bank and an
e-commerce platform.

Although various attacks have been proposed to evaluate
the privacy risks of HFL, yet, few studies, if not none, have ex-
plored that for VFL. Considering that the typical application
scenario of VFL is that a few participants (usually two) collab-
oratively train a machine learning (ML) model with features
distributed among them but labels owned by only one of them,
protecting the privacy of the labels owned by one participant
should be a fundamental guarantee provided by VFL, as the
labels might be highly sensitive, e.g., whether a person has a
certain kind of disease. However, we discover that the bottom
model structure and the gradient update mechanism of VFL
can be exploited by a malicious participant to gain the power
to infer the privately owned labels. Worse still, by abusing
the bottom model, he/she can even infer labels beyond the
training dataset. Based on our findings, we propose a set of
novel label inference attacks against VFL. Our experiments
show that the proposed attacks achieve an outstanding per-
formance. We further share our insights and discuss possible
defenses. Our research can shed light on the hidden privacy
risks of VFL and pave the way for new research directions
towards more secure VFL.

1 Introduction

With more and more countries realizing the importance of se-
curity and privacy of user data, regulations like General Data

Chong Fu and Xuhong Zhang are the co-first authors. Shouling Ji is the
corresponding author.

Protection Regulation (GDPR) [48] are issued to put forward
strict requirements for the use of user data. Particularly, any
company cannot directly disclose its user data to any other
company, which makes it hard, if not impossible, for com-
panies to train a more accurate ML model with a joint data
pool. To address this issue, the emergence of FL provides an
alternative. As a privacy-preserving distributed ML technique,
it allows multiple participants to collaboratively train a ML
model by periodically exchanging intermediate computation
results without revealing their raw data. Worldwide IT com-
panies put much effort into developing FL systems [24]. To
date, several open source FL systems are developed, such as
TensorFlow Federated (TFF) from Google [15], Federated
AI Technology Enabler (FATE) from Tencent Webank [53],
PySyft from OpenMined [34], and PaddleFL from Baidu [3].

According to the sample and feature space of data parities,
FL can be categorized into HFL and VFL. HFL is designed for
the situations where datasets share the same feature space but
differ in the sample space, e.g., the collaboration between two
regional banks, while VFL deals with the cases where datasets
share the same sample space but differ in the feature space,
e.g., the collaboration between a bank and an e-commerce
platform. FL is claimed to be privacy-preserving as local
data never leaves participants’ local machines, but actually
FL does leak private information indirectly. Recent studies
have thoroughly analyzed the privacy and security risks of
HFL, such as data leakage from gradients [62], membership
inference attacks [33], property inference attacks [30], and
backdoor attacks [2].

However, the privacy risks of VFL remain underexplored.
Moreover, VFL is being used more and more widely in indus-
try [16,50,52,54]. One of its typical usage scenarios, which is
the focus of this paper, is that a few participants (usually two)
collaboratively train a model with features distributed among
them but labels owned by only one of them [50, 52, 54]. For
example, a car rental company with plenty of labels but lim-
ited user features for risk evaluation might want to improve its
model performance by incorporating more user features from
other businesses, e.g., a bank [52]. The role of other partici-

Figure 1: Illustration of the label inference attacks against
VFL. In practice, the server is usually managed by the partici-
pant who holds the labels, as outlined by the dotted line. The
participant without the labels is the adversary, whose goal is
to infer the labels.

pants is simply providing more features and they usually ask
for money as return, since the final trained model is private to
the participant with the labels.

As VFL is different from HFL in many aspects including
usage scenarios, the architecture of the federated model and
the training algorithm, VFL has unique privacy issues. In this
paper, we focus on a new label leakage privacy risk of VFL. In
the VFL architecture as shown in Figure 1, there is only one
participant owning the labels, which is different from HFL
where every participant has its own labeled samples. Ensuring
the privacy of the private labels should be a fundamental guar-
antee provided by VFL, as the labels might be the key asset of
the participant or highly sensitive. Moreover, an adversarial
participant may try to build a similar business with the stolen
labels or sell the sensitive labels to underground industries.

Compared with HFL, it is more challenging for the ad-
versarial participant in VFL to infer private information. In
general, an adversarial participant in HFL controls a complete
local model and has access to gradients of all the parameters of
this model, which can be abused to infer private information.
However, in VFL, the adversarial participant only controls
part of the federated model, which cannot run independently,
and only has access to the gradients of this incomplete model.

Despite these challenges, we discover that the current de-
sign of VFL has an inherent vulnerability that can be lever-
aged by an adversarial participant to conduct label inference
attacks. A thorough study of this vulnerability is imperative
for the wide applications of VFL. Specifically, we find that
the bottom model controlled by a malicious participant might
naturally have the ability to infer the privately owned labels
of other participant(s). The reason is that during training, the
gradients propagated from the server help the bottom model
learn a good feature representation with respect to the labels
and thus can serve as a pre-trained model for label inference
attacks. The inference accuracy is determined by the expres-
siveness of this trained malicious bottom model. It is worth
noting that the bottom model empowers the malicious partici-

pant to infer the label of any sample, not just the ones in the
training dataset, as long as the input features to the bottom
model are available. In some special cases, the gradients from
the server can also directly leak the label information.

Based on the above findings, we propose a set of label
inference attacks. To take advantage of the trained bottom
model, we first introduce a passive label inference attack with
“model completion”. We show that with the help of a small
amount of auxiliary labeled data, the malicious participant
can fine-tune his/her trained bottom model into a complete
label inference model in a semi-supervised manner. Experi-
ments show that with only 70 auxiliary labeled samples, the
passive label inference attack achieves an F1 score of 0.7614
on a real-world medical image dataset with tens of thousands
of training samples. To increase the expressiveness of the
malicious bottom model so as to further improve the attack
performance, we further introduce an active label inference
attack to trick the federated model to rely more on the ma-
licious bottom model. Our experiment shows that the active
attack successfully boosts the attack performance. Moreover,
we use visualization techniques such as GradCAM [42] and
t-SNE [46] to explain why the active label inference attack
works. Then, we introduce a special direct label inference
attack which infers labels by analyzing the signs of gradients
from the server. It is only applicable when the VFL architec-
ture is not designed with split learning [47]. Our experiments
show that the direct label inference attack can achieve a label
inference accuracy of 1.00 on every evaluated dataset.

Finally, we evaluate four possible defenses: noisy gradients,
gradient compression, privacy-preserving deep learning [43]
and discreteSGD. We find that though some of these defenses
can mitigate the direct label inference attack, they are not
effective for our passive and active label inference attacks.
This motivates better defenses to enhance the privacy of VFL.

The main contributions of this paper are summarized as
follows:
• To the best of our knowledge, we are the first to evaluate

the privacy risks of VFL. We reveal and shed lights on
the new label leakage issue of VFL.

• We present three types of label inference attacks against
VFL, including the direct label inference attack, the
passive label inference attack with model completion,
and the active label inference attack with the malicious
local optimizer. These attacks cover multiple practical
VFL settings.
• We evaluate our attacks on various tasks with real-

world datasets under both two-participant and multi-
participant settings and achieve outstanding attack per-
formance. Further, we share insights about the under-
lying working mechanism of the active label inference
attack, and present readily comprehensible proofs. We
also evaluate four possible defenses against our attacks
and find that they are not effective, which motivates
future work on better defenses.

2 Background

In this section, we briefly introduce HFL and VFL. They
both have essential industrial applications. For example, HFL
is used to improve the quality of virtual keyboard search
suggestion without directly gathering user data [57]; VFL is
used to train a joint model to predict traffic violations by a car
rental service provider and a bank [52].

2.1 Horizontal Federated Learning
HFL is suitable for the situations where all participants’ local
datasets share the same feature space but differ in the sample
space. For example, hospital A has the medical records of a
group of citizens and labels of whether they have a kind of
disease. Hospital B, located in another city, has the same kind
of medical records and labels of another group of citizens. If
the two hospitals aggregate all their samples, they can build a
larger dataset and then train a more accurate model. However,
directly sharing the private data of users is forbidden by law.
This case reflects the dilemma of “horizontally isolated data”.
HFL can be applied to solve this dilemma.

In HFL, the server runs a global model, and every partic-
ipant runs a local model. All local models share the same
model architecture with the global model. One classic train-
ing algorithm of HFL is the model averaging [29]. In model
averaging, for one training iteration, every participant trains
his/her local model for several epochs on the local dataset,
then submits the updated local model to the server; the server
then averages every submitted local model to get the updated
global model. In this way, participants can jointly train a
global model without sharing their raw data [59].

2.2 Vertical Federated Learning
VFL [18, 28, 56] is designed for the situation where partic-
ipants’ datasets share the same sample space but differ in
the feature space. For example, hospital A has CT scans of a
group of patients and labels of whether they have lung cancer.
Hospital B has MRI scans of the same group of patients. If
these two hospitals put their data together, they can train a
better ML model to predict lung cancer according to both CT
and MRI scans. Unfortunately, they cannot directly share data
or labels to each other – disclosing patients’ private data to
other organizations is strictly forbidden by law.

VFL is designed to solve this dilemma. There are two kinds
of popular VFL architectures: VFL without model splitting
and VFL with model splitting [47]. In both architectures, there
is a trusted third-party server which preserves labels, and par-
ticipants that have vertically partitioned data. Every training
iteration of VFL can be divided into two steps. The first step
is the federated forward propagation. All participants do local
forward propagation using their local data and bottom models,
then submit local outputs to the server. The server uses the

aggregated outputs from all participants to compute the final
prediction and then computes the corresponding loss value.
The second step is the federated backward propagation. The
server does backward propagation and computes the gradients
of the loss w.r.t. the outputs from every participant. The gradi-
ents are sent back to every participant. Then each participant
continues the federated backward propagation and updates its
bottom model.

