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Abstract

Despite the widespread adoption of encrypted communica-
tion for mobile apps, adversaries can still identify apps or
infer selected user activities of interest from encrypted mobile
traffic via app fingerprinting (AF) attacks. However, most
existing AF techniques only work under the closed-world as-
sumption, thereby suffering potential precision decline when
faced with apps unseen during model training. Moreover, se-
rious privacy leakage often occurs when users conduct some
sensitive operations, which are closely associated with spe-
cific UI components. Unfortunately, existing AF techniques
are too coarse-grained to acquire such fine-grained sensitive
information. In this paper, we take the first step to identify
method-level fine-grained user action of Android apps in the
open-world setting and present a systematic solution, dubbed
FOAP, to address the above limitations. First, to effectively
reduce false positive risks in the open-world setting, we pro-
pose a novel metric, named structural similarity, to adaptively
filter out traffic segments irrelevant to the app of interest. Sec-
ond, FOAP achieves fine-grained user action identification via
synthesizing traffic and binary analysis. Specifically, FOAP
identifies user actions on specific UI components through
inferring entry point methods correlated with them. Extensive
evaluations and case studies demonstrate that FOAP is not
only reasonably accurate but also practical in fine-grained
user activity inference and user privacy analysis.

1 Introduction

Mobile devices in markets have bloomed unprecedentedly
in the last decade [37]. The ubiquitous mobile devices, such
as smartphones and tablets, have become necessities in mod-
ern life. Their prosperity and success are largely attributed to
diverse apps running on them [35, 36]. These apps substan-
tially extend the capability of off-the-shelf mobile devices
and increasingly improve modern life in different aspects.

∗The corresponding author.

While offering convenience, mobile apps also raise privacy
concerns. Massive amounts of private user data are transmit-
ted to and stored in cloud servers. Once these servers are
compromised, catastrophic privacy leakage will happen sub-
sequently [6]. The adversary can also indirectly infer sensitive
private information, such as diseases, religious preferences,
and individual location, through side-channel attacks [26, 34].

Despite the widespread adoption of encrypted communi-
cation, mobile apps are still susceptible to app fingerprinting
(AF) attacks [2, 3, 14, 39–41, 43], which are essentially side-
channel attacks. In such attacks, adversaries recognize apps or
selected user activities of interest using pre-trained machine
learning models without inspecting the packet payload plain-
text, thereby immune to traffic encryption. However, existing
AF techniques face two major limitations.
Closed-World Assumption. The vast majority of existing
AF techniques (e.g., [15, 22, 29]) formulate app identification
as a multi-class classification problem. It implies that they
cannot correctly identify apps that are unseen during model
training, because these apps will be erroneously classified into
known classes. A straightforward solution is training a one-
vs.-rest binary classifier for each app. Nevertheless, such a
plausible solution only works under the closed-world assump-
tion, i.e., apps as the negative class in testing stage should be
presented during model training. If not, false positive cases
may tremendously increase. Unfortunately, involving all rest
apps in the training dataset is impossible as Android and iOS
both host more than 3.4 million third-party apps [35, 36].
Even worse, recent studies [43, 51] pointed out that apps ex-
tensively use third-party libraries, leading to similar network
behaviors, which may increase the risks of false positives.
Identification Granularity. Serious privacy leakage often
occurs when users conduct some sensitive operations on cer-
tain UI components. For instance, in some COVID-19 contact
tracing apps, the click action on the button to report positive
testing can be a strong indicator of COVID-19 infection. How-
ever, information obtained through existing AF techniques is
too coarse-grained to infer the above user privacy because
these techniques focus on either app identification [39, 43, 49]



or inferring selected user activities of interest [15, 22, 29],
and none of them can identify user actions on specific UI com-
ponents. Additionally, previous works need labor-intensive
efforts to manually label selected user activities, limiting their
scalability in the wild.

In this paper, we present FOAP, a novel Fine-grained Open-
world Android App fingerPrinting technique, to address the
above limitations. First, FOAP carries out open-world app
recognition, obviating the need for the closed-world assump-
tion. The core challenge is the risks of false positives in the
open-world setting. We solve it by exploiting the fact that two
different apps seldom exhibit completely identical network
behaviors. Specifically, we propose a novel metric named
structural similarity to characterize how network flows within
a traffic segment behave similarly to those generated by the
app of interest. By leveraging this metric, FOAP effectively
reduces false positives by adaptively filtering out traffic seg-
ments that are irrelevant to the app of interest.

Second, FOAP aims at method-level fine-grained user ac-
tion identification via synthesizing traffic and binary anal-
ysis. We focus on identifying user actions on specific UI
components, e.g., clicking a certain button. To this end, we
characterize user actions using the corresponding entry point
(EP) methods, including callbacks of UI components and life-
cycle methods of Android components, and transform user
action identification to EP method identification. In the train-
ing stage, the major challenge is how to automatically label
network flows with EP methods in the face of various ways
to trigger network flows. We solve it through extensive app
analysis and implement the automatic labeling based on An-
droid framework instrumentation. Automatic labeling brings
two salient advantages: i) it endows FOAP with the capabil-
ity of exploring all possible user actions that may generate
network flows, and thus FOAP can identify not only selected
user activities but also other user actions that trigger network
traffic; ii) it obviates the need of manual labeling, facilitating
the scalability of FOAP. In the identification stage, the major
challenge is the multi-label flow. A network flow is often
correlated with multiple EP methods, leading to a multi-label
classification problem. We relax this problem to a series of
multi-class classification sub-problems by extracting in-flow
bursts. To identify EP methods associated with a network
flow, we model the spatial-temporal contextual dependency
of in-flow bursts within it and infer the EP method associated
with each of them based on the conditional random field.

In summary, this paper makes the following contributions:

• To the best of our knowledge, FOAP is the first approach
for conducting method-level fine-grained app user action
recognition in the open-world setting. We release its
source code and the datasets at https://github.com/
jflixjtu/FOAP.
• We address several challenging issues in the design of

FOAP. First, we design structural similarity, a novel metric
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Figure 1: The threat model.

for effectively reducing the false positive risks in open-
world app traffic recognition. Second, we propose a new ap-
proach to automatically label network flows with EP meth-
ods and build a spatial-temporal context model to accurately
identify EP methods from network flows.
• We implement a prototype of FOAP and conduct extensive

experiments to evaluate it. The results show that FOAP
outperforms baseline approaches in open-world app recog-
nition, improving the F1-score from 0.679 to 0.911. It is
also reasonably accurate in EP method identification with
an average F1-score of 0.885. We present three case stud-
ies to demonstrate FOAP’s practicality in fine-grained user
activity inference and user privacy analysis.

2 Overview

2.1 Threat Model

As shown in Figure 1, the adversary considered in this paper
sniffs network traffic on a wireless access point. His goal is
to recognize network flows generated by the app of interest
and identify what EP methods of this app trigger them to
infer fine-grained user actions. We define a network flow as
a sequence of packets corresponding to a socket-to-socket
communication identified by a unique combination of source
and destination addresses and port numbers, together with
transport protocols. In this paper, we focus on TCP flows,
because i) TCP packets are dominating in Android app traffic
(98.6% in our dataset), and ii) we mainly consider encrypted
network traffic based on TCP protocol (e.g., HTTPS, etc.).

We assume that the adversary can trace back all network
flows to different devices according to source addresses. We
also assume the adversary cannot exploit i) packet plaintext
payload and ii) destination feature of network flows. Our
assumptions match the real-world scenario of AF attacks.
First, since app network flows are commonly encrypted [43],
the adversary cannot access the plaintext payload in most
cases. Second, due to the wide use of encrypted proxy agents
(e.g., ShadowSocks), the real destinations of network flows
are often invisible. Even if the adversaries can obtain the real
destinations, such features are not reliable since they may
change across networks due to the widespread adoption of
CDN. Moreover, the share of third-party libraries among apps
leads to the share of destinations across apps.

https://github.com/jflixjtu/FOAP
https://github.com/jflixjtu/FOAP
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Figure 2: The workflow of FOAP. Training stage (resp. identification stage) is colored in red (resp. blue).

2.2 Workflow of FOAP

Without loss of generality, we assume A is one of the apps of
interest. FOAP identifies method-level user actions of A from
encrypted network traffic in the open-world setting. Figure 2
illustrates the workflow of FOAP.
Training Stage:
• Network Flow Labeling (§ 3) plays a core role in construct-
ing training datasets. By either automatically or manually
running A, we collect A’s traffic instances, each of which
contains a log file (in Android, we call it logcat) and a traffic
file in pcap format. We first label whether a network flow is
from A, i.e, app-level labeling. If yes, we next label when and
what EP methods of A trigger this network flow, i.e., method-
level labeling. We extract a feature vector for every network
flow after app-level labeling to construct the training dataset
for i) Traffic Segmentation, ii) Traffic Filtering, and iii) Flow
Recognition. Since a network flow usually contains multiple
in-flow bursts triggered by different EP methods, we divide
a network flow into a series of in-flow bursts and extract a
feature vector for each one to construct the training dataset
for Method-Level User Action Identification.
Identification Stage:
• Traffic Segmentation (§ 5.1) divides network traffic into
different time periods, such that there are some time periods
during which A is active (if they exist). To this end, we extract
a feature vector for each network flow and compute its local
similarity with A to characterize how likely it is generated by
A, from the perspective of a single flow. Based on the local
similarity, we segment network traffic to locate all possible
time periods when A is probably active. In Figure 2, we rep-
resent each network flow with a bar. The time-axis location
(resp. height) of a bar represents the start time (resp. local sim-
ilarity) of the corresponding flow. Network traffic is divided
into a series of traffic segments, i.e., s1, s2, and s3.
• Traffic Filtering (§ 5.2) is designed for mitigating false pos-
itives in the open-world setting. By leveraging flow pattern
mining, we quantify how likely a network flow matches a cer-
tain pattern of A’s network flows in the feature representation

