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ABSTRACT. In this note we deconstruct and explore the components of a theorem of
Carrasco Piaggio, which relates Ahlfors regular conformal gauge of a compact doubling
metric space to weights on Gromov-hyperbolic fillings of the metric space. We consider
a construction of hyperbolic filling that is simpler than the one considered by Carrasco
Piaggio, and we determine the effect of each of the four properties postulated by Carrasco
Piaggio on the induced metric on the compact metric space.
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1. Introduction

Within the class of metric spaces, those that are Gromov hyperbolic possess the prop-
erties of negative curvature at large scale but are not concerned with small-scale behav-
ior; and as such, Gromov hyperbolicity is stable under biLipschitz changes in the met-
ric (unlike Alexandrov curvature conditions). First proposed as a structure useful in the
study of Cayley graphs of hyperbolic groups [13], the study of Gromov hyperbolic spaces
was subsequently found to be useful in the study of potential theory [4]. It is also con-
nected to the study of metric geometry, as there is a close connection between Gromov
hyperbolic spaces and uniform domains [5], and between rough quasiisometries between
Gromov hyperbolic spaces and quasisymmetries between their visual boundaries. It is
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this latter connection that is explored further in [11], and is based on the fact that ev-
ery compact doubling metric space is the boundary of a Gromov hyperbolic space, called
hyperbolic filling, of the space. Now there is extensive literature on various uses of hyper-
bolic filling, dating back to the seminal paper of Gromov [13, page 95|, and made explicit
in 3, 6, 7, 8 9, 11, 17, 18, 19, 20, 21, 23|; these are merely a sampling of current
literature on the topic of Gromov hyperbolicity and hyperbolic filling.

During the author’s stay at MSRI, there was an extensive discussion of the paper [11]
characterizing metrics on a compact space that are quasisymmetrically equivalent and at
least one of them an Ahlfors regular metric. The results of [11] were of great interest to
many participants at MSRI. However, the complicated system of parameters used there
made it difficult to see the underlying beautiful ideas in [11]. The goal of the current note
is to deconstruct the role of some of the parameters in used there, and to eliminate others,
thus providing a simplified expository discourse on parts of [11|. The focus is on [11,
Theorem 1.1]. The following theorem is the result of exploring the role of each of the
conditions (H1)—(H4) assumed in [11].

THEOREM 1.1. Let (Z,dz) be a compact doubling metric space. Firing a > 2, and
T > 2a? + 1, we choose a hyperbolic filling X of Z associated with the parameters o and T
as in Definition 2.1.

I. Suppose that p : X — (0,1), and consider the function d, on X x X associated

with p as in Definition 3.4.

(a) If p satisfies Condition (H1) of Definition 8.1, then d, is a metric on X, with
(X,d,) alocally compact, non-complete metric space. Let 0,X = X\ X, with
X the completion of X with respect to the metric dy.

(b) If p satisfies Conditions (H1) and (H3) of Definition 3.1, then there is a
homeomorphism ® : Z — 0,X and positive constants c,C' such that for every
x,y € Z we have

CdZ@::y)T_ < dp(q)(x)7q)(y)) < Cdz(x,y)T"'

with
. log(n-) . log(n)
~Tlog(ifa) T Tog(ija)
(c) If p satisfies Conditions (H1), (H2), and (H3) of Definition 3.1, then the map
P is a quasisymmetry.
(d) If p satisfies Conditions (H1), (H2), and (H3) of Definition 3.1 and Condi-
tion (H4) of Definition 6.1, then (0,X,d,) is Ahlfors p-reqular.

I1. Conversely, suppose that Z is Cy-uniformly perfect for some Cy > 2, and o > C’[?}
with T > max{a? + 1,2C3(CE — 4)71}. If 6 is any metric on Z for which (Z,0)
is Ahlfors p-regular and is quasisymmetric to (Z,dyz), then there exists a function
p: X — (0,1) that satisfies Conditions (H1), (H2), (H3), and (H4).

REMARK 1.2. Note in the above theorem that in Part I. we do not require (Z,dz)
to be uniformly perfect; then, Conditions (H1)—(H3) do not imply uniform perfectness
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either (and indeed, the choice of p as the constant function p(z) = 1/« satisfies Condi-
tions (H1)—(H3) with the resulting quasisymmetry a biLipschitz map, see [3], claim I.(b)
of Theorem 1.1 above, or Theorem 4.2 below); however, Conditions (H1)—(H4) together
imply that (Z,dz) must be uniformly perfect. Thus I.(a)—(c) on their own are not ex-
plicitly covered in [11], for Carrasco Piaggio [11] does explicitly require Z to be uniformly
perfect (see |11, Section 2.1]), that assumption is also implicit in the four conditions to-
gether (see Lemma 6.2 below), and conversely, if (Z,d) is quasisymmetric to (Z,6) with
6 Ahlfors d-regular, then necessarily (Z,d) is uniformly perfect as well. Interestingly also,
in [11, page 507, (2.8)|, Carrasco Piaggio requires 7 > 32 (there 7 is denoted A) and then
require a > 6x? max{7,Cy} (with a denoted as a and Cy denoted as Kp in [11]). The
parameter k is an additional one associated with the construction of hyperbolic filling as
given in [11]; with the simplified construction as considered in this note and in [3], we have
k = 1. Thus, in [11] the parameter o depends on the choice of A and Cy, but in our note
7 depends on the choice of o while in Part II., both a and 7 depend on Cy as well.