For VFL without model splitting, every participant runs a
bottom model, and the server does not run any model. Each
participant’s bottom model gives an output; then, the server
simply sums up all outputs to get the final output. For more
detailed description of the training algorithm of VFL without
model splitting, please refer to Appendix A. Actually, for
VFL without model splitting, each participant has access to
the output layer, which might bring a significant label leakage
risk. We will introduce this risk in detail and show how to
exploit it in Section 3.5.

VFL with model splitting is designed with the idea of split
learning [47]. The whole ML model is split into a top model
and some bottom models at a specific middle layer, referred to
as the cut layer. As shown in Figure 1, every participant runs
a bottom model that learns hidden representations of his/her
local data. The server runs a top model to aggregate hidden
representations from every participant, and then computes the
final output. Backward propagation is completed by sharing
gradients of the cut layer. For more detailed description of the
training algorithm of VFL with model splitting, please refer to
Appendix A. In VFL with model splitting, participants have
no access to the last layer of the DNN. Therefore, the labels
on the server are more secure.

After the training process is finished, input features and
trained bottom models are still preserved by every participant.
Hence, at the inference time, VFL requires all participants
to get involved. This is different from the situations of HFL,
where the trained global model is shared to every participant,
and participants can do inference individually.

In real world applications, a fully trusted third-party server
is hard to implement, thus the server in VFL is usually man-
aged by one of the participants, as shown in Figure 1. In this
architecture, there is one participant holding both labels and
part of the vertically partitioned data. In addition to a bottom
model, it also runs the top model. However, this architecture
has no fundamental difference from the VFL with model split-
ting described above. Actually, this architecture suits best for
the scenarios that one participant, who exclusively owns the
labels but possesses few features, wants to improve its model
performance by incorporating more features from other par-
ticipants that might come from different business domains.
Although the private labels never leave the hand of the par-
ticipant, in the following, we show that they might still get
leaked via label inference attacks.

3 Label Inference Attacks

In this section, we first share the insights on why VFL is
vulnerable to label inference attacks, and then we design three
kinds of label inference attacks based on the insights.

3.1 Possible Privacy Leakage in VFL
In the training process of VFL, participants and server do
not exchange data or labels directly; instead, they exchange
intermediate computation results. However, there are still
risks of privacy leakage. We discover that the current design
of VFL has inherent vulnerabilities to label inference attacks.
In the following, we share our findings on two components of
VFL that may cause label leakage: leakage from the trained
bottom model and leakage from the gradients.

Leakage from the Trained Bottom Model. VFL
with/without model splitting requires a bottom model trained
locally by each participant to embed the input features to a
latent space, which avoids the raw features being directly sent
to the server. Additionally, this bottom model is within the
full control of a potential adversarial participant during both
the training and inference stages. Though this design protects
the privacy of features from participants, it also empowers
an adversary to infer the privately owned labels. The funda-
mental reason is that the bottom model is optimized by VFL
to provide a more indicative feature representation to predict
the labels. The expressiveness of a malicious bottom model
depends on how well it got trained and how close it is to the
final prediction layer. We will introduce two kinds of label
inference attacks that exploit the expressiveness of the trained
bottom model.

Leakage from the Gradients. In VFL, every participant
can receive the gradients of the loss w.r.t. the outputs sent to
the server. As the loss is computed by measuring the error
between the predicted label and the ground-truth label, its
gradients contain hidden information about labels. It can be
further inferred that the closer a given layer is to the final
prediction layer, its gradients contain more information about
the labels. Therefore, instead of relying on the expressiveness
of the trained bottom model, an adversary might be able to
perform label inference attacks simply based on the received
gradients. In this paper, we introduce a label inference attack
by analyzing the sign of the received gradients under the
setting of VFL without model splitting.

3.2 Threat Model
We assume that K participants (where K ≥ 2) jointly train a
ML model using the VFL framework described in Section 2.2.
Each participant holds partial features for the ML model. We
assume that the features held by each participant are useful
for the prediction task, which is reasonable because only if
a participant has valuable features, will it be allowed to join
the VFL collaboration. The labels of the training dataset are

privately owned by one participant. This participant also con-
trols the server running the top model. One of the rest of the
K−1 participants is the adversary with the goal to infer the
privately owned labels. Note that the adversary’s goal is to
infer the labels of any interested samples, not just the ones in
the training dataset.

An illustration of our label inference attacks is shown in
Figure 1. At each training round, each participant receives the
gradients of the loss w.r.t. his/her bottom model’s outputs from
the server, and then uses them to update his/her bottom model.
The adversary can optionally exploit the received gradients
to conduct attack in the training stage. Additionally, once the
training process is over, each participant gets a trained bottom
model. With the help of a small amount of auxiliary labeled
samples, the adversary can further train a model for label
inference based on the trained bottom model. Finally, to infer
the label of an interested sample, the adversary also needs
to have the sample features required by the trained bottom
model.

3.3 Passive Label Inference Attack through
Model Completion

Labels preserved by the server are considered to be well pro-
tected because any participant cannot access the top model.
However, we demonstrate that an adversary can infer the
labels based on his/her locally owned bottom model. As dis-
cussed in Section 3.1, the trained bottom model of an ad-
versary can transform the features he/she owns to a very
indicative representation to predict the labels. Therefore, the
adversary can fine-tune the bottom model with an additional
classification layer for label inference using a small amount
of auxiliary labeled data. We name this attack as the passive
label inference attack through model completion.

Model Completion. After the training process, the adver-
sary gets his/her trained bottom model. Then, the adversary
adds additionally randomly initialized layers on top of the
trained bottom model to make a “complete model” for label
inference. We refer to these additional layers as the inference
head. We assume that the adversary has a small amount of
auxiliary labeled data to fine-tune the complete model. Specif-
ically, in our design, a few dozens of auxiliary labeled samples
are usually sufficient, e.g., 40 auxiliary labeled samples ver-
sus 50,000 labeled training samples in our experiments. In
practice, it is not hard for an adversary to obtain this small
amount of labels. For example, if the adversary is a company,
it can simply buy the labels from its employees. To mitigate
the issue of limited auxiliary labeled data, the adversary can
fine-tune the complete model in a semi-supervised manner.
We choose the state-of-the-art semi-supervised learning algo-
rithm MixMatch [5] for computer vision (CV) datasets and
datasets with numerical or categorical features. Vanilla Mix-
Match uses various strategies, including training on pseudo
labels, regularization, and data augmentation. However, in

Algorithm 1 Local malicious optimization of the adversary’s
bottom model
Require: Momentum parameter β, the gradient scaling fac-

tor’s resetting parameter γ, maximum gradient scaling fac-
tor rmax, minimum gradient scaling factor rmin, learning
rate η, initial bottom model parameters Θ, initial gradient
velocity v.

1: while stopping criterion not met do
2: Receive Gout put from the server
3: G← Backward(Gout put)
4: for each parameter θ in Θ and its gradient gθ in G do
5: vθ← β · vθ +(1−β) ·gθ

6: if is not the first criterion then
7: rθ← 1.0+ γ · (vθ÷ vlast)
8: rθ←Max(rθ,rmin)
9: rθ←Min(rθ,rmax)

10: vθ← rθ · vlast
11: end if
12: vlast ← vθ

13: θ← θ−η · vθ

14: end for
15: end while

implementation, we omit the part of data augmentation (such
as image flipping, image random cropping) in MixMatch to
make it suitable for tasks of other domains rather than just
CV. Specially, for text datasets, we choose the state-of-the-
art semi-supervised learning algorithm for natural language
processing, MixText [8]. For more detailed description of the
customized MixMatch algorithm, please refer to Appendix B.

Once the semi-supervised training is finished, the adversary
gets a fully-trained complete model. This model can predict
a label for every datum of the adversary. In this way, the ad-
versary successfully infers the label of any interested sample
with his/her available features, no matter whether the sam-
ple is within the training dataset or not. In the whole attack
pipeline, the adversary keeps being “honest but curious”, i.e.,
he/she strictly follows the rule of VFL both in the training
and inference stages. We name this attack as the passive la-
bel inference attack as the adversary does not attack in the
training or inference stage.

3.4 Active Label Inference Attack with the
Malicious Local Optimizer

In this attack, we show that the adversary can actively trick
the federated model to rely more on his/her bottom model so
as to increase its expressiveness. With better expressiveness
of the bottom model, the adversary can train a more accurate
complete model for label inference. Here the adversary is
assumed to actively do some malicious actions in the training
stage.

Specifically, instead of using normal optimizers such as
Adam or SGD with momentum, the adversary uses a spe-

cially designed malicious local optimizer. The key intuition
is that the adversary can accelerate the gradient descent on
his/her bottom model, and thus submits better features to the
server in each iteration. Finally, it makes the top model rely
more on the bottom model of the adversary rather than other
participants. In other words, the adversary can maliciously
scale up the learning rate when he/she trains his/her bottom
model. However, there is a challenge: a larger learning rate
does not always lead to more efficient gradient descent. An
overly large learning rate deviates network parameters from
the shortest path to a local optimum. For example, imagine
that we are training a neural network by gradient descent, and
the network is near a local minimum point in the parameter
space; if we use an overly large learning rate for gradient
descent, the network parameters will tend to oscillate around
the local minimum point [45].

