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Abstract

Human-AI collaboration is an increasingly commonplace part
of decision-making in real world applications. However, how
humans behave when collaborating with AI is not well un-
derstood. We develop metacognitive bandits, a computational
model of a human’s advice-seeking behavior when working
with an AI. The model describes a person’s metacognitive pro-
cess of deciding when to rely on their own judgment and when
to solicit the advice of the AI. It also accounts for the difficulty
of each trial in making the decision to solicit advice. We illus-
trate that the metacognitive bandit makes decisions similar to
humans in a behavioral experiment. We also demonstrate that
algorithm aversion, a widely reported bias, can be explained as
the result of a quasi-optimal sequential decision-making pro-
cess. Our model does not need to assume any prior biases to-
wards AI to produce this behavior.

Keywords: Algorithm aversion; Human-AI interaction; Ban-
dit problems; Cognitive modelling; Bayesian modeling,
Metacognition

Introduction
In an era in which AI is influencing areas of decision-making
that were historically the province of human subjectivity and
expertise, fostering effective teamwork between humans and
agents is increasingly important. AI now assists doctors who
look towards binary classifiers to decide which patients to
send to outpatient programs (Kamar, 2016) and courts who
use risk assessment tools to predict recidivism (Green &
Chen, 2019), among many other examples. As part of the col-
laborative process, humans are increasingly reliant on com-
plex and often opaque algorithms to support their decision
making. The shift to hybrid human-AI decision making has
been accompanied by a growing body of work that investi-
gates the dynamics of AI-assisted decision making. In this
paper, we present a cognitive science perspective on how hu-
mans decide when to solicit an AI’s advice as opposed to re-
lying on their own judgement.

Resistance to outside advice is not unique to human-
machine teams: humans discount advice from peers and tend
to rely on their own judgment, even when that judgment is
inexpert (Bonaccio & Dalal, 2006). Humans also exhibit ex-
cessive and unwarranted confidence in their own judgments
relative to those of their peers (Gino & Moore, 2007). Recent
work suggests that a number of similar behaviors might be at

work when humans collaborate with AI. These human biases
can lead to suboptimal outcomes.

Two widely discussed biases are algorithm aversion and
algorithm appreciation. Algorithm appreciation is the ten-
dency of a human to prefer algorithmic help over another
human’s help (Logg, Minson, & Moore, 2019). In contrast,
algorithm aversion has been described as the tendency of a
human to disregard the recommendations of a machine after
observing that it made a mistake. This can occur even when
the algorithm can be beneficial to the human decision maker
on average (Dietvorst, Simmons, & Massey, 2015). Human
behavior consistent with these biases is often reported as in-
appropriate reliance by the human on the AI. One proposed
explanation for algorithm aversion is that early errors by the
algorithm lead to a loss of trust, and consequently to an in-
adequate exploration of an algorithm’s capability by the hu-
man partner. This finding is consistent with human factors
research showing that initial interactions and negative inter-
actions are known to have a greater impact on trust in AI than
interactions later in the exchange (Logg, 2017). This loss of
trust may result in reduced reliance on the AI.

In this paper, we present the first (to our knowledge) cog-
nitive models for human-AI interaction. Our starting point
is that humans compute the utility of advice from an algo-
rithm and that they behave like quasi-ideal observers, per-
forming Bayesian inference to decide when to ask for AI
assistance. The computational model combines two differ-
ent cognitive processes: explore/exploit sequential decision-
making and metacognition. On each trial, the human needs to
decide whether to solicit the advice of the AI or rely on their
own judgement. This decision requires a form of metacog-
nition — thinking about the relative abilities of oneself and
the AI. In our setting, the human engages metacognition to
infer and compare the utility of making one’s own decision
with the utility of seeking the advice of an AI. We model the
sequential decision-making problem of soliciting advice on
each trial as an explore/exploit problem.