space and then use this pattern-related information to profile
structural characteristics of a traffic segment. For each traffic
segment, we compute its structural similarity with A by syn-
thesizing pattern-related information from all network flows
within it. Structural similarity is informative to reflect how
likely A is active during the time period corresponding to a
traffic segment. We take advantage of such a metric to identify
traffic segments relevant to A (labeled by A) and filter out
other irrelevant traffic segments (labeled by non-A) without
further analysis. In Figure 2, s1 has a high structural simi-
larity with A because network flows within it match various
patterns of A, whereas s2 has a very low structural similarity
with A because network flows within it match no pattern of A.
Even though some network flows within s3 have high local
similarities with A, s3 has a relatively low structural similarity
with A because these network flows only match one pattern
of A (colored in green), implying s3 is structurally different
from network traffic generated by A. Finally, s1 is identified
as a relevant traffic segment of A, whereas s2 and s3 are iden-
tified as irrelevant traffic segments of A. An irrelevant traffic
segment of A may contain network traffic generated by more
than one apps except A, while relevant traffic segments of
different apps may overlap.
• Flow Recognition (§ 5.3) constructs a bilevel recognition
model to identify whether a network flow in the relevant
traffic segment is generated by A. This model considers not
only the feature vector of a network flow but also contextual
information from surrounding network flows in favor of better
recognition accuracy.
• Method-Level User Action Identification (§ 6) infers
which entry point (EP) methods trigger a network flow of
A to characterize fine-grained user actions. Network flows
corresponding to persistent connections often contain multi-
ple packet bursts, i.e., in-flow bursts, each of which may be
triggered by different EP methods. Network flows correspond-
ing to short connections often contain only one in-flow burst
that is triggered by an EP method. To identify EP methods, we
first extract in-flow bursts and their feature vectors. Next, we
construct a spatial-temporal context model to characterize the



correlation between in-flow bursts. Based on this model, we
identify EP methods to infer fine-grained user actions, such
as clicking on a button.

3 Network Flow Labeling

To construct the training dataset for open-world app traffic
recognition and method-level user action identification, we
capture network flows generated by the tested apps and la-
bel each network flow with the app and EP methods (i.e.,
the component lifecycle or the UI callback) that generate it.
To this end, we instrument Android framework to i) extract
socket information to correlate network flows, ii) retrieve pro-
cess identifier (PID) to obtain the package name and collect
stack trace to determine the EP method. The collected data is
written to logcat.

3.1 Resolving Network Socket
Since Android apps commonly use network sockets to gener-
ate network flows, we resolve each network socket operation
performed by the tested apps to correlate the captured net-
work flows. According to the observation that framework
APIs for performing socket operations (e.g., connect defined
in Socket) rely on socket related native system functions (e.g.,
connect exported by libc.so) to complete tasks, we instru-
ment socket related system functions to get a unique 4-tuple
for each TCP socket. Moreover, since identifiers (i.e., PID
and TID) of the process and thread, executing the socket re-
lated system functions, are essential for obtaining the package
name and correlating the EP method, we make the instru-
mented socket related functions invoke getpid and gettid
to retrieve the PID and TID values.

It is worth noting that, the state-of-the-art work [20] cannot
correlate the socket operations implemented in apps’ native
code to their corresponding EP methods because it just an-
alyzes socket related framework APIs. Since our approach
analyzes the socket related system functions, which are in-
ternally called by socket related framework APIs, we can
associate socket operations implemented in both Java code
and native code with their EP methods.

3.2 Analyzing Network Socket Operation
In order to correlate each network flow to an app as well
as EP methods of this app, we further analyze each network
operation performed by the tested apps.
Correlating Network Flow to App: Relying on PIDs re-
trieved when the socket related system functions are invoked,
we get the unique identifier of the app, performing the socket
operations, by accessing the /proc/PID/cmdline file, which
keeps app’s package name.
Correlating Network Flow to EP Method: Since socket
operations must be carried out in non-UI threads of apps [1],

apps can create a new thread by internally calling the clone
function in libc.so to perform network operations (case-1).
Therefore, we instrument clone to get the stack trace and TID
of each created thread, so that we can correlate the thread with
EP method, which is presented in the stack trace and leads to
the creation of the thread. If the TID equals the one retrieved
when socket related functions are invoked, we correlate the
EP method with generated network flows.

Instead of creating a new thread, apps can reuse a thread
to perform different network operations. For example, apps
can send messages to notify the handler running in a non-UI
thread (case-2) or submit tasks to an idle thread managed by
the thread pool (case-3) to conduct socket operations. It is non-
trivial to handle these cases because we need to determine the
EP method for each network operation conducted in the reused
thread. In the following, we detail how we label network flows
in these cases.

For case-2, we use the Message objects, which notify the
message handler to perform socket operations, to distinguish
every network operation conducted by the handler. Specifi-
cally, we instrument enqueueMessage defined in the Handler
class to get the stack trace and the message (i.e., the Message
object) sent to the handler so that we can correlate the mes-
sage with the EP method that results in the sending of the mes-
sage. Meanwhile, to correlate each message with the thread
that runs the handler, we instrument dispatchMessage of
the Handler class to get the received message and thread’s
TID. If the TID equals the one retrieved when socket related
functions are invoked, we correlate the received message with
generated network flows. Since the received and sent mes-
sages refer to the same Message object, we then correlate the
EP method to the network flows.

For case-3, we use the Runnable objects, which are exe-
cuted in the thread managed by the thread pool, to differentiate
every network operation performed by the same thread in the
thread pool. Specifically, we instrument execute defined in
the ThreadPoolExecutor class to get the stack trace and the
task (i.e., the Runnable object) submitted to the thread pool,
so that we can correlate the task with the EP method that
causes the submission of the task. Meanwhile, to correlate
each task with the thread that runs the task, we instrument
runworker of the ThreadPoolExecutor class to get the ex-
ecuted task and the thread’s TID. If the TID equals the one
retrieved when socket related functions are invoked, we cor-
relate the executed task with the network flows. Since the
submitted and the executed tasks refer to the same Runnable
object, we then correlate the EP method to the network flows.

Note that, for those UI callbacks which are identified as EP
methods, we associate them with their corresponding resource
IDs. For example, we correlate each onClick callback with
the resource ID of the relevant UI component that registered
the click event listener.



4 Traffic Feature Extraction

Although some studies [5, 32, 33] take advantage of deep
learning models to automatically extract traffic features, deep
learning models require large amounts of training data to
avoid model overfitting. In our problem, the number of net-
work flows/in-flow bursts triggered by different EP methods
is unbalanced. Some apps/EP methods only have few samples.
Therefore, deep-learning-based feature extraction is not suit-
able for our problem. Either a network flow or an in-flow burst
is essentially a packet sequence. We extract 123-dimensional
features for both of them from five perspectives.
• General characteristic (8 features). We extract inbound-
/outbound packet number, bidirectional packet number, in-
bound/outbound packet percentage, inbound/outbound bytes,
and the duration of packet sequence.
• Interactive pattern (20 features). We characterize the in-
teractive pattern between endpoints using a function f (x) =
(i− x)∑

i−1
j=1 d j +(x− i+ 1)∑

i
j=1 d j for i− 1 < x ≤ i, where

d j = 1 (resp. d j =−1) if the jth packet is an inbound (resp.
outbound) packet. Assume the packet sequence contains n
packets. The interval (0,n) is divided into 20 bins with the
size of n/20. We pick f (x) at the center of each bin as a
feature and totally get 20 features to approximate f (x) (or,
equivalently, the interactive pattern).
• Packet rate characteristic (5 features). The duration of a
packet sequence is divided into a series of time windows with
the size of 1 second. Mean, maximum, minimum, median,
and standard deviation of packet number in a time window
(i.e., packet rate), are computed as features.
• Temporal characteristic (39 features). We consider bidi-
rectional, inbound, and outbound packet arrivals respectively.
For each one, mean, maximum, minimum, and standard devi-
ation of packet interval time, and 9 percentiles (from 10% to
90%) of relative arrival time, i.e., the time lag relative to the
first packet, are extracted as features.
• Packet size characteristic (51 features). We extract various
packet size statistics for inbound, outbound, and bidirectional
packets respectively, including mean, maximum, minimum,
median absolute deviation, standard deviation, variance, skew,
kurtosis, and 9 percentiles (from 10% to 90%).

5 Open-World App Traffic Recognition

Open-world app traffic recognition aims to recognize app-
specific traffic. More specifically, given a network flow, FOAP
should identify whether it is from the app of interest, say A.
Open world vs. closed world. We define open-world set-
ting along with closed-world setting in this paper. Let ST =
{appi

T}
mT
i=1 (resp. SI = {appi

I}
mI
i=1) be the set comprised of all

apps in the training stage (resp. the identification stage). In
the closed-world setting, we have SI ⊆ ST . In the open-world
setting, SI might not be a subset of ST but it could be.

In the open-world setting, a key challenge is how to effec-
tively reduce false positives in face of apps that are unseen
during model training. FOAP tackles it in two steps, i.e., traffic
segmentation and traffic filtering. After that, FOAP constructs
a bilevel recognition model to identify whether a network
flow is generated by A by taking advantage of not only its
feature vector but also its contextual information.