To address this challenge, we design an adaptive malicious
local optimizer, which adaptively scales up the gradient of
each parameter in the adversary’s bottom model. The detailed
algorithm of the malicious local optimizer is shown in Algo-
rithm 1. Gout put is the gradient of the loss w.r.t. the output of
the adversary’s bottom model. G is the gradients of the loss
w.r.t. the parameters of the adversary’s bottom model. For
each parameter θ, rθ is its adaptive gradient scaling factor, and
vθ is the exponential moving average of each scaled gradient
in previous iterations (also known as the velocity). First, the
adversary receives Gout put from the server, then computes G
by backward propagating Gout put (line 2-3). Afterwards, vθ is
computed according to the definition of exponential moving
average (line 5). Next, if it is not the first iteration, for each
parameter θ and its gradient gθ of the bottom model, rθ is
computed as rθ← 1.0+ γ · (vθ÷ vlast), where γ is a hyperpa-
rameter set to 1.0 in our experiments and vlast is the value of
vθ in the last iteration (line 6-7). Further, rθ is bounded by
the maximum/minimum value to improve the stability of the
algorithm (line 8-9), and then vθ is scaled with rθ (line 10).
Finally, vlast is updated with vθ, and then θ is updated with vθ

(line 12-13).
By using this mechanism, the malicious local optimizer

scales up gradients with adaptive scaling factors. To illustrate
how the adaptive scaling factor works, we take one param-
eter as a simplified case, which only has two optimization
directions: increase or decrease. If the velocity (of this pa-
rameter) has an opposite sign with the velocity of the last
iteration, it is considered an oscillation signal. Correspond-
ingly, the malicious local optimizer will decrease the scaling
factor. This intuition is similar to the classic optimization
algorithm Rprop [40]. On the contrary, if the signs of the
velocities remain the same in a series of iterations, it can be
inferred that the parameter is steadily optimized in one di-
rection. Then the malicious local optimizer will increase the
scaling factor for faster optimization. Therefore, the adaptive
malicious local optimizer is able to accelerate the gradient
descent of the adversary’s bottom model while avoiding the

negative influence of overly large local gradients.
By using the malicious local optimizer in the training stage,

the adversary can obtain a trained bottom model with more
hidden information about labels. We will visually prove this
point in Section 5.3. Then the adversary can follow the model
completion step in the passive inference attack to get the final
label inference model. The active label inference attack is
expected to boost the label inference accuracy and will be
evaluated in Section 5.1.

3.5 Direct Label Inference Attack
Instead of relying on the trained bottom model, as discussed
in Section 3.1, an adversary can also directly utilize the re-
ceived gradients to infer the labels of the training examples.
As a preliminary study, we only consider the VFL without
model splitting. Under this setting, the adversary is able to
receive the gradients of the final prediction layer. Taking such
an advantage, he/she can directly infer labels by analyzing
the signs of the gradients received from the server. We name
this attack as the direct label inference attack. The idea is
inspired by the work of Zhao et al. [60]. Their work focuses
on the data reconstruction attack in HFL, but one step of their
method is relevant to inferring labels. They demonstrated that
the signs of the gradients in HFL can leak the labels of the
training samples. We extend this idea to the field of VFL,
and present mathematical analysis and experiments to demon-
strate how the customized method works for label inference in
VFL without model splitting. The direct label inference attack
works for the mainstream loss functions used for the classifi-
cation tasks, including the cross-entropy loss, the weighted
cross-entropy loss, and the negative log likelihood loss.

Here we take the cross-entropy loss as an example. Gener-
ally, for the vertical federated model (without model splitting)
trained with the cross-entropy loss, we have:

loss(x,c) =−log
e∑k yk

c

∑ j e∑k yk
j

(1)

where x is the features of one sample, and c is the ground-
truth label. yk = [yk

1,y
k
2, ...] is the activations of the output layer

(logits) of the kth participant’s bottom model, and yk
i is logits

for the ith class. y = y1 + y2 + ...+ yK is the aggregated logits
from K participants. Assuming that the advth participant is
the adversary, then the gradient of the loss w.r.t. the ith logit
from the adversary is

gadv
i =

∂loss(x,c)
∂yadv

i
=−

∂logeyadv
c −∂log∑ j eyadv

j

∂yadv
i

=


−1+ eyadv

i

∑ j e
yadv

j
i f i = c

eyadv
i

∑ j e
yadv

j
i f i 6= c

(2)

Table 1: Model architectures. “FCNN-3” refers to the 3-layer
fully connected neural network.

Dataset
Bottom Model
Architecture

Top Model
Architecture

CIFAR-10 ResNet-18 FCNN-4
CIFAR-100 ResNet-18 FCNN-4
CINIC-10 ResNet-18 FCNN-4

Yahoo Answers BERT FCNN-4
Criteo FCNN-3 FCNN-3
BHI ResNet-18 FCNN-4

We have gadv
i < 0 if i = c and gadv

i > 0 if i 6= c because

∑ j eyadv
j ∈ (0,1). Therefore, the sign of gadv

i indicates whether
the ith label is the ground-truth label. As the server sends back
gadv

i to the adversary in every iteration, the adversary can infer
the label of the current training sample by the sign of gadv

i .
For the weighted cross-entropy loss, we have:

loss(x,c) = wc× (−log
e∑k yk

c

∑ j e∑k yk
j
) (3)

where wc is the weight of the ground-truth label, and the defi-
nitions of other symbols are the same as above. Apparently,
the new introduced weight wc(wc > 0) has no impact on the
fact that the sign of gadv

i indicates whether the ith label is the
ground-truth label. As for the negative log likelihood loss, it
is the same as the cross-entropy loss in practice.

To draw a conclusion, for VFL without model splitting,
the adversary can directly infer labels from the signs of the
gradients sent back by the server. The downside of this attack
is that it is only able to infer the labels of training examples,
as no gradients are available at the inference time. However,
in order to infer the label of an arbitrary sample, the adver-
sary can use the obtained labels of the training examples as
auxiliary labeled data to further conduct the designed passive
label inference attack.

4 Experimental Setup

4.1 Datasets and Model Architectures
We choose six datasets to evaluate our label inference at-
tacks: CIFAR-10, CIFAR-100 [22], CINIC-10 [11], Yahoo
Answers [39], Criteo [23] and Breast Histopathology Images
Dataset (BHI) [32]. CIFAR-10 is selected for the convenience
of later visualized analysis. CIFAR-100 is selected to prove
the feasibility of our attacks on datasets with many class la-
bels, e.g., 100 classes. CINIC-10, which is 4.5 times the size
of CIFAR-10, is selected to prove that our attack is also effec-
tive on large datasets. Yahoo Answers is selected to prove that
our method is applicable for various data types and model
architectures, e.g., text data and BERT [12]. Criteo is a real-
world dataset for predicting ad click-through rate, which is
selected to show that our attack is applicable in commercial

Table 2: Attack performance of our passive and active label inference attacks. Since BHI is an unbalanced dataset, we use F1
score as the metric for evaluation. “Passive” or “Active” means that the VFL model is under the passive or active label inference
attack.

Dataset Train
Set Size

Test
Set Size

Number
of

Classes

Known
Label

Quantity
Per Class

Metric
Attack Performance

Train Set Test Set

Passive Active Passive Active

CIFAR-10 50,000 10,000 10 4 Top-1 Acc 0.8024 0.8484 0.6299 0.6342
CIFAR-100 50,000 10,000 100 4 Top-5 Acc 0.6267 0.6732 0.4319 0.4700
CINIC-10 180,000 90,000 10 4 Top-1 Acc 0.7206 0.7818 0.5440 0.5995

Yahoo Answers 50,000 20,000 10 10 Top-1 Acc 0.6335 0.6424 0.6370 0.6419
Criteo 80,000 20,000 2 50 Top-1 Acc 0.6828 0.6879 0.6785 0.6830
BHI 69,181 17,296 2 35 F1 Score 0.7614 0.7824 0.7519 0.7673

scenarios where categorical features and continuous features
are commonly used. BHI is a real-world medical dataset to
demonstrate the threats of label inference attacks in medical
scenarios. Table 1 shows an overview of the datasets and their
corresponding neural network architectures. The choices of
hyperparameters are based on the standard models from ML
literature, and all models use initialization methods in [19].

To fit these datasets for the scenario of VFL, we need to
preprocess them. For CV datasets with image classification
tasks including CIFAR-10, CIFAR-100 and CINIC-10, each
sample (an image) is cut in half from the middle line with
each participant holding a half, as the common setting for
experiments of VFL [26, 28]. For Criteo, the dataset with
categorical and numerical features, we first project all fea-
tures into a hash space of 213 dimensions, then cut the feature
dimensions in half, and then the benign participant and the
adversary both holds 212 dimensions. While splitting raw fea-
tures before projecting them into the hash space is a more
realistic approach on this dataset, we choose the approach
above to guarantee that the features assigned to each partici-
pant are valuable for the original task to some extent, which
is corresponding to the assumption described in Section 3.2.
For Yahoo Answers, the dataset for text classification, each
sample (one paragraph of text) is split into two paragraphs
with each participant holding one of them. As for BHI, each
patient in the dataset has several medical image patches. Thus,
we use it for both two-participant and multi-participant ex-
periments. In both settings, we assign the available image
patches of a patient with the same label to each participant in
a round-robin manner.

For more details of these datasets, please refer to Ap-
pendix C.

4.2 Experiment Environment and Parameter
Settings

All experiments are performed on a workstation equipped
with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, 32GB
RAM, and four NVIDIA GTX 1080Ti GPU cards. We use Py-
Torch to implement DNNs. We assume the adversary has 40,
400, 40, 100, 100 and 70 auxiliary labeled samples for CIFAR-

10, CIFAR-100, CINIC-10, Yahoo Answers, Criteo and BHI,
respectively. As for other parameter settings of the passive
and active label inference attacks, please refer to Appendix D.

5 Attack Evaluation

5.1 Attack Performance
With the settings in Section 4, on all the six evaluated datasets,
the federated models get good performance with respect to
the original tasks (top-1 accuracy of 0.8280, 0.7369, 0.7167,
0.7132 on CIFAR-10, CINIC-10, Yahoo Answers and Criteo,
respectively; 0.7511 top-5 accuracy on CIFAR-100; 0.8340
F1 score on BHI). Then, in this section, we evaluate the per-
formance of our label inference attacks.