On the one hand, the human can explore by choosing to
solicit the advice of the AI. This action is risky, since the
AI has an unknown capacity and the action to solicit advice
is associated with time costs associated with soliciting, pro-



cessing, and integrating the advice with one’s own judgment).
The solicitation pays off if the utility of AI advice exceeds
the utility of making an independent decision. On the other
hand, the human can exploit by choosing to forge ahead with
an independent judgment. This choice is less risky when
confidence in one’s decision is high. We will show that the
proposed computational models produce behavior consistent
with a wide range of behaviors that humans display when pre-
sented with such a choice, including algorithm aversion. Con-
sistent with the standard interpretation of algorithm aversion,
early errors lead the (simulated) human to under-utilize the
AI and in some cases to completely disregard it. However,
the model also predicts a more general pattern of algorithm
aversion when the AI utility is not only based on perceived
accuracy but also includes temporal factors related to time
to receive the AI advice and cognitive efforts to process the
advice. The computational model predicts that humans can
abandon the AI advice even in the absence of early errors if
the perceived accuracy advantages of AI advice do not make
up for the perceived temporal costs. Finally, the model also
provides a framework for incorporating the difficulty of a trial
into the decision of soliciting advice.

The paper is organised as follows. We first report the qual-
itative results from an experiment on AI advice solicitation.
We then introduce the basic metacognitive bandit model that
can account for several important qualitative patterns in the
data. In addition, we introduce model extensions that can ac-
count for variation in task difficulty across trials. We end with
a discussion of the implications of this metacognitive frame-
work for human-AI team collaborations and suggestion some
future directions for research.

Experimental Data
We provide a brief description here from one of a series of
experiments on AI advice solicitation. In the experiment, 40
participants first made an independent judgment on a percep-
tual decision-making task and were then given the option to
solicit the advice from an AI agent. A key feature of the ex-
periment is that information about the accuracy of the AI is
only evident when its advice is solicited.

Methods
40 participants were recruited through an online subject pool
at the University of Illinois at Urbana-Champaign and re-
ceived assignment credit for participation. Participants were
first shown a fixation point for 500 ms followed by a random-
dot kinematogram (See Figure 1(a)) for 500 ms. Participants
were tasked with identifying the dominant direction of move-
ment in the kinematogram (left or right). The coherence (ran-
domness) of the kinematograms varied between 0 and .3 —

a coherence of 0 corresponds to maximum randomness or
highest difficulty and difficulty decreases with increase in co-
herence value. Participants were presented with 240 trials.
The sequence of events in the experiment as shown in Fig-
ure 1(b) were as follows. Participants were shown a kine-
matogram and were asked to submit an initial response. Af-

(a) (b)

Figure 1: Experimental setup: (a) Kinematograms with vary-
ing coherence levels (inversely related to difficulty) were used
as stimuli. (b) Sequence of events in the task.

ter submitting their response, they were asked to rate their
confidence (low, medium or high) in their decision. Next,
they were given the option to solicit the advice of an AI
agent. If they chose to solicit advice, they were shown the
AI recommendation. If not, they were shown feedback (cor-
rect/incorrect) on their original answer.

If they solicited the AI’s advice, they were allowed to
change their answer after viewing the AI’s recommendation.
The AI advice did not include a confidence rating. AI advice
was simulated by the experimenters such that AI accuracy
decreased as a function of coherence. Participants submitted
their answer after taking into account the AI’s advice. This
was followed by feedback (correct/incorrect) on their final re-
sponse.

Empirical Results
For the purpose of this paper, we focus on four qualitative
findings related to the initial decision in the perceptual task
and the decision to solicit advice. First, human performance
was on average poorer than that of the AI. Participants were
correct 69% of the time on their first judgment, and the AI
was correct 81% of the time. Therefore, on average, partic-
ipants should be able to increase performance by soliciting
and adopting the advice of the AI. Second, there was sub-
stantial variation in the degree of soliciting AI advice across
participants and trials. Figure 3(a) and 4(a) show that the ten-
dency to solicit AI advice decreased over time. In addition,
some individuals stopped soliciting advice after only a few
trials, whereas other individuals kept soliciting advice across
the entire experiment. Third, Figure 6(a) shows that confi-
dence in the initial decision is related to accuracy, suggest-
ing that participants have accurate metacognitive awareness
of the difficulty of that particular trial and the associated level
of uncertainty in their decision. Finally, figure 6(b) shows a



final important result: the AI was solicited more often when
the participant was less confident.