5.1 Traffic Segmentation
The goal of traffic segmentation is dividing network traffic
into different time periods, such that there are some time pe-
riods during which A is active (if they exist). To this end,
we first propose a metric, named by local similarity, to quan-
tify how likely a network flow is generated by A from the
perspective of a single flow.

Definition 1. Local similarity is a metric to quantify how a
network flow f is similar to network flows from A in terms
of the intrinsic features from f itself. We compute f ’s local
similarity with A by Sl( f ,A) = Pr{ f ∈ A|F( f )}, where F(·)
is a function that returns the feature vector of f .

We denote by f=( f1, f2, . . . , fM) the sniffed network traffic
consisting of M network flows, where the ith flow is denoted
by fi and its start time is ti. Let qi be fi’s local similarity with
A, i.e., Sl( fi,A). To compute qi, we first extract fi’s feature
vector (see § 4) and feed it to a pre-trained random forest (RF)
classifier. qi is estimated as the percentage of decision trees
that predict fi is from A. Next, we segment network traffic
based on q1,q2, . . . ,qM . Based on the measurement over our
dataset, network flows generated by an app, say A, have sig-
nificantly higher local similarity with this app, compared with
network flows generated by other apps, thereby resulting in
obvious difference of local similarity between time periods
dominated by A and time periods dominated by other apps.
Such a difference is about 4.51 times the local similarity vari-
ance for different network flows from an app. Inspired by this
observation, we expect network flows within the same traffic
segment have similar local similarity with A (i.e., the small
variance within a segment), whereas network flows belonging
to adjacent traffic segments have significantly different local
similarities with A (i.e., large variance between adjacent seg-
ments). By doing so, we are able to extract all possible traffic
segments when A is active. Formally, we formulate traffic
segmentation as a combinational optimization problem.

min
z

max(z)

∑
c=0
|Qc| ·Var(Qc)+λmax(z),

s.t. zi ∈ N, z1 = 0, 0≤ zi+1− zi ≤ 1 for 1≤ i < M,

Qc = {qi|zi = c}, |Qc| ≥ nmin,

max{ti|zi = c}−min{ti|zi = c} ≥ τmin,

(1)

where zi is a variable indicating which segment the ith net-
work flow belongs to, λmax(z) is a regularization term that



penalizes the complexity of results, nmin is the minimum num-
ber of network flows that a segment should contain, and τmin
is the minimum time span of a segment. The above optimiza-
tion problem can be solved based on integer programming [8].
To speed up the traffic segmentation, we propose a divisive-
agglomerative tree method to solve it in a greedy fashion.
Divisive tree recursively generates small segment candidates
while agglomerative tree merges some of them to minimize
the loss in (1). We elaborate this method in [21].

5.2 Traffic Filtering
If A is active during the time period of a traffic segment,
we refer to it as a relevant traffic segment and otherwise an
irrelevant traffic segment. Traffic filtering aims to filter out all
irrelevant traffic segments.

5.2.1 Flow Pattern Mining

In this step, we quantify how likely a network flow matches
a certain pattern of network flows generated by A in the fea-
ture representation space. This pattern-related information
will be used for profiling structural characteristics of a traffic
segment. To this end, we need to identify different patterns
by clustering A’s network flows over the training dataset. Un-
fortunately, the original feature space is irregular because
i) both continuous and discrete features are considered and
ii) the range and variance of different features are tremen-
dously diverse. It is difficult to find a proper distance metric
for reasonable clustering analysis in the original feature space.
To tackle this problem, we learn a mapping function based
on metric learning [45] to map original feature vectors to a
low-dimensional representation space, where we expect the
euclidean distance between network flows in the same pattern,
i.e., the same cluster, will be minimized whereas that between
network flows in different patterns, i.e., different clusters, will
be maximized. We refer the interested readers to [21] for the
learning of mapping function.
Clustering Analysis. We map A’s network flows in the train-
ing dataset to the representation space and conduct clustering
analysis to identify flow patterns as different clusters. Hierar-
chical clustering is employed for this task as it obviates the
need to specify the cluster number, which is unknown a prior.
We specify the clustering threshold as δ and obtain m clusters
P1,P2, . . . ,Pm. We refer to these clusters as patterns of A’s
network flows. Next, we train a multi-class k-nearest neigh-
bors classifier in the representation space to identify which
pattern a new network flow belongs to. Let Pi be the identified
pattern that fi belongs to. We reuse fi’s local similarity qi to
quantify the likelihood of fi matching pattern Pi.

5.2.2 Filtering Out Irrelevant Traffic Segment

To filter out irrelevant traffic segments, we compute traffic
segments’ structural similarity with A.

Definition 2. Structural similarity characterizes how network
flows within a traffic segment sk are similar to A’s network
flows in various patterns. It is computed by

Ss(sk,A) =
∫ 1

qmin
|H (sk,q)|dq

|H (sk,0)|(1−qmin)
, (2)

where H (sk,q) = {Pi|qi > q, fi ∈ sk} is a function that returns
a set containing all patterns that network flows within sk
belong to with the likelihood greater than q.

We consider network flows match certain patterns only if
their likelihood are greater than qmin. In this paper, we set
qmin = 0.5 by default. The value of Ss(sk,A) ranges from 0
to 1. A smaller value of Ss(sk,A) indicates sk is more likely
an irrelevant traffic segment. Formally, sk will be deemed to
be an irrelevant traffic segment and filtered out if Ss(sk,A)<
SAmin. In here, SAmin ∈ [Smin,Smax] is an app-specific similarity
threshold bounded by Smin and Smax. We specify it to be the
value such that 95% network flows from A over the training
dataset will not be erroneously filtered out. Despite a potential
slight decline of recall for traffic recognition, such a similarity
threshold can effectively reduce false positives by filtering
out irrelevant traffic segments as many as possible.

5.3 Flow Recognition
Through traffic filtering, we obtain relevant traffic segments.
However, not all network flows within them must be from A
because they may contain network flows from background
system services and other apps. To recognize whether a net-
work flow is from A, we construct a bilevel recognition model.
The low-level model is comprised of two binary random forest
classifiers. The first classifier is used for computing the local
similarity and has been trained before. The second classifier
predicts the probability that a network flow is a background
flow, (i.e., network flows generated by background system
services). For a network flow fi, the first classifier outputs
its local similarity with A, denoted by qi, while the second
classifier outputs the probability that it is a background flow,
denoted by ri. Both qi and ri play important roles in the high-
level model. The high-level model is a logistic regression
classifier. We choose this model because of its excellent gen-
eralization capability due to a small number of parameters.
For a network flow fi, the high-level model takes advantage
of features not only from itself but also from its contextual
network flows. Specifically, we consider network flows within
Ni, a time window centered at the start time of fi with the
size of T , as fi’s contextual network flows. We construct fi’s
feature vector for high-level model as hi = (qi, q̄Ni

,qi− ri),
where q̄Ni

= ∑ j∈Ni
q j/|Ni|. For any network flow in relevant

traffic segments, we recognize whether it is from A according
to the output of the high-level model. To avoid mutual inter-
ference, we decouple the training of low-level and high-level
models by leveraging bootstrap resampling method [12, 44].



6 Method-Level User Action Identification
After recognizing network flows from A, we further infer what
EP methods trigger them. Such information plays a critical
role in characterizing fine-grained user actions.

Different from the binary classification in recognizing app-
specific network flows, EP method identification can be for-
mulated as a multi-label classification because a network flow
may correspond to multiple EP methods. Network flows in
app traffic can be roughly grouped into two categories. The
first category corresponds to persistent connection. Network
flows in this category often contain multiple packet bursts
associated with sequentially invoked EP methods. The second
category corresponds to short connection. Network flows in
this category often contain only one packet burst associated
with a single EP method. Instead of regarding a network flow
as a whole to extract its feature vector and identify what EP
methods trigger it, we identify EP methods associated with
all packet bursts within it. By doing so, our method has three-
fold advantages. First, we relax the multi-label classification
to a series of multi-class classification subproblems. Second,
we can make use of contextual dependency between bursts
to improve identification accuracy. Third, we obtain a higher
temporal resolution in characterizing user actions.

6.1 Flow Burstification
The first step is extracting in-flow bursts from network flows.

Definition 3. Given a burst threshold ε, an in-flow burst is a
subsequence of packets within a network flow. Time interval
between two packets in an in-flow burst is less than ε, while
that between two in-flow bursts is not less than ε.

Figure 3(a) illustrates an example, where we extract four
in-flow bursts from a network flow. For each in-flow burst,
we extract a 123-dimensional feature vector (see § 4).
• Burst Labeling. To construct the training dataset for EP
method identification, we need to label in-flow bursts. Assume
that the network flow labeling module has obtained three EP
methods, i.e., ma, mb, and mc, and their invocation time t1,
t2, and t3 as shown in Figure 3(a). Before labeling in-flow
burst, we first label each packet to indicate which method
triggers it. Specifically, a packet is labeled by the first EP
method invoked before it. We then label an in-flow burst by
aggregating the label of packets belonging to this burst (ma-
jority voting). Finally, we obtain four in-flow bursts (ma,b1),
(ma,b2), (mb,b3), and (mc,b4).

6.2 Spatial-Temporal Context Model
We model contextual dependency of in-flow bursts based on
conditional random field [38] due to its flexibility to capture
both spatial and temporal context.
• Spatial Context: It reflects the contextual relationship be-
tween bursts within the same network flow. In Figure 3(b),

Time

(a) Label within-flow bursts.