Performance of the Passive Label Inference Attack. The
experimental results of the passive label inference attack on
the six datasets are reported in Table 2. Our attack achieves
good performance with the top-1 accuracy/F1 score of around
0.75 on CIFAR-10, CINIC-10 and BHI. On the datasets with
more difficult tasks such as CIFAR-100 and Criteo, our attack
still achieves a good performance with a top-5/top-1 accuracy
of around 0.70. On Yahoo Answers, our attack achieves a
top-1 accuracy of around 0.65. Considering that the state-of-
the-art performance on Yahoo Answers is a top-1 accuracy
of 0.7762 [44], the performance of our attack is as expected
on this dataset. Further, we find that by exploiting the labels
inferred by the passive attack, the adversary can even gain
additional power to infer other private information related to
the labels. For details, please refer to Appendix E.

Performance of the Active Label Inference Attack. To
show that our active label inference attack can further boost
the attack performance, we use the malicious local optimizer
in Section 3.4 to update the adversary’s bottom model in
the training stage. The attack performance is shown in Ta-
ble 2. On all the six datasets, the active label inference attack
outperforms the passive label inference attack. For example,
on CINIC-10, the active attack boosts the top-1 inference
accuracy from 0.7206 to 0.7818 on the training dataset and
from 0.5440 to 0.5995 on the testing dataset. The main rea-

son is that the malicious local optimizer can make the top
model rely more on the adversary’s bottom model, and thus
the adversary’s bottom model learns a more indicative feature
representation to predict the labels. More analysis and proofs
are presented in Section 5.3.

Comparison to the Direct Semi-supervised Learning. The
key insight for our passive and active label inference attacks is
that the bottom model of the adversary is trained to transform
the input features to an indicative representation to predict the
labels. To show the capability of the trained bottom model, we
compare the label inference accuracy when the adversary uses
the direct semi-supervised learning, i.e., the adversary uses
the same model architecture but with a randomly initialized
bottom model instead. The same semi-supervised training
strategy is employed with the same amount of auxiliary la-
beled samples. For simplicity, we here use CIFAR-10 as an
example dataset to conduct the evaluation. The results are
reported in Table 3. It can be seen that our passive label in-
ference attack achieves much better label inference accuracy
than the direct semi-supervised learning. As a particular case
in Table 3, when the adversary has only ten labeled samples,
i.e., one labeled sample for each class, the top-1 inference
accuracy of the direct semi-supervised learning is only 0.1157
on the training dataset. This is as expected because it is al-
most impossible for the direct semi-supervised learning to fit
well with so few labeled samples. However, with the same ten
labeled samples, our passive label inference attack achieves
a good top-1 inference accuracy of 0.6554. This proves the
inference capability of the trained bottom model, as the only
difference between our passive label inference attack and the
direct semi-supervised learning is whether the bottom model
has been pre-trained. This experiment also explains why our
passive attack based on model completion is effective even
with few auxiliary labels. Firstly, the inference capability of
the trained bottom model is strong. Secondly, the state-of-the-
art semi-supervised learning algorithms further empower the
inference ability of the attacker’s complete model.

Performance of the Direct Label Inference Attack. As
stated in Section 3.5, the direct label inference attack is appli-
cable for VFL frameworks without model splitting and can
only infer the labels of samples in the training dataset. We
evaluate its performance on all the six datasets and our ex-
periment shows that the direct label inference attack achieves
a top-1 accuracy of 1.0000 on every dataset, which is as ex-
pected because the direct label inference attack is based on
deterministic mathematical derivation.

Impact on the Performance of the Original Task of a VFL
Model. To be stealthy, attacks against VFL should not de-
grade the performance of its original task evidently. The di-
rect/passive label inference attack does not attack in the train-
ing stage, so there is no degradation on the federated model’s
performance on the original task. However, the active label
inference attack may influence the performance of the origi-

Table 3: The impact of the amount of auxiliary labeled data
on CIFAR-10, and the attack performance comparison be-
tween the passive label inference attack and the direct semi-
supervised learning. Attack performance is measured by top-1
accuracy.

Known Label
Quantity

Passive Label Inference Direct Semi

Training
Dataset

Test
Dataset

Training
Dataset

Test
Dataset

10 0.6554 0.5235 0.1157 0.1138
20 0.7080 0.5542 0.1187 0.1166
40 0.8024 0.6299 0.1698 0.1683
120 0.8406 0.6305 0.1866 0.1846
320 0.8544 0.6392 0.3286 0.3218

Table 4: The impact of the active label inference attack on the
performance of the original task.

Dataset Metric Model Performance under:

No Attack Active Attack

CIFAR-10 Top-1 Acc 0.8280 0.8139
CIFAR-100 Top-5 Acc 0.7511 0.7500
CINIC-10 Top-1 Acc 0.7369 0.7400

Yahoo Answers Top-1 Acc 0.7167 0.7120
Criteo Top-1 Acc 0.7132 0.7128
BHI F1 Score 0.8340 0.8504

nal task, since it manipulates the training process. To evaluate
the overhead of the active label inference attack, we conduct
experiments to compare the original task’s performance on
the test datasets with/without the active label inference attack.
The results are shown in Table 4. It can be seen that the active
label inference attack has a very small impact on the perfor-
mance of the original task. For example, on CIFAR-10, with
the active attack, the federated model’s top-1 accuracy on the
original task decreases by 0.0141, while on Criteo, the de-
crease is only 0.0004. On BHI, the active attack even slightly
boosts the federated model’s F1 score on the original task,
from 0.8340 to 0.8504. The underlying reason is that though
the active label inference attack tricks the federated model
to rely more on the adversary’s bottom model, it does not
“force” the federated model to do so. If the adversary’s bottom
model cannot be optimized to improve the performance of the
federated model, as discussed in Section 3.4, the malicious
local optimizer will catch the signal of oscillation and then
gradually stop the active attack by automatically decreasing
the gradient scaling factor.

5.2 Sensitivity Evaluation
In this subsection, we study various of factors that may affect
the performance of our passive and active attacks. Experimen-
tal results of more sensitivity evaluations can be found in the
supplementary material of this paper [14].
Impact of the Quantity of the Adversary’s Features. Our
passive or active label inference attack trains a complete
model based on the adversary’s bottom model. Then the com-
plete model is used to infer labels, taking the adversary’s

Figure 2: The impact of the quantity of the adversary’s fea-
tures.

available local data as input. Therefore, the quantity of the
adversary’s local features could determine the upper bound of
the attack performance. We conduct experiments on Criteo to
investigate the impact of the adversary’s feature quantity. All
the 213 feature dimensions are firstly randomly sorted. Then,
different fractions of the feature dimensions are assigned to
the adversary. The upper bound is obtained using all the la-
bels to directly train an inference model with the adversary’s
features. As shown in Figure 2, the adversary can hardly in-
fer labels when he/she has only 12.5% of the features with
the passive attack. However, with the active attack, the top-
1 inference accuracy is boosted to around 0.60. When the
adversary has over 35% of the features, the top-1 inference
accuracy of both attacks is above 0.65. Further, as expected,
the inference performance of both attacks is within the upper
bound. We can draw three conclusions from this evaluation.
First, generally, the more features the adversary has, the better
the attack performance is. Second, our active label inference
attack steadily outperforms the passive label inference attack,
even when the adversary has a small quantity of features.
Third, the attack performance of the passive or active attack
is limited within the upper bound determined by the quantity
of the adversary’s features.

Amount of Auxiliary Labeled Data. Our passive and ac-
tive label inference attacks need additional labeled samples to
train the complete model via semi-supervised learning. The
amount of available auxiliary labeled data may impact the
attack performance. Therefore, we evaluate the accuracy of
our passive label inference attack on CIFAR-10 with different
amounts of auxiliary labeled samples. As shown in Table 3,
more auxiliary labeled samples indeed increase the attack ac-
curacy. However, as the number of auxiliary labeled samples
grows, the attack accuracy increases more and more slowly.
In practice, an attacker does not need a large amount of auxil-
iary labeled samples to get a reasonable attack accuracy. For
example, 40 auxiliary labeled samples, which is much smaller
comparing with the 50,000 training samples, help the passive
attack reach a top-1 accuracy of 0.8024.

Multi-participant Experiment. As the number of partici-
pants increases in VFL, the contribution from each participant
might be weakened. This indicates that the latent feature rep-
resentation from an adversary might also be less indicative

Figure 3: Performance of the active attack in multi-party
setting on BHI.

Table 5: GradCAM visualization of the passive and active
label inference attacks on CIFAR-10. The left half of image
is the datum of the adversary.

Original Image
in CIFAR-10

GradCAM
under Passive

Label Inference
Attack

GradCAM
under Active

Label Inference
Attack

for label inference. To study this factor, we evaluate the per-
formance of our active label inference attack with different
number of participants on the BHI dataset. The input features
are evenly divided among the participants.

As shown in Figure 3, the performance of the active label
inference attack, measured by the F1 score, degrades when
the number of participants increases. This is consistent with
our expectation, as the top model’s reliance on the features
provided by the adversary’s bottom model degrades. However,
the F1 score of the active label inference attack is still over
0.70 when there are up to eight participants. When there are
ten participants, the F1 score drops to around 0.60, while it is
worth to mention that different from HFL, which may involve
hundreds of participants in practice, VFL in practice usually
has only several participants with two-participant VFL as the
most common case [7]. The situations where a large number
of participants join in VFL is rare.

Even under the multi-participant scenario, we find that
the adversary can add overlapping features to his/her bot-
tom model to boost the attack performance. VFL assumes
that the features from the participants are disjoint and indeed
participants usually agree on the feature set that each one
should provide. However, in practice, it is very common for
two participants to have overlapping features, e.g., a bank and
a financial company are very likely to both have user income
features. Therefore, the adversary can maliciously add the
overlapping features to its bottom model to have better ca-
pability of inferring the labels. In our experiments with ten

Figure 4: t-SNE projection of the outputs of the adversary’s
bottom model. Different color represents different labels.

participants, the adversary can only achieve a F1 score of
0.6446, if the features are evenly assigned to the participants.
However, if the adversary intentionally adds 2 overlapping
features, the F1 score is boosted to 0.7638.

