RDC: Energy-Efficient Data Center Network Congestion Relief
with Topological Reconfigurability at the Edge

Weitao Wang', Dingming Wu", Sushovan Das’, Afsaneh Rahbar’, Ang Chen’, and T. S. Eugene Ng'

TRice University, Bytedance Inc.

Abstract

The rackless data center (RDC) is a novel network architec-
ture that logically removes the rack boundary of traditional
data centers and the inefficiencies that come with it. As mod-
ern applications generate more and more inter-rack traffic, the
traditional architecture suffers from contention at the core,
imbalanced bandwidth utilization across racks, and longer
network paths. RDC addresses these limitations by enabling
servers to logically move across the rack boundary at run-
time. Our design achieves this by inserting circuit switches at
the network edge between the ToR switches and the servers,
and by reconfiguring the circuits to regroup servers across
racks based on the traffic patterns. We have performed ex-
tensive evaluations of RDC both in a hardware testbed and
packet-level simulations and show that RDC can speed up
a 4:1 oversubscribed network by 1.78 x ~ 3.9x for realistic
applications and more than 10X in large-scale simulation;
furthermore, RDC is up to 2.4 x better in performance per
watt than a conventional non-blocking network.

1 Introduction

The importance of the data center network (DCN) has led to a
series of DCN architecture proposals [26,43,44,53,59,62,66,
74,80,82,84-86,96,110, 118] over the past decade. Although
these proposals have competing designs for the network core,
the designs for the network edge are similar: servers organized
in racks. The network core connects multiple racks, and each
rack hosts tens of servers that are connected via a Top-of-Rack
(ToR) switch. Standardized racks enable unified power supply
and cooling, as well as significant space and cable savings.
This rack-based topology and connectivity pattern is deeply
ingrained in the design of existing DCN architectures.
While traffic within a rack experiences no congestion,
traffic across racks often has to contend for bandwidth
due to oversubscription in the network core'. At the same
time, traffic across racks is increasing in data center work-
loads [36, 37, 40, 99]. Firstly, more and more DCN traffic
is escaping the rack boundary due to resource fragmenta-
tion [61], large-scale jobs [24], specific application placement
constraints for fault tolerance [13], and service-based rack
organization for operational convenience [99]—e.g., one rack
may host storage servers, and another rack may host cache

I'The literature suggests that there exists a wide-range of common over-
subscription ratios between 4:1 to 20:1 [43,62,99, 105].

servers. Secondly, there is also an increasing amount of traffic
that leaves the pod. For instance, a web-frontend cluster may
need to retrieve data from a database cluster or submit jobs to
a Hadoop cluster [99].

Thus, the need for efficient handling of cross-rack traf-
fic has motivated numerous approaches; but they have one
thing in common — they view the rack design (i.e., a ToR
switch connecting tens of servers) as a given. Firstly, the non-
blocking network and its alternatives [26,62,64,65, 82, 109]
aim to enlarge the capacity of the network core. However,
due to the scaling limit of CMOS-based electrical packet
switches [6, 33, 34,49, 50,57, 91, 104, 105], building such
a network while staying within the datacenter power bud-
get is challenging [107]. Secondly, rack-level reconfigurable
networks [53,74,80,110, 118] add additional bandwidth be-
tween the most intensively communicating racks with extra
cables, lasers, or antennas to relieve the bottleneck at the
core. However, the performance improvement is constrained
by the fact that the number of additional paths is usually
limited. Thirdly, smarter job placement and execution strate-
gies [39,40,45,46,71,72,87,108,116,120] can also reduce the
inter-rack traffic by arranging the jobs based on their traffic
pattern. However, these placement solutions cannot perform
well if traffic patterns fluctuate at runtime or if the application
dictates placement and forces the traffic to be cross-rack.

This paper studies a complementary and little-explored
point in the design space, which we call the rackless data
center (RDC) architecture. It logically removes the fixed,
topological rack boundaries while preserving the benefits of
rack-based designs, e.g., organized power supply and cool-
ing, and space efficiency. In RDC, servers are still mounted
on physical racks, but they are not bound statically to any
ToR switch. Rather, they can move logically from one ToR
to another. Under the hood, this is achieved by the use of
the circuit switches (CS), which can be dynamically reconfig-
ured to form different connectivity patterns. In other words,
servers remain immobile, but circuit changes may shift them
to different topological locations. Therefore, this new archi-
tecture is not committed to any static configuration, so servers
that heavily communicate with each other can be grouped on
demand, and they can be regrouped as soon as the pattern
changes again. Such dynamic server regrouping enabled by
RDC leads to performance benefits in many common, real-
world scenarios (details in §2).

We make the following contributions: 1) a novel architec-
ture called RDC, which can be reconfigured to connect servers
under different racks in the same logical locality group despite
physical rack boundaries; 2) a low-latency RDC control plane
and algorithms, which continuously optimize the RDC topol-
ogy based on the traffic patterns; 3) a prototype of RDC in
both testbed and simulation settings, demonstrating that RDC
boosts the performance of a 4:1 oversubscribed network by
1.78x ~ 3.9 for realistic applications and more than 10X in
large-scale simulation; furthermore, RDC is up to 2.4 x better
in performance per watt than a conventional non-blocking
network.

2 Motivation

RDC is motivated by inefficiencies that stem from the inher-
ent rack boundaries in today’s data centers. RDC enables dy-
namic topological reconfiguration to regroup servers, leading
to improved performance for modern workloads. We propose
to realize RDC using circuit switching technologies.

2.1 Rack sizes are inherently limited

Today’s DCNs are organized in physical racks as the basic
unit. Communication within a rack is through a ToR switch
and enjoys lower latency and higher throughput than that
across racks. This rack boundary is stressed by a combi-
nation of two trends. First, applications are becoming data-
intensive. DNN training, iterative machine learning, HPC, big
data frameworks (MapReduce, Spark, HDFS) and many other
workloads require extensive data communication. Second, the
advent of domain-specific accelerators (GPUs, TPUs) and
non-volatile memories (NVM) is further shifting the major
bottleneck from computation to network I10. The convergence
of these trends leads to the need to maximize rack-level perfor-
mance as much as possible. Broadcom’s Tomahawk-4 64x400
Gbps—the fastest Ethernet switch ASIC commercially avail-
able on the market today [7]—only supports a rack boundary
of tens of servers while maintaining maximum rack-level per-
formance. A few years ago, the End-of-Row architecture was
proposed as an alternative, where multiple racks of low port
speed servers were connected to a high-radix edge switch to
form a larger logical rack [1]. However, high-radix switch-
ing is not feasible at high port speeds: 400 Gbps ports are
common today, and Ethernet standards are growing to terabit
level. Therefore, in the foreseeable future, the physical rack
boundaries of tens of servers are here to stay. New solutions
are necessary to mitigate inter-rack-level bottlenecks.

2.2 Rack boundaries introduce bottlenecks

1. Jobs fragmented across racks. A job may spread across
racks if rack resources are fragmented. This is partly be-
cause cluster schedulers assign resources to their own jobs
locally [5, 11, 12]; also, dynamic job churns ensure that rack
resources aren’t always neatly packed [60,95]. Such resource
fragmentation leads to heavy inter-rack traffic which contends

for bandwidth due to oversubscription.

2. Workloads with dynamic traffic patterns. Many data-
intensive applications (e.g., DNN training, HPC) consist of
multiple stages, and each stage has a different yet predictable
traffic pattern. For example, Distributed Matrix Multiplication
(DMM) has broadcast (one-to-many) and shift (one-to-one)
traffic patterns among different subsets of servers in every
iteration (Fig. 8(e)). When these jobs coexist in a cluster, the
overall combined traffic pattern will change dynamically and
predictably. For such workloads, no static job allocation is
sufficient to localize all the traffic patterns simultaneously.
3. Applications with placement constraints. Applications
may intentionally spread their instances across racks to bal-
ance load [55] to reduce synchronized power consumption
spikes [70], or to achieve fault tolerance [13]. For instance,
to increase resilience, some distributed storage systems, like
HDFS, require at least one replica to be placed on a different
rack. These requirements result in placement constraints that
are by design crossing rack boundaries.

4. Imbalanced out-of-pod traffic. In large datacenters, traf-
fic patterns across racks are often skewed, and out-of-pod
traffic demand for each rack is different. For example, only
7.3% of the traffic from the frontend servers is inter-pod, com-
paring to 40.7% for the cache servers [41,99]. Operationally,
data centers tend to group servers based on their types [99].
So, the above heterogeneity of the out-of-pod traffic demand
will make some racks’ uplinks highly congested (e.g., cache)
while other racks still have unused bandwidth (e.g., frontend).

2.3 Facebook trace analysis: A case study

Methodology. We used a public dataset released by Face-
book, which contains packet-level traces collected from their
production data centers in a one-day period. The traces were
collected from the “frontend”, “database”, and “Hadoop” clus-
ters, sampled at a rate of 1:30 k, and each packet contains
information about the source and destination servers [4]. To
understand the benefits of removing rack boundaries, we simu-
late a rackless design by regrouping servers of different racks
into “logical” racks using the algorithms presented in §3. We
have two major findings.

Observation #1: Intensive inter-rack traffic. The first ob-
servation from the traces is that most of the traffic crosses
rack boundaries in a pod. Fig. 1(a) shows the heatmap of
traffic pattern inside a frontend pod with 74 racks, collected
during a 2-minute interval. If a server in rack i sends more
traffic to another server in rack j, then the pixel (i,j) in the
heatmap will become darker. Intra-rack traffic appears on the
diagonal (i.e., i = j). The scattered dots show that the traffic
does not exhibit rack locality—in fact, 96.26% of the traffic
in this heatmap is inter-rack but intra-pod. A similar trend
exists for the database trace: 92.89% of traffic is inter-rack
but intra-pod. Hadoop trace has more intra-rack traffic but
still has 52.49% of traffic being inter-rack but intra-pod.
Implication #1: Regrouping servers improves locality. Fig.

704= : 70
601 = - [Inter-Rack Traffic:| - 1.0 60 Inter-Rack Traffic:
e 96.26% i 38.36%
50 = e e 0.8 50
a |E =1, . y
S 40 P 0.6 S0
S | n - 04 5 -
« 30 < 30 -
e i e o)
20 20 #
s Lzl il | Roo il
104455 g eIl 101
0 - - . "ae L L L 0 .l-"'-
0O 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Rack ID Rack ID

Imbalance Ratio: |
1.14x)

(d)

E o (Imbalance Ratio: |
3 4.17x

(c)

O R NWARUO
Traffi
[=]
o]

0.0
0 10 20 30 40 50 60 70
Racks Sorted by Outgoing Traffic Load

.0~
0 10 20 30 40 50 60 70
Racks Sorted by Outgoing Traffic Load

Figure 1: Traffic patterns from the Facebook traces. (a) is the rack-level traffic heatmap of a representative frontend pod. (b) shows
the heatmap after regrouping servers in (a). (c) and (d) plot the sorted load of inter-pod traffic across racks in a representative

database pod, before and after server regrouping, respectively.

1(b) shows the heatmap if servers are regrouped under differ-
ent racks based on their communication intensity, simulating
the desired effect of RDC. Here, most of the traffic is on
the diagonal, and inter-rack traffic is reduced significantly to
38.4%. Assuming a 4:1 oversubscribed network, what used to
be inter-rack traffic now enjoys 2.82x higher bandwidth. For
the database and Hadoop traces, the inter-rack traffic ratios
after regrouping are 28.4% and 41.6%, respectively.

Observation #2: Out-of-pod traffic imbalance. Another
notable trend is the heavy imbalance of out-of-pod traffic. Fig.
1(c) sorts the racks based on the amount of out-of-pod traffic
they sent (traffic trace: database) in a 20-min interval, where
the X-axis is the rack ID, and the Y-axis is the (normalized)
out-of-pod traffic volume. As we can see, the top 11 racks ac-
count for nearly 50% of the out-of-pod traffic, and almost half
of the racks never sent traffic across pods. Therefore, some
uplinks of ToR switches are heavily utilized, whereas other
links are almost always idle. The load imbalance, defined as
max(L;)/avg(L;), where L; is the amount of out-of-pod traffic
from rack i, is as much as 4.17. We found qualitatively similar
results on other traces.