As pointed out above, when considering only the conditions (H1)—(H3), the metric
space (Z,d) need not be uniformly perfect, but still the quasisymmetry ® obtained in
Section 5 is necessarily a power quasisymmetry. Since there are compact doubling metric
spaces and quasisymmetries on them that are not power quasisymmetries (see for example
the discussion in [14]), it follows that not all quasisymmetries on a doubling space are
obtained using the method of Carrasco Piaggio [11].

Section 2 is devoted to describing the construction of hyperbolic filling, and the last
five sections of this note are devoted to the proof of the claims of the theorem. We choose
to use the construction of hyperbolic filling from [3] for its simplicity in relation to the one
used in [11]. While the construction in [11] (see also [21]) gives greater flexibility to the
choice of sets and vertices, it is perhaps this very flexibility that makes it difficult to see
what the effect of the conditions (H1)—(H4) are, and so we chose the simpler version given
in [3|. However, the ideas and basic premises are as in [11].

In Section 3 the conditions (H1)—(H3) are discussed and I.(a) of Theorem 1.1 is proved,
while in Section 4 the claim I.(b) of the theorem is verified. Section 5 is devoted to the proof
of I.(c) of Theorem 1.1, and the discussion in Section 6 completes the proof of the part I. of
Theorem 1.1. The focus of Section 7 is to prove part IL. of Theorem 1.1. In Section 8 we list a
set of four conditions that parallel the conditions of Carrasco Piaggio [11], but couched from
the perspective of densities on a metric space that lead to conformal changes in the metric.
We end that section by posing a query regarding an Adams-type inequality |1, 2, 24|,
which is known to hold in the case that the function p is the constant function p(z) = 1/a.
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2. Construction of hyperbolic filling

Recall that a metric space (Z,dyz) is metric doubling if there is a positive integer N
such that for each z € Z and r > 0, if A C B(z,r) such that dz(x,y) > r/2 whenever
x,y € A with & # y, then there are at most N number of elements in A.

In this note, (Z,dyz) is a compact metric space, such that it is a metric doubling space.
Later we will also assume that Z is uniformly perfect, that is, there is some Cy > 1 such
that for each z € Z and 0 < r < diam(Z)/2, the annulus By, (2,7) \ B, (z,7/Cy) is non-
empty; however, for now we do not need this assumption. We will, however, also assume
that 0 < diam(Z) < 1 without loss of generality (as we are not interested in singleton
metric spaces).

Constructions of hyperbolic fillings of compact doubling metric spaces can be found for
example in [8, 6, 7, 9, 11, 3|. The version we give here is that of [3]. The obtained graph
in this construction, when equipped with the path metric, is Gromov hyperbolic; however,
this fact is not essential for the discussion in this note, as we turn the graph into a metric
graph by adding unit interval edges to connect neighboring pairs of vertices and then use
path integrals to directly obtain a metric on the graph; hence its boundary can be realized
via a metric completion rather than as the visual boundary of a Gromov hyperbolic space.
For this reason, we do not devote space to discussing Gromov hyperbolicity here. We refer
the interested reader to the discussion in [3, Section 3].

DEFINITION 2.1. By a rescaling of the metric if necessary, we may assume without loss of
generality that 0 < diam(Z) < 1. We fix @ > 2 and 7 > 1, and for each non-negative integer
n we set A, to be a maximal o~ "-separated subset of Z, that is, if z,w € Z with z # w,
then dz(z,w) > o™, and Z = UweAn B, (w,a™™). We can, via an inductive construction,
ensure that A, C A, for each non-negative integer n. Weset V.= ;2 A, x{n}. The set
V is the vertex set of the metric graph X to be constructed next. We do this construction
as follows. The vertex wg = (x9,0), with oy € Ap, will play the role of a root of the graph.

(1) Two vertices v1 = (z1,m1),v2 = (22,n2) € V are neighbors, denoted v; ~ vy, if
v1 # ve and either ny = ng with By, (z1,7a™™) N By, (22, 7 ™2) # (), or else
ni =ng £ 1 and By, (21, ™) N By, (22,0 "2) # (.

(2) We turn V into a metric graph X by gluing a unit-length interval to each pair of
neighboring vertices.

(3) We call a vertex vy = (z2,m2) a child of a vertex vy = (z1,n1) if v1 ~ v2 and
ny = n1 + 1; we also then say that the edge [v1,v2] is a vertical edge. If [vy,v2]
is a vertical edge, then necessarily dz(z1,22) < ™™ + a "2, and so with n =
min{ni,na}, we have that dz(z1,22) < a'™" (we use our choice of a > 2 here).