5.3 Why the Active Label Inference Attack
Works

To better understand how the active label inference attack
boosts attack performance compared to the passive label in-
ference attack, we use a visualization tool, GradCAM [42],
on CIFAR-10. GradCAM can highlight the important regions
in the image for predicting the class. We find that if the ad-
versary uses the malicious local optimizer to update his/her
bottom model in the training stage, the top model will pay
more attention to the adversary’s local data in the end. Table 5
shows some image samples in CIFAR-10 and their GradCAM
results under the passive and active label inference attacks.
As described in Section 4.1, the left half of the image is the
datum of the adversary, while the right half of the image is the
datum of the benign participant. It can be seen that after train-
ing with the malicious local optimizer, the whole federated
model relies more on the datum of the adversary.

From above analysis, it can be further inferred that with
the malicious local optimizer’s help, the adversary’s bottom
model learns more indicative representations of his/her local
features. To prove this, we use t-SNE [46] to visualize the
distribution of the adversary’s bottom model’s outputs. As
shown in Figure 4, the adversary’s bottom model learns better
in separating samples from each class with the active attack.
As expected, the experimental results here is correlated to
the active attack performance in Table 2. For example, from
Figure 4 (a) and (d), it is evident that the bottom model learns
much better representations with the active attack, which is
corresponding to the fact shown in Table 2 that the active
attack effectively boosts the top-1 inference accuracy from
0.8024 to 0.8484. However, on Criteo, the bottom model
seems to learn slightly better representations, which is shown
in Figure 4 (b) and (e). Correspondingly, Table 2 shows that
although the active attack successfully boosts the attack per-
formance (from 0.6828 to 0.6879, top-1 accuracy), the boost
is not as effective as that on CIFAR-10.

To sum up, with the active attack, the adversary gets a
trained bottom model containing more information about
labels. Thus, after the model completion, the complete model
performs better in predicting the labels, bringing better label
inference performance.

6 Defenses

6.1 Possible Defenses

Some defense approaches may mitigate our label inference
attacks. In the training process of VFL, the only informa-
tion sent to the adversary is the gradient from the server.
Thus, defensive strategies can be applied to the gradients to
prevent information leakage from the server to the adver-
sary. We consider four possible defense approaches against
label inference attacks: noisy gradients, gradient compression,
privacy-preserving deep learning and discreteSGD (a cus-
tomized version of signSGD [4]). These defense approaches
are commonly used by prior works to mitigate possible infor-
mation leakage in FL [20, 30, 43, 62].

Noisy Gradients. As discussed in [62], adding noise to gra-
dients is a common defense strategy in FL. In VFL, the server
can add laplacian noise to gradients before sending them to
participants.
Gradient Compression. Another defense strategy is sharing
fewer gradients, which is also known as gradient compres-
sion. Gradient compression is a strategy designed both for
communication efficiency and privacy protection [21]. Its
key idea is only sharing a proportion of gradients with the
largest absolute values. HFL can still produce highly-accurate
global model even when only 10% of the gradient values are
shared [43].
Privacy-preserving Deep Learning. Privacy-preserving
deep learning is a comprehensive privacy-enhancing method
introduced in [43]. It includes three defense strategies: differ-
ential privacy, gradient compression, and random selection. In
each iteration, the server does the following steps to protect
the gradients: (1) randomly selects one gradient value, gen-
erates noise, and adds the noise to the gradient value; (2) if
the gradient value after adding noise is larger than a threshold
value τ, keeps it, otherwise sets it to zero; (3) loops the first
two steps until θu fraction of gradient values are gathered.
Both θu and τ are hyperparameters to balance the trade-off
between model performance and defense performance.

DiscreteSGD. SignSGD [4] is proposed to reduce the com-
munication cost among workers in HFL and prevent privacy
leakage caused by gradients. Since it only preserves the signs
of gradients, it further boosts communication efficacy and en-
hances privacy protection. However, it is not proper to naively
apply signSGD to VFL. The reason is that in HFL, the shared
gradients from the sever to the participant include the updates
of all the model parameters, while the shared gradients in
VFL only include the gradients of the loss w.r.t. the outputs of

a participant’s bottom model. A participant needs to do local
backward propagation based on the shared gradients to get
updates of all parameters of his/her bottom model. Therefore,
VFL is more sensitive to modifications on the shared gradi-
ents. Our preliminary experiment shows that directly applying
signSGD to VFL is very likely to make a VFL model fail to
converge on the original task.

With the above consideration, we evaluate a customized
version of signSGD by keeping partial magnitude information
of the shared gradients, which we name as discreteSGD, as a
possible defense. Specifically, the server first observes the dis-
tribution of the shared gradients in the first epoch. The mean
and the standard deviation of the distribution are denoted as µ
and σ, respectively. According to the three-sigma rule [37],
the server sets an interval as [µ−2σ,µ+2σ]. The gradients
outside of the interval are regarded as outliers and discarded.
Then, the server slices the interval into N sub intervals. In
the following training process, before sending gradients to a
participant, the server first rounds each gradient value to the
nearest endpoint of the sub intervals, e.g., a gradient value of
1.6 with sub intervals [0, 1] and [1, 2] will be rounded to the
endpoint 2. The hyperparameter N controls how much magni-
tude information of the shared gradients is preserved. While
VFL fails to converge with signSGD, discreteSGD is a more
suitable defense solution. As shown in Figure 5 (j)-(l), our
experiment proves that with N set to a reasonable value like
24, discreteSGD brings little degradation to a VFL model’s
performance.

6.2 Defense Evaluation

Defense Against the Active Label Inference Attack. We
evaluate the four defense approaches introduced in Section 6.1
against label inference attacks on three datasets: CIFAR-10,
Criteo and BHI. Similar experiments can be extended to other
datasets. The results are reported in Figure 5.

From Figure 5 (a)-(c), for noisy gradients, we do exper-
iments on several scales of laplacian noise to evaluate its
defense performance against the active label inference attack.
It can be seen that noise at a small scale cannot mitigate the
risk of label leakage. Large-scale noise can successfully miti-
gate label inference attacks, but with the cost of significantly
degrading the federated model’s performance on the original
task. A funny thing is that on CIFAR-10, the noise with a
scale of 1e−3 even makes our attack stronger, possibly be-
cause noise at this scale has a similar effect with adversarial
training [31] that makes the federated model learn a more
robust representation of the adversary’s data.

From Figure 5 (d)-(f), for gradient compression, we evalu-
ate its defense performance with different compression rates.
On CV datasets such as CIFAR-10 and BHI, gradient com-
pression can successfully mitigate label inference attacks, but
with the cost of significantly degrading the federated model’s
performance on the original task. For example, on BHI, when

Figure 5: Defense performance of four defense approaches
with different parameter settings against the active label in-
ference attack. (a)-(c): noisy gradients (NG), (d)-(f): gradient
compression (GC), (g)-(i): privacy-preserving deep learning
(PPDL) and (j)-(l): discreteSGD. The symbol ∞ in (j)-(l)
represents keeping gradients continuous, i.e., not applying
discreteSGD.

the compression rate is 0.9, both the F1 score of the adver-
sary’s inference performance and the federated model’s F1
score on the original task decrease by around 0.30. On dataset
with numerical and categorical features like Criteo, gradient
compression seems to have no apparent effect. As shown in
Figure 5 (e), both the federated model’s performance on the
original task and the attack performance have no significant
change as the compression rate varies from 0.1 to 0.9.

From Figure 5 (g)-(i), for privacy-preserving deep learning,
we evaluate its defense performance with different settings of
the hyperparameter θu. On all three datasets, the defense of
privacy-preserving deep learning can mitigate label inference
attacks with the hyperparameter θu set to 0.25 or lower. How-
ever, the degradation of the federated model’s performance
on the original task is also significant, which is different from
the results reported on HFL [43]. We believe that this is re-
lated to the different nature of HFL and VFL. As mentioned
in 6.1, VFL is more sensitive to modifications on the shared
gradients from the server to participants. This explains why
privacy-preserving deep learning might be a good defense for
HFL but not suitable for VFL.

Table 6: Defenses against the direct label inference attack on
CIFAR-10.

Defense
Approach

Parameter Parameter
Set Value

Model
Accuracy

Attack
Accuracy

Noisy
Gradients

Noise
Scale

1e-4 0.8347 0.8063
1e-3 0.8318 0.4906
1e-2 0.7191 0.2452
1e-1 0.1000 0.1265

Gradient
Compression

Compression
Rate

75% 0.8248 0.9997
50% 0.8259 0.9931
25% 0.8049 0.9245
10% 0.1000 0.0058

Privacy-
preserving

Deep Learning
θu

0.75 0.8189 0.3904
0.50 0.8216 0.3891
0.25 0.1993 0.0972
0.10 0.1000 0.0430

Discrete
SGD N

24 0.8145 0.9763
18 0.7962 0.9330
12 0.7471 0.9399
6 0.6575 0.9087

We evaluate the defense performance of discreteSGD with
different settings of the hyperparameter N in Figure 5 (j)-(l).
The results are similar to the above three possible defenses.
On all the three datasets, as the hyperparameter N decreases
(the gradients become more discretized), both the attack per-
formance and the federated model’s performance on the origi-
nal task degrade significantly, which shows that discreteSGD
cannot effectively defend against the active label inference
attack. We believe that this is due to the inner nature of our la-
bel inference attacks. As our attacks extract information about
labels from a part of the federated model, i.e., one of the bot-
tom models, the attack performance is highly correlated to
how well the adversary’s bottom model is trained. However,
in spite of this inherent trade-off, discreteSGD seems to be
able to reduce the cost, i.e., the degradation of the federated
model’s performance on the original task. For example, on
CIFAR-10, assuming that the defense goal is to decrease the
adversary’s top-1 inference accuracy on the training/testing
dataset to around 0.2500; privacy-preserving deep learning
can achieve this goal with the cost that the federated model’s
top-1 accuracy on the original task degrades from 0.8139 to
around 0.4000. While for discreteSGD, the degradation is
from 0.8139 to around 0.6000. Although the cost is still high,
discreteSGD outperforms the above three defenses in this
aspect, showing that gradient discretization is possibly a more
promising defense against the label inference attacks.