Implication #2: Grouping servers mitigates load imbal-
ance. Fig. 1(d) shows the results if servers can be regrouped.
In the simulated RDC network, the inter-pod traffic is much
more evenly load-balanced across racks, achieving a load
imbalance of 1.14. Moreover, the aggregated bandwidth for
the out-of-pod traffic increases to 1.79x of the previous band-
width. This would make better use of the ToR uplinks and
avoid congesting any particular link due to imbalance.

2.4 The Power of RDC

Driven by the application-level demand and trace-based anal-
ysis, we propose the concept of rackless data center (RDC),
which logically removes the physical rack boundaries while
maintaining the high-speed rack-level performance. In RDC,
servers are mounted on the same “physical rack” sharing the
power supply and cooling system but can be logically moved
across the ToR switches. We call the new groups of servers
served by the same ToR a “logical rack”. Fig. 2 illustrates the
benefits of RDC due to server regrouping.

1. Mitigate the effect of resource fragmentation. RDC can

Physical rack 1 & servers O

Physical rack 2 & servers O

bo o

Inter-rack flows: 3 -> 1

Traffic pattern changes

-88%@36000

Inter-rack flows: 2->0 Inter-rack flows: n->0 Imbalance Ratio: 1.5 -> 1

Sugdnmﬂ-e,l BELSENS

Figure 2: Comparisons between before and after server re-
grouping for (a) placement optimization, (b) dynamic opti-
mization for evolving patterns, (c) application constraints
accommodation, and (d) out-of-pod load balancing.

reduce the effect of resource fragmentation by relocating the
heavily communicating server groups under the same logical
rack, thus reducing inter-rack traffic. RDC can completely
localize smaller jobs that are possible to be packed within
one logical rack, like the job on the left-hand side of Fig. 2(a).
Even for bigger jobs that cannot be packed within one logical
rack, RDC benefits them by (1) localizing as many traffic
flows as possible to logical racks, like the job on the right-
hand side of Fig. 2(a); and (2) minimizing overall inter-rack
traffic from all jobs, leaving the core bandwidth to be shared
by much fewer flows that must cross the rack boundaries.

2. Optimize for dynamic traffic patterns. The ability of
dynamic server regrouping enabled by RDC can potentially
optimize the applications with variable yet predictable traf-
fic patterns. With such changing patterns as shown in Fig.
2(b), RDC is able to dynamically change the topology and
minimize the inter-rack traffic for all patterns.

3. Accommodate application placement constraints. As
shown in Fig. 2(c), application-level constraints can be ac-
commodated by RDC while localizing traffic. For example,
HDFS always requires at least one data block replica to be
placed on a different rack. By regrouping the servers from
different racks into one logical rack, RDC can place the repli-
cas to a different physical rack but within the same “logical”
rack, which provides higher bandwidth and also satisfies the
replica placement policy of HDFS.

4. Balance out-of-pod traffic. RDC is able to regroup the
servers according to their out-of-pod traffic demands and
balance link utilization, hence relieving the bottleneck. In

ToR ToR ToR ToR ToR ToR

Circuit switch Circuit Circuit] i
J)J)J)J) Servers 4)4)&(% (g(l.)(].) Servers (L(LJ) Servers
RDC pod RDC pod RDC pod

2-circuit RDC pod 2-circuit RDC pod

ToRO ToR 1 ToR 2 ToRO ToR1 ToR 2

minamC i
) SoSon

r T3

RackA |
Rack 0 Rack 1 Rack 2 Rack B
Original Topology

Rack C

Reconfigured Topology

Figure 3: RDC architecture overview. (a) is an example of the RDC network topology. Different numbers of circuit switches
can be inserted at the edge between servers and ToR switches. Connectivities for aggregation switches (agg.) and core switches
remain the same as in traditional Clos networks. (b) shows the original topology and an example reconfigured topology for a

2-CS RDC pod with 3 racks and 4 servers under each rack.

Fig. 2(d), the imbalance ratio has been decreased to 1 from
1.5 after the grouping is changed according to the out-of-pod
traffic demand.

2.5 Realizing RDC

Circuit switches (CS) are widely used to provide reconfig-
urable connections among end points, which is a great fit for
the server regrouping functionality of RDC that we discussed
above. One realization of RDC is to connect all the servers
and all the ToR switches within a pod with a single CS. Alter-
natively, RDC can also use multiple smaller port count CSes
to form a distributed reconfigurable server-to-ToR fabric.

RDC can potentially leverage any kind of CS technologies,
including optical and electrical circuit switches alike [104].
However, at high data rates, optical transceivers are the stan-
dard interfaces. Therefore, to make the realization long-term
sustainable, we consider various optical circuit switching
(OCS) technologies. Several OCS technologies are avail-
able today such as 3D/2D MEMS, AWGR, etc. Fundamen-
tally, OCS does not perform packet-level processing and for-
wards the photon beams using mirror rotation, diffraction,
etc., which leads to some inherent advantages such as a)
agnostic to data-rate (or modulation format), b) negligible
power consumption, ¢) negligible forwarding latency due to
no buffering, and d) no need of transceivers at the OCS ports.
Additionally, different OCS technologies can provide very
fast switching. For example, 2D-MEMS-based OCSes pro-
vide microsecond switching [96]), AWGR switches with the
latest tunable transceivers can provide nanosecond switch-
ing [33, 35, 48, 49, 58, 77]. Moreover, OCS are highly re-
liable [101] and, due to their simplicity, mostly free from
firmware bugs and software misconfigurations.

3 The RDC Architecture

3.1 Connectivity structure

RDC changes the traditional multi-layer Clos topology [26,
62] by inserting one or more circuit switches (CS) at the edge
layer between the servers and ToR switches, so that the server
can be connected to different ToR switches through circuit
reconfiguration. The aggregation and core layers of the net-

work remain the same. Each circuit switch has some ports
connected to every ToR switch within the pod to guarantee
that the servers could be connected to any ToR switch. For
the 1-CS RDC pod, the servers can be grouped without con-
straints, as long as the number of servers under each ToR
switch is the same. If multiple circuit switches are used in
one pod, the additional connectivity constraint is that not all
the servers under one circuit switch can be connected to the
same ToR. With such design, RDC maximizes the flexibility
to permute the server-ToR connectivities, allowing the most
intensively communicating servers to be localized under the
same ToR and enjoy the line rate throughput.

Fig. 3(a) shows an example of the RDC pods. For a pod
with m racks and n servers per rack, 2mn ports should be
provided by all the circuit switches in total to link both servers
and ToR switches. For instance, a 16-rack pod with 32 servers
can be built with either 1 circuit switch with 1024 ports or
k switches with % ports each. Fig. 3(b) gives a detailed
example of inserting multiple circuit switches and how to
reconfigure for regrouping servers. For a pod with k circuit
switches, % servers under each ToR are connected to one
circuit switch, so that the original topology can keep every
server under its own physical ToR switch.

Intuitively, if we increase the number of CSes, the design
becomes more distributed which decouples it from a particu-
lar CS technology’s port count availability; while at the same
time, the flexibility of moving servers across the ToRs is
slightly reduced. To shed light on this trade-off, we perform
trace-based analysis with varying numbers of CSes between
the servers and ToR switches. To find a valid server regroup-
ing, we formulate an Integer Linear Programming (ILP) which
maximizes the traffic localization given the constraints arising
from multiple CSes (more details in §4.3). For the analysis,
we consider an RDC pod with 16 ToRs and 32 servers per
ToR, having 4 : 1 oversubscription above the ToR level. We
vary the number of CS from 1 to 8 and compare the perfor-
mance with a static 4 : 1 oversubscribed network. Fig. 4 shows
a boxplot of the flow completion times (FCT) of these archi-
tectures for flow-level Cache traffic trace generated from [99].
We observe that the potential benefit of RDC remains high

104,
B 25%~75%

....... Median
--&- Mean
H 5%~95%

Static 8-CS 4-CS 2-CS 1-CS

FCT (ms)
=
3

Figure 4: The potential improvement for FCT remains high
across a wide range of multi-CS configurations in RDC

across a wide range of CS configurations, which validates the
efficacy of our distributed design.

3.2 The RDC Controller

Today’s data centers are constructed from modular pods [3,
14,19,22], where a pod typically hosts one type of service.
RDC similarly views pods as basic units and uses a per-pod
network controller that manages both packet switches and
circuit switches within the pod. The controller reconfigures
the network at timescales of seconds or longer depending on
the traffic pattern. It has two operation modes: it can receive
the traffic demands or commands from the applications di-
rectly in the proactive mode, or passively monitor the traffic
statistics from packet switches in the reactive mode.

We illustrate the workflow for both modes in Fig. 5. The
controller 1) first collects the traffic statistics by querying the
flow counters on the ToRs, or passively receives the infor-
mation from the applications; 2) determines the optimized
topology with certain optimization goals (§4); 3) generates a
set of new routes and pre-installs them on the packet switches;
and 4) finally sends the circuit reconfiguration request to the
circuit switch and simultaneously activates the new routing
rules on packet switches. The first two steps serve as the RDC
control plane (discussed later in §4), while the last two steps
configure the data plane (discussed in §3.3). Note that only
the final step would cause a small amount of disturbance due
to the circuit reconfiguration delay.

3.3 Routing

In traditional DCNs, forwarding rules are aggregated based
on IP prefixes. In RDC, such aggregation does not work as
servers have no fixed locations. Instead, RDC uses per-pod
flat IP addressing and exact matching rules on packet switches.
Topology changes are captured by updating the routing rules.
These rule updates are for intra-pod routing only, as routing
mechanisms across pods remain unchanged.

In an RDC pod, each ToR has a flow table entry for every
server IP in its rack, and a single default entry for other ad-
dresses outside the rack. Each ToR splits traffic to other racks
equally across its uplinks using ECMP [69]. All agg. switches
have the same forwarding table: one entry per destination IP.
The flow entries on ToRs and agg. switches both need to be
updated when topology changes. For ToRs, only the rules for
downward traffic need to change; the default ECMP entry for
upward traffic remains the same. Therefore, for an RDC pod

-I] S N
3, & R M
- eu, B o
Agg. switches foy, 2topology (K& it switch
S optimization <@
1cX\CS Z
s ‘a . oy
- qaffic Ingy Plicgy,
% S — or”’ati Vion
_ \N(ou\ %n
‘W Controller
- \e 128
A: {0%%

Applications

ToR switches
Figure 5: Workflow overview of RDC.

with m racks and n servers per rack, a topology change could
result in n rule updates on ToRs and m x n updates on agg.
switches, which is on the order of hundreds to a thousand. Up-
dating this number of rules on an OpenFlow switch could take
100ms to over s [68,76]. Previous works have developed
the two-phase commit method to reduce disruption during
updates [81, 98], which first populate the switches with new
routing rules and then flip the packet version at the ingress
switches. However, such an approach cannot avoid packet
loss in the transient state, like changing the packet version
rule [81]. This is because updating the packet version rule
at the ingress switch requires two rule changes—removing
the old rule and installing the new rule—and therefore is not
atomic. Our measurement on a Quanta T3048-LY2R Open-
Flow switch shows the transient period could last for 0.5ms.

Instead of changing the packet version, in RDC a switch
performs binary changes from VLAN tagging packets to not
tagging them, and vice versa. The VLAN-tagged packets will
match a group of rules with the VLAN tag as a match field,
whereas the packets without VLAN tags will match a more
general group of rules without VLAN IDs. In this way, adding
and removing a single VLAN tag rule achieves the same goal
as changing the packet version, but the operation is atomic
and avoids packet loss (more details in §A.1.) We apply this
update approach to both ToR and agg. switches but only tag
or not tag packets on ToR switches. Tag flipping actions are
only performed when the new forwarding rules have been
populated network-wide. The VLAN tag flipping actions need
to be executed at the same time across multiple ToRs; such
network-wide changes can be performed using well-known
SDN time synchronization [90] and consistent update [42,
73, 100] techniques, so that changes can be synchronized and
take effect atomically.

3.4 Discussions

Reducing the path length: Besides the throughput benefits
mentioned in §2, localizing the hosts under the same log-
ical rack would effectively reduce the average path length
(evaluated in §5.2), and thus reduce the network latency.
Therefore, low-latency applications and disaggregated sys-
tems [56,63,92,94, 103] may benefit from RDC’s design as
well.

