
 

 

INTRODUCTION 
 Patient-specific cardiac modeling combines geometries of the heart 
derived from medical images and biophysical simulations to simulate 
various aspects of cardiac function. It can provide useful physiological 
information non-invasively to facilitate understanding, diagnosis and 
treatment planning of cardiac diseases for individual patients [1]. 
However, generating simulation-suitable meshes of the heart from 
patient image data often requires complicated procedures and 
significant human efforts, limiting clinical translations. We are thus 
motivated to develop fast and automated methods to construct 
simulation-ready meshes of the heart from medical images. 
 Deep learning methods can train neural networks from existing 
data to automatically process medical images and generate whole heart 
reconstructions. While most prior deep learning methods have focused 
on image segmentation, our recent approaches directly reconstructed 
surface meshes from patient image data [2-3]. By deforming a surface 
mesh template, our previous methods eliminate the intermediate 
segmentation step that sometimes introduce extraneous regions 
containing topological anomalies that are unphysical and unintelligible 
for simulation-based analyses [2]. We have also combined free-form 
deformation (FFD) with deep learning to predict the displacement of a 
control point grid to deform the space enclosing a simulation-ready 
whole heart template, thus enabling direct reconstruction of simulation-
ready meshes from image data [3].  
 However, since FFD has limited capability for complex shape 
deformation, our prior method requires a dense control point grid 
including thousands of control point to achieve acceptable whole heart 
reconstruction accuracy [3]. Here we propose a new deep-learning 
approach that leverage biharmonic coordinates to deform the whole 
heart template to fit the target image data with higher accuracy and using 
far less control points. We also introduce a few effective learning biases 
as objective functions to produce meshes that better satisfy the modeling 
requirements for computational simulation of cardiac flow.  

 METHODS 
Dataset: We trained our method with 87 contrast-enhanced CT 

images and 41 MR images that cover the whole heart [3]. 15 CT images 
and 6 MR images were used for validation. The final performance of 
our model was evaluated on the MMWHS held-out test dataset that 
contains 40 CT and 40 MR images [4], as well as time-series CT images.  

 
Figure 1: Proposed automatic whole heart reconstruction approach 

Shape Deformation Using Biharmonic Coordinates: Our 
approach constructs whole heart meshes by deforming a pre-defined 
whole heart mesh template. We parameterize the deformations with the 
translations of a small set of deformation handles uniformly sampled 
from the mesh template. Given a set of mesh vertices 𝑉 ∈ 𝑅!×# and a 
set of control points 𝑃 ∈ 𝑅$×#, we compute the biharmonic coordinates 
𝑊 ∈ 𝑅!×$, which is a linear map, 𝑉 = 𝑊𝑃. 𝑊 is pre-computed by 
minimizing a quadratic deformation energy function while satisfying 
the handle constraints with linear precision [5].   

Neural Network Architecture: As shown in Fig 1, our framework 
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first uses an image encoding module that extracts and encodes image 
features. These features are used as inputs to graph convolutional layers 
to predict the displacements of mesh vertices (𝑆 ∈ 𝑅!×#) from their 
previous locations. We then select control handles (𝑃 ∈ 𝑅$×#) from the 
updated mesh vertex locations to deform the template. The shape 
deformation module consists of three deformation blocks that 
progressively deform mesh templates, using increasing number of 
control handles (75, 150 and 600, respectively). We also use a 
segmentation module that predict a binary segmentation map to enable 
additional supervision using ground truth annotations.  

Neural Network Optimization: 3D ground truth meshes of the 
whole heart extracted from manual segmentations were used to 
supervise the training of the neural network model. We used point and 
normal consistency losses to supervise the geometric consistency 
between the prediction and the ground truth. In contrast to [2], which 
uses edge length and Laplacian regularization losses, the smoothness of 
the mesh prediction is naturally constrained by the biharmonic 
coordinates used to deform the template. For CFD simulation of cardiac 
flow, the inlet and outlet vessel geometries need to be trimmed to have 
planar faces orthogonal to the vessel walls. We thus applied a co-planar 
loss on the cap that penalizes the L2 differences of surface normal 
vectors among mesh vertices on the caps. For mesh vertices that are on 
the vessel walls near the caps, we minimize the absolute value of the dot 
products between their surface normal vectors and the surface normal 
vector of the caps to encourage orthogonality. As geometries of inlet 
vessels are important to the accuracy of CFD results, we applied a 
higher weight of the geometric consistency loss on mesh vertices that 
are located on vessel walls near the inlets.  

RESULTS  
 We compare the performance of whole-heart reconstructions from 
our method against two mesh reconstruction methods, HeartFFDNet [3] 
that learns FFD to deform mesh template of the heart, MeshDeformNet 
[2] that learns to predict displacements from sphere mesh templates, as 
well as two segmentation methods, 2D UNet [6] and a modified 3D 
UNet [7]. 

  
Figure 2: Dice scores of different methods on MMWHS test set  
 Figure 1 shows the average Dice score (a similarity index) of the 
reconstruction results of both the whole heart and individual cardiac 
structures for the MMWHS test dataset. For both CT and MR data, our 
method consistently outperformed HeartFFDNet and 3D UNet and 
achieved comparable performance with MeshDeformNet and 2D UNet. 
Figure 3 compares the reconstructed whole heart geometries from 
different methods for time-series CT images. From end-diastole to end-
systole, mesh-based methods produced more anatomically and 
temporally consistent geometries than segmentation-based methods (the 

UNets). MeshDeformNet is prone to gaps between adjacent cardiac 
structures since it deforms uncoupled spheres to represent separate 
structures. Our method avoids this issue by deforming a realistic whole 
heart template. Compared with HeartFFDNet, we used far less control 
points (600 vs 4096) and achieved better accuracy.  

 
Figure 3:  Qualitative comparisons for time-series CT images  
   

 
Figure 4: Contribution of different loss components on vessel inlet 
geometries. 1st column shows the template mesh with caps tagged in 
yellow and walls tagged in turquoise. 
 Figure 4 demonstrates the effect of adding individual loss 
components on the predicted inlet and outlet geometries (pulmonary 
veins, vena cava, and aorta). The coplanar loss and the orthogonal loss 
succeeded in producing planar cap geometries that are orthogonal to 
vessel walls. Applying a higher weight on the inlet mesh vertices in the 
geometric consistency loss improved the accuracy of inlet geometries.  

DISCUSSION  
 Automated image-based reconstruction of cardiac meshes is 
important for computational simulation of cardiac physiology. We have 
demonstrated a novel approach for automated image-based cardiac 
model reconstruction that is generally more geometrically accurate than 
our prior approach [4] while at the same time better satisfying modeling 
requirements for cardiac flow simulations. Our approach can 
automatically construct whole heart meshes within seconds on modern 
desktop computers. Once being trained on the whole heart template, the 
network can deform alternative template meshes that represent a subset 
of the geometries in the template to accommodate different modeling 
requirements, by interpolating the biharmonic coordinates onto new 
template meshes. Future work will focus on validating the reconstructed 
meshes for CFD simulation of cardiac flow.  
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