Flow 1

Flow 2

Flow 1

Flow 3

Spatial Context

Temporal Context

(b) Spatial-temporal context.

Figure 3: Flow burstification and spatial-temporal context.

bursts b1, b2, b3, and b4 are within the same network flow and
they are mutually spatially contextual bursts.
• Temporal Context: An EP method may trigger multiple
network flows simultaneously, yielding concurrent in-flow
bursts. To capture the temporal context, we specify an interval
threshold τburst . Two in-flow bursts are temporally contextual
if they belong to different network flows but the time interval
between them is less than τburst . In Figure 3(b), bursts b3, b5,
and b6 are mutually temporally contextual bursts.

Formally, let MA = {mk}K
k=1 be a set comprised of EP

methods of A that may trigger network flows. We denote by
b = (b1,b2, . . . ,bN) a sequence of in-flow bursts extracted
from A’s network flows and y = (y1,y2, . . . ,yN) ∈M N

A the
underlying EP method invocations that trigger these in-flow
bursts. The posterior distribution of y can be expressed by

p(y|b) = 1
Z(b)

N

∏
i=1

Ωi(yi,bi) ∏
j∈C S

i

Ψi j(yi,y j,b) ∏
j∈C T

i

Φi j(yi,y j,b)

 , (3)

where Ωi(yi,bi) is a unary potential characterizing the rela-
tionship between yi and bi, Ψi j(yi,y j,b) (resp. Φi j(yi,y j,b))
is a spatially (resp. temporally) pairwise potential charac-
terizing the relationship between bi and its spatially (resp.
temporally) contextual burst b j, C S

i (resp. C T
i ) is a set com-

prised of all spatially (resp. temporally) contextual bursts of
bi, and Z(b) is a normalizing constant. We refer the interested
readers to [21] for the construction and parameter learning of
Ωi(yi,bi), Ψi j(yi,y j,b), and Φi j(yi,y j,b).

6.3 Iterative Inference of EP Method
Given the CRF-based spatial-temporal context model, the
problem of EP method identification is transformed into in-
ferring the hidden variables (i.e., EP method invocations)
from the observable variables (i.e., in-flow bursts). For gen-
eral graphs, like our spatial-temporal context model, the exact
inference of CRFs is intractable because it requires expo-
nential time in the worst case [38]. Therefore, we propose a
greedy EP method inference algorithm to conduct approxi-
mate inference. Instead of estimating the posterior marginal
distribution, this algorithm derives the most likely EP method
sequence, i.e., ŷ = argmaxy p(y|b) in an iterative fashion. Let
y(k) = (y(k)1 ,y(k)2 , . . . ,y(k)N ) be the estimation of y in the kth
round. We derive y(k)i as the EP method that maximizes the



probability p(yi|b,y(k−1)/y(k−1)
i ). We record y(k) in the set

Y and p(k) = Z(b)p(y(k)|b) will also be stored. The iteration
process repeats until it exceeds the maximum iteration num-
ber or it meets the early stopping condition, i.e., y(k) ∈ Y . The
resulting inference is derived as ŷ = argmaxy(k)∈Y p(k). We
refer the interested readers to [21] for details about this algo-
rithm. Given EP methods associated with all in-flow bursts,
we infer what EP methods trigger a network flow by aggre-
gating EP methods associated with in-flow bursts within it.

7 Evaluation

We first evaluate FOAP in open-world app traffic recognition
and then evaluate it in EP method identification. We next
analyze various factors that may influence the performance of
FOAP, such as experimental data size and third-party libraries.
To investigate how FOAP trained over the dataset generated
by automatic test tools performs for network traffic generated
by human users, we conduct cross-dataset evaluation. Finally,
we analyze the running time of FOAP.

7.1 Dataset Construction
Because our work constitutes the first effort towards method-
level open-world app fingerprinting, there is no available pub-
lic dataset where method-level labels of network flows are
available. Therefore, we download 1000 apps from Google
Play Store and collect app traffic in our testbed. When se-
lecting apps, we give consideration to both popularity and
comprehensiveness. First, we select the most popular apps
according to the rank in Google Play Store in favor of better
popularity. Second, the selected apps fall into 46 different cat-
egories to guarantee a reasonable comprehensiveness. Note
that when selecting apps, we skip various mobile browsers
and apps that need to sign up with a credit card to avoid po-
tential legal risk. We generate app traffic instances with the
aid of open-source tools Monkey1 and RERAN [16]. Mon-
key is an automated test tool, while RERAN is a record and
replay tool for Android. For every app, we collect 50 traffic
instances. To generate each traffic instance, we run apps on
Google Pixel 2 smartphones with Monkey to generate pseudo-
random streams of user events and simulate user operations.
The maximum number of user events is set to be 5000. Mean-
while, network traffic of smartphones is captured by Tcpdump
and stored in pcap format for network flow extraction; log-
cat files are saved for network flow labeling. In a nutshell,
we collect 50,000 traffic instances, consisting of 2,701,931
network flows. The total file size is more than 1.29 TB.

7.2 Open-World App Traffic Recognition

We first evaluate FOAP in recognizing network flows.

1https://developer.android.com/studio/test/monkey

• Experimental Setup. Since FOAP establishes a model for
every individual app of interest, we construct a training dataset
and testing dataset for each app. Specifically, we randomly
split traffic instance set into two subsets: 40 instances for
training and 10 instances for testing. To construct the training
dataset of an app, say A, besides A’s traffic instances, we ran-
domly choose nT other apps to involve their traffic instances
as negative samples in the training dataset. As for A’s testing
dataset, similar to the experimental setting in [43], we consider
another 20 apps, which are unseen in A’s training dataset. In
other words, apps considered as negative class in testing stage
are completely different from those for model training. To
mimic human behavior, we simulate the use of different apps
as Poisson process, which is commonly used to model human
behaviors [31, 50]. Specifically, we construct network traces
by merging traffic instances from different apps in random
order. The time interval between traffic instances is expo-
nentially distributed with an average time interval 1 second.
Additionally, we also change the value of nT to evaluate how
it influences the accuracy of app recognition. We elaborate on
the process of hyperparameter tuning in § A.
• Baseline. We compare FOAP with the state-of-the-art tool
AppScanner [39]. Other works, such as [9, 10, 43], have dif-
ferent threat models. For example, [9, 10] only handle unen-
crypted data and [43] consider destination features, which are
unavailable in our threat model. Another line of works, such
as [15, 22, 29] focus on different objects for analysis. For
example, [29] analyzes packets in a series of time windows
to identify user activities and [22] divides packet arrivals into
segments and analyzes user activities within each segment.
Therefore, we skip a direct comparison with them in our ex-
periment. The feature set of the vanilla AppScanner is just a
subset of FOAP’s feature set, i.e., 51 features related to packet
size characteristic and 3 features related to general character-
istic. To conduct a fair comparison, we also extend AppScan-
ner by using the full feature set of FOAP. AppScanner is a
modular tool, comprised of different classifiers. Among these
classifiers we choose Single Random Forest Classifier Per
App to evaluate because i) it achieves the best accuracy and ii)
it can be evaluated in the open-world setting. All parameters
are consistent with those in the original paper [39].
• Result. Table 1 reports the experimental result. Gener-
ally speaking, FOAP consistently outperforms AppScanner
in terms of precision, recall, and F1-score for different nT .
For example, FOAP improves average precision with ∼ 0.3,
average recall with∼ 0.14, and average F1-score with∼ 0.23,
compared to AppScanner for nT = 20. FOAP achieves the
highest F1-score 0.911 when nT = 20. Compared with App-
Scanner, a significant advantage of FOAP is its much higher
precision. It is because FOAP takes advantage of inter-flow
information while AppScanner doesn’t. Such information is
important for FOAP to reduce false positives in the open-
world setting. Specifically, FOAP makes use of both intrinsic
features from a network flow itself and inter-flow information



Table 1: Evaluating FOAP in open-world app traffic recognition (mean±standard deviation).

nT
AppScanner AppScanner (extended) FOAP (our approach)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
5 0.315±0.171 0.866±0.105 0.439±0.174 0.307±0.158 0.840±0.111 0.427±0.166 0.759±0.253 0.925±0.094 0.803±0.200
10 0.476±0.183 0.814±0.127 0.582±0.161 0.470±0.178 0.774±0.128 0.568±0.159 0.886±0.170 0.906±0.111 0.881±0.140
15 0.568±0.189 0.782±0.137 0.641±0.158 0.575±0.182 0.729±0.144 0.627±0.155 0.926±0.123 0.897±0.114 0.902±0.111
20 0.641±0.180 0.755±0.146 0.679±0.151 0.646±0.164 0.700±0.148 0.659±0.143 0.945±0.102 0.897±0.126 0.911±0.115

to improve recognition accuracy. FOAP computes structural
similarity to characterize how network flows within a time
period are structurally similar to those from the app of interest.
Based on this metric, FOAP can effectively filter out irrele-
vant network flows and significantly reduce false positives.
On the contrary, AppScanner recognizes a network flow by
only using its intrinsic features and thus it is prone to generate
false positives caused by similar network flows. Additionally,
AppScanner only recognizes which app a network flow comes
from, while FOAP not only recognizes the app that generates
a network flow but also identifies the specific EP methods that
generate the traffic to infer fine-grained UI operations.
• Case Studies of False Positives. We observed two salient
factors that increase false positive rate.
i) Share of third-party libraries. Different apps often use
the same third-party libraries (TPLs) to shorten development
cycle, potentially resulting in similar network flows generated
by them. For example, the comic app com.tencent.wecomic