Defense Against the Direct Label Inference Attack. We
evaluate the four defense approaches against the direct label
inference attack on CIFAR-10 (similar evaluation can be ex-
tended to other datasets). The results are reported in Table 6.
All the evaluated defense approaches except discreteSGD can
mitigate the direct label inference attack. This is as expected
because the direct label inference attack relies on the signs
of gradients, so any modification on the gradients’ signs, e.g.,

adding noise to flip the gradients’ signs and pruning some
gradients to zero, can effectively defend against this attack. In
our experiments, privacy-preserving deep learning achieves
the best defense performance since it degrades the top-1 ac-
curacy of the direct label inference attack from 1.0000 to
0.3891 without decreasing the federated model’s accuracy on
the original task. Gradient compression seems to have the
advantage of maintaining the performance of the original task.
However, gradient compression cannot effectively degrade
the attack performance, which is due to that it prefers to prune
gradients with small absolute values to zero, but the gradient
related to the ground truth label may not be included in these
small gradients. Noisy gradients can significantly mitigate the
label inference attack, since adding sufficient scale of noise
is likely to flip the signs of gradients. Its side effect is that
noise of an over large scale harms the performance of the
original task. Privacy-preserving deep learning combines gra-
dient compression and noisy gradients. As a result, with a
suitable scale of noise and compression rate, it can effectively
mitigate the direct label inference attack while maintaining
the performance of the original task. As for discreteSGD, it is
not effective against the direct label inference attack because
it hardly changes the signs of gradients.

Summary. We evaluate four mainstream defense approaches
including a customized version of signSGD that is popular in
the recent two years. The experiment results show that though
some of these defense approaches can effectively mitigate the
direct label inference attack, they are not effective against the
passive and active label inference attacks. However, actually,
even if the direct label inference attack is mitigated, it can
still infer the labels for a decent number of samples. With the
help of these inferred labels, the adversary can simultaneously
use the passive label inference attack to get a better attack
performance. Therefore, our label inference attacks reveal the
urgency of mitigating the label privacy risks in real-world
VFL applications.

7 Future Work

Evaluation on Other ML Models. This paper focuses on
VFL with DNNs as the ML model, while we have not evalu-
ated VFL built with other types of ML models, such as VFL
with logistic regression [7, 18, 28, 56], and VFL with gradi-
ent boosting tree models [9]. In addition, our experiments
are conducted on convolutional neural networks, fully con-
nected neural networks and transformers, but other types of
neural networks like graph neural networks are also used for
VFL [61]. VFL is a fast-developing research area both in
the academy and industry. More ML models and training
algorithms will be modified to serve VFL. Therefore, it is
interesting to evaluate the privacy and security risks of VFL
built with other ML models.

Towards Better VFL. As shown in Section 6, mainstream
defense strategies are not effective when faced with our label

inference attacks against VFL. This calls for new defense
strategies designed for VFL. In addition, is there any other
privacy or security risk of the current VFL framework? How
to defend VFL against the possible information leakage and
security risks? These are open questions worth exploring.

8 Related Work

8.1 Information Leakage in FL
Prior works have proposed various attacks to exploit possible
data leakage in HFL, including membership inference attacks,
property inference attacks, class representative reconstruction
attacks, and dataset reconstruction attacks. Our label infer-
ence attacks are different from these attacks. First, our work
focuses on the data leakage in VFL, while to the best of our
knowledge, prior works focus on the data leakage in HFL.
Second, our work shows a new type of data leakage – label
leakage, while prior works focus on inferring membership,
sample property, and sample features.

Inferring Membership. Membership inference attacks aim
to infer whether a particular sample appears in the training
dataset [1, 38, 41]. Melis et al. [30] showed that in HFL, if
the federated model uses embedding layers for text data, the
curious server can infer whether a certain word appears in a
participant’s data by observing the non-zero gradients of the
embedding layer. Nasr et al. [33] demonstrated that an adver-
sarial participant in HFL can also infer the membership of
other participants by exploiting the privacy vulnerabilities of
the gradient descent algorithm, and the adversarial participant
can craft adversarial model updates to gain more information
about the membership of other participants’ datasets.

Inferring Class Representatives. Hitaj et al. [20] demon-
strated that an adversarial participant in HFL can use a gener-
ative adversarial network (GAN) to reconstruct the class rep-
resentatives of other participants, and by submitting malicious
model updates, an adversary can deceive other participants
into leaking more information about their data.

Inferring Properties. Melis et al. [30] demonstrated that
an adversarial participant in HFL can infer the properties of
other participants’ input samples by leveraging the exchang-
ing gradients, and the properties are not limited to be related
to the original task. For example, the original task is gender
classification, but the adversary can infer races of training
samples.

Reconstructing Training Samples. A more challenging at-
tack is to completely reconstruct training samples of partici-
pants in FL. Zhu et al. [62] showed that exchanging gradients
in collaborative learning can be exploited to do such an attack.
They assumed the server is curious about the data of partici-
pants, and showed that by optimizing dummy data to match
the gradients submitted by participants, the server can recon-
struct the exact data of every participant. Wang et al. [51]
demonstrated that an adversarial participant can use a GAN

with a multi-task discriminator to simultaneously discriminate
the participant identity of input samples and reconstruct the
samples of other participants.

8.2 Other Attacks Against FL

Backdoor Attacks. Backdoor attack, also known as trojan-
ing attack against ML [6, 17, 27, 36], is a hot research topic
in recent years. A trojaned ML model behaves normally with
normal input samples, but if the input sample has a certain
trojan trigger, the trojaned model will have abnormal behav-
iors. Bagdasaryan et al. [2] first showed that HFL faces the
danger of backdoor attacks: a malicious participant can trojan
the global model by scaling up model updates. Xie et al. [55]
considered the scenario where there are multiple compro-
mised adversarial participants, and proposed the distributed
backdoor attack (DBA) against HFL.

Byzantine Attacks. HFL also faces possible threats of byzan-
tine attacks. In HFL, one or more participants may submit
abnormal intermediate results to the server so that the server
cannot get a converged model [13].

8.3 Defense in FL
Mainstream defense approaches aiming at mitigating infor-
mation leakage from gradients includes adding noise to gradi-
ents [62], gradient compression [25], and randomly pruning
part of the gradients to zero [43]. Privacy-preserving deep
learning [43] is a defense approach combining all the three
mechanisms. However, our experiments in Section 6 show
that these defense approaches are not effective against our
passive and active label inference attacks. SignSGD [4] is a
recent defense for privacy enhancement in HFL. However, our
preliminary experiment shows that directly applying signSGD
to VFL is very likely to make a VFL model fail to converge
on the original task. Therefore, we design a customized ver-
sion of signSGD, named discreteSGD for VFL. Although the
cost (the degradation of the federated model’s performance)
is still high, discreteSGD does better than the above three de-
fenses, showing that gradient discretization is possibly a more
promising defense against our passive and active label infer-
ence attacks. Another line of works studied how to securely
select and aggregate the submits from the participants [35,58].
However, these works focus on defending against byzantine
and backdoor attacks in HFL, and are not suitable to defend
against our label inference attacks against VFL.

9 Conclusion

Most prior works on the privacy and security of FL focus on
HFL. However, as VFL is applied more and more widely in
industry, it is also urgent to evaluate the privacy and security
risks of VFL. To bridge this gap, we conduct the first investiga-
tion on the privacy risks in VFL. We reveal and shed lights on
the new and unique label leakage issue of VFL. As labels are

likely to be highly sensitive information, e.g., whether some-
one has a disease, inferring labels can be a severe privacy
violation.

We design three kinds of label inference attacks covering
several practical settings of VFL. We also provide insights
into how the active attack affects the training of the vertical
federated model with visualization techniques.

Our experiments show that the proposed label inference
attacks are powerful against VFL on real-world large-scale
datasets. We also evaluate possible defenses including gra-
dient compression, noisy gradients, privacy-preserving deep
learning and discreteSGD. Though some of these defenses
can effectively mitigate the threat of the direct label inference
attack, they are not effective against our passive and active
label inference attacks. This should motivate future works on
better defenses.

10 Acknowledgements
This work was partly supported by the National Key
Research and Development Program of China under No.
2020YFB2103802, NSFC under No. 62102360, 61772466,
62072406, U1836202, and U1936215, and the Zhejiang
Provincial Natural Science Foundation for Distinguished
Young Scholars under No. LR19F020003. Ting Wang is par-
tially supported by the National Science Foundation under
Grant No. 1953893, 1953813, and 1951729.

References

[1] M. Backes, P. Berrang, M. Humbert, and P. Manoharan.
Membership privacy in MicroRNA-based studies. In
CCS, 2016.

[2] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and
V. Shmatikov. How to backdoor federated learning. In
AISTATS, 2020.

[3] Baidu. PaddleFL. https://github.com/PaddlePad
dle/PaddleFL.

[4] J. Bernstein, Y. Wang, K. Azizzadenesheli, and
A. Anandkumar. signSGD: Compressed optimisation
for non-convex problems. In ICML, 2018.