(4) If v1 ~ vy with n; = ng, then we say that the edge [v1,v9] is a horizontal edge. In
this case we have that dz(z1,22) < Tal™™.,

(5) We say that a point z € X is a descendant of a point y € X if there is a vertically
descending path from y to x.
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(6) A vertex v is said to be a common ancestor of two points x,y € X if there are two
vertically descending paths, one from v to x and the other from v to y.
(7) Also, given a vertex v = (z,n) € V, we set

I (v) = z and IIx(v) =n.

(8) If > 1+ 1/ and (z,n),(x1,n—1),(x9,n —1) € V such that (z,n) ~ (z;,n—1)
for i = 1,2, then (z1,n — 1) ~ (x2,n — 1).

(9) Thanks to the doubling property, there is a constant C' > 1, depending only on the
doubling constant related to the metric doubling property of (Z, dz) and the choice
of a, 7, such that for each positive integer n we have erAn XBy, (,ra=") <C
pointwise everywhere on Z.

(10) Suppose that -+ ~ (zp41,n4+1) ~ (Tp,n) ~ (Yn,n) ~ (Ypt+1,n+1) ~ - -+ is a path
in the graph, allowing for the possibility that z,, = y,, by a slight abuse of notation
above, we see that for each k > n, dz(zp, 1) < ¥ + a1 < al=F (we use
the choice @ > 2 here). With similar estimates holding for d(yg, yx+1), we see that
the two sequences (xf)k>n and (yi)r>n are Cauchy sequences in Z, converging to
points denoted x and y respectively. We see that then for each j > n,

a2

(o]
Z(xvxj)—za a—1
n=j
with a similar estimate holding for dz(y,y;). Suppose that z # y. With ngy, a
non-negative integer such that a™"= < dz(z,y) < o'~y and jy a non-negative
integer such that a7 < 7 —1 < a7, we have that
2027 347
a " <dg(z,y) < dz(z,2n) + dz(Tn, yn) + dz(Yn, y) < [ T2raT" <a o,
o —

It follows that

n < 3+ jo + Ngy- (2.2)

(11) Given a vertex v = (z,n) € V, there is a vertically descending geodesic ray
Wg = Vg ~ VL ~ -~ U ~ --- with vy = v for each £ > n. This is done by
choosing vy = (zy, k) for k =1,--- ,n—1such that z, € Ay with dz(z,z;) < a~F.

Note that Ay has only one point by our hypothesis that diam(Z) < 1. The vertex wy =
(z0,0) plays a distinguished role in the graph corresponding to xo € Ag. If z € A,y1 \ An,
then by the maximality of A, there is a point w, € A, such that dz(z,w,) < a~", and
so (z,n+ 1) ~ (w,,n); therefore it is easy to see that X is path-connected. While this
construction is not exactly the one considered in [11], it is in the spirit of [11] and is
the one used in [3]|. From [3, Theorem 3.4] we know that X is Gromov hyperbolic, with
hyperbolicity constant depending solely on « and 7.

Larger the choice of 7 is, the greater the number of horizontal edges. Since Z is doubling,
each vertex v € V has a uniformly bounded degree, with the upper bound on the degree
depending solely on the doubling constant associated with v and the parameters a and 7.
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Henceforth, we will fir o > 2 and 7 > 1+ é The condition on 7 ensures that the conclusion
of (8) above holds.

3. Weighted uniformization metric and three conditions

Since diam(Z) > 0, the graph X, equipped with the path metric dyx, is necessarily
unbounded. In this section we consider a family of uniformizations, each dampening the
metric dx at locations far from the root vertex wg, so that the dampened metric on X
turns X into a bounded non-complete metric space. The principal object of study in this
note is the boundary of the damped space, as it is in [11].

DEFINITION 3.1. We consider a function p : V' — R that satisfies the following condi-
tions (using the labels from [11]):

(H1) There exist 0 < n— <ny < 1 such that p: X — [n_,n4].
(H2) There is a constant Ky > 0 so that if v1, vy € V' with v1 ~ vg, and if wy ~ wy ~
-~ wp =v1; and wg = ug ~ up ~ --- ~ U, = vy are vertical edges, then

k n
m(v1) = [ plw;) < Ko [] p(uy) = Kom(va).
j=0 j=0

This also defines 7 : V' — (0,00). We extend 7 to all of X by setting 7(z) =
tm(v1) + (1 — ¢)w(v2) when z is a non-vertex point in the edge [vi,v2], and ¢
denotes the distance from x to the vertex v;.