uses the TPL com.facebook, which is widely used by other
apps. When FOAP recognizes network traffic generated by
this app, the average false positive rate (FPR) is 4.56×10−3,
while its FPR associated with the TPL com.facebook is 1.10×
10−2, significantly higher than the average FPR. A similar
situation is found for the sport app com.bundesliga, which
uses the TPL com.bumptech.glide. We observed its average
FPR is 4.63×10−3, while its FPR associated with the TPL
com.bumptech.glide is 1.75×10−1.
ii) Apps from the same developer. Developers may reuse
their codes when developing various apps. It aggravates the
false positive risk when distinguishing traffic from these
apps. For example, both com.google.android.apps.meetings

and com.google.android.apps.classroom are developed by
Google. To recognize network flows generated by the for-
mer app, FOAP reports more false positives caused by the
latter app (FPR = 1.13×10−2) than other apps not developed
by Google (FPR = 2.36×10−4). Another example is found
for two apps developed by Microsoft. When recognizing
network flows of com.microsoft.office.outlook, the app
com.microsoft.translator produces more false positives
(FPR = 1.62×10−2) than other apps (FPR = 6.57×10−4).
• Case Studies of False Negatives. We identified two key
factors leading to false negatives.
i) Dynamic nature. Diverse user behaviors bring highly
dynamic traffic, especially for information-intensive apps,
like news apps. In these apps, clicking on various arti-
cles/videos may trigger diverse network flows, thereby in-
creasing false negative risk. Take an example from the news

app bbc.mobile.news.ww. FOAP recognizes its network flows
with a false negative rate (FNR) 7.58×10−1. A closer look
reveals the network flows missed by FOAP (i.e., FN) indeed
exhibit substantial difference from network flows in the train-
ing dataset, since their average local similarity with this app
is 0.291, much lower than that for network flows successfully
recognized by FOAP, i.e., 0.753. Similar situations can be ob-
served for map apps. For example, FOAP recognizes network
flows generated by com.baidu.BaiduMap with an FNR 0.107.
The network flows missed (resp. recognized) by FOAP have
an average local similarity 0.381 (resp. 0.832) with this app.
ii) Low-traffic apps. We observed that some false negative
cases for low-traffic apps are caused by traffic filtering. Specif-
ically, some traffic instances of these apps may contain only
a few network flows, and FOAP may erroneously filter out
these network flows if they are mixed with other apps’ net-
work flows. For example, when recognizing network traffic
generated by the app opofficial.pdfmaker, FOAP suffers an
FNR 0.136 as it erroneously filters out network flows in 3 traf-
fic instances, each of which contains only one network flow.
In another example, we recognize network traffic generated
by the app tw.com.trtc.is.androideng. The FNR is 0.160,
and FOAP erroneously filters out network flows in 2 traffic
instances of this app, each of which contains 2 network flows.
• Generalized Open-World Setting. In a more generalized
open-world setting, the adversary will handle both app traffic
and non-app traffic. To further evaluate how FOAP performs
in such an setting, we collect various non-app traffic including
i) Mobile website traffic: It contains 580,335 network flows
that are generated by visiting Alexa top 10000 websites using
the android browser.
ii) IoT traffic from PINGPONG dataset [42]: It contains 378,797
network flows that are captured from 19 IoT devices.
iii) PC traffic: It is captured from 6 PCs, including 2 windows
PCs, 3 macOS PCs, and 1 Linux Ubuntu PC for 1 day. There
are 16,801 network flows in total.

Table 2: False positive rate for open-world network traffic
recognition (lower is better).

Open-World
Traffic AppScanner

AppScanner
(extended)

FOAP
(our method)

Mobile Web 2.41×10−2 2.18×10−2 9.93×10−4

IoT 3.39×10−2 2.85×10−2 4.36×10−5

PC 1.21×10−2 2.02×10−2 3.54×10−4

SC-App 3.24×10−2 3.09×10−2 1.45×10−2

DC-App 2.12×10−2 1.99×10−2 2.64×10−3



All these non-app traffic will naturally be viewed as neg-
ative samples, because the goal of FOAP is recognizing the
app of interest from network traffic. Therefore, we employ
the metric false positive rate (FPR) to evaluate whether FOAP
will generate false positives over these non-app traffic. Table 2
reports the experimental results. We can find the false positive
rates of FOAP for all non-app traffic are extremely low and
much lower than those of baseline methods. It again veri-
fies FOAP’s advantage in the open-world setting. Other than
non-app traffic, Table 2 also reports the FPR for app traffic.
Intuitively, apps from the similar category may share common
network behaviors, potentially resulting in more false posi-
tives. To test this hypothesis, we group apps used for negative
class in testing into two categories, SC-App and DC-App.
SC-App refers to apps belonging to the same category with
A, while DC-App refers to apps whose categories differ from
that of A. As shown in Table 2, FPR for SC-App is higher
than that for DC-App, indicating more false positives. This
result is consistent with the above hypothesis.

7.3 EP Method Identification

We next evaluate FOAP in identifying EP methods.
• Experimental Setup. EP method identification is an app-
specific multi-label classification task. Therefore, FOAP es-
tablishes a model for each app. Similar to the previous setting,
we randomly split traffic instance set of each app into two
subsets: 40 instances for training and 10 instances for testing.
• Result. Multi-label classification can be viewed as the com-
bination of multiple binary classification tasks. To evaluate
the performance of FOAP in EP method identification, we
consider a group of binary classification tasks corresponding
to different EP methods. Specifically, we record the number
of true positives, false positives, true negatives, and false neg-
atives for each EP method and aggregate results of all EP
methods in an app to compute the precision, recall, and F1-
score. We employ micro-average method to compute these
metrics due to the class imbalance in our problem.

Table 3: Evaluating FOAP in EP method identification
(mean±standard deviation).

ε Precision Recall F1-Score
0.5 0.888±0.102 0.883±0.105 0.885±0.101
1 0.886±0.104 0.868±0.114 0.876±0.106
2 0.885±0.111 0.853±0.126 0.866±0.114
5 0.892±0.105 0.828±0.137 0.856±0.116

Table 3 reports the experimental results. FOAP achieves
the highest average F1-score 0.885 when ε = 0.5 second.
As the value of burst threshold ε increases, the precision of
FOAP improves. The underlying reason is a larger ε results in
more packets (therefore more information) involved in each
in-flow burst, which helps reduce false positives. The highest
average precision 0.892 is achieved when ε = 5 seconds. A
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Figure 4: Impact of experimental data size.

side-effect of increasing ε is recall decline, which is caused
by the majority voting mechanism used in burst labeling.
We relax the multi-label classification problem to a series of
multi-label classification subproblems at the cost of labeling
a in-flow burst with only a single EP method, which implies
a potential information loss of label. A larger ε will lead
to more significant information loss and thus a lower recall.
Consequently, the highest average recall 0.883 is achieved
when ε = 0.5 second.

7.4 Impact of Experimental Data Size

To analyze how experimental data size influences the perfor-
mance, we compare FOAP with baseline methods in both
closed-world setting and open-world setting with varied app
number in testing (i.e., nI = 1,5,25,125,625).
• Experimental Setup. As for the closed-world setting, apps
for model training are the same as those in testing. As for the
open-world setting, apps that are considered as the negative
class for model training and those in testing belong to two
disjoint sets. We fix the number of apps that are considered
as the negative class during model training to be nT = 20 and
change that in testing as nI = 1,5,25,125,625.
• Result. We report the experimental results in Figure 4. Fig-
ure 4(a) presents a log-log plot about how FPR changes when
nI increases. In general, FOAP consistently outperforms base-
line methods as it has lower FPR. In the open-world setting,
unlike FPR for baseline methods, which tends to be constant,
FPR of FOAP gradually decreases as nI increases. The under-
lying reason is related to traffic filtering. When nI is small,
false positives caused by “noise”, e.g., background network
flows, within relevant traffic segments dominate FPR. When
nI is large, false positives are expected to be mainly caused by
mis-classification of network flows from other apps. Thanks
to the traffic filtering module of FOAP, most network flows
from other apps are filtered out. Consequently, the FPR of
FOAP decreases when nI increases. In the closed-world set-
ting, FPR of all methods first drops because the diversity of
negative samples for model training increases with nI . (Recall
that nT = nI in the closed-world setting.) A large value of nT



results in extreme class imbalance, which is commonly rec-
ognized as a negative factor in machine learning. To mitigate
the class imbalance, we employ the resampling strategy. Its
side-effect is FPR for all methods rises again when nI > 125.
Figure 4(b) shows how FNR changes with nI . In the open-
world setting, FNR of all methods tends to be constant, while
in the closed-world setting FNR increases with nI , indicating
more false negatives. It is caused by class imbalance dur-
ing model training, despite a resampling strategy has been
employed. Compared with baseline methods, FOAP shows
advantage again in both settings.

7.5 Impact of Third-Party Libraries

The share of third-party libraries, such as advertisement li-
brary and third-party app authorization, among different apps
potentially increases false positives, because the same third-
party library may trigger similar network flows. We investi-
gate this hypothesis in this experiment.

• Experimental Setup. We analyze how third-party libraries
influence the performance of FOAP and baseline methods
in the open-world setting. nT and nI are fixed to be 20. For
each app, we first identify all TPLs used by it with the aid of
Libradar [25]. Next, we correlate its EP methods with these
TPLs. If the package name of an EP method matches a TPL,
we regard this EP method as an EP method belonging to
the TPL. Recall that we have labeled network flows with EP
methods by leveraging method-level labeling. Combining the
above two kinds of information, we can label a network flow
with a TPL if any EP method belonging to this TPL triggers
this network flow. Otherwise, we label it as a network flow
triggered by the app-specific library (i.e., app class).