Computational Modeling Approach
The computational problem associated with the decision to
solicit advice from an AI can be formulated as an optimal
exploration effort: Humans need to infer the relative utility
of relying on themselves or the AI assistant to inform fu-
ture decisions of when to seek help. This problem can be
elegantly captured using a multi-armed bandit framework.
Bandit problems have been widely used to study sequential
decision-making when there is uncertainty about the rewards
associated with decisions (or arms). In a machine learning
context, multi-armed bandits have been used to efficiently
choose between different sources of information, such as
crowd workers and/or machine learning models (Tran-Thanh,
Stein, Rogers, & Jennings, 2014) and active assessment of
machine classifiers (Ji, Logan IV, Smyth, & Steyvers, 2021).
In cognitive science, multi-armed bandits have been used to
model human sequential decision behavior in reward and in-
formation seeking environments (Steyvers, Lee, & Wagen-
makers, 2009; Speekenbrink & Konstantinidis, 2015; Wu,
Schulz, Speekenbrink, Nelson, & Meder, 2018). The objec-
tive of a bandit problem is to maximize the expected value of
the cumulative rewards received during the decision-making
process. This requires a balance between exploring all avail-
able arms and exploiting the best possible arm at any time.

We specify the decision to seek help from AI as a pull of
one of two arms: self and AI. However, note that the decision
to select an arm is a metacognitive one: the human needs to
evaluate their own performance (which will reflect the subjec-
tive difficulty of the current problem) as well as learn about
the AI arm’s utility. This is different from a traditional bandit
setting in which the evaluation of arms corresponds to com-
peting external events. We now describe the details of the
models we consider. Note that the goal is to capture the im-
portant qualitative trends observed in the empirical data; we
plan to pursue quantitative modelling in future work.

Metacognitive Bandit
The metacognitive bandit captures the metacognitive process
employed by a human to decide whether to seek AI help on an
individual trial. The human relies on the performance history
of both arms (AI and self) to inform the decision of arm se-
lection. We use the framework of upper confidence bound
(UCB) bandit models to model this process. Specifically,
we use the Bayesian UCB framework proposed by Pavlidis,
Tasoulis, and Hand (2008) as a solution to this metacogni-
tive task. In this framework, the decision-maker constructs a
100(1− λ)% credible interval for the expected reward from
each action at each trial and greedily chooses the action with
the highest upper bound of the credible interval. It favors the
exploration of actions with high uncertainty that have the po-
tential to produce favorable outcomes.

On each trial, the human infers a utility for soliciting the
AI’s help and a utility for coming up with a solution on one’s

own. This utility is a combination of expected accuracy and
time costs associated with both arms. Since the AI has un-
known accuracy, the human does not have a good estimate of
its ability and the choice to solicit advice is risky. There are
also time costs associated with the decision to ask for help.
The human may also be uncertain about their own ability and
may need to rely on trial feedback to update their own esti-
mates of ability. The human then picks the arm that has the
highest upper bound at each time step.

Let θ and φ denote the latent accuracy of the self arm (S)
and the AI arm (AI) respectively. Let xt denote the reward
observed at each trial t for arm S and yt denote the reward
observed at each trial t for arm AI. The reward is 1 when an
arm gives a correct response and 0 when the response is in-
correct. Let at denote the action taken by the human where
at = 1 if the AI was solicited on trial t and at = 0 if the AI was
not solicited (i.e. the self arm was selected). We assume that
the human always observes the reward for the self arm. How-
ever, for the AI arm, the correct and incorrect responses can
only be observed for those trials when the arm was selected
(i.e., at=1). We assume that the observed rewards of the two
arms are generated independently and identically from two
unknown Bernoulli distributions. In this Bayesian model, the
human updates the posterior of latent accuracy θt and φt at
trial t based on the history of the rewards x1:t−1 and y1:t−1
according to:

θt |x1, . . . ,xt−1 ∼ Beta(α+
t−1

∑
j=1

x j,β+
t−1

∑
j=1

(1− x j))

φt |y1, . . . ,yt−1,a1, . . . ,at−1 ∼

Beta(γ+
t−1

∑
j=1

y ja j,δ+
t−1

∑
j=1

(1− y ja j))

(1)

where (α,β) and (γ,δ) encode prior beliefs of the human
about their own accuracy (arm S) and AI respectively. In
essence, this model suggests that humans keep a count of the
number of observed correct and incorrect responses by both
arms.