(H3) There is a constant K7 > 0 satisfying the following condition. Whenever z,y € X
with x,y belonging to different edges of X, there are two vertically descending
paths wg = vg ~ vy ~ -+ ~ Vg, Wo = Uy ~ UL ~ -+ ~ U, With & € [vg_1, vg],
Y € [ug—1,ur]. Let vy denote the vertex in the path wy = vg ~ v1 ~ -+ ~ vy
with largest possible value of IIz(vsy) such that either vy, = ug,(y,,) Or else vgy ~
Ul (v,,)- For every path v in X with end points z and y, we must have

[ w6®)de = K ().

REMARK 3.2. Note that in Condition (H2), if we have vy = v; instead of vy ~ v1 =
(zy,n), then k = n and necessarily

dZ(Hl (wn—1)7 H?(“n—l)) < dZ(Hl (wn—1)7 xv) + ClZ(l‘v, HQ(Un—l))
<2 [a_(”_l) +a " < 4ol
It follows that if & > 2 and 7 > 2a% + 1 > 4, then w,,_1 ~ u,_1. Hence from (H2) we have

that 7(v), up to the ambiguity of the multiplicative constant Ky, is well-defined in that the
choice of the descending path used to define 7(v) is not crucial.

REMARK 3.3. If x € X, we can find paths = wg = v9 ~ v1 ~ --- in X so that
for each positive integer n we have that II;(v,) € A, with dz(z,II1(v,)) < a™™. Let
wp ~ w1 ~ --- be another such path associated with a point y € X, and let v, be the
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vertex point in the path {v;, : n = 0,1, } that is a neighbor of wry,,,,) such that Iz (vsy)
be the largest possible (i.e., the latest common ancestor). Then from (H3) above, when ~
is the concatenation of the curves from v;, to x and to y respectively via the sequences

(vn)nZHQ(vw), Vzy ~ Wiy (,,), and (wn)nZH2(ny)7 we have that
[ wt0)ar = K aen),
v

see point (10) of Definition 2.1 above.

We will use the weight 7 as the conformal density, to modify the metric on the graph
X from the path metric to the metric d,,.

In [11] a fourth condition is also required, but we will not consider that condition
until the penultimate section of this note. We postpone its definition to that section, see
Definition 6.1 below.

DEFINITION 3.4. Let d, : X x X — [0,00) be given as follows. For z,y € X, we set

dp(z,y) = inf / m(y(t)) dt,

~
where the infimum is over all paths v in X with end points x and y. We only consider
paths that are arc-length parametrized with respect to the graph metric dx.

LEMMA 3.5. Suppose that p satisfies Condition (H1). Then d, is a metric on X.
Moreover, (X,d,) is locally compact, non-complete metric space.

PROOF. Let z,y € X with x # y and « be a curve in X with end points x and y. If x and
y belong to the same edge [v1,v9] in X, then any curve « connecting = to y has to contain
a subcurve of dx-length at least dx (z,y) that lies in the subgraph obtained by adding the
edges that have either v; or vy as a vertex-endpoint. Hence, with n = max{IIz(vy), I2(ve)},
we have that

/ Ty (D) dt > 7" dy () > 0,
:

and taking the infimum over all curves v gives d,(z,y) > " dx (z,y) > 0.

Next, suppose that  and y belong to different edges. Then any curve v connecting x
to y has to have a sub-curve of positive dx-length that passes through a vertex v # x such
that v is a neighbor of one of the two vertices that make up the edge x lies in. It follows
that IIa(v) < n, + 1, with n, a positive integer that depends solely on x. Hence

/ T(y(8)) dt > 7(v)dx (z,0) > 0" dx (z,0) > 0.

Taking the infimum over all v gives d,(z,y) > "' dx(x,v) > 0. Thus, in both cases
we have that if z # y then d,(x,y) > 0. The triangle inequality and symmetry follow
immediately from the definition of d,, and so d, is a metric on X.

From the first paragraph of this proof, we know that for each vertex v, the subgraph
made up of all the edges that have v as an end-point is a compact subset of (X,d,), and
moreover, v is in the d,-interior of this subgraph. Hence (X, d,) is locally compact.
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Finally, for each non-negative integer n we set w, = (xg,n). Then wy ~ wy ~ -+ ~
Wy, ~ Wpt1 ~ -+, and as the edge [wy, w,41] is a path connecting the two vertices w,, and
Wn+1, We see that

dp('wnawn—f—l) < ni- (3.6)

As 0 < ny < 1, it follows that (wy), is a Cauchy sequence in (X, d,). This sequence does
not converge to any element in X. Therefore (X,d,) is non-complete. O

If p is the constant function p(z) = 1/, where a (together with 7) is the parameter
used in constructing the hyperbolic filling X of Z, then n(v) ~ o™ where n = Ily(v).
Therefore, from [3, Proposition 4.4] we know that 9,X =: X \ X is biLipschitz equivalent
to Z. Here, the completion X is taken with respect to the metric d,. We will not need this
information for our discussion in this note, and so we do not elaborate on this further but
refer the interested reader to [3].

In Lemma 3.5 only (H1) played a role. In the next section Conditions (H1) and (H3)
together will play a key role, but Condition (H2) will not.