• Result. Table 4 reports FPR and FNR related with the top
5 third-party libraries in our dataset as well as the average
performance for third-party libraries. As a comparison, we
also present FPR and FNR related with app-specific libraries,
which we refer to as app class. For all methods, the FPR
related with third-party libraries is higher than that related
with app class. Particularly, the FPR of FOAP in recognizing
network flows associated with app class is 3.65×10−3, while
FPR rises to 5.80×10−3 for third-party libraries, which im-
plies more false positives are generated. Another observation
is third-party libraries do not increase false negatives. In fact,
we even observe a slight FNR decline for FOAP. We conjec-
ture a possible reason is when compared with app-specific
libraries, third-party libraries may exhibit less diverse net-
work behaviors because each of them is probably invoked for
some fixed purposes, such as advertisement. To summarize,
despite third-party libraries increase false positives, the FPR
of FOAP is still reasonably low. In addition to third-party
libraries, other factors may also influence the FPR of FOAP.
We analyze the impact of automatic app generators in § C.

7.6 Cross-Dataset Evaluation

In this experiment, we evaluate to what extent FOAP trained
based on a Monkey-generated dataset is able to recognize app
traffic generated by humans.

• Experimental Setup. We randomly choose 100 out of
1000 apps to construct a dataset that reflects the true human-
generated behaviors. Specifically, we recruit 5 volunteers to
manually operate these apps and generate 5×100 traffic in-
stances, each of which lasts for about 5 minutes. We compare
three transfer settings. In the “M → M” setting, FOAP is
trained over Monkey-generated dataset and tested over the
same dataset. In the “M→ H” setting, FOAP is trained over
Monkey-generated dataset and tested over human-generated
dataset. In the “EM → H” setting, the Monkey-generated
dataset is enhanced by traffic instances generated by 4 volun-
teers and FOAP recognizes the traffic instance generated by
the remaining volunteer. For statistical soundness, we rotate
the volunteer for testing and report the average performance.

• Result. Table 5 reports experimental results for open-world
app traffic recognition. Compared with “M → M” setting,
the recall of FOAP in “M→ H” setting reduces from 0.886
to 0.760, indicating some network flows generated by hu-
mans cannot be recognized and reported as false negatives.
Nonetheless, it still outperforms baseline methods and even
exhibits more significant advantage. Table 6 reports experi-
mental results for EP method inference. Both precision and
recall of FOAP exhibit a decline trend. We conjecture that the
underlying reasons are two-fold. On one hand, Monkey test
can hardly cover all UI operations that human may trigger
in the wild. On the other hand, Monkey’s behavior is highly
random and thus UI operations triggered by monkey tend
to be contextually independent. On contrary, UI operations
triggered by humans are contextually correlated. Such a dif-
ference potentially results in different code paths and different
network flows when the same UI operation (e.g., clicking a
button) is triggered by Monkey and humans respectively.

To further explore how to improve the performance of
FOAP, we enhance Monkey-generated dataset by involving
human-generated traffic instances in the “EM→ H” setting.
Even though only 4 traffic instances are added to training
dataset, the recall for open-world app traffic recognition is
improved from 0.760 to 0.873. Likewise, both precision and
recall for EP method inference rise. This experiment reveals
a practical manner to construct training dataset when FOAP
is applied in the wild. That is constructing FOAP’s train-
ing dataset by combing traffic instances generated by both
automatic test tools and humans, because i) it is less labor-
intensive for automatic test tools to generate a large number of
traffic instances, which empower FOAP with a high precision
and fewer false positives, and ii) traffic instances generated
by humans are beneficial to reducing false negatives and im-
proving the recall of FOAP.



Table 4: Impact of third-party libraries.

Library Coverage AppScanner AppScanner (extended) FOAP (our approach)
FPR FNR FPR FNR FPR FNR

App Class 100% 2.26×10−2 3.10×10−1 2.18×10−2 3.04×10−1 3.65×10−3 1.26×10−1

TPL (average performance) 86.2% 3.57×10−2 3.30×10−1 3.27×10−2 3.29×10−1 5.80×10−3 1.21×10−1

com.google.android.gms 65.4% 5.15×10−2 2.75×10−1 4.26×10−2 3.48×10−1 9.32×10−3 2.20×10−1

com.facebook 54.8% 3.17×10−2 3.26×10−1 3.13×10−2 2.99×10−1 3.99×10−3 6.59×10−2

com.google.firebase 23.0% 2.57×10−2 4.43×10−1 2.51×10−2 4.15×10−1 2.35×10−3 9.99×10−2

com.bumptech.glide 17.0% 3.85×10−2 2.29×10−1 2.18×10−2 2.09×10−1 4.53×10−3 8.15×10−2

com.urbanairship 3.9% 9.22×10−2 3.93×10−1 7.02×10−2 3.49×10−1 1.58×10−2 2.81×10−2

Table 5: Evaluating open-world app traffic recognition in cross-dataset experimental settings (mean±standard deviation).

Transfer Setting AppScanner AppScanner (extended) FOAP (our approach)
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

M→M 0.625±0.167 0.775±0.120 0.681±0.135 0.634±0.148 0.700±0.136 0.655±0.127 0.947±0.074 0.886±0.157 0.906±0.114
M→ H 0.506±0.222 0.521±0.195 0.481±0.185 0.436±0.212 0.508±0.201 0.439±0.181 0.905±0.163 0.760±0.219 0.802±0.194

EM→ H 0.514±0.213 0.649±0.162 0.547±0.180 0.470±0.199 0.656±0.173 0.525±0.179 0.929±0.129 0.873±0.169 0.882±0.150

Table 6: Evaluating EP method identification in cross-dataset
experimental settings (mean±standard deviation).

Transfer Setting Precision Recall F1-Score
M→M 0.879±0.098 0.872±0.093 0.874±0.093
M→ H 0.771±0.143 0.801±0.146 0.783±0.139

EM→ H 0.830±0.145 0.834±0.150 0.831±0.143

7.7 Running Time of FOAP
In addition to accuracy, system efficiency also plays an impor-
tant role. To this end, we evaluate the running time of FOAP
by running it on a single core of a desktop equipped with an
Intel Core i7-7700 CPU processor. FOAP takes an average of
1.77×10−2 second to recognize whether a network flow is
from the app of interest. To further identify method-level user
actions, FOAP spends another 5.91×10−2 second process-
ing each network flow from the app of interest. The above
experimental results indicate FOAP is highly efficient when
applied in practice. Table 7 reports fine-grained running time
for different modules of FOAP.

Table 7: Running time of FOAP.

Task Major Steps Running Time (second/flow)

Open-World
App Traffic
Recognition

Extract Flow Features 1.71×10−2

Traffic Segmentation 5.10×10−4

Traffic Filtering 3.61×10−6

Flow Recognition 7.73×10−5

Total 1.77×10−2

Method-Level
User Action
Identification

Extract Burst Features 1.16×10−2

EP Method Inference 4.74×10−2

Total 5.91×10−2

8 Application

We further demonstrate how FOAP can be applied in fine-
grained user activity inference and user privacy analysis.

8.1 Fine-Grained User Activity Inference
A direct application of FOAP is inferring fine-grained seman-
tic user activities from encrypted mobile traffic. We demon-

strate this application through the case study of Twitter. To
this end, we first map EP methods of Twitter to various user
actions with the aid of UI Automator2. Specifically, we extract
resource IDs of UI components that are associated with user
actions listed in Table 8, (e.g., the button to share a tweet),
using UI Automator and then compare them with the resource
ID of EP methods obtained by FOAP’s network flow labeling
module to achieve a one-to-one mapping between user action
and EP method. By doing so, we can reasonably infer user ac-
tivities characterized by these user actions through identifying
EP method invocation from encrypted mobile traffic.

We recruit two volunteers for this experiment. To construct
the training dataset, the first volunteer operates Twitter to
generate 20 traffic instances. The reason why we construct
training dataset manually instead of using an automatic test
tool (e.g., Monkey) is we consider many complicated user
actions (e.g., retweet) in this case study and they are extremely
difficult, if not entirely impossible, to trigger these operations
with an automatic test tool. However, designing a smarter
automatic test tool is out of the scope of this paper. To test how
FOAP performs, the second volunteer is required to operate
Twitter and meanwhile record his operations, i.e., user actions
and timestamps, to establish the ground truth. Additionally,
he also randomly chooses another 20 apps and operates them
to test whether FOAP generates false positives.

FOAP spends about 40 seconds processing all 1706 net-
work flows (31 TP, 1673 TN, 0 FP, 2 FN). Figure 5 illustrates
the inference result. For ease of representation, we depict all
network flows associated with user actions that have been
successfully identified (denoted by F1, F2,. . ., F5) but omit
other network flows even if they are from Twitter. FOAP
successfully identify 12 user actions. It also makes some mis-
takes. Specifically, FOAP fails to report “search” at the 295th
second but misreports it at the 352nd second. At the 317th
second, it erroneously identifies “retweet” as “favorite”. To
summarize, FOAP achieves a high precision in recognizing
network flows generated by Twitter. Besides, the accuracy for
identifying fine-grained user actions is also reasonable.

2https://developer.android.com/training/testing/ui-automator



Table 8: EP methods for inferring Twitter user activities.