ToR failure handling: In a traditional data center, a ToR
failure disconnects all servers in the rack. ToR failures are
handled either by multi-homing servers to several other ToRs

[79, 83] or by replicating applications under multiple ToRs
[113,119]. But in RDC, servers are not tied to any particular
ToR, servers under a failed ToR can be migrated to a healthy
ToR. To host the relocated servers, we can reserve some “free”
ports on each ToR for recovery or install a set of backup ToRs
[112, 114]. Specifically, for an RDC pod with m racks and
n servers per rack, we only need i free ports per ToR (or n
ports overall) to recover from any single ToR failure, which
incurs a low additional cost and complexity.

CS failure handling: In general, circuit switches are ex-
tremely reliable [102]. Commercial OCS products have more
than 28.5 years of mean-time-between-failure (MTBF) and
come with redundant control processors [2]. However, if a
CS failure happens, only a small fraction of servers will be
disconnected uniformly under each ToR of RDC, due to its
connectivity structure. The most common failure mode for
the CS is the power outage. To mitigate this, multiple redun-
dant power supplies can be used for the CS [2]. For further
protection, battery backups can be used—since the CS draws
only tens of Watts, a battery backup already goes a long way.

4 RDC Control Algorithms

RDC has a general framework to support various topology
optimization algorithms, working in two modes to collect the
traffic demand matrix and compute the reconfiguration plan.

4.1 Proactive-mode RDC

The proactive mode of RDC allows applications to explicitly
call the RDC controller via RPC with two APIs: 1) Traffic
demand matrix can be reported by the applications to re-
quest reconfigurations. Along with the demand matrix, RDC
controller will request the application to specify one topol-
ogy optimization algorithm from the algorithms described in
§4.3 as well. After receiving the request, the RDC controller
will calculate an optimal topology with a specified algorithm
and conduct the reconfiguration accordingly. 2) Raw con-
figuration commands can also be given directly from the
applications. For this method, formatted data to describe the
new circuit connections will be sent to the controller, so that
the controller could bypass the calculation of the optimal
topology and directly used the received configuration to initi-
ate the reconfiguration. An additional benefit for applications
to send raw configuration plans is that it enables network-
aware job placement and scheduling since the applications
know the future network requirements in advance.

There are several scenarios where applications can benefit
from telegraphing their intent to the RDC controller: 1) In a
case where applications intentionally spread their deployment
across racks—e.g., for fault tolerance [40] or for reducing syn-
chronized power consumption spikes [70]—inter-rack traffic
patterns are unavoidable in traditional architectures. In RDC,
however, such applications can request relevant servers to be
grouped together logically. 2) The cluster applications may
be allocated with resources from multiple racks due to frag-

mentation. By aggregating those fragmented resources to the
same logical rack, RDC improves the bandwidth and reduces
the average latency. 3) When applications have changing traf-
fic patterns (e.g., distributed matrix multiplication (DMM)
algorithms proceed in iterations with shifting traffic patterns),
they can request reconfigurations before the next phase starts
to ensure locality throughout the job. 4) Last but not least,
RDC could rely on the out-of-pod traffic demands reported by
applications to balance the load across different ToR uplinks.

We evaluate three different applications in §5.1 to show
the performance of proactive-mode RDC, including HDFS,
Memcached, and DMM.

4.2 Reactive-mode RDC

The reactive mode of RDC does not require to modify applica-
tion; it collects traffic statistics from the network in one epoch,
and reconfigures the network with an optimized topology for
the next, based on the statistics and one of the optimization
algorithms from §4.3, specified by the network operators.

Traffic statistics. The RDC controller pulls flow counters
from ToRs periodically. A flow counter associates the 5-tuple
(13 bytes) of a flow to an 8-byte counter value and thus has
21 bytes in total. Switch memory constraint is traditionally
the main concern of maintaining per-flow counters, but this
constraint is loosening over the years as the switch SRAM
size has been continuously growing. The most recent switch
ASICs have 50-100MB of SRAM and can store millions of
flow states [18,88]. As recent DCN measurement works show
that the number of concurrent flows per server is on the order
of hundreds to a thousand [28, 99], each ToR in RDC would
then need tens of thousands of flow counters assuming tens of
servers per rack. For instance, assuming an RDC pod with 16
racks and 32 servers per rack, and a counter pulling period of
10s, the control channel bandwidth usage is roughly 8.6Mbps,
which is low enough to be feasible.

Demand estimation algorithm. Previous works have shown
that data center workloads demonstrate certain degrees of
stability [38,99], and RDC similarly relies on this stability
to estimate the traffic demand based on historical data. But
the observed traffic volumes on ToR switches are biased by
the current topology, so it is important to estimate the true
traffic demand, i.e., the traffic demand when flows are not
bottlenecked by the network core. Mitigating such observation
bias has been studied in previous work, Hedera [27], and we
adopt a similar heuristic.

A flow could be bottlenecked either by the network or by
the application itself. We call the first class of flows elastic
and the second non-elastic, and RDC only considers elastic
flows. The heuristic is to remove flows from the observed
traffic matrix whose sizes are smaller than their fair share.
The remaining flows are treated as elastic, and RDC cali-
brates for potential bias in the counters by computing their
idealized bandwidth share (i.e., their bandwidth share if they
are only bottlenecked by the host NICs’ capacity) as the es-

Srg“ o|1]2]3 srg“ o|1]2]3 Srf“ o|1]2]3
0) 0 13|13]13| | o 13|13 13
1 2 | 2 1 12)12| | 1 172 |12
2| 2|2 - 2 (12|12 - 2 12|13
322 - 3 |12]12] - 3 12|13

—_— B S——
Source-side fair share Destination-side check

Figure 6: Hedera demand estimation example. Each "?" repre-
sents one flow from source host to destination, "-" represents
no flow between that source-destination pair, and number
"1/2" represents 50% of host bandwidth. This example ends
in one iteration, but it takes more iterations for a more com-
plicated traffic matrix.

timated demand [27]. Hedera is an algorithm to calculate
the max-min fair share rate of each flow within a network. It
performs multiple iterations to firstly increase the flow capac-
ities at the source (no greater than the source host capacity)
and then decrease the exceeding capacities (sum of enlarged
flow capacities subtracting the actual NIC capacity) on each
destination host until the flows’ capacities converge. A simple
demand estimation example that ends with only one iteration
is shown in Fig. 6 (More details in §A.3). After convergence,
the estimated flow demands are aggregated into a server-to-
server traffic matrix for reconfiguration. The effectiveness of
this demand estimation algorithm is evaluated in §5.4.

4.3 Topology optimization algorithms

RDC enables a range of topology optimization and reconfigu-
ration algorithms.

1. Traffic localization algorithm reconfigures the network
to localize inter-rack traffic, after obtaining the flow demands
proactively or reactively. The objective of the localization al-
gorithm is to minimize the traffic demands across the logical
racks of the new topology. With this objective, the localization
algorithm can be formulated as an Integer Linear Program-
ming (ILP) problem as described in §A.4. However, finding
the optimal solution is NP-hard, so we provide heuristic alter-
natives with balanced graph partition [75] for 1-CS RDC and
a simplified algorithm for multi-CS RDC discussed in §A 4.
The heuristic algorithms can find a high-quality regrouping
plan within tens of milliseconds as shown in Table 2.

2. Uplink load-balancing algorithm spreads out-of-pod traf-
fic across ToR switches for load balancing, relieving the poten-
tial congestion on the over-subscribed uplinks. The objective
for uplink load balancing (ULB) is to minimize the maxi-
mum out-of-pod traffic from one rack. We provide a formal
problem formulation and faster heuristic algorithms in §A.2.
3. Mixed optimizations can be developed in RDC to localize
the inter-rack traffic and balance the out-of-pod traffic at the
same time, e.g., for a mix of workloads or applications. To
satisfy this goal, the objective of this problem will be minimiz-
ing oT + BR, where T is the total inter-rack traffic demands
within a pod, R is the maximum volume of out-of-pod traffic
across ToRs, and o and B are the respective weights [40].

(a) Servers (b) OCS (c) OpenFlow packet switches

Figure 7: RDC prototype with 4 racks and 16 servers.

4. Scenario-specific optimizations allow applications or net-
work operators to define their own optimization algorithms
for regrouping the servers into logical racks. The applications
are able to define their own objective function and add more
application-specific constraints.

5 Implementation and Evaluation

We conduct comprehensive evaluations using testbed experi-
ments and packet-level simulations. Our experiments focus
on several dimensions: a) real-world applications of RDC to
HDFS [10], Memcached [23], and MPI-based distributed ma-
trix multiplication (DMM) [54] as use cases, b) packet-level
simulations on the latency and throughput improvements at
scale, ¢) packaging, power, and capital cost analysis, and d)
microbenchmarks on RDC, including non-disruptive control
loop latency.

Testbed. Our RDC prototype consists of 16 servers and 4
ToR switches in 4 logical racks, one agg. switch and one cir-
cuit switch; Fig. 7 illustrates our hardware testbed. The ToR
switches are emulated on two 48-port Quanta T3048-LY2R
switches. Each ToR switch has four downlinks connected to
the servers, and one uplink to the agg. switch, forming an over-
subscription ratio of 4:1. We can tune this ratio to emulate a
non-blocking network by increasing the number of uplinks to
4. The agg. switch is a separate OpenFlow switch. The OCS is
a 192-port Glimmerglass 3D-MEMS switch with a switching
delay of 8.5 ms. This can also be replaced with other types
of OCS. Each server has six 3.5 GHz dual-hyperthreaded
CPU cores and 128 GB RAM, running TCP CUBIC on Linux
3.16.5. Most of our experimental results except the large-scale
simulation in §5.2 are obtained on this testbed.

Packet-level simulator. In order to simulate a wider vari-
ety of experimental settings, we have developed a packet-
level simulator based on /Atsim, which was used to evaluate
MPTCP [97] and NDP [67]. This simulator has a full imple-
mentation of TCP flow control and congestion control algo-
rithms and supports ECMP. We simulate a conservative circuit
reconfiguration delay of 8.5 ms, which is what our testbed
3D-MEMS switch achieves. As discussed in §2.5, much faster
circuit switching technologies exist [33,48, 58, 86] that can
further improve the performance of RDC. Note that only the
circuit that is being reconfigured will experience a disruption;
all other circuits continue to function. Packets in flight during
reconfiguration will be dropped if they traverse the disrupted
links, and unsent packets will be buffered at the servers. We
simulate an RDC pod with 512 servers, 32 servers per rack,

Physical racks

—
HDFS write

bl 50{ —e- 4:1-0s. /.’

HDFS write)

optimized 0 Sinbad ‘v & 300

by Sinbad g 401 —*— NBLK ! g

of received g —+; RDC 17 Ea5

blocks across rack 230 5

HDFS(perrack) 0 2 1 1 o g

Sinbad (per rack) 1 11 1 € 20 9200

RDC (logical rack) o o o F 3
- s E

_. 0600 3 £

HDFS write : o o/‘o e 10 150

awared of RDC's 8.

logical topology e

41-0s. RDC N

988

0.25 5 1 2 4 8
,,,,,, File Size (GB)
Logical racks

(a) (b) (c)

—» Row-wise broadcast 1401 4-10..

—» Column-wise shift]
120

== Broadcast time
[ZZ2 shift time

4-1los.

Communication time (s)

60 /ARPC
NBLK b«
40 ; .o

Median 99%tile

Placement 1 Placement 2 Placement 3

(d) (e) (f)

HDFS Memcached DMM
Figure 8: Application performance improvements of RDC compared with the 4:1 oversubscribed network (4:1-0.s.), 4:1-0.s.
network powered with Sinbad [45], or the non-blocking network (NBLK). (a) The HDFS write traffic pattern and the number of
received blocks per rack. (b) The HDFS transfer time. (c)-(d) Memcached query throughput and latency. (e) The DMM traffic

pattern. (f) Average shift time and broadcast time.

and 16 racks overall. The 16 ToR switches are connected
to a single agg. switch with tunable oversubscription ratios.
Results in §5.2 are obtained via simulation.

5.1 Real-world applications

First, we show how RDC can improve the performance of
real-world applications for each of its use cases.