4. Bi-Hdélder property

Recall from the pervious section that (X,d,) is locally compact but not complete. We
set 0,X = X \ X, where X is the completion of X with respect to d,. As X is locally
compact with respect to d, (see Lemma 3.5), it follows that X is an open subset of X.

As shown in [3, Proposition 4.1], if n— < 1/c, then there is no guarantee that 0,X
is even homeomorphic to Z; hence if n— < 1/a, then Condition (H3) becomes vital in
obtaining that d,X is homeomorphic to Z.

We now construct a natural map ® : Z — 9,X as follows.

DEFINITION 4.1. For z € Z and for each positive integer n we can find v, € V such
that with z, = II;(v,) € A, and Ia(v,) = n, with dz(z,,z) < o~ ™. Note that then
z € By, (xn,a™™) N de(xnﬂ,a*(”“)), and so v, ~ vn,11, and hence wg = vg ~ v ~

© o~ Uy o~ Upy1 ~ -+ I8 a vertically descending path in X, with 7(v,) < n’. Hence
the sequence (vy,), is a Cauchy sequence in (X,d,), for we have that d,(vn,vp41) < 217,
see (3.6). We set ®(z) to be the class of all Cauchy sequences in (X, d,) that are equivalent
to this Cauchy sequence.

To see that ® is well-defined, suppose that y, € A, for each positive integer n such
that dz(z,y,) < a™". Then (yn,n) ~ vy, because z € By, (xn,a™™) N By, (yn, ™).
As above, the sequence ((yn,n))n is also Cauchy with respect to the metric d,, but also
dp(Un, (Yn,m)) < 0l + nfrl, and so the two Cauchy sequences are equivalent with respect
to the metric d,. Thus, ® : Z — 0,X is well-defined.

THEOREM 4.2. Suppose that p satisfies Conditions (H1) and (H3). Then ® is a home-
omorphism with

C™ldz(z,y)™ < dp(@(2), D(y)) < Cdz(z,y)™ (4.3)
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for each x,y € Z, where

. log(n-) . log(n+)
" log(1/a)’ T log(1/a)
Moreover, d,(®(x), P(y)) = T(Vay).

We remind the reader that the root of X is denoted wg = (zo, 0).

PROOF. Let jo be the unique integer such that a7 < 7 —1 < al=J0,

We first aim to prove (4.3). Let z,y € Z, and choose a positive integer n,, such
that a v < dz(z,y) < a'~™v. We fix a path wg = vg ~ v; ~ --- such that for
each non-negative integer n we have that Iy (v,) € A, with dz(I11(v,),z) < o™ ™. Let
vg = wo ~ wy ~ --- be a corresponding choice of descending sequence with respect to y.
We claim that for each non-negative integer n with n < ngy, — jo — 1, either v, = w, or
vy, ~ wy. To this end, we assume that v, # w, and 1 < n < ngy — jo — 1, for otherwise
there is nothing to prove. Since dz(z,IIi(v,)) < o™ and dz(y, i (wy,)) < o™, and as
n < ngy — jo — 1, it follows that

dz(z, T (w,)) < @™ +ar ™ <o (1 +a %) < 7a™™.

It follows that z € By, (I11(vy,), a™") N By, (II; (wy,), Ta™™), and so v, ~ wy,. Next we claim
that if n is a positive integer with v, ~ wy,, then n < ngy, + (—jo)+ + 3. Indeed, we have
that

a " < d(z,y) < d(w,i(vs)) + d(y, i (wg)) + 270" <2(1+7)a™" < ol (1 +7),

with 1 +7<2<14+al 9 <a?™if jo >0, and 1 +7 < a3 if j, < 0. From this we
obtain n+(—jo)+—3 < ngy. Asn and ng, are integers, it follows that n < ngy+(—jo)++3.

We now fix a choice of sequences vy, w,, n = 0,1,--- as above corresponding to the
points z,y € Z, and let F[z,y] denote the collection of all vertices vy, for which v, ~ wy,
or v, = wy. Let vy, be the vertex in F for which Ily(vsy) = max{Ila(v) : v € Flz,y]}.
For symmetry’s sake, we also set w,, to be from the sequence corresponding to y such that
Way = Wiy (vay)-

Recall that jo is the integer such that ™ < 7—1 < o!=7. From the above argument,
we see that

Nay — |dol — 1 < Ha(vey) = Ha(way) < nay + |jo| + 1, (4.4)
and that either wgzy = vy Or Wyy ~ Vzy. The curve S given by the path --- ~ v, ~v,_1 ~
SN Ugy N Way ~ -~ Wp—1 ~ Wy ~ -+ - has ®(z) and P(y) as its end points, and so

(@200 < [nEa=atn) > [F 4 2

p =TIz (vay)

Note that for j > Ia(vgy),

S n‘i—HQ(Ua:y)’ and T’Z_HQ('Uzy) S ﬂ-(wz)