The posterior latent ability distribution serves as a proxy
for expected accuracy of the arms: higher perceived ability of
an arm corresponds to a higher probability of the arm giving
a correct response. In the UCB decision process, at each trial
t, the human compares the upper confidence bounds of both
arms to pick the arm a with the higher inferred utility:

at =

{
1 if UCB(θt ,λ)>UCB(φt ,λ)− c
0 otherwise

(2)

where UCB(θt ,λ) is the 100(1 − λ)% upper confidence
bound for the posterior distribution for θ and c is a time cost
associated with the AI arm. This cost includes the additional
cognitive effort and time assdociated with asking for advice
and incorporating it into the final decision.

To illustrate the model, Figure 2 shows some predicted ac-
tions by the model based on different performance histories.
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Figure 2: Illustrative results for the basic metacognitive ban-
dit for three participants (rows) with inferred utilities for the
AI arm (left column) and self arm (right column). The shaded
region shows the posterior uncertainty associated with the in-
ferred utility. Dots correspond to the rewards observed for
each arm pull. The panels on the left show the human’s in-
ferred utility of asking the AI for help. Gray dots correspond
to the AI arm not being pulled, hence no reward was observed
for those trials. Green and red dots corresponds to correct and
incorrect responses respectively. The panels on the right show
the human’s inferred utility of relying on own judgment and
the associated reward sequence. The last row is an example
of behavior that exemplifies the pattern often associated with
algorithm aversion.

In this simulation, we set λ to .1 such that the UCB action
selection is based on the 90th quantile of the latent abilities
of the two arms. We set c to .1 to impose a small cost asso-
ciated with the action of soliciting advice. We set (α,β) to
(7,4) reflecting a moderately strong prior belief that the hu-
man agent’s own accuracy is above chance and (γ,δ) to (.1,.1)
corresponding to an absence of any belief about the AI per-
formance in the task. Figures 3(b) and 4(b) show the advice
seeking behavior across 240 trials for 40 simulated partici-
pants. We observe that the basic metacognitive bandit model
produces behavior that is consistent with a variety of advice-
seeking behaviors, including algorithm aversion. For exam-
ple, for the third simulated participant (bottom row of Figure
2), advice was solicited on the first trial and proved to be in-
correct. That single negative observation is sufficient for the

model to no longer seek the AI advice for the remaining trials.
We should note that the substantial differences in behavior

across the simulated participants occur despite the fact that
no individual differences are built into the model. Each sim-
ulated human participant starts with the same prior beliefs
and assumptions about time costs. Despite this homogeneity,
there are strongly diverging patterns of advice-seeking behav-
ior that are determined entirely by the feedback history.

(a) Empirical data
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Figure 3: Advice soliciting behavior for actual and simulated
participants on 240 trials. Participants are sorted in increas-
ing order of proportion of trials on which advice is solicited.
White corresponds to trials where a participant did not so-
licit AI advice. (a) Empirical data (b) predictions of basic
metacognitive bandit model with deterministic arm selection.
(c) predictions from model extension with stochastic arm se-
lection (d) predictions from model with adjustments for per-
ceived trial difficulty.

Model Extension: Adding Decisional Uncertainty
The basic metacognitive bandit model suggests that humans
engage in perfectly optimal decision-making at each trial.
However, this is a strong assumption. In the first extension to
our model, we allow for some stochasticity in decision mak-
ing. We assume that humans employ the metacognitive bandit
to choose the arm with the highest utility most frequently, but
occasionally deviate from optimal behavior. The softmax ac-
tion selection function is widely used to model uncertainty in
human decision-making and gives us an elegant way to incor-
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Figure 4: Probability of seeking AI advice across partici-
pants on 240 trials (a) Empirical data (b) Predictions of basic
metacognitive bandit model with deterministic arm selection.
(c) Predictions from model extension with stochastic arm se-
lection (d) Predictions from model with adjustments for per-
ceived trial difficulty

porate stochasticity in our model. The probability of choosing
the AI arm according to the softmax function is:

p(at = 1) =
1

1+ exp(−UCB(θt ,λ)−(UCB(φt ,λ)−c)
τ

)
(3)

where τ is temperature that modulates the level of stochas-
ticity; low values of tau corresponding to lower stochasticity
in decision making behavior. Figures 3(c) and 4(c) show the
predictions from this model where τ = .01. Note that the key
difference from the basic metacognitive bandit model is the
added noise in the decision-making process where occasion-
ally the arm with a lower UCB bound is chosen.