HDFS. We set up an HDFS cluster with 16 datanodes across
4 racks and 1 namenode, with a replication factor of 3 and
a block size of 256 MB. All data blocks are cached in the
RAM disk to prevent the hard drive from being the bottleneck.
The 16 clients initiated concurrent write requests to 16 HDFS
files, respectively. According to the default HDFS data block
placement policy, when writing a data block to a datanode,
a replica of the block will be placed on the same rack of
the original copy, and another replica is placed on a remote
rack for resilience (Fig. 8(a)). Therefore, a write operation
generates an intra-rack flow and an inter-rack flow.

HDFEFS can localize all the inter-rack traffic (for storing repli-
cas) by using both proactive RDC and network-aware replica
placements. Fig. 8(b) shows the performance gain with RDC
and compares it with the non-blocking network (NBLK) and
an advanced bandwidth-centric replica placement solution,
Sinbad [45]). Sinbad keeps track of the paths and links to
reach the replicas within the most recent period and assigns
the next replica to the least-utilized paths in the recent pe-
riod. Therefore, Sinbad does not reduce cross-rack traffic, but
can relieve bottlenecks at network links by load balancing
as shown in Fig. 8(a). Specifically, it detects traffic imbal-
ance for transferring inter-rack replicas and aims to utilize all
links roughly equally—i.e., each rack hosts one replica. In
the results, we can see that Sinbad improves the total time for
HDEFS writes, but still underperforms the NBLK network. In
contrast, RDC allows the HDFS to regroup servers directly.
Moreover, with the new topology, HDFS could change the
replica placement scheme to keep all traffic within the log-
ical racks but satisfy fault-tolerance constraints at the same
time, as shown in Fig. 8(a). HDFS with RDC achieves similar
performance as the NBLK network, reducing the total time
to 0.59x on average, compared to the original topology and

A|A|lA[A|C|C|C|C AJE[I [M{B|F[J|N||A[A[B|B|I |l |J|J
E|E|E|E|G|G|G|G||A|E|Il [M[B|F|J|N A|A|B|B|L I [J][]
F{r|n|1|K|K|K{K||A|E|l (M/B|F|J [N C|C|D|D|K|K|L|L
M{M|M/M[O|O|O[O| |A|E|I [M|B|F|J [N C|C|D|D|K|K|L|L
B(B|B|B|D|D|DID||C|G|K|[OID|H|L|P E[E|F|[F|[M{M[N|N
F{F|F|F|H|H|/H/H| |C|G|K|OID|H|L|P E|E|F|F|[M{M|N|N
BN I I I I A A B C|G|K|O[D|H|L|P G|G|H|H|O|O|P|P
N{N|N|N(P|P|P|P C|G|K[OID|H|L [P G|G|H|H|O|O|P|P

(a) Placement 1 (b) Placement 2
Figure 9: Three different placements for DMM. A-P represent
16 servers and A-D, E-H, I-L, M-P belong to four physical

racks separately.

(c) Placement 3

placement policy.

Memcached. We then configured Memcached [23] servers
on two racks, and issued read/write requests from two other
racks. This emulates the scenario where clients in one pod
access cache servers in another pod. Our workload has a)
200 k key-value pairs uniformly distributed across 8 servers,
b) a 99%/1% read/write ratio, and c) 512 byte keys and 10 KB
values. We adopted a Zipfian query key distribution of skew-
ness 0.99 similar to previous works [31,93], which led to a
load imbalance ratio of ~1.8 on the server racks.

By reallocating the servers with hot keys equally onto ev-
ery ToR, RDC improves the query throughput by 1.78x on
average and reduces the median latency to 0.48 x as shown
in Fig. 8(c)-(d). These improvements are close to what a
non-blocking network could achieve. RDC also cuts the tail
latency significantly, for which network congestion is a major
cause [30, 117]. Since in the baseline setting, ToR uplink can
easily get congested when several hot keys are coincidentally
located in the same rack, even if the overall uplink utilization
is low. In contrast, RDC can observe the traffic patterns due
to the hot keys, and spread the servers hosting these keys to
different racks. This reduces the peak uplink utilization.

OpenMPI DMM. We set up a 16-node OpenMPI cluster
across 4 racks and implemented a commonly used DMM
algorithm [54] with 64 processes. Matrices are divided into
64 blocks (submatrices). Each server has 4 processes to form
an 8 x 8 process layout. Then in each iteration, it performs a
“broadcast-shift-multiply” cycle where a process a) broadcasts
submatrix row-wise, b) shifts submatrices column-wise, and

—
Q
2

. 25%~75%
Median

. 25%-~75%

N

. 25%~75%
Median

o Mean

— 5%~95%

Lily

=
Q
2

*- Mean

i,

5%~95%

= =
2
= =
°~ 2

= =

v 2

"
S

H
2
Flow Completion Time (ms)

Flow Completion Time (ms)
Flow Completion Time (ms)

= = =
o 1) 15}

Flow Completion Time (ms)
-
S

B 25%-75%
Median

. 25%-~75%
Median

. 25%-75%

L1,

Mean
4 1 NBLK 1- tlme Idea\ RDC

o
°»

*- Mean

@h

*- Mean
— 5%~95%

-
<

5%~95%

o
2

-
2

=
5
A
<

i

Flow Completion Time (ms)
g
Flow Completion Time (ms)

. Mean
4 1 NBLK 1- t\rne Ideal RDC RoNet RoNet C-Thr C-Thr RDC 4 1 NBLK 1 t\me Ideal RDC
11 4l 11l 4 -0.S.

(a) Cache Group 0 (b) Cache - Group 1 (c) Web Group 0

RoNet RoNet C-Thr C-Thr RDC RoNet RoNet C-Thr C-Thr RDC
11 41 11 41 11 41 11 41

(d) Web - Group 1 (e) Hadoop Group 0 (f) Hadoop - Group 1

Figure 10: Performance comparison with RDC. Group 0 shows that RDC delivers performance improvements by dynamically
reconfiguring the network and achieves similar performance as NBLK; group 1 shows that RDC outperforms alternative designs

by benefiting a higher amount of inter-rack traffic.

¢) multiplies submatrices as shown in Fig. 8(e). We consider
three placements for processes: 1) Fig. 9(a): places them
row-wise (no cross-rack traffic for broadcast), 2) Fig. 9(b):
places them column-wise (no cross-rack traffic for shift) and
3) Fig. 9(c): places them in a mixed manner, considering both
broadcast and shift traffic across racks.

By dynamically configuring the topology for different
phases during DMM, RDC shrinks the communication time
as well as the end-to-end execution time. Fig. 8(f) shows
that RDC improves the overall communication time for place-
ments 1,2, and 3 by 3.9%, 2.3 %, and 1.26 x respectively com-
pared to a static 4:1 oversubscribed network, achieving almost
the same performance with the NBLK network. Since the ap-
plications have evolving traffic patterns, no static process
placement is consistently optimal. Out of the three place-
ments, placement 3 jointly minimizes the cross rack traffic
for both communication patterns in DMM, outperforming the
other two strategies.

5.2 Performance at scale

Next, we evaluate the reactive RDC pods at the data center
scale using the packet-level simulator. Our baselines are a) a
static non-blocking network (NBLK), b) a static network with
4:1 oversubscription (4:1-0.s.), ¢) RDC with future traffic-
demand information (Ideal RDC), d) a 4:1-0.s. network that
applies RDC’s reconfiguration algorithm only once over the
entire traffic trace (One-time RDC). e) a hybrid network—
like C-Through [110] with 16 4:1/1:1 oversubscribed reconfig-
urable circuit ToR-pair links in addition to a 4:1-0.s. network,
which is similar to Firefly [66], and ProjecToR [59] in terms of
performance. f) a novel circuit-core network—RotorNet [86]
with 4:1/1:1 oversubscribed ToR uplink bandwidth. Note C-
through has the same circuit switching delay as RDC and
buffers packets at ToRs during the circuit downtime.

We used the Cache, Web, and Hadoop traffic traces from
Facebook. Since the original traces do not contain flow-level
information, we generated flow-level traffic based on the sam-
pled packet traces from [99]. Specifically, we inferred the
source/destination servers of the flows from the trace, and
simulated flow sizes and arrival times based on Figures 6 and
14 in the same Facebook paper. The Cache workload has an
average flow size of 680 KB, with 87% being inter-rack. The
Web workload has an average size of 63 KB with 96% inter-
rack. For the Hadoop workload, the average size is 67.18 KB

100 100

B RDC
@@= C-Through

B Relocated servers

801 EEE Average duty cycle

75

-}

50

IS
% of flows

0!

25

% of relocated servers
Average duty cycle (%)

20

|
|
)
|
|

0 Web Hadoop 99.0 0 2

3
(a) (b) Path length
Figure 11: RDC’s average circuit duty cycle is >99% even
with frequent reconfigurations; RDC has an average path
length 35% shorter than NBLK.

Cache

but only 60% is inter-rack traffic. All traffic traces last for 30s
in the simulation, and RDC’s reconfiguration period is 1s.

Fig. 10 shows the boxplot of flow completion times (FCT)
for RDC and the baselines using the three traces. We ob-
serve that RDC reduces the median FCT by more than an
order of magnitude compared to 4:1-0.s. network. Applying
RDC'’s traffic localization algorithm once can bring some
improvements on the median FCT but not as significant as
RDC and NBLK, since the traffic pattern changes during the
simulation. We found that one root cause for the performance
improvements is due to TCP dynamics—severe inter-rack
congestion causes consecutive packet losses and TCP be-
comes very conservative in increasing its sending rate. More
importantly, we observe that RDC with future knowledge
of traffic demands performs consistently close to the non-
blocking network, which again demonstrates the power of a
rackless network. Without future knowledge, RDC can still
achieve similar performance as NBLK with a slightly longer
median FCT, because the cache workload is largely stable
at the time scale of seconds, similar to that in the Database
workload in the original traces. As for other solutions, C-
Through’s average FCTs are at least 3.21 x higher than RDC.
Because although C-Through adds extra inter-rack bandwidth,
it is provisioned for only 16 ToR pairs. As the traffic traces
that motivate our RDC design have more than 16 intensively-
communicating ToR pairs (see the heatmap in Fig: 1), C-
Through falls short in relieving inter-rack congestion even
after enlarging the bandwidths of 16 extra links. 4:1-0.s. Ro-
torNet has the same total uplink bandwidth as RDC, but its
performance is much worse than RDC. The non-blocking Ro-
torNet is 2x and 2.17x slower than RDC on the Cache and
Web traces; only for the Hadoop traces, it can reduce RDC’s
average FCT to 0.576 <. Since RotorNet provides a dedicated

Connectors to core switches

Fiber
bundle

Server racl

—
Agg.
switches

I

——
ToR

switches

Server rack Server rack —/4

0ocCs

erver rack Server racl

Figure 12: Packaging design of an RDC pod.

link between each ToR pair, if the traffic is skewed between
some ToR pairs, it cannot achieve the best performance. So
only the Hadoop trace, which has only 60% inter-rack and is
quite evenly distributed across different ToRs, enjoys better
performance on non-blocking RotorNet.

Fig. 11(a) shows that the average number of servers being
relocated in each epoch is different across traces. The duty
cycle is an important metric in optical networks to represent
the percentage of time that an optical link is up and available
for transmission. Assuming one reconfiguration per second,
the lowest circuit duty cycle of RDC is 99.2% in theory (de-
tails about downtime in §5.4); since not all servers will be
relocated in practice, the average circuit duty cycle for all
transmissions can be as high as 99.83%. Fig. 11(b) shows the
distribution of flow path lengths for RDC, C-Through, and
NBLK. (Two C-Through settings have the same distribution;
NBLK, 4:1-0.s., and RotorNet also have the same distribu-
tion). An intra-rack flow has path length 2 in all networks;
and an inter-rack flow has path length 4 in RDC, NBLK, and
4:1-o.s.; the path length could vary in C-Through—23 for the
circuit path and 4 for the normal packet-switched path. Over-
all, RDC localizes more than 70% of the inter-rack traffic and
achieves an average path length of 0.75x of C-Through and
0.65x of NBLK.