[5] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot,
A. Oliver, and C. Raffel. MixMatch: A holistic approach
to semi-supervised learning. In NeurIPS, 2019.

[6] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo.
Analyzing federated learning through an adversarial lens.
In ICML, 2019.

[7] C. Chen, J. Zhou, L. Wang, X. Wu, W. Fang, J. Tan,
L. Wang, X. Ji, A. Liu, H. Wang, et al. When homo-
morphic encryption marries secret sharing: Secure large-

scale sparse logistic regression and applications in risk
control. arXiv preprint arXiv:2008.08753, 2020.

[8] J. Chen, Z. Yang, and D. Yang. MixText: Linguistically-
informed interpolation of hidden space for semi-
supervised text classification. In ACL, 2020.

[9] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang.
SecureBoost: A lossless federated learning framework.
arXiv preprint arXiv:1901.08755, 2019.

[10] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore,
M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and
A. Madabhushi. Automatic detection of invasive ductal
carcinoma in whole slide images with convolutional
neural networks. In Proceedings of the Medical Imaging
2014: Digital Pathology, volume 9041, 2014.

[11] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J.
Storkey. CINIC-10 is not ImageNet or CIFAR-10. arXiv
preprint arXiv:1810.03505, 2018.

[12] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

[13] M. Fang, X. Cao, J. Jia, and N. Gong. Local model
poisoning attacks to byzantine-robust federated learning.
In USENIX Security, 2020.

[14] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou,
A. Liu, and T. Wang. Supplementary material for the
paper "Label Inference Attacks Against Vertical Feder-
ated Learning". https://github.com/FuChong-cyb
er/label-inference-attacks/.

[15] Google. TensorFlow Federated. https://www.tensor
flow.org/federated.

[16] B. Gu, Z. Dang, X. Li, and H. Huang. Federated doubly
stochastic kernel learning for vertically partitioned data.
In KDD, 2020.

[17] T. Gu, B. Dolan-Gavitt, and S. Garg. BadNets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

[18] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini,
G. Smith, and B. Thorne. Private federated learning
on vertically partitioned data via entity resolution and
additively homomorphic encryption. arXiv preprint
arXiv:1711.10677, 2017.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

https://github.com/PaddlePaddle/PaddleFL
https://github.com/PaddlePaddle/PaddleFL
https://github.com/FuChong-cyber/label-inference-attacks/
https://github.com/FuChong-cyber/label-inference-attacks/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

[20] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models
under the GAN: information leakage from collaborative
deep learning. In CCS, 2017.

[21] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Ben-
nis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cor-
mode, R. Cummings, et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[22] A. Krizhevsky, G. Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

[23] Criteo Labs. Criteo dataset. https://labs.criteo.
com/2014/02/download-kaggle-display-advert
ising-challenge-dataset/.

[24] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, and B. He. A
survey on federated learning systems: vision, hype and
reality for data privacy and protection. arXiv preprint
arXiv:1907.09693, 2019.

[25] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally.
Deep gradient compression: Reducing the communi-
cation bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

[26] Y. Liu, Y. Kang, X. Zhang, L. Li, Y. Cheng, T. Chen,
M. Hong, and Q. Yang. A communication efficient col-
laborative learning framework for distributed features.
arXiv preprint arXiv:1912.11187, 2019.

[27] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and
X. Zhang. Trojaning attack on neural networks. In
NDSS, 2018.

[28] Y. Liu, X. Zhang, and L. Wang. Asymmetrically vertical
federated learning. arXiv preprint arXiv:2004.07427,
2020.

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial
Intelligence and Statistics, 2017.

[30] L. Melis, C. Song, E. De Cristof, and V. Shmatikov.
Exploiting unintended feature leakage in collaborative
learning. In IEEE S&P, 2019.

[31] T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Vir-
tual adversarial training: A regularization method for
supervised and semi-supervised learning. TPAMI, 2019.

[32] P. Mooney. Breast histopathology images. https:
//www.kaggle.com/paultimothymooney/breast-
histopathology-images.

[33] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive
privacy analysis of deep learning. In IEEE S&P, 2019.

[34] OpenMined. PySyft. https://github.com/OpenMin
ed/PySyft.

[35] X. Pan, M. Zhang, D. Wu, Q. Xiao, S. Ji, and Z. Yang.
Justinian’s GAAvernor: Robust distributed learning with
gradient aggregation agent. In USENIX Security, 2020.

[36] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik,
X. Luo, A. Liu, and T. Wang. A tale of evil twins:
Adversarial inputs versus poisoned models. In CCS,
2020.

[37] F. Pukelsheim. The three sigma rule. The American
Statistician, 1994.

[38] A. Pyrgelis, C. Troncoso, and E. De Cristofaro. Knock
knock, who’s there? Membership inference on aggregate
location data. In NDSS, 2018.

[39] Soumik Rakshit. Yahoo answers dataset. https://ww
w.kaggle.com/soumikrakshit/yahoo-answers-d
ataset.

[40] M. Riedmiller and H. Braun. A direct adaptive method
for faster backpropagation learning: The rprop algo-
rithm. In IEEE international conference on neural net-
works, 1993.

[41] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz,
and M. Backes. ML-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models. arXiv preprint arXiv:1806.01246,
2018.

[42] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-CAM: Visual explana-
tions from deep networks via gradient-based localiza-
tion. In ICCV, 2017.

[43] R. Shokri and V. Shmatikov. Privacy-preserving deep
learning. In CCS, 2015.

[44] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune
BERT for text classification? In China National Confer-
ence on Chinese Computational Linguistics, 2019.

[45] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On
the importance of initialization and momentum in deep
learning. In ICML, 2013.

[46] L. Van Der Maaten and G. Hinton. Visualizing data
using t-SNE. Journal of machine learning research,
2008.

[47] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar.
Split learning for health: Distributed deep learning
without sharing raw patient data. arXiv preprint
arXiv:1812.00564, 2018.

https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/
https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/
https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset

[48] P. Voigt and A. Von dem Bussche. The EU general data
protection regulation (GDPR). A Practical Guide, 1st
Ed., Cham: Springer International Publishing, 2017.

[49] W. N. Street W. H. Wolberg and O. L. Mangasarian.
Breast cancer wisconsin dataset. https://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisc
onsin+(Diagnostic).

[50] G. Wang. Interpret federated learning with shapley val-
ues. arXiv preprint arXiv:1905.04519, 2019.

[51] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and
H. Qi. Beyond inferring class representatives: User-
level privacy leakage from federated learning. In IEEE
INFOCOM, 2019.

[52] Webank. A case of traffic violations insurance-using
federated learning. https://www.fedai.org/case
s/.

[53] Webank. Federated AI Technology Enabler (FATE).
https://fate.fedai.org/.

[54] Webank. Utilization of FATE in risk management of
credit in small and micro enterprises. https://www.fe
dai.org/cases/.

[55] C. Xie, K. Huang, P. Chen, and B. Li. DBA: Distributed
backdoor attacks against federated learning. In ICLR,
2020.

[56] S. Yang, B. Ren, X. Zhou, and L. Liu. Parallel dis-
tributed logistic regression for vertical federated learn-
ing without third-party coordinator. arXiv preprint
arXiv:1911.09824, 2019.

[57] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong,
D. Ramage, and F. Beaufays. Applied federated learning:
Improving google keyboard query suggestions. CoRR,
abs/1812.02903, 2018.

[58] D. Yin, Y. Chen, R. Kannan, and P. Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical
rates. In Proceedings of Machine Learning Research,
2018.

[59] W. Zhang, Z. Li, and X. Chen. Quality-aware user re-
cruitment based on federated learning in mobile crowd
sensing. Tsinghua Science and Technology, 2021.

[60] B. Zhao, K. R. Mopuri, and H. Bilen. iDLG: Im-
proved deep leakage from gradients. arXiv preprint
arXiv:2001.02610, 2020.

[61] J. Zhou, C. Chen, L. Zheng, X. Zheng, B. Wu, Z. Liu, and
L. Wang. Privacy-preserving graph neural network for
node classification. arXiv preprint arXiv:2005.11903,
2020.

Algorithm 2 Training VFL with model splitting
Require: Top model parameters θtop, bottom model parame-

ters of K participants θ1,θ2, ...,θK , learning rate η, ground-
truth label y.

Server executes:
Initialize θtop and θ1,θ2, ...,θK
while stopping epoch not met do

for each batch b of sample Ids do
for k = 1 to K do

ok←ParticipantForwardProp(θk,b)
end for
oall ← Concat(o1, ...,ok)

. concatenating bottom model outputs
o f inal ← θtop(oall)
L← LossFunc(o f inal ,y)
gtop← ∂L

∂θtop
. updating top model

θtop← θtop−η ·gtop
for k = 1 to K do

gk← ∂L
∂ok

ParticipantBackProp(θk,gk,ok)
end for

end for
end while

ParticipantForwardProp(θ,b):
return bottom model forward outputs θ(b)

ParticipantBackProp(θ,go,o):
g← go · ∂o

∂θ

θ← θ−η ·g . updating bottom model

[62] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients.
In NeurIPS, 2019.

Appendix

A Training Algorithms of VFL

The training algorithms of VFL with/without model splitting
are shown in Algorithm 2 and Algorithm 3, respectively.

B The Customized MixMatch

As discussed in Section 4, in order to make MixMatch appli-
cable to tasks beyond the CV domain, we use a customized
version of MixMatch without data augmentation. The algo-
rithm of the customized MixMatch is shown in Algorithm 4,
where MixUp is a data processing algorithm described in
Algorithm 5, and Sharpen is the sharpening function used
to reduce the entropy of the label distribution. The function
Sharpen is defined as:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://www.fedai.org/cases/
https://www.fedai.org/cases/
https://fate.fedai.org/
https://www.fedai.org/cases/
https://www.fedai.org/cases/

Algorithm 3 Training VFL without model splitting
Require: bottom model parameters of K participants

θ1,θ2, ...,θK , learning rate η, ground-truth label y.