Model Extension: Adjusting for Subjective Trial
Difficulty
We now extend our basic metacognitive bandit to a subjective
trial difficulty adjusted metacognitive bandit that captures the
metacognitive process of inferring overall ability while also
accounting for the difficulty of the trials. We posit that hu-
mans estimate a probability of being correct on the current
stimulus without the AI’s aid based on their inferred ability
and the subjective difficulty of the stimulus at trial t. We use
the term ‘subjective difficulty’ to draw attention to the possi-
bility that an objectively easy trial can be perceived as a dif-
ficult trial by a human. This may happen because the human
was not paying attention, or because the human doesn’t have
enough context or prior knowledge about a trial. The human
infers a subjective difficulty for each stimulus presented. Let

dt denote the subjective difficulty of the stimulus presented at
trial t.

The Rasch framework is a natural choice to incorporate
trial-by-trial variation in difficulty while inferring ability. The
Rasch model is a classic psychometric model used to analyse
participant responses to questions as a function of the par-
ticipant’s latent ability and the question’s difficulty. In con-
trast to the standard Rasch model application, in which abil-
ity and difficulty combine to produce performance, we adopt
the Rasch model as a component of the metacognitive pro-
cess underlying the decision to solicit advice. We hypothe-
size that the human participant employs the Rasch model to
assess their own ability and decide when to seek advice based
on the current estimate of their ability, the current estimate of
the ability of the AI, and the perceived difficulty of the cur-
rent trial. The probability of being correct without the AI’s
help as estimated by the human is based on a Rasch model:

P(xt = 1|θ,dt) =
1

1+ exp(−(θ−dt))
(4)

We use the sigmoid function to transform the value (θ− dt)
to a probability value between 0 and 1. This transformed den-
sity of the latent ability serves as the distribution of expected
accuracy for the self arm. In this model, the likelihood of ob-
serving a sequence of trial outcomes (i.e., runs of successes
and failures) is:

p(X = x1:t−1|θ,d1:t−1) =
t−1

∏
j=1

exp(x j(θ−d j))

1+ exp(θ−d j) (5)

We assume that the human participant engages in an inference
process about their own overall ability θ. Using Bayes’s rule,
the posterior over θ is:

p(θ|X = x1:t−1,d1:t−1) ∝ p(X1:t−1|θ,d1:t−1)p(θ) (6)

where we assume the prior p(θ) ∼ N(µ,σ2). Since calcu-
lating the posterior exactly is intractable, we adopt an ap-
proximate inference technique to simulate the human’s as-
sessment of their own ability. We implement a Hamiltonian
Monte Carlo algorithm to draw samples from the posterior of
θ. The samples from the posterior are then used in equation 2
to infer the probability of being correct which adjusts for the
difficulty of each particular trial.

We assume that the human only adjusts for trial difficulty
when inferring their own ability on a particular trial. As a
simplifying assumption, we assume the human’s inference
about the AI’s ability is independent of difficulty (as the hu-
man does not know what the AI finds difficult). The inference
of the AI’s ability is the same as the beta update in Equation
1.

After the adjustment for trial difficulty by the human, the
probability of choosing the AI arm is again evaluated using
the softmax function:

p(at = 1) =
1

1+ exp(−UCB(σ(θt−dt ),λ)−(UCB(φt ,λ)−c)
τ

)
(7)



where σ is the sigmoid function. Note that θ is conditioned
on the history of the rewards x1:t−1 accumulated by the hu-
man and the associated perceived difficulties d1:t−1 of the tri-
als, while φ is conditioned only on the history of the rewards
y1:t−1 accumulated by pulling the AI arm.