5.3 Packaging, power, and capital cost

Packaging. Fig. 12 shows the packaging design of an RDC
pod, which is somewhat different from that of a traditional pod.
RDC has a central switch rack dedicated to hosting ToRs, agg.
switches, and OCSes. Server racks are connected to OCSes
via fiber bundles to reduce wiring complexity. On the central
rack, ToRs are connected to OCSes and agg. switches using
short fibers and cables, respectively. Agg. switches provide
similar connectivity to core switches outside the pod, just
like in traditional data centers. To ensure that centralized
switch placement has similar reliability as traditional switch
placement, backup power supplies are employed. Similar to
the existing modular data centers, RDC supports incremental
expansion by adding RDC pods.

Power and capital cost modeling. We show that RDC is

more economical by comparing the power and capital cost
between RDC and NBLK, at 400 Gbps data rate. They both

/‘ # Core link = # Aggr uplink X # Pods ‘
P—

Inside each pod

i # Aggr uplink = # Aggr downlink
Agyr | w—
xp=2i1 oy | # Ager downlink = # ToR uplink

Agsr Ager
#ToR downlmk
m m m o] [4 ToR ownink
ocsl ayer ocslave ocsl ayer 0OCS layer

eeeee

ToR uplink =
ToR downlink = # OCS uplink
#0CS uplmk # 0CS downlink

B Optical transceiver == Optical fiber Direct attach cable

Figure 13: RDC example with detailed components, including
the governing equations for power and capital cost model.

Components Power Cost Relative count
(Watt) | (USD) | RDC (x,:1) | NBLK

Ethernet port [16] 40.6 312.5 1+4/x, 5
Optical transceiver [15] 10 799 2+2/xp 4
Inter-rack fiber [20] 0 6.9 1+1/x, 2
Intra-rack fiber [21] 0 49 1 0
DAC [17] 1.5 249 1/x, 1
OCS port [8] 0.14 | 400 [52] 2 0

Table 1: Power/cost data and relative count of the components
for RDC (x,:1 0.s.) and NBLK at 400 Gbps.

consist of the following types of networking components: a)
400 Gbps Ethernet port, b) 400 Gbps Optical transceiver, c)
inter-rack duplex single-mode fiber (average length 10m), d)
intra-rack duplex single-mode fiber (average length 3m), e)
400 Gbps Direct Attach Cables (average length 3m) and f)
OCS port. NBLK network can use DAC to directly connect
the server-ToR downlinks, while RDC needs fiber-optic cables
along with optical transceivers both at the server and ToR ends
to connect the OCSes in between.

We assume that RDC has an x,, : 1 oversubscription above
the ToR level. Fig. 13 demonstrates a 4-pod RDC network
(total 16 servers) with component-level details (where x), = 2)
and shows the governing equations to find the component
counts across the network. Based on our modeling, given the
number of servers and pods are the same, the relative com-
ponent count for RDC and NBLK network only depends on
xp. Table 1 shows the recent power and cost values of dif-
ferent components along with their relative count for RDC
and NBLK network (400 Gbps). On one hand, the power
consumption values of the network components are funda-
mental and well-documented in datasheets. On the other hand,
the component cost can vary based on sales volume, and
since we have no proprietary industry pricing figures, we do
a "best-effort" calculation based on readily available retail
pricing (in other words worst-case or no-discount pricing)
for all components, so at least it is somewhat objective and
unbiased. We consider $400 to be the OCS per-port cost, the
worst-case price adopted from a recently reported article from
Microsoft [52]. Readers should be aware of the limitation of
this pricing assumption and take the capital cost results for
general guidance only.

As shown in the governing equations in Fig. 13, an x,, :
1 RDC network With s servers have s ToR downlink ports

ToR uplink ports, - agg switch downlink ports, > agg

N
o

N
o

=
«

B B load = 20%
I load = 40%
B & load = 60%
(Bl BN load = 80%
BN load = 90%

B load =20% | 075
[load = 40% 3
B2 load = 60%
EEE load = 80% °
BN load = 90% g

Improvement factor over NBLK

0.0 Cache Web Hadoop DCTCP VL2

(a) Performance per watt

Cache Web Hadoop DCTCP VL2
(b) performance per USD

Figure 14: a) RDC (4:1-0.s.) has 2.1-2.4x improvements in
performance per watt than NBLK at 400 Gbps data rate; b)
RDC (4:1-0.s.) has 1.3-1.5x improvements in performance
per dollar than NBLK at 400 Gbps data rate, assuming worst-
case component pricing.

switch uplinks ports and - core switch ports; leading to
4

(s+ j—;) Ethernet ports in total. Consider a traditional NBLK
(fat-tree) network with the same number of servers and pods,
where the number of Ethernet switch ports at each layer is
the same as the number of servers. This leads to a total of
5s (using x, = 1 in RDC) Ethernet ports. Hence, the relative
Ethernet port count is (1 + xip) to 5 (see Table 1). Similar
calculation can be applied to other components as well.
Power efficiency. A 4:1-0.s. RDC network consumes 2.29 x
less power than an NBLK network considering 400 Gbps data
rate. RDC significantly improves the performance (median
FCT) per watt compared to that of NBLK for diverse traffic
patterns across different network loads, as shown in Fig. 14(a).
We use five different production traces i.e., Cache [99], Web
[99], Hadoop [99], DCTCP [29] and VL2 [62]. For median
FCT, RDC has 2.1 x —2.4x improvements in performance
per watt compared to NBLK. RDC also significantly reduces
the power consumption of the network because it requires
fewer power-hungry packet switches in the core. The optical
circuit switch at the RDC edge consumes very little power
since it only directs the incoming photon beams using mirror
rotation or diffraction.

Capital cost. We again emphasize that readers should take
this “best-effort” cost analysis for general guidance only. A
4:1-0.s. RDC network costs 1.4x less than an NBLK net-
work at 400 Gbps. Using the same five production traces,
we observe that RDC has 1.3 x —1.5x improvements in per-
formance (median FCT) per dollar compared to NBLK, as
shown in Fig. 14(b). We also estimate OCS per-port cost
which would let 4:1-0.s. RDC has an equal performance per
dollar as NBLK: it ranges from $1000-$1300.

5.4 RDC reconfigurations

To have a deeper understanding of RDC, we break down this
analysis into the effectiveness study of the demand estima-
tion algorithm, the non-disruptive control loop before the
reconfiguration, and the hardware transient state during the
reconfiguration.

Effectiveness of demand estimation algorithm To show
the effectiveness of our demand estimation algorithm, we
examine how our heuristic interacts with consecutive topology

-8 Random
Shuffle
—a— Stride
—#- Database
-<- Cache
—& - Hadoop

Estimation error (%)

1 2 3 4 5
Epoch
Figure 15: Average demand estimation error over multiple

consecutive epochs (epoch duration: 10s).

reconfigurations, by an in-depth study of traffic localization.

We use the same packet-level simulation as §5.2 to illus-
trate this demand estimation technique. For each simulation,
RDC performs traffic localization and reconfigures the topol-
ogy once every 10s according to the algorithm detailed in
§4.3. The senders and receivers of elastic flows are deter-
mined based on a chosen traffic pattern, while non-elastic
flows are generated with randomly chosen senders and re-
ceivers with a data rate < 10Mbps. The ratio between the
number of non-elastic and elastic flows is 10:1. Besides the
three trace-derived traffic patterns — Cache, Web, and Hadoop,
we also test three synthetic traces as follows. Each traffic
pattern remains the same throughout the simulation.

Random: Each host i sends a flow to one of the other hosts
with uniform random probability;

Shuffle: Each host i sends to a set of 31 other hosts with
indexes (i + j * 16)%num_hosts, j € [1..31];

Stride: Each host i sends a flow to another host with index
(i+32)%num_hosts;

Fig. 15 shows the average demand estimation errors over
five consecutive reconfiguration epochs for all server pairs.
We observe that while the initial demand estimation errors
can be moderately high (10%), the errors decrease as the net-
work reconfigures to adapt to the traffic pattern in subsequent
epochs. In the first epoch, many elastic flows congest the
oversubscribed network core. As a result, their flow counters
can be small and they could be misidentified as non-elastic
flows. However, as RDC adapts the topology to localize the
identified elastic flows, fewer elastic flows are transmitted
across racks, congestion in the network core is reduced, and
thus more elastic flows are correctly identified. For example,
because the elastic flows in the stride pattern are eventually all
localized within racks, the demand estimation errors for these
elastic flows drop to nearly zero. Therefore, we can see that
the Hedera technique is well-suited to RDC—reconfiguring
the topology to suit the traffic patterns helps improve the
accuracy of demand estimates for the next epoch.
Non-disruptive control loop. Next, we evaluate the latency
of the RDC control loop, which includes four components:
1) collecting flow counters, 2) estimating traffic demands, 3)
computing new topologies, and 4) modifying forwarding rules.
This latency will affect how fast RDC can respond to chang-
ing traffic patterns. Note that the reactive RDC uses all four
components; for proactive RDC using traffic demand matrix,

4 8 16 32

TL ULB TL ULB TL ULB TL ULB
Counter collection 10,6 23 213 26 426 34 851 4.5
Demand estimation 108 0.7 249 1.1 80.6 1.3 3106 1.7
Topo. computation 78 01 282 0.1 403 03 693 06
Rule installation 325 30.6 456 30.8 756 414 147.6 70.6

Proactive - Command 32.5 30.6 456 308 756 414 147.6 70.6
Proactive - Demand 40.3 30.7 73.8 309 1159 41.7 2169 71.2
Reactive 61.7 337 120 34.6 239.1 464 612.6 774

#Racks

Table 2: Control loop latency breakdown (ms) for traffic lo-
calization (TL) and uplink load-balancing (ULB).

only steps 3 & 4 will be executed; for proactive RDC with
direct configuration command, only the last step is required.

To obtain these results, we ran a set of experiments using
different numbers of racks, with 32 servers per rack, using the
traffic patterns from the Facebook traces. The ToR switches
are connected to a single agg. switch. Since our testbed only
has four ToR switches, we emulated more ToR switches using
servers and ensured that each server has the same latency for
collecting counters and installing routing rules as a physical
ToR switch. The number of forwarding rules to be installed is
bounded by 32 for the ToR switches and 32 x #racks for the
agg. switch. And the number varies depending on the traffic
patterns and may be different across switches. The overall
rule installation delay is determined by the slowest switch,
which has the most number of changes.

Table 2 breaks down the control loop latency for traffic
localization (TL) and uplink load-balancing (ULB) use cases.
Overall, reactive RDC’s non-disruptive control loop latency
before reconfiguration is 612.6ms for TL and 77.4ms for
ULB, which are on similar timescales with state-of-the-art
traffic engineering techniques [38]. Whereas, proactive RDC
can reduce this control loop delay to 147.6 ms and 70.6 ms
respectively. Since RDC aims to reconfigure the network at
large timescales (e.g., seconds or longer), this control loop is
efficient enough to be practical. Note that all the above num-
bers are obtained with our own testbed. With the cutting-edge
high-performance switch hardware [9, 16, 18], the latency can
be further reduced to support more frequent reconfiguration.

Reconfiguration transient state. It is important to observe
that a circuit reconfiguration in RDC happens only when
needed, and for the vast majority of the time, circuits are con-
tinuously active. When a reconfiguration happens to a circuit,
a transient disruption to that circuit does occur. For example,
AWGR and star-coupler-based OCSes are becoming popular
as tunable lasers with sub-nanosecond wavelength switching
are being fabricated [33,35,48,49,58,77]. Considering 400
Gbps link speed and 1 ns of switching delay, only 50 bytes
of traffic will be buffered or dropped during the transient
phase. Also, 2D-MEMS based OCSes are available, having a
reconfiguration delay of few microseconds [96]. Even with
arelatively slow OCS in our testbed, our experiments show
that RDC provides large performance benefits.

6 Related Work

Various DCN proposals recognize the need for serving dy-
namic workloads and provision bandwidth on demand with
reconfigurable topologies. It can be achieved by adding extra
bandwidth to the network by creating ad hoc links at run-
time [53, 74, 80, 110, 118], but they mostly focus on pro-
viding reconfigurable topology at the rack level, assuming
skewed inter-rack traffic. RDC, however, alleviates the re-
liance on such an assumption and achieves higher perfor-
mance without adding extra bandwidth. Another line of work
constructs an all-connected flexible network core with a high
capacity [32, 44, 84-86,96], but they mostly focus on rack-
level rather than edge reconfigurability. Flat-tree [115] is
an architecture proposal with partial edge-level reconfigura-
bility, which enables DC-wide reconfigurability by dynami-
cally changing the topology between Clos [26] and random
graph [106]. However, the topology modes are limited and
only suitable for generally expected workload patterns, e.g.,
rack-, pod-, or DC-local. Our workshop paper [111] does not
contain a detailed design, implementation, or evaluation.