User Action EP Method
Login com.twitter.android.p1.onClick
Like com.twitter.ui.tweet.inlineactions.InlineActionView$b.onAnimationEnd
Favorite com.twitter.android.va$k.onClick
Retweet xbb.onClick
Follow com.twitter.app.profiles.y0.onClick
Notification tcb.onClick
Send Message com.twitter.app.dm.widget.DMConversationMessageComposer.onClick
Navigation com.google.android.material.tabs.TabLayout$i.performClick
Search km4.onClick

Table 9: Packet sequences associated with searching doc-
tor of different hospital departments in ECEasyBook.

Department Packet Sequence (Byte)
General Clinics · · ·673 ↑ 66 ↓ 97 ↓ 78 ↑ 1180 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·
Gynaecology · · ·673 ↑ 66 ↓ 97 ↓ 78 ↑ 1272 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·
Dermatology · · ·673 ↑ 66 ↓ 97 ↓ 78 ↑ 1266 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·
Chinese Medicine · · ·674 ↑ 66 ↓ 97 ↓ 78 ↑ 1306 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·
Paediatrics · · ·673 ↑ 66 ↓ 97 ↓ 78 ↑ 1238 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·
Geriatrics · · ·673 ↑ 66 ↓ 97 ↓ 78 ↑ 1292 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·
Psychiatry · · ·674 ↑ 66 ↓ 97 ↓ 78 ↑ 1247 ↓ 66 ↑ 97 ↑ 66 ↑ 66 ↓ · · ·

“↓” stands for inbound packets and “↑” stands for outbound packets.

Login

Favorite

Like

Retweet

Search

Notification

Send Message

Navigation

Time

FollowTP
FP
FN

Figure 5: Inferring Twitter user activities.
sg.gov.tech.bluetrace.fragment.

EnterPinFragment$onViewCreated$2.onClick

Figure 6: Identifying positive reporting in TraceTogether.

8.2 User Privacy Analysis

FOAP facilitates user privacy analysis by locating network
flows associated with privacy-sensitive EP methods.
• Sensitive Method Identification. The invocation of sensi-
tive EP methods in an app may leak out private user infor-
mation, such as health status, sexual preference, and search
queries. FOAP is able to identify them to infer user privacy.

The COVID-19 pandemic has rapidly spread across the
world. To fight against the pandemic, contact tracing has been
proven to be an effective strategy in monitoring virus spread-
ing. To this end, lots of contact tracing apps are developed
and published. Unfortunately, some of these apps may suf-
fer the risk of privacy leakage. By analyzing the encrypted
mobile traffic, one may infer if a user tests positive. Figure 6
presents an example about COVID-19 contact tracing apps,
i.e., TraceTogether3 The experimental setting is similar to that

3https://www.tracetogether.gov.sg/

for Twitter. FOAP spends about 39 seconds in processing all
2250 network flows and recognizes 5 network flows gener-
ated by TraceTogether (no FP and FN). FOAP successfully
identifies that the TraceTogether user (i.e., the second vol-
unteer) clicks the button for positive test reporting, which
invokes the EP method sg.gov.tech.bluetrace.fragment.

EnterPinFragment$onViewCreated$2.onClick. FOAP cap-
tures this sensitive information by identifying in-flow burst
associated with this method.
• In-Method Side-Channel Leaks. FOAP also helps the
analysis of in-method side-channel leaks, where diverse
packet sequences triggered by the same EP method may leak
sensitive private information. To demonstrate how the adver-
sary may infer user privacy, e.g., the illness of the user, from in-
method side-channel, we present an example about ECEasy-
Book4, a clinic appointment app. In this app, the user searches
doctors in different hospital departments will invoke the same
EP method com.ecbook.eceasy.ui.main.c.c$e.onClick but
trigger network flows with some differences in packet se-
quence. For example, the difference between searching doc-
tors of dermatology and searching doctors of paediatrics oc-
curs in the twelfth packet. The packet size for dermatology
is 1266 bytes, while that for paediatrics is 1238 bytes. By
leveraging this difference, the adversary may infer the illness
of the user. We list packet sequences associated with search-
ing doctor of different hospital departments and highlight the
major differences in Table 9. Although FOAP did not directly
infer user privacy in this example, it plays an important role
in locating privacy-sensitive methods, enabling the adversary
to zero in on network flows that leak out user privacy.

9 Discussion

9.1 Countermeasure

To defend against traffic analysis attacks, existing counter-
measures aim to obfuscate traffic features using different
strategies. There are three common obfuscation strategies:
i) padding packets to obfuscate features related to packet
sizes [24, 47], ii) injecting dummy packets to obfuscate fea-
tures related to packet directions [7, 17], iii) delaying packets

4https://eceasybook.com/
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Figure 7: Design of our AProxy countermeasure.

to obfuscate features related to packet timing [11, 24]. In-
spired by IMProxy [7], a proxy-based obfuscation system
against traffic analysis attacks on messaging apps, we design
an obfuscation system, named by AProxy, to implement traffic
obfuscation in the form of proxy-based relayers and incorpo-
rate two obfuscation strategies that have been proven to be
effective in defending against WF attacks, i.e., packet padding
and injection of dummy packets. We do not consider the
packet delaying strategy because it greatly degrades user ex-
perience if applied to apps. As illustrated in Figure 7, AProxy
is comprised of an AProxy client and an AProxy server. The
AProxy client is deployed on the Android smartphone while
the AProxy server is a remote proxy server. Before relaying
the outbound traffic to the AProxy server, the AProxy client
first adds padding to the outbound packets so that all packet
sizes equal 1500 bytes (i.e., MTU). It also injects outbound
dummy packets with MTU size into each flow. The arrival
time of dummy packets follows a Poisson process. After re-
ceiving the manipulated traffic, the AProxy server removes
padding and dummy packets, and further relays it to the app
server. As for the inbound traffic, the AProxy client and server
switch roles. The AProxy server adds padding and injects in-
bound dummy packets while the AProxy client removes them
and relays purified inbound packets to the app.

We experimentally evaluate the effectiveness of AProxy.
Figure 8 reports the defense effect. “Padding” represents only
packet padding is conducted and “P+D(x)” represents the
dummy packet number is x times the original packet num-
ber. Generally, more dummy packets result in a worse per-
formance of FOAP. For example, when the dummy packet
number is twice the original packet number, the average F1-
score for app traffic recognition drops from 0.911 to 0.714. A
counterintuitive example is the precision for P+D(2) is higher
than that for P+D(1) in EP method identification. A closer
look reveals the precision decline is mainly caused by dummy
bursts. Specifically, dummy packets may form dummy bursts,
which are injected into original network flows and potentially
undermine EP method identification as noises. FOAP will not
distinguish these noises from original in-flow bursts and still
predicts their labels, i.e., EP methods. Once the predicted EP
methods are inconsistent with EP methods that exactly trig-
ger the network flows where these noises are injected, false
positives are generated. Therefore, more dummy bursts are
expected to result in larger precision decline. At first glance,

(a) Open-world app traffic recogni-
tion.

(b) EP method identification.

Figure 8: Evaluating AProxy against FOAP.

P+D(2) injects more dummy packets than P+D(1). However,
we observed P+D(2) injects about 0.02 dummy burst per flow,
while P+D(1) injects about 2.1 dummy bursts per flow. It is be-
cause denser dummy packets reduce inter-packet interval and
tend to form bigger but fewer dummy bursts. Consequently,
P+D(1) leads to a lower precision of FOAP than P+D(2).

9.2 Limitation
• Separability of Flow. Since FOAP recognizes apps by ana-
lyzing network flows, the prerequisite for doing so is different
network flows are separable. In other words, packets from the
same network flow can be grouped together to extract flow
features. It implies FOAP’s incompetence in the scenarios
where network flows are inseparable, such as Tor.
• Offline Recognition. FOAP works in an offline fashion,
because some procedures, e.g., traffic segmentation and EP
method inference, are not stream-oriented. To enable quasi-
real-time analysis, an immediate improvement is specifying
sidling time windows and analyzing network traffic within
each window independently. A larger window size potentially
helps improve recognition accuracy, but introduces a higher
computational overhead because more information will be in-
volved in each time window. A smaller sliding step facilitates
timeliness at the cost of more frequent analysis. Therefore,
the proper window size and sliding step are chosen based on
a trade-off between accuracy, timeliness, and overhead.
• Model Integration. To achieve fine-grained open-world
app fingerprinting, FOAP needs to integrate multiple machine
learning (ML) models. On one hand, these models are nec-
essary to tackle various challenging issues in our problem.
On the other hand, each model may need separate data sci-
ence effort for model training and parameter tuning, which
increases difficulty, albeit controllable, to apply FOAP in the
wild. Specifically, for each app of interest, FOAP collects its
traffic instances and constructs an app-level training dataset
to train ML models for traffic segmentation, traffic filtering,
and flow recognition. FOAP also needs to construct a method-
level training dataset to train the spatial-temporal context
model for EP method inference. Fortunately, FOAP features



the capability of automatic labeling of training data, thereby
drastically minimizing the overhead of training data prepa-
ration. Additionally, different models may need separate ef-
fort for parameter fine-tuning. Nevertheless, our experiments
demonstrate default parameters of these models are exten-
sively suitable across different apps, hence alleviating the
difficulty in parameter fine-tuning.
• Limited Open-Worldness. FOAP aims at open-world app
traffic recognition. The number of available apps in the
Google Play Store is about 3.5 million [36]. We evaluate
FOAP using 1000 apps, around 0.29h of apps hosted in
Google Play store. Such a percentage is comparable to those
for open-world WF attacks in [33, 46]. There are around
1.9 billion websites in total [23], among which [46] consid-
ered 80,100 websites (around 0.04h of total websites) in
the open-world evaluation, while [33] considered about 400
thousand websites (around 0.21h of total websites). Despite
the number of apps used in this paper is substantially larger
than that in most existing works [5, 14, 22, 29, 39], there is
still a gap between our evaluation and realistic open world.
We will collect more apps for evaluation in future work.
• Synthesized Traffic. To reduce the cost for data collection,
we use traffic instances as negative samples when constructing
the testing data for different apps. Consequently, we generate
synthesized testing traffic by merging traffic instances from
different apps and employing Poisson process to mimic a
random use of apps. While Poisson process has been widely
used to model human behaviors [13, 18, 31, 50], further in-
vestigation is needed to evaluate whether Poisson process can
accurately characterize the use of apps. First, the use of apps
depends on human dynamic, e.g., work and rest, and thus the
use of an app may exhibit temporally heterogeneous property,
which may not be well characterized by Poisson process. Sec-
ond, the use of some apps may be temporally correlated for
real human. However, we randomly arrange the order of dif-
ferent apps without considering their correlation. Therefore,
the synthesized traffic resulting from merging traffic instances
based on Poisson process might not exactly reproduce a real
environment, and thus the performance of FOAP in the real
world might be affected. We will further evaluate FOAP using
non-synthetic traffic in future work.