We simulated the metacognitive bandit adjusted for per-
ceived trial difficulty by conditioning on the same true coher-
ence and reward sequence as in the experimental data. We
set λ to .1 such that the UCB action selection is based on
the 90th quantile of the latent abilities of the two arms. We
set c to .1 to impose a small cost associated with the action
of soliciting advice. The experiment didn’t ask participants
for subjective difficulty on each trial. Instead, we use a noisy
transformation of the true coherence of the stimuli used in the
experiment to simulate subjective difficulty. Let Ct be the true
coherence level at time t. Perceived coherence ωt is a sample
from a normal distribution centered at Ct and standard devia-
tion .2. We then impose an inverse transformation to estimate
a subjective difficulty based on the true coherence of a trial,
dt = k/(ωt + ε), where ε is a small value added to the de-
nominator (set to .001 in our simulation) to avoid numerical
issues. k is a proportionality constant set to .02. This equation
gives us a way to estimate trial-level subjective difficulty for
our experiment. This is substituted in equation 5 to calculate
the probability of being correct on each trial. Figures 3(d)
and 4(d) show the advice seeking trend across the simulated
population.

Confidence Ratings
Another important feature of the metacognitive bandit ad-
justed for subjective item difficulty is that it allows us to gen-
erate confidence ratings based on the learner’s inferred prob-
ability of being correct on each trial. In the data, we observe
that participants tend to give lower confidence ratings on trials
that they are likely to get wrong. This is another way of say-
ing that metacognition in this task is accurate—participants
are able to judge the likelihood of answering correctly on a
particular trial. This metacognitive awareness can also be
seen in the advice-seeking behavior: participants are more
likely to seek advice on trials for which they have low confi-
dence.

We use the estimated perceived coherence of a trial to sim-
ulate the response and confidence of the human on that trial.
Figure 5 shows the correspondence between the coherence
value and the confidence of the human. We expect the human
to have high confidence when the absolute value of coherence
is high (between .16 and .3) and the direction of movement of
the stimuli is highly discernible. We expect the human to have
medium confidence when the absolute value of coherence is
between .06 and .16 and low confidence when the absolute
value of coherence is less than .6. If the human’s perceived
coherence has the same sign as the true coherence, we predict
that the human can correctly guess the dominant direction of
movement in the stimulus. Figures 6 (a) and (b) demonstrate
that the model is able to capture the qualitative relationship
between confidence, accuracy and the probability of seeking

AI advice.

Figure 5: Proposed generative model for human response and
confidence: True coherence is sampled from a uniform distri-
bution between −.3 and .3. Perceived coherence is a noisy
sample from a normal centered at the true coherence and is
used to determine the accuracy and confidence of the human
on a trial.
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Figure 6: Relationship between the reported confidence of
participants in their response and (a) the accuracy of response,
and (b) probability of soliciting AI advice.

Discussion
Work on human-AI interaction often describes algorithm
aversion as an unwarranted bias displayed by humans who be-
come overly skeptical of an algorithm’s ability. Through a se-
ries of metacognitive bandit models, we demonstrate that al-
gorithm aversion can arise as a consequence of quasi-optimal



decision making by humans that factors in not only an assess-
ment of accuracy differences between the human and the AI,
but also temporal factors such as the time and cognitive ef-
fort required to process the AI advice. Our model describes
how humans update their beliefs about their ability relative
to the AI and use it to decide when to seek advice from the
AI. However, we look at a very specific behavioral paradigm
and use simulated AI advice. An important future direction
is to look at more naturalistic decision-making settings while
using a real AI in the loop.

We also note that currently our model only qualitatively
captures trends in the data. To get a complete picture, we
need to do more quantitative model fitting. Our model also
does not yet explain how advice is integrated into the deci-
sion by the human, but the same framework that provides for
advice solicitation can also support a weighting of evidence
from multiple sources. Understanding how AI advice factors
into human judgment is another direction we plan to pursue.
Ultimately, a model of human-agent interaction will be crit-
ical for understanding human behavior in hybrid teams and
also for understanding how to design agent partners in a way
that humans can use most effectively.
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