Besides architectural solutions, there are also numerous
works that improve flow performance by optimizing task
placements. For instance, Sinbad [45] selectively chooses data
transfer destinations to avoid network congestion; Shuffle-
Watcher [25] attempts to localize the shuffle phase of MapRe-
duce jobs to one or a few racks; Corral [72] jointly places
input data and compute to reduce inter-rack traffic for recur-
ring jobs. However, these works all have important drawbacks
as they only optimize data transfer for one or two stages of
job executions. As we noted before, the traffic pattern may
change in different stages of a job’s lifetime. Also, there is
a set of research projects that improve network performance
at the upper layers in the stack. Optimized transport proto-
cols (e.g., DCTCP [28], MPTCP [97]) and traffic engineering
techniques (e.g., Hedera [27], MicroTE [38], Varys [47]) can
improve flow performance for many applications.

7 Conclusion

The rackless data center (RDC) is a novel network architecture
that logically removes the static rack boundaries, using circuit
switching to achieve topological reconfigurability at the edge.
In this architecture, servers in different physical racks can
be grouped into the same locality group at runtime based
on traffic patterns. By co-designing the network architecture
and the control systems, RDC can benefit a wide range of
realistic data center workloads. Our evaluations with testbed
and simulation setups show that RDC leads to substantial
performance benefits for real-world applications.

Acknowledgment

We thank our shepherd George Porter and the anonymous
reviewers for their valuable feedback. This research is partly
sponsored by the NSF under CNS-1718980, CNS-1801884,
and CNS-1815525.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]

[12]

Top of rack vs end of row data center de-

[14]

signs. http://bradhedlund.com/2009/04/05/
top-of-rack-vs-end-of-row-data-center-designs/, [15]
2009.

S320 photonic switch hardware user

manual. http://www.calient.net/wp-

content/uploads/downloads/2013/04/CALIENT-
S-Series-Photonic-Switch-Hardware-User-Manual-
Rev-A-460xxx-00-v10.pdf, 2012.

Introducing data center fabric, the next-
generation facebook data center network. https:
//code.fb.com/production-engineering/
introducing-data-center-fabric-the-next-\
generation-facebook-data-center-network,
2014.

Facebook network analytics data sharing. https://
www.facebook.com/groups/1144031739005495/,
2016.

Apache hadoop: Fair scheduler.
https://hadoop.apache.org/docs/r2.7.4/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html, 2017.

Sailing through the data deluge.
https: /Irockleyphotonics.com/wp-
content/uploads/2019/02/Rockley-Photonics-
Sailing-through-the-Data-Deluge.pdf., 2019.

tom-
series.

25.6 tb/s strataxgs broadcom
ahawk 4 ethernet switch
https://www.broadcom.com/products/ethernet-
connectivity/switching/ strataxgs/bcm56990-series,
2020.

320x320 3D MEMS optical circuit switch.
https://www.calient.net/products/

edge640-optical-circuit-switch/, 2020.

32*%100Gbps Ethernet Switch. https://www.fs.
com/products/107081.html, 2020.

Apache hadoop. http://hadoop.apache.org, 2020.

Apache hadoop: Capacity scheduler.
https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html,
2020.

Apache hadoop yarn project.
http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html, 2020.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[13] Hdfs architecture. https://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-hdfs/HdfsDesign.html, 2020.

Specifying data center it pod architec-
tures. https://www.apc.com/salestools/
WTOL-AHAPRN/WTOL-AHAPRN_RO_EN.pdf, 2020.

100G PAM4 850nm 100m optical transceiver mod-
ule. https://www.fs.com/products/93264.html,
2021.

32*400Gbps Ethernet Switch. https://www.fs.
com/products/96982.html, 2021.

400G QSFP-DD Passive Direct Attach Copper Twinax
Cable (3m). https://www.fs.com/products/
82454 .html, 2021.

Barefoot tofino. https://www.barefootnetworks.
com/products/brief-tofino, 2021.

Core and pod data center design. http:
//go.bigswitch.com/rs/974-WXR-561/images/
Core-and-Pod%200verview.pdf, 2021.

Duplex single mode optical fiber cable (10m). https:
//www.fs.com/products/40203.html, 2021.

Duplex single mode optical fiber cable (3m). https:
//www.fs.com/products/40193.html, 2021.

Ibm prefabricated modular data center.
https://www.ibm.com/us-en/marketplace/
prefabricated-modular-data-center, 2021.

Memcached. https://memcached.org, 2021.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265-283,
2016.

Faraz Ahmad, Srimat T Chakradhar, Anand Raghu-
nathan, and TN Vijaykumar. Shufflewatcher: Shuffle-
aware scheduling in multi-tenant mapreduce clus-
ters. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 1-13, 2014.

Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In ACM SIGCOMM Computer Communi-
cation Review, volume 38, pages 63-74. ACM, 2008.

Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: dynamic flow scheduling for data center net-
works. In NSDI, volume 10, pages 8§9-92, 2010.

http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/
http://bradhedlund.com/2009/04/05/top-of-rack-vs-end-of-row-data-center-designs/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-\generation-facebook-data -center-network
https://www.facebook.com/groups/1144031739005495/
https://www.facebook.com/groups/1144031739005495/
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.calient.net/products/edge640-optical-circuit-switch/
 https://www.fs.com/products/107081.html
 https://www.fs.com/products/107081.html
http://hadoop.apache.org
https://www.apc.com/salestools/WTOL-AHAPRN/WTOL-AHAPRN_R0_EN.pdf
https://www.apc.com/salestools/WTOL-AHAPRN/WTOL-AHAPRN_R0_EN.pdf
https://www.fs.com/products/93264.html
 https://www.fs.com/products/96982.html
 https://www.fs.com/products/96982.html
https://www.fs.com/products/82454.html
https://www.fs.com/products/82454.html
https://www.barefootnetworks.com/products/brief-tofino
https://www.barefootnetworks.com/products/brief-tofino
http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf
http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf
http://go.bigswitch.com/rs/974-WXR-561/images/Core-and-Pod%20Overview.pdf
https://www.fs.com/products/40203.html
https://www.fs.com/products/40203.html
https://www.fs.com/products/40193.html
https://www.fs.com/products/40193.html
https://www.ibm.com/us-en/marketplace/prefabricated-modular-data-center
https://www.ibm.com/us-en/marketplace/prefabricated-modular-data-center
https://memcached.org

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctep). In Proceedings of the ACM SIG-
COMM 2010 Conference, pages 63—74, 2010.

Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctep). In Proceedings of the ACM SIG-
COMM 2010 conference, pages 6374, 2010.

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Presented as part of the
9th USENIX Symposium on Networked Systems Design
and Implementation NSDI 12), pages 253-266, 2012.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In ACM SIGMETRICS
Performance Evaluation Review, volume 40, pages 53—
64. ACM, 2012.

Paraskevas Bakopoulos, Konstantinos
Christodoulopoulos, Giada Landi, Muzzamil
Aziz, Eitan Zahavi, Domenico Gallico, Richard
Pitwon, Konstantinos Tokas, Ioannis Patronas, Marco
Capitani, et al. Nephele: An end-to-end scalable
and dynamically reconfigurable optical architecture
for application-aware sdn cloud data centers. I[EEE
Communications Magazine, 56(2):178-188, 2018.

Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-
nou, Sophie Lange, Kai Shi, Benn Thomsen, et al. Sir-
ius: A flat datacenter network with nanosecond optical
switching. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures,
and protocols for computer communication, pages 782—
797, 2020.

Hitesh Ballani, Paolo Costa, Istvan Haller, Krzysztof
Jozwik, Kai Shi, Benn Thomsen, and Hugh Williams.
Bridging the last mile for optical switching in data
centers. In Optical Fiber Communication Conference,
pages W1C-3. Optical Society of America, 2018.

Joshua L Benjamin, Thomas Gerard, Domani¢ Lavery,
Polina Bayvel, and Georgios Zervas. Pulse: optical
circuit switched data center architecture operating at
nanosecond timescales. Journal of Lightwave Technol-
ogy, 38(18):4906-4921, 2020.

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Theophilus Benson, Aditya Akella, and David A Maltz.
Network traffic characteristics of data centers in the
wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267-280,
2010.

Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic char-
acteristics. In Proceedings of the 1st ACM workshop

on Research on enterprise networking, pages 65—72.
ACM, 20009.

Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained traffic engineer-
ing for data centers. In Proceedings of the Seventh

COnference on emerging Networking EXperiments and
Technologies, page 8. ACM, 2011.

Sergey Blagodurov, Alexandra Fedorova, Evgeny Vin-
nik, Tyler Dwyer, and Fabien Hermenier. —Multi-
objective job placement in clusters. In SC’15: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1-12. IEEE, 2015.

Peter Bodik, Ishai Menache, Mosharaf Chowdhury,
Pradeepkumar Mani, David A Maltz, and Ion Stoica.
Surviving failures in bandwidth-constrained datacen-
ters. ACM SIGCOMM Computer Communication Re-
view, 42(4):431-442, 2012.

Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, et al.
{TAO}: Facebook’s distributed data store for the social
graph. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 49-60, 2013.

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan
Schmid. A distributed and robust sdn control plane
for transactional network updates. In 2015 IEEE con-
ference on computer communications (INFOCOM),
pages 190-198. IEEE, 2015.

Andromachi Chatzieleftheriou, Sergey Legtchenko,
Hugh Williams, and Antony Rowstron. Larry: Prac-
tical network reconfigurability in the data center. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 141-156,
2018.

Kai Chen, Ankit Singla, Atul Singh, Kishore Ra-
machandran, Lei Xu, Yueping Zhang, Xitao Wen, and
Yan Chen. Osa: An optical switching architecture for
data center networks with unprecedented flexibility.
IEEE/ACM Transactions on Networking, 22(2):498—
511, 2014.

[45]

[46]

[47

—

(48]

[49]

(50]

[51]

(52]

(53]

Mosharaf Chowdhury, Srikanth Kandula, and Ion Sto-
ica. Leveraging endpoint flexibility in data-intensive
clusters. In ACM SIGCOMM Computer Communica-
tion Review, volume 43, pages 231-242. ACM, 2013.

Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. ACM SIG-
COMM Computer Communication Review, 41(4):98—
109, 2011.

Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica.
Efficient coflow scheduling with varys. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages
443-454, 2014.

Kari Clark, Hitesh Ballani, Polina Bayvel, Daniel
Cletheroe, Thomas Gerard, Istvan Haller, Krzysztof
Jozwik, Kai Shi, Benn Thomsen, Philip Watts, et al.
Sub-nanosecond clock and data recovery in an
optically-switched data centre network. In 2018 Euro-
pean Conference on Optical Communication (ECOC),
pages 1-3. IEEE, 2018.

Kari A Clark, Daniel Cletheroe, Thomas Gerard, Ist-
van Haller, Krzysztof Jozwik, Kai Shi, Benn Thomsen,
Hugh Williams, Georgios Zervas, Hitesh Ballani, et al.
Synchronous subnanosecond clock and data recovery
for optically switched data centres using clock phase
caching. Nature Electronics, 3(7):426-433, 2020.

Sushovan Das, Weitao Wang, and TS Ng. Towards
all-optical circuit-switched datacenter network cores:
The case for mitigating traffic skewness at the edge. In
ACM SIGCOMM 2021 Workshop on Optical Systems
(OptSys’ 21),2021.

Mauro Dell’ Amico and Silvano Martello. Bounds for
the cardinality constrained p cmax problem. Journal
of Scheduling, 4(3):123-138, 2001.

Vojislav Dukic, Ginni Khanna, Christos Gkantsidis,
Thomas Karagiannis, Francesca Parmigiani, Ankit
Singla, Mark Filer, Jeffrey L Cox, Anna Ptasznik, Nick
Harland, et al. Beyond the mega-data center: network-
ing multi-data center regions. In Proceedings of the
Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer com-
munication, pages 765-781, 2020.