10 Related Work

As an important branch of traffic analysis, traffic fingerprint-
ing techniques aim to infer user behavior by leveraging statis-
tic features of network traffic without accessing packet pay-
load plaintext, thereby immune to traffic encryption.
App Fingerprinting. Our work falls into the category of app
fingerprinting (AF), which focuses on the analysis of mobile
network traffic. There are lots of efforts towards the identifi-
cation of apps [2–4, 14, 39–41, 43]. For example, Taylor et
al. proposed a modular framework AppScanner for automatic
fingerprinting and real-time identification of Android apps

from encrypted network traffic [39, 40]; Aceto et. al proposed
a multimodal deep learning framework, dubbed MIMETIC,
for mobile encrypted traffic classification to identify different
apps [5]. To carry out more fine-grained characterization of
user behaviors, some works [15, 22, 29] aim at the identi-
fication of selected user activities of interest. For example,
Saltaformaggio et al. presented NetScope, a technique that
utilizes traffic behavioral clues to automatically build a de-
tector for smartphone app activities [29]; Fu et al. proposed
CUMMA to classify service usages of mobile messaging apps
by jointly modeling user behavioral patterns, network traffic
characteristics, and temporal dependencies [15]; Liu et al.
developed a recursive time continuity constrained KMeans
clustering algorithm for traffic flow segmentation and classi-
fied the segmented traffic to identify in-app user activity [22].

Compared with existing AF techniques, FOAP is more fine-
grained because we conduct method-level fingerprinting and
infer EP methods associated with various UI components. By
doing so, FOAP is able to not only identify fine-grained user
activities but also infer sensitive private information (e.g., ill-
ness). Besides, the vast majority of existing AF techniques
(e.g., [15, 22, 29, 39, 40]) work under the closed-world as-
sumption. In this paper, we consider a more practical but
challenging scenario, i.e., open-world setting. In literature,
[9, 10, 43] also consider the open-world scenario. Unfortu-
nately, their methods cannot solve our problem because they
have different threat models. [43] took advantage of destina-
tion features while [9, 10] only handle unencrypted data.

Website Fingerprinting. Website fingerprinting (WF) fo-
cuses on inferring sensitive websites visited by users via
encrypted proxies or anonymity networks, e.g., Tor. In the
light of how to extract traffic features, existing WF techniques
(e.g., [19, 27, 28, 30, 32, 33, 46, 48]) can be roughly cat-
egorized into the feature-engineering-based and the deep-
learning-based. The former category [19, 27, 30, 46, 48] re-
quires crafted features extracted using specific domain knowl-
edge and employs a variety of machine learning algorithms,
such as random forest, SVM, and KNN, to train classifiers for
website identification, while the latter category needs either an
enormous training set for automatic feature extraction [28, 32]
or samples from a large number of similar tasks to conduct
meta learning [33]. Due to different threat models, WF can-
not be directly applied to our problem. Nevertheless, some
of these works inspire us in traffic feature extraction. For
example, we extract traffic features about interactive pattern
inspired by [27]. In a recent work [46], Wang proposed three
novel classes of precision optimizers to improve the preci-
sion of open-world website fingerprinting (WF) at the cost
of recall decline. He also argued that it is more important to
optimize the precision of WF attacks than their recall. Un-
fortunately, such a method is not applicable for our problem
where precision and recall are comparably important.



11 Conclusion

In this paper, we took the first step to identify method-level
fine-grained user action of Android apps in the open-world
setting. To this end, a systematic solution dubbed FOAP was
proposed. It features i) the capability of effectively reducing
the false positive risk in open-world app recognition through
adaptive traffic filtering and ii) method-level user action iden-
tification via synthesizing traffic and binary analysis. We
have evaluated the effectiveness of FOAP through extensive
experiments. FOAP significantly outperforms the baseline
approaches by improving the F1-score from 0.679 to 0.911
for app recognition. It also achieves a reasonable accuracy in
EP method identification. The average F1-score is up to 0.885.
We also demonstrated the practicality of FOAP in fine-grained
user activity inference and user privacy analysis.
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Appendices

A Hyperparameter Tuning of FOAP

We select the best hyperparameters based on grid searching
to maximize the average F1-score. Table 10 summarizes the
hyperparameter tuning process.

Table 10: Hyperparameter tuning.

Parameter Search Space Selected Value
nmin {2,5,10,20,50,100} 10
τmin {2s,5s,10s,20s,50s} 20s
δ {0.1,0.2, . . . ,1.9,2} 0.5
Smin {0.05,0.1, . . . ,0.45,0.5} 0.1
Smax {0.05,0.1, . . . ,0.55,0.6} 0.25
T {2s,10s,20s,50s,100s} 20s

B Effect of Different Modules

To analyze how different modules of FOAP work together in
favor of performance promotion in the open-world setting, we
present a more fine-grained analysis on the effects of different
modules. We particularly focus on traffic filtering and bilevel
recognition model, since they are identified as modules most
relevant to false positives and false negatives through empiri-
cal observation. Figure 9 presents a boxplot that reports the
performance of FOAP with/without these modules. Removing
traffic filtering, FOAP-F suffers a decline of average preci-
sion from 0.945 to 0.714, indicating traffic filtering indeed
represses false positives. Removing the bilevel recognition
model, the average recall of FOAP-B drops from 0.897 to
0.748, indicating the bilevel recognition model effectively
reduces false negatives. Removing both modules, FOAP-F-B
achieves the lowest average F1-Score 0.779.

Figure 9: Effect of different
modules of FOAP.

Figure 10: The distribution of
app flow similarity (AFS).

C Impact of Automatic App Generator

Automatic app generators enable app development using
wizard-like web interfaces to customize apps’ UI without

writing codes. As a result, apps developed on top of the same
generators may exhibit very similar network behaviors. We
investigate how FOAP performs in face of these apps.
• Experimental Setup. Because apps in our dataset are the
most popular apps, few of them are developed on top of auto-
matic app generators. To explore the impact of the automatic
code generator, we generate 10×3 apps using three popular
online automatic app generators, including AppYet, Mobin-
cube, and AppsGeyser 5, to analyze their network behaviors.
For each app, we employ Monkey to generate 50 traffic in-
stances. FOAP still works in the open-world setting. For each
automatically generated app, we choose nI = 9+10 apps as
negative class in the testing. These apps include other 9 apps
generated by the same generator and 10 randomly chosen
apps from our 1000 popular app dataset.
• Result. As shown in Table 11, The FPR of FOAP for
apps generated by the same generator (aka. same family)
is higher than that for other apps. It implies FOAP will gener-
ate more false positives when distinguishing network flows
from apps generated by the same generator. To explore the
root-cause why false positives increase, we propose a novel
metric, named app flow similarity (AFS). For network flows
generated by an app X, we denote by S̄l(X,A) their average
local similarity with A. The AFS between two apps A and B
is defined by AFS(A,B) =

√
S̄l(A,B)·S̄l(B,A)√
S̄l(A,A)·S̄l(B,B)

. A smaller value

of AFS between two apps indicates they are less similar in
terms of network flows. AFS between an app and itself is
1. We measure pairwise AFS for apps in our dataset. Fig-
ure 10 shows an empirical distribution of AFS. The average
AFS between two arbitrary apps is 0.046 and 99.3% values
of AFS is smaller than 0.25, which implies two apps seldom
exhibit exactly identical network behaviors. For an app, we
also find its most similar app and record the maximum (MAX)
AFS. The average MAX AFS is 0.336 and 99.1% values of
MAX AFS is smaller than 0.75. As for apps generated by the
same generator, we find their average AFSes are all above 0.6,
which is significantly higher than that between two arbitrary
apps and even MAX AFS. By manually checking values of
AFS, we find some of them even approach 1, indicating it is
hard to distinguish network flows from these apps.

Table 11: Impact of automatic app generators.

Automatic
App Generator

FPR
(same family)

FPR
(other app)

Average
AFS

AppYet 1.74×10−1 5.30×10−3 0.726
Mobincube 2.80×10−1 1.99×10−3 0.612
AppsGeyser 4.03×10−1 1.07×10−3 0.668

5AppYet: http://www.appyet.com/, Mobincube: https://mobincube.com/,
AppsGeyser: https://appsgeyser.com/
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