T (Vay) T (Vay

I (vi)
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Therefore

dp(®(2), B(y)) <

On the other hand, by (H3) we have that for all curves v in X that have ®(z) and ®(y) as
their endpoints (with respect to the metric d,),

/w(’y(t)) dt > Kfl T (Vay)-
¥

T (Vay).
n

It follows that
2

Kflﬂ(’Uzy) < dp(q)($)¢q)(y)) < 1—ny

T (Vay)- (4.5)
Finally, we note from (4.4) that
N < w(vgy) < el

Recall that we choose gy so that o™ < d(z,y) < a!~"v. Now the definition of 7, and
7_, together with the choice of n,, above, gives us the validity of (4.3) with constant C
depending only on 7,74, and jp (which in turn depends only on 7 and «). The last claim
of the theorem follows from (4.5).

Note that Z is compact. Therefore, to prove that ® is a homeomorphism, it now suffices
to prove surjectivity of ®. Let (wy); be a Cauchy sequence in (X, d,) that is not convergent
in (X, d,). By replacing wy, with its nearest vertex if necessary, we may assume without loss
of generality that each wy is in the vertex set V' (for this change in the sequence gives us a
Cauchy sequence that is equivalent to the original sequence). By passing to a subsequence
if necessary, we may also assume that for each positive integer k,

o dy(wg, wit1) < (Kia)™F,

. Hg(wk) < Hg(wk+1).
Indeed, if there is some positive integer ngy such that Ils(vg) < ng for each positive integer
k, then the sequence lies in the dx-ball {w € X : dx(w,wo) < no} where dy is the graph
metric on X (obtained by considering path metric with each edge in X to be of unit length).
In this case, we would have from the proof of Lemma 3.5 that d and d, are biLipschitz on
this ball and hence (wg); would be convergent to a point in this dx-ball with respect to dx
and hence with respect to d,, violating our assumption that the sequence is not convergent
in (X,d,). Thus the above two conditions can be met by choosing a subsequence.

For positive integers k we set xx = IIj(wy). Then by the compactness of Z we have
that there is some 7, € Z and a subsequence of the sequence (xy)k, also denoted (zy)g,
such that x; — =, with respect to the metric dz. For each positive integer n we choose
vp, € V such that dz(I11(vy,), oo) < @~ ™. As in the construction of ® we know that (vg)y is
a Cauchy sequence with respect to d,, and that ®(zs) = [(vn)n], (Where [(vp)n], denotes
the collection of all Cauchy sequences in (X, d,) that are equivalent to the Cauchy sequence
(Un)n). We now show that (wy)r € [(vn)n]p, for this would conclude the proof of surjectivity
of ®. Since dz(xp,xo0) — 0 as k — o0, for each positive integer n we can find k,, > n such
that dz(Zeo, Tr,) < o~ 1. Then by the choice of vy we have that dz(Il2(v,), 75,) < ™™
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Then with wu, a common ancestor of v,, and wy,, with the largest value of IIs(uy), we have
from Condition (H3) and (H1) that

II> (un)

dp(Vn, wi,) = w(un) <y — 0 as n — o0,

the last assertion above following from (4.4). It follows that (wy, ), and (vy,)y are equivalent
Cauchy sequences in (X,d,), completing the proof of surjectivity of ®. O

5. Quasisymmetry

Recall that a homeomorphism ¥ : W — Y, with (W, dy) and (Y, dy) two metric spaces,
is quasisymmetric if there is a homeomorphism 7 : (0,00) — (0, 00) with lim; g+ n(t) =0
such that for every triple of distinct points x1,z9,x3 € W we have

dy (¥(x1), ¥(x2)) dw (21, 72)
dy (W(1), U(zg)) (dw<x1,x3>> |

Given that 7 is a homeomorphism, it can be seen that U~ is also a quasisymmetry if ¥
is. In the event that W (and hence Y') is uniformly perfect, then 1 can be chosen to be a
power function; there are constants C' > 1 and 0 < © < 1 such that the following choice of
n works:

n(t) = C max{t®,t/°}.

We refer the interested reader to the discussion on quasisymmetric and quasiconformal
maps found in [14]. We will see in Lemma 6.2 in the next section that when p satisfies
Conditions (H1) through (H4), Z is necessarily uniformly perfect. We do not assume
Condition (H4) here, and so the space Z need not be uniformly perfect; however, the
quasisymmetric maps we obtain are still of the above-mentioned power function format.

In this section we will focus on quasisymmetric aspects of the map ® defined in the
previous section. Here Condition (H2) plays a vital role.

THEOREM 5.1. Suppose that p satisfies all three of the conditions (H1), (H2), and (H3).
Then the map
&: 7 — 0,X

constructed in Definition 4.1 is a quasisymmetric map.