Nathan Farrington, George Porter, Sivasankar Rad-
hakrishnan, Hamid Hajabdolali Bazzaz, Vikram Subra-
manya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Helios: a hybrid electrical/optical switch
architecture for modular data centers. ACM SIG-
COMM Computer Communication Review, 40(4):339—
350, 2010.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

G.C Fox, S.W Otto, and A.J.G Hey. Matrix algorithms
on a hypercube i: Matrix multiplication. Parallel Com-
puting, 4(1):17 - 31, 1987.

Rohan Gandhi, Hongqgiang Harry Liu, Y Charlie Hu,
Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming
Zhang. Duet: Cloud scale load balancing with hard-
ware and software. ACM SIGCOMM Computer Com-
munication Review, 44(4):27-38, 2014.

Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements
for resource disaggregation. In /2th USENIX sympo-
sium on operating systems design and implementation
(OSDI 16), pages 249-264, 2016.

Thomas Gerard, Kari Clark, Adam Funnell, Kai Shi,
Benn Thomsen, Philip Watts, Krzysztof Jozwik, Istvan
Haller, Hugh Williams, Paolo Costa, et al. Fast and
uniform optically-switched data centre networks en-
abled by amplitude caching. In 2021 Optical Fiber
Communications Conference and Exhibition (OFC),
pages 1-3. IEEE, 2021.

Thomas Gerard, Christopher Parsonson, Zacharaya
Shabka, Polina Bayvel, Domani¢ Lavery, and Geor-
gios Zervas. Swift: Scalable ultra-wideband sub-
nanosecond wavelength switching for data centre net-
works. arXiv preprint arXiv:2003.05489, 2020.

Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. Projector:
Agile reconfigurable data center interconnect. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 216-229. ACM, 2016.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Nsdi, volume 11, pages 24-24, 2011.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review, 44(4):455—
466, 2014.

Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Labhiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
VI12: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, pages 51-62, 2009.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G Shin. Efficient
memory disaggregation with infiniswap. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 649—667, 2017.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu,
Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang
Zhang, and Songwu Lu. Bcube: a high performance,
server-centric network architecture for modular data
centers. ACM SIGCOMM Computer Communication
Review, 39(4):63-74, 2009.

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yong-
guang Zhang, and Songwu Lu. Dcell: a scalable and
fault-tolerant network structure for data centers. In
ACM SIGCOMM Computer Communication Review,
volume 38, pages 75-86. ACM, 2008.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta,
Vyas Sekar, Samir R Das, Jon P Longtin, Himanshu
Shah, and Ashish Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In
ACM SIGCOMM Computer Communication Review,
volume 44, pages 319-330. ACM, 2014.

Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wojcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
17, pages 2942, New York, NY, USA, 2017. ACM.

Keqiang He, Junaid Khalid, Aaron Gember-Jacobson,
Sourav Das, Chaithan Prakash, Aditya Akella, Li Er-
ran Li, and Marina Thottan. Measuring control plane
latency in sdn-enabled switches. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined
Networking Research, page 25. ACM, 2015.

Christian E Hopps. Analysis of an equal-cost multi-
path algorithm. 2000.

Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and
Lingjia Tang. Smoothoperator: Reducing power frag-
mentation and improving power utilization in large-
scale datacenters. In Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS 18, pages 535-548, New York, NY, USA, 2018.
ACM.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261-276, 2009.

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. ACM SIGCOMM Computer Communi-
cation Review, 45(4):407-420, 2015.

Xin Jin, Honggiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rex-
ford, and Roger Wattenhofer. Dynamic scheduling of
network updates. ACM SIGCOMM Computer Commu-
nication Review, 44(4):539-550, 2014.

Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl.
Flyways to de-congest data center networks. 2009.

Robert Krauthgamer, Joseph Naor, and Roy Schwartz.
Partitioning graphs into balanced components. In Pro-
ceedings of the twentieth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 942-949. SIAM,
2009.

Maciej KuZniar, Peter PereSini, and Dejan Kosti¢. What
you need to know about sdn flow tables. In Interna-
tional Conference on Passive and Active Network Mea-
surement, pages 347-359. Springer, 2015.

Sophie Lange, Arslan S Raja, Kai Shi, Maxim Karpov,
Raphael Behrendt, Daniel Cletheroe, Istvan Haller, Fo-
tini Karinou, Xin Fu, Junqiu Liu, et al. Sub-nanosecond
optical switching using chip-based soliton microcombs.
In Optical Fiber Communication Conference, pages
W2A—-4. Optical Society of America, 2020.

Dominique LaSalle and George Karypis. Multi-
threaded graph partitioning. In Parallel & Distributed
Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 225-236. IEEE, 2013.

T Li, B Cole, P Morton, and D Li. Rfc2281: Cisco hot
standby router protocol (hsrp), 1998.

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter. Circuit switch-
ing under the radar with reactor. In /7/th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 1-15, Seattle, WA, 2014.
USENIX Association.

Honggiang Harry Liu, Xin Wu, Ming Zhang, Lihua
Yuan, Roger Wattenhofer, and David Maltz. zupdate:
Updating data center networks with zero loss. In ACM
SIGCOMM Computer Communication Review, vol-
ume 43, pages 411-422. ACM, 2013.

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson. F10: A fault-tolerant engi-
neered network. In Presented as part of the 10th

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 399-412, 2013.

Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Kr-
ishnamurthy, and Thomas Anderson. Subways: A case
for redundant, inexpensive data center edge links. In
Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, page 27.
ACM, 2015.

Yunpeng James Liu, Peter Xiang Gao, Bernard Wong,
and Srinivasan Keshav. Quartz: a new design element
for low-latency dcns. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 283-294.
ACM, 2014.

William M. Mellette, Rajdeep Das, Yibo Guo, Rob
McGuinness, Alex C. Snoeren, and George Porter.
Expanding across time to deliver bandwidth ef-

ficiency and low latency. arXiv e-prints, page
arXiv:1903.12307, Mar 2019.

William M Mellette, Rob McGuinness, Arjun Roy,
Alex Forencich, George Papen, Alex C Snoeren, and
George Porter. Rotornet: A scalable, low-complexity,
optical datacenter network. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, pages 267-280. ACM, 2017.

Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Im-
proving the scalability of data center networks with
traffic-aware virtual machine placement. In 2010 Pro-
ceedings IEEE INFOCOM, pages 1-9. IEEE, 2010.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15-28.
ACM, 2017.

Wil Michiels, Jan Korst, Emile Aarts, and Jan
Van Leeuwen. Performance ratios for the differencing
method applied to the balanced number partitioning
problem. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 583-595. Springer, 2003.

Tal Mizrahi and Yoram Moses. Time4: Time for sdn.
IEEE Transactions on Network and Service Manage-
ment, 13(3):433-446, 2016.

Samuel K Moore. Another step toward the end of
moore’s law: Samsung and tsmc move to 5-nanometer
manufacturing-[news]. IEEE Spectrum, 56(6):9-10,
2019.

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Mihir Nanavati, Jake Wires, and Andrew Warfield.
Decibel: Isolation and sharing in disaggregated {Rack-
Scale} storage. In /4th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17), pages 17-33, 2017.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 13), pages 385-398,
2013.

Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci,
and Daniel Hagimont. Welcome to zombieland: prac-
tical and energy-efficient memory disaggregation in a
datacenter. In Proceedings of the Thirteenth EuroSys
Conference, pages 1-12, 2018.

Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. research.
microsoft. com, 2011.

George Porter, Richard Strong, Nathan Farrington,
Alex Forencich, Pang Chen-Sun, Tajana Rosing, Yesha-
iahu Fainman, George Papen, and Amin Vahdat. In-
tegrating microsecond circuit switching into the data
center. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 447—
458, New York, NY, USA, 2013. ACM.

Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Hand-
ley. Improving datacenter performance and robustness
with multipath tcp. ACM SIGCOMM Computer Com-
munication Review, 41(4):266-277, 2011.

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for net-
work update. ACM SIGCOMM Computer Communi-
cation Review, 42(4):323-334, 2012.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George
Porter, and Alex C. Snoeren. Inside the social net-
work’s (datacenter) network. SIGCOMM Comput.
Commun. Rev., 45(4):123-137, August 2015.

Liron Schiff, Stefan Schmid, and Petr Kuznetsov. In-
band synchronization for distributed sdn control planes.
ACM SIGCOMM Computer Communication Review,
46(1):37-43, 2016.

Tae Joon Seok, Niels Quack, Sangyoon Han, Wencong
Zhang, Richard S Muller, and Ming C Wu. Reliability
study of digital silicon photonic mems switches. In
2015 IEEE 12th International Conference on Group
1V Photonics (GFP), pages 205-206. IEEE, 2015.

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Tae Joon Seok, Niels Quack, Sangyoon Han, Wencong
Zhang, Richard S Muller, and Ming C Wu. Reliability
study of digital silicon photonic mems switches. In
Group 1V Photonics (GFP), 2015 IEEE 12th Interna-
tional Conference on, pages 205-206. IEEE, 2015.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. {LegoOS}: A disseminated, distributed {OS}
for hardware resource disaggregation. In /3th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69-87, 2018.

Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A network archi-
tecture for disaggregated racks. In 16th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 19), pages 255-270, Boston, MA, 2019.
USENIX Association.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized
control in google’s datacenter network. ACM SIG-
COMM computer communication review, 45(4):183—
197, 2015.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and
Philip Brighten Godfrey. Jellyfish: Networking data
centers, randomly. In NSDI, volume 12, pages 1-6,
2012.

Rob Stone, Ruby Chen, Jeff Rahn, Srinivas Venkatara-
man, Xu Wang, Katharine Schmidtke, and James Stew-
art. Co-packaged optics for data center switching. In
2020 European Conference on Optical Communica-
tions (ECOC), pages 1-3. IEEE, 2020.

Xiongchao Tang, Haojie Wang, Xiaosong Ma, Nosayba
El-Sayed, Jidong Zhai, Wenguang Chen, and Ashraf
Aboulnaga. Spread-n-share: improving application per-
formance and cluster throughput with resource-aware
job placement. In Proceedings of the International
Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1-15, 2019.

Meg Walraed-Sullivan, Amin Vahdat, and Keith
Marzullo. Aspen trees: balancing data center fault
tolerance, scalability and cost. In Proceedings of the
ninth ACM conference on Emerging networking exper-
iments and technologies, pages 85-96, 2013.

Guohui Wang, David G Andersen, Michael Kaminsky,
Konstantina Papagiannaki, TS Ng, Michael Kozuch,
and Michael Ryan. c-through: Part-time optics in data
centers. In ACM SIGCOMM Computer Communica-
tion Review, volume 40, pages 327-338. ACM, 2010.

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Dingming Wu, Weitao Wang, Ang Chen, and TS Ng.
Say no to rack boundaries: Towards a reconfigurable
pod-centric dcn architecture. In Proceedings of the
2019 ACM Symposium on SDN Research, pages 112—
118. ACM, 2019.

Dingming Wau, Yiting Xia, Xiaoye Steven Sun,
Xin Sunny Huang, Simbarashe Dzinamarira, and
TS Eugene Ng. Masking failures from application
performance in data center networks with shareable
backup. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
pages 176-190, 2018.

Xin Wu, Daniel Turner, Chao-Chih Chen, David A
Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.
Netpilot: automating datacenter network failure mitiga-
tion. In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures,
and protocols for computer communication, pages 419—
430. ACM, 2012.

Yiting Xia, Xin Sunny Huang, and T. S. Eugene Ng.
Stop rerouting!: Enabling sharebackup for failure re-
covery in data center networks. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
HotNets-X VI, pages 171-177, New York, NY, USA,
2017. ACM.

Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzina-
marira, Dingming Wu, Xin Sunny Huang, and TS Eu-
gene Ng. A tale of two topologies: Exploring convert-
ible data center network architectures with flat-tree. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, pages 295-308,
2017.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. De-
lay scheduling: a simple technique for achieving local-
ity and fairness in cluster scheduling. In Proceedings
of the 5th European conference on Computer systems,
pages 265-278, 2010.

David Zats, Tathagata Das, Prashanth Mohan, Dhruba
Borthakur, and Randy Katz. Detail: reducing the flow
completion time tail in datacenter networks. In Pro-
ceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols
for computer communication, pages 139-150. ACM,
2012.

Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya
Kumar, Amin Vahdat, Ben Y Zhao, and Haitao Zheng.
Mirror mirror on the ceiling: Flexible wireless links for
data centers. ACM SIGCOMM CCR, 42(4):443-454,
2012.

[119] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Forster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corrup-
tion in data center networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pages 362-375, 2017.

[120] Christopher Zimmer, Saurabh Gupta, Scott Atchley,
Sudharshan S Vazhkudai, and Carl Albing. A multi-
faceted approach to job placement for improved perfor-
mance on extreme-scale systems. In SC’16: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1015-1025. IEEE, 2016.

A Appendix
This appendix includes more discussions and results.
A.1 The RDC 0/1 updates

Instead of changing packet version, in RDC a switch performs
binary changes from VLAN tagging packets to not, and from
not VLAN tagging packets to tagging. Assume packets are in
VLAN tagging mode before the change and there is a single
VLAN tagging rule at the ingress switch for all packets. We
first install the new set of rules with lower priority that matches
only on destination IPs, note that the more general matching
rules always have lower priority. Then, we remove the VLAN
tagging rule. The untagged packets in the transient state can
immediately match against the new set of rules. Similarly, if
packets are not in VLAN tagging mode before the update, we
first install the new set of rules matches on both VLAN tag
and destination IPs and then install a single VLAN tagging
rule for all packets.

Fig. 16 illustrates the update mechanism in RDC, which we
call 0/1 update. It uses an example of forwarding state updates
on an OpenFlow ToR switch, which has 4 ports. Ports 1 and
2 are connected to servers, ports 3 and 4 are connected to the
agg. switches. Packet versions are encoded in the VLAN tag.
Before the update, packets are first matched against a VLAN
table that tags packets with a VLAN ID. Those tagged packets
are then matched against the old rules in the forwarding table.
During the transient state of rule updating, packets become
untagged and can thus immediately match against the new
rules without being dropped. The instructions of the forward-
ing table direct packets to the group table where packets are
either directly sent out via an output port or get load-balanced
over multiple output ports using the select group type. Sim-
ilarly, an update from the not-tagging mode to the tagging
mode also causes no packet loss.

MatchFields Instruction

— | ingressport setfield — MatchFields | Priority | Instruction
* set vlaniD 1/None vlanID | dstlp GrouplD
vlan table 1 d 2 1] old
1 d2 2 2 Jrules
GroupID | GroupType ActionBuckets * a1 1 2 -I new
1 indirect out_port 1 - @ 1 1 Jrules
-— 2 indirect out_port 2 s * * 3
out_port 3:0.5 .
3 select out‘gm 205 forwarding table
group table

Figure 16: An example of RDC’s 0/1 rule update on an
OpenFlow-enabled ToR switch.

A.2 Use case: Uplink load-balancing

In §4, we have discussed four use cases for RDC. Among
these, uplink load balancing is another reactive RDC algo-
rithm. We discuss this use case in more detail, including the
data collection, bias mitigation, and control algorithm. The
proactive mode (Use case 3) is simply driven by applications,

and the mixed optimization (Use case 4) is also case-specific,
so we focus on the reactive algorithm for Use case 2.
Traffic data collection. RDC maintains flow counters on
ToRs to monitor the amount of traffic that each server has
sent outside the pod. We assume each RDC pod has a unique
ID, e.g., an IP address prefix shared by all servers in the pod.
Counters are only installed and updated for inter-pod traffic.
This can be implemented in the switch using two separate
flow tables. The first flow table matches on the destination IP
prefix and has only one rule matching the switch’s own pod
ID. If the first table misses, the second table then matches the
5-tuple and updates the associated counters. Otherwise, the
packet skips the second table and goes to the forwarding table.
By default, a miss on the second table will not result in packet
loss, but a go-fo action to the rest of the switch pipeline, which
avoids traffic disruption when the counter rules change.
Demand estimation. We use a similar technique to estimate
the true demand of servers in bottlenecked racks assuming
they fair-share the uplink bandwidth. The estimates are ob-
tained by first aggregating the flow counters for each server
and then scaling up the per-server demand to reach an aggre-
gate uplink throughput as if the rack is not oversubscribed.
We only apply this technique to racks that have been bottle-
necked in the collection period to prevent idle racks from
being mistakenly treated as hot. This technique keeps the rel-
ative order of server traffic load but brings larger quantitative
differences among servers, guiding our algorithm to compute
better topologies.

Algorithm. For 1-CS RDC, we view the uplink load-
balancing problem as a balanced graph partition problem;
for multi-CS RDC, we use a heuristic algorithm to obtain the
reconfiguration plan. The details of the above two algorithms
are included in §A 4.

A.3 Hedera demand estimation algorithm

The pseudocode is shown in Algorithm 1. M is the demand
matrix, H is the set of hosts in the network. eg is the equal
share rate of the flows, dr is the total demand for the desti-
nation, and dgs is the demand limited by the sender, f.rl is a
flag for a receiver-limited flow, and < src — anydst > rep-
resents all the flows from the specific source host src to any
destination host.

A general explanation for this algorithm is expanding the
flow demand at the source host with the fair share, and then
reducing the demand of some flows according to the capacity
of the destination hosts. In each iteration, one or more flows
will converge. Eventually, all the flows will converge after
multiple iterations [27].

A.4 Topology optimization algorithm details

1. Problem formulation. Assume that the number of racks
in a pod is m, each rack has n servers, and each pod has k£ CS
switches to reallocate the server. To keep a record of which
server is connected to which ToR switch, we use another

Algorithm 1: Hedera demand estimation [27]
Input: M: traffic matrix, H: the set of all hosts
Output: M: estimated demand matrix

1 while some M; ; demand changed do

2 for host src € H do
3 8 4 R ad low number -
flow €< src — anydst >

4 for flow f €< src — anydst > do

5 if f not converged then

6 L My sre.f.dst-demand < es

7 for host dst € H do

8 for f e< anysrc — dst > do

9 f.rl < true

10 dr < dr + f.demand

1 ng < ng+1
12 if dr > 1 then

13 eg < i
14 while some f.rl was set to false do
15 ng+ 0

16 for f e< anysrc — dst > &f.rl do
17 if f.demand < es then
18 ds < ds+ f.demand
19 L f.rl < false

20 else

21 L ng < ng+1
22 | es %
23 for f e<src — dst > &f.rl do
24 My e f.dsi-demand < es
25 M e f.asi-converged < true

matrix C[mn][m], if C[i][j] is 1, then server i is connected to

ToR j; the server and TOR are not connected if the value is 0.

For a valid allocation of the servers, the first constraint is that
one server should only be connected to one ToR:

m—1

Y Clil[j] = 1,Vi € [0,mn) (1)
Jj=0

The second constraint is because only a limited number of

ports from each ToR are connected to every CS, which is 7.

Thus, among all the %* servers connected to one CS, only 7
of them can be connected to the same ToR switch:

Clx-n+ix—+y|j]= %,Vie [0,k),Vj € [0,m)
(2)

The goal for traffic localization is to localize the inter-rack

traffic within a pod as much as possible. Hence, the objective
function is to maximize the total amount of localized traffic.
Assume that the traffic demand matrix is D[mn][mn], which
covers all the server pairs in a pod. Only when two servers
are connected to the same ToR, C[x][j] - C[y][j] = 1, so that
the following equation shows the amount of localized traffic
demand:

mn—1mn—1m—1

Maximize: Z Z ZC[x][j}'C[y][j]'D[x][y] (3

x=0 y=0 j=0

The goal for uplink load-balancing is to balance the load
across all uplinks. Hence, we choose to minimize the maxi-
mum load of any uplink for the out-of-pod traffic. Assume that
the out-of-pod traffic demand matrix is U [mn]. The objective
function is:

mn—1

Minimize: MAX{ ;) Cli]] j]-U[i]} ,Jj€0,m) (4

2. Heuristic traffic localization algorithm for 1-CS RDC.
For RDC with only 1 circuit switch, the topology optimization
problem will just become a graph partition problem. And the
new objective function is that we want to partition the vertices
(servers) in the graph into groups equally and let the edges
(traffic demand) within the groups to be maximum. Assume
the traffic demand is a graph G = (E, V'), where V is the ver-
tex set (i.e., servers) and FE is the edge set. The weight of an
edge e,w(e), is the traffic demand between the vertices. To
simplify the computation, we do not distinguish the directions
of traffic between a server pair, i.e., graph G is non-directional.
Our goal is to partition the graph into subgraphs of equal num-
bers of vertices such that the weighted sum of cross-subgraph
edges is minimized. We require partitions of the same size
because each ToR must connect to the same fixed number of
servers. The balanced graph partitioning problem is NP-hard,
but high-quality, efficient heuristics have been proposed in a
library parmetis [78]. Thus, for the traffic localization prob-
lem, we can set the objective to maximize the edge weights
insides each group and use the BGP method to solve it.

3. Heuristic uplink load-balancing algorithm for 1-CS
RDC. For RDC with only 1 circuit switch, the uplink load-
balancing problem will also become a graph partition problem.
Our formulation partitions mn number of servers 1,2,...,mn
into m subsets S1,S5>,...S,, such that each subset S; has ex-
actly n servers and the maximum cost of a subset, defined
as max({c(S;)}) is minimized, where c(S;) = Y U[i](i € S).
Again, we require a balanced partition of the servers because
each ToR must host the same number of servers. The prob-
lem is also NP-hard when k > 2 [51, 89]. We use the same
high-quality and efficient heuristics, parmetis, to solve this
problem by simply changing the objective function to balance
the out-of-pod throughput for each group.

4. Heuristic traffic localization algorithm for multi-CS
RDC. For RDC with multiple circuit switches, our heuristic
firstly groups the servers under the same CS into m bundles
equally and maximizes the traffic within each bundle, since all
the servers within a bundle should be connected to the same
ToR. After obtaining the bundles, for one CS, we only need
to assign each of them to a different ToR switch, and the goal
is to maximize the traffic demand among bundles under the
same ToR switch. In total we have mk bundles, each bundle
will be connected to one ToR switch, recorded as BC[mk][m].
Moreover, the bundles can be used to calculate an aggregated
traffic demand matrix BD[mk|[mk]. Thus, the simplified traffic
localization algorithm can be presented as:

m—1
Y BC[i][j] = 1,Vi € [0,mk) 5)
j=0

m—1
Y BClx-m+i][j]=1,Vi€[0,m),Vj€[0,m) (6)
x=0

mk—1mk—1m—1

Maximize: Y Y Y BC[x][j]- BCDy][j]-BD]p] (7)
x=0 y=0 j=0

5. Heuristic uplink load-balancing algorithm for multi-
CS RDC. For the heuristic ULB algorithm, again the servers
are grouped under the same CS into m bundles equally. And
the objective function is to minimize the maximum out-of-pod
traffic of each bundle. The idea behind this heuristic is that
if each OCS gives balanced out-of-pod traffic to each ToR,
then the total out-of-pod traffic from each ToR should also be
balanced. The constraints remain the same. Thus, we divide
the problem into many sub-problems, and each sub-problem
focuses on the servers connected to the same OCS:

m—1

Y. Clil[j] = 1,Vi € [0,mn) ®)
Jj=0

m—1 %*1

Y Y Cle-nix 2+l = 2.V € [0.6),) € [0.m)
x=0 y=0
©)

m—l%_1 n
Minimize: MAX Clrxn+ —xs+1i]|jl|-Uli] p,Vj€[0,m
{EOZZZO[X 11-Uli) ¢, Vj€[0,m)
(10)

	Introduction
	Motivation
	Rack sizes are inherently limited
	Rack boundaries introduce bottlenecks
	Facebook trace analysis: A case study
	The Power of RDC
	Realizing RDC

	The RDC Architecture
	Connectivity structure
	The RDC Controller
	Routing
	Discussions

	RDC Control Algorithms
	Proactive-mode RDC
	Reactive-mode RDC
	Topology optimization algorithms

	Implementation and Evaluation
	Real-world applications
	Performance at scale
	Packaging, power, and capital cost
	RDC reconfigurations

	Related Work
	Conclusion
	Appendix
	The RDC 0/1 updates
	Use case: Uplink load-balancing
	Hedera demand estimation algorithm
	Topology optimization algorithm details