Server executes:
Initialize θ1,θ2, ...,θK
while stopping epoch not met do

for each batch b of sample Ids do
for k = 1 to K do

ok←ParticipantForwardProp(θk,b)
end for
osum← ∑k ok

. aggregating bottom model outputs
L← LossFunc(osum,y)
for k = 1 to K do

gk← ∂L
∂ok

ParticipantBackProp(θk,gk,ok)
end for

end for
end while

ParticipantForwardProp(θ,b):
return bottom model forward outputs θ(b)

ParticipantBackProp(θ,go,o):
g← go · ∂o

∂θ

θ← θ−η ·g . updating bottom model

Sharpen(p,T)i :=
p

1
T
i

∑
L
j=1 p

1
T
j

(4)

where p is the discrete distribution, and T is a hyperparameter.
In each training iteration, the customized MixMatch gen-

erates a collection of processed labeled examples X ′ and a
collection of processed unlabeled examples with guessed la-
bels U′. Then, it uses X ′ and U′ to separately compute the
labeled loss term LX and unlabeled loss term LU :

LX =
1
|X ′| ∑

x,p∈X ′
CE(p, pmodel(y | x;θ)) (5)

LU =
1

N|U′| ∑
u,q∈U′

‖q− pmodel(y | u;θ)‖2
2 (6)

where CE(p,q) is the cross-entropy between distributions p
and q, and N is the number of classes. Finally, the combined
loss is computed as:

L = LX +λULU (7)

where λU is hyperparameters balancing the importance of
labeled/unlabeled data. After obtaining the combined loss,
the neural network model can be updated using backward
propagation.

Algorithm 4 The customized MixMatch. MixMatch takes a
batch of labeled data X and a batch of unlabeled data U, then
produces a collection of processed labeled examples X ′ and
a collection of processed unlabeled examples with guessed
labels U′.

Input: Batch of labeled examples and their one-hot labels
X =

(
(xb, pb);b ∈ (1, ...,B)

)
, batch of unlabeled examples

U =
(
ub;b ∈ (1, ...,B)

)
, sharpening temperature T , Beta

distribution parameter α for MixUp.
for b = 1 to B do

qb = pmodel(y | ub;θ)
qb = Sharpen(qb,T)

end for
Û =

(
(ub,qb);b ∈ (1, . . . ,B)

)
W = Shuffle

(
Concat(X ,Û)

)
X ′ =

(
MixUp(Xi,Wi); i ∈ (1, . . . , |X |)

)
. Apply MixUp to labeled data and entries from W

U′ =
(
MixUp(Ûi,Wi+|X |); i ∈ (1, . . . , |Û|)

)
. Apply MixUp to unlabeled data and the rest of W

return X ′,U′

Algorithm 5 MixUp. MixUp takes two samples with their
corresponding labels probabilities (x1, p1),(x2, p2), and pro-
duces a “mixed” sample with its “mixed” labels probabilities
x′, p′.

Input: Two samples with their corresponding labels proba-
bilities (x1, p1),(x2, p2), Beta distribution parameter α.
λ∼ Beta(α,α)
λ′ = max(λ,1−λ)
x′ = λ′x1 +(1−λ′)x2
p′ = λ′p1 +(1−λ′)p2
return x′, p′

C Details About Datasets

Here is the detailed introduction of all the six datasets used
in this paper, including Criteo, Yahoo Answers, CINIC-10,
CIFAR-10, CIFAR-100 and BHI.

CIFAR-10 and CIFAR-100. CIFAR-10 [22] is a classic
dataset built for image classification. It consists of 10 classes
and 60,000 images in the size of 32×32 pixels. CIFAR-100
has the same size as CIFAR-10 but it has 100 classes (600 im-
ages each). Following the common practice of using CIFAR-
10 or CIFAR-100, we take 50,000 samples as the training
dataset and other 10,000 as the test dataset.

CINIC-10. CINIC-10 [11] is an extension of CIFAR-10 via
the addition of down sampled ImageNet images, whose name
means “CINIC-10 is not ImageNet nor CIFAR-10”. It consists
of 10 classes and 270,000 images (4.5 times of CIFAR-10)
in the size of 32×32 pixels. Following the common practice
of using CINIC-10, we take 180,000 samples as the training
dataset and other 90,000 as the test dataset.

Criteo. Criteo [23] contains 7 days of click-through data

Table 7: Default settings for key parameters.
(a) Parameters of MixMatch.

Parameter Description Value

λu Label guessing parameter 50
T Sharpening parameter 0.8

(b) Parameters of the malicious local optimizer.

Parameter Description Value

β Momentum parameter 0.9
γ Resetting parameter 1.0

rmax Maximum acceleration rate 5.0
rmin Minimum acceleration rate 1.0

shared by Criteo Labs, which is widely used for CTR predic-
tion benchmarking (given a user and the pages he/she visited,
predict whether he/she will click on a given ad). It contains 26
anonymous categorical features and 13 continuous features.
The 39 features are projected into a hash space of 213 dimen-
sions before sent to the federated model. For simplification,
we randomly select 80,000 samples as the training dataset
and 20,000 as the test dataset.
Yahoo Answers. Yahoo Answers [39] is a dataset for text
classification tasks, which involves 10 classes (topics) such
as “Society & Culture”, “Science & Mathematics”, “Health”,
“Education & Reference”, etc. Each class contains 140,000
training samples and 6,000 testing samples. For simplification,
we take 5,000 training samples and 2,000 testing samples for
each class.
Breast Histopathology Images Dataset (BHI). Invasive
Ductal Carcinoma (IDC) is the most common subtype of
all breast cancers [10]. Breast Histopathology Images Dataset
(BHI) [32] is used for a two-class classification task which
classifies a mount slide image patch as IDC negative or IDC
positive. The dataset consists of 277,524 mount slide image
patches (198,738 IDC negative and 78,786 IDC positive) of
breast cancer specimens. All the mount slide image patches
have a size of 50×50 pixels and are marked with which pa-
tient they belong to. We use 80% of the samples as the training
dataset and the rest as the test dataset.

D Parameter Settings

In experiments, the default parameters of the semi-supervised
learning algorithm MixMatch are listed in Table 7(a). For
MixText, we use the parameter settings in [8]. The default
parameters of the malicious local optimizer are listed in Ta-
ble 7(b).

E Further Exploiting the Inferred Labels

In real-world scenarios, correlated features are quite common,
thus the leakage of one private feature may cause the leakage

of another private feature. We conduct an experiment to show
that the adversary can take advantage of the inferred labels
to infer more private information on a real-world medical
dataset. More details about this experiment can be found in
the supplementary material [14].

Dataset Setup. The experiment is conducted on the Breast
Cancer Wisconsin (BCW) dataset [49], which consists of 32
features of breast mass taken from 569 patients. We randomly
select 426 samples as the training dataset and the remaining
143 samples as the testing dataset. The label is whether a
patient suffers from malignant breast cancer tumor, denoted
as “diagosis”. The adversary is assigned with 15 features,
denoted as features 1 - 15, while the benign participant is
assigned with another 16 features, denoted as features 16 - 31.
The remaining 32nd feature is “radius mean”. The adversary
has auxiliary labeled data. Specifically, from the 426 samples
in the training dataset, the adversary knows “diagnosis” of 40
samples, and “radius mean” of 40 samples.

Threat Model. The adversary and the benign participant
jointly learn a VFL model to predict the label “diagosis”. The
adversary intends to infer “diagosis” by using the passive
label inference attack with the auxiliary data, i.e., 40 samples
labeled with “diagnosis”. Then the adversary further exploits
“diagosis” as an extra feature, together with his/her own fea-
tures 1 - 15, to train an inference model with the purpose of
inferring another feature of a patient – “radius mean”. As
the adversary has 40 auxiliary samples labeled with “radius
mean”, he/she can train the inference model in a supervised
manner.

Model Architecture. We use the 3-layer fully connected
neural network for both the bottom models and the top model.

Experiment Results and Analysis. The VFL model
achieves a top-1 accuracy of 0.9510 on the testing dataset.
With our passive label inference attack, the adversary achieves
a top-1 inference accuracy of 0.8632 for the label “diagnosis”.
Then, the adversary trains a model using the 15 features he/she
owns to infer the unknown feature “radius mean” in a super-
vised manner. The results show that the adversary achieves
0.6443 top-1 inference accuracy among the 426 samples in the
training dataset. Further experiment shows that if the adver-
sary uses the inferred “diagnosis” as an extra feature, he/she
will achieve a top-1 inference accuracy of 0.7237. Compared
with 0.6443, the boost is significant, which shows that the
adversary can infer more private information by exploiting
the inferred labels.

Conclusion. To sum up, our label inference attacks not only
demonstrate the threat of private label leakage in real-world
VFL scenarios, but also reveal that the leaked labels can cause
even further privacy leakages.

	Introduction
	Background
	Horizontal Federated Learning
	Vertical Federated Learning

	Label Inference Attacks
	Possible Privacy Leakage in VFL
	Threat Model
	Passive Label Inference Attack through Model Completion
	Active Label Inference Attack with the Malicious Local Optimizer
	Direct Label Inference Attack

	Experimental Setup
	Datasets and Model Architectures
	Experiment Environment and Parameter Settings

	Attack Evaluation
	Attack Performance
	Sensitivity Evaluation
	Why the Active Label Inference Attack Works

	Defenses
	Possible Defenses
	Defense Evaluation

	Future Work
	Related Work
	Information Leakage in FL
	Other Attacks Against FL
	Defense in FL

	Conclusion
	Acknowledgements
	Training Algorithms of VFL
	The Customized MixMatch
	Details About Datasets
	Parameter Settings
	Further Exploiting the Inferred Labels