PROOF. Let x,y, z be three distinct points in Z. Then by Theorem 4.2, and in partic-
ular, by (4.5), we have that

dp(q)(x),i)(y)) ~ W(”zy)

dp(®(2), @(2))  7(vs2)
Suppose first that IIa(vgy) > Ha(ve.). Let v be a descending path from the root vertex
wp to x, passing through v,,, and let 8 be a descending path from wg to x, passing

through v,,. Then there is a vertex w in the path v such that Ils(w) = I3 (v, ); it follows
that © € By, (TT; (vs,), o 12(0=2)) A By (M (w), @ ™2(")) and so w ~ v,,. Therefore, by
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Condition (H2) and Remark 3.2, we have that 7(v,,) &~ m(w) with comparison constant
K. Let v be the path wy = vy ~ v1 ~ -+ ~ vgy. It follows that

2 (vzy)
dp(®(z), (y)) - T (Vzy) _ 2(Vay ) < 2 () ~Ha(ves) _ =7 (ITa(v2y) T (vs2)
dp(®(z),®(2))  7(w) e

J=12(vz2)
Now by (4.4), we see that

4,(®(a) (»<(@@w»”
dp(®(2), ®(2)) ~ \dz(z,2)

< IIa(vgz). Then, reversing the roles of y and z in the above
= (wp = up ~ u; ~ ---) and wu the vertex in B such that

Now suppose that ITx(vgy)
argument gives us (with [
Ha(u) = H2(ny))a
dp(®(2), P(2)) _ m(vaz) _
dp(®(x), ®(y))  7(u)

Invoking (4.4) again, we see that

—T— (M2 (vgz) T2 (vay)) .

HZ(Uzz)
) > n{b(vzz)*HZ(Uzy) =«

puj) 2
j:HZ(U-ry)
dp(P(z), (2)) <dz($7Z)>T
dp(®(z), ©(y)) dz(z,y))
B0 0) o (dxe))"

dp(®(x), (2)) ~ \dz(x,2)
Thus @ is n-quasisymmetric with

vV

from whence we obtain

n(t) ~ max{t™ t"}.
U

Up to now we have made use of Conditions (H1), (H2), and (H3). In the next section
we introduce and use Condition (H4).

6. Ahlfors regularity

For each non-negative integer m and x € A,,, and for each positive integer n with
n > m, we set D, ((x,m)) to be the collection of all vertices (y,n) € V such that there is a
vertically descending path from the vertex (z,m) to (y,n). Observe that such a path is a
sub-path of a vertically descending path from the root vertex wg to (y,n).

DEFINITION 6.1. We say that p : V' — R satisfies Condition (H4) if there exist p > 0
and K5 > 0 such that whenever x € A,,, and n > m, we have

Ey'n((@m)P < Y w(v) < Kaw((a,m))P.
vEDy (z,m)

For the rest of this section we consider the Condition (H4) in addition to the three
conditions given in Definition 3.1.
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LEMMA 6.2. Suppose that p satisfies Conditions (H1) through (H4). Then (Z,dz) is
uniformly perfect, and for each x € A, diamg, ®((Ba,(z,a™™))) = 7((z,n)).

PrROOF. To prove uniform perfectness, it suffices to show that there is some posi-
tive integer N > 1 such that for each positive integer n and each = € A,, the annulus
By, (z,a™™) \ Ba,(z,a ") is non-empty. To this end, suppose that N > 2 is an integer
and € A, such that the annulus By, (z,a™ ")\ By, (x,a ") is empty. Then from
Condition (H4) we see that

N-—
m((xz,n))? < Kom((x,n+ N))P = Kan((z,n) H (x,n+7))P < K217+ w((x,n))P.
7=0
It follows that Kgni\[p > 1. Hence if
1 log(K>)
p log(1/n4)’
then the annulus By, (z,a™") \ Ba, (z,a ") must be non-empty. It follows that (Z,dz)
is uniformly perfect, with uniform perfectness constant Cpy = o where N satisfies the
above inequality.

The second claim now follows from the restriction on N given above as well. Indeed,
we can find 2z € By, (z,a™™) such that dz(x,z) > o " ». With v, as in Condition (H3),
we see from (4.4) that o M2(s2) ~ o ~"= ~ o~ and that the graph-distance between
the vertices v,y and (x,n) is bounded by a constant that depends only on the constants

N4+, 1n—, Ko, and K;. By (H2) and (H1) we have that 7((v,n)) = m(vz.). Now by the last
claim of Theorem 4.2 we have that

T(Vzz) = dp(®(2), P(2)) < diamg, (P(Bg, (v, a™")).

Now if we choose w € By, (z,a™") such that § diamg (®(Bg,(z,a™")) < d,(®(z), ®(w)),
then as there is a vertically descending path from the root wq, through (z,n), ending at
®(w), it follows that vy, is a descendant of (z,n); it follows that m(vsy,) < 7((x,n)), and
so by Theorem 4.2 again,

1. n
3 diamg, (®(Bg, (z,a™")) < dp(®(2), P(w)) = T(vew) < m((2,1)) = T(Ve2).
The combination of the above two inequalities yields the final claim of this lemma. O

From now on we will denote ®(z) by x as well whenever z € Z; thus we will also conflate
®(Bg, (z,a™™) with By, (x,a™™), as this will not lead to confusion.

REMARK 6.3. We fix 0 <! < L < oo. Aset E C Z is said to be an (L, [)-quasi-ball in
(Z,0) with center z € E if there is some p > 0 such that By(z,lp) C E C Bg(x, Lp). Now,
for x € A,, we set

ri=  sup  O(z,y), 1= inf 0(z,y).
yGBdZ(x,a—n) ( ) yGX\BdZ (z,a—™) ( )
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By the quasisymmetry of (Z,6) with respect to (Z,dz), we see that r < n(1)r. If 7 > r,
then we have that By, (z,a™™) = By(z,r), andsowecantakel = L =land p=7r. If 7 < r,
then we have that 7 < r < n(1)7, and so By(z,7) C Bg,(z,a™") C By(z,r) C By(z,n(1)7),
and we can then take p = 7 and [ = 1, L = max{1,7(1)}. Thus for each x € A,, we have
that Bg, (z,a™") is (1, max{1,n(1)})-quasi-ball in (Z, ) with center z.

THEOREM 6.4. Suppose that p satisfies Conditions (H1), (H2), (H3), and (H4). Then
(0,X,d,) is Ahlfors p-regular.

PRrROOF. To prove the claim we construct an Ahlfors p-regular measure on Z as a weak
limit of a sequence of measures on Z. We fix a positive integer n and set the measure pu,
on Z as follows: for each Borel set £ C Z, we set

pn(E) = Y2 ().
z€A,NE

Note that, thanks to Condition (H4), there is a relationship between p,, and p,, for n > m
given by

Ky in(Z) < pn(Z) < C Kopin(2).
Here the constant C' is the bounded overlap constant mentioned in Definition 2.1 (9). It
follows that for each positive integer n,

0 < (CK2) ' u(2) < pn(2) < Ko (Z) < oo,

and hence the sequence of measures (i), is tight on Z, and so there is a subsequence
(ttn, )r and a Radon measure pu on Z such that p,, converges weakly to p; moreover,
Ky 1 (Z2) < w(Z) < Kopr(Z). Thus p is non-trivial on Z.

Note also that for each x € Z = 9, X,

1
L=y

o0
dy(wo, x) < sup/ﬂ'(y(t)) dt < anf_ < 00.
vy n=0

We now wish to show that p is Ahlfors p-regular on Z with respect to the metric d,. Since
® is a quasisymmetric map from (Z,dz) to (Z,d,), it follows that balls in the metric dz are
quasi-balls in the metric d,, see Remark 6.3 above. Hence it suffices to verify the regularity
condition for dz-balls.

Note first that if n is a positive integer and z € A,,, then p,(Bg,(z,a™")) = w((z,n))".
Wefixece Zand 0 < r < %diamdz (Z), and choose the unique positive integer n, such
that ™™ ~! < r < o™ . Then, for integers m > n, + 3, by the definition of s, we have

pm(Bay ()= ) wl((zm)P.

2€AmNBa, (z,r)

With zp € A, 42 such that d(z, z9) < o~ ™ =2, note that necessarily zg € Bg, (z,7). More-
over, for m > n,+3, if z € A,, such that there is a vertically descending path from (zg, n,+3)
to (z,m), then d(z,2z0) < o™ 2, and so d(r,2) < a2 4+ a2 < a1 <, that
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is, z € Ay N By, (x,r). Hence II; (D, (20, nr + 3)) C Bg,(z,7), whence we obtain from
Condition (H4) that

pn(Bay ) > S w2 Ky (e + B
UeDm(207n'r+3)

Next, let us consider two points z,w € A, N By, (x,r). Then d(z,w) < a'=™. Let
Vo~ U~ e~ oy = (2,m) and vg ~ V] ~ - ~ v = (w, m) be two vertically descending
paths from the root vertex wgy to the vertices (z,m) and (w,m) respectively. Then as
m > n, + 3, we can find (2/,n, — 1) in the first path and (w’,n, — 1) in the second path.
We will show that (z/,n, — 1) ~ (w’,n, — 1). Indeed,

1
A w) < d(7,2) + d(z,w) < &
[0

2
afnr _i_alfnr S Oélfnz
—1 a—1

and hence as 7 > 2a/(a—1), we conclude that w is in both By, (w’, a'=") and By, (2, 7a!=");
that is, (2/,n, — 1) ~ (W', n, — 1). It follows that
Ay N By, (z,1) C U Dy, (a,n, —1).
(a;nr—=1)~(2',np—1)

Hence
fim (Bay (z,7)) < > m((a,ny —1))".
(a,nr—1)~(z",nr—1)
Given that Z is doubling, the number of vertices (a, n, —1) that are neighbors of (2/,n, —1)
is at most the doubling constant, and so by Condition (H1) we have that

i (Bay (2,7)) < C (2 ymy — D).

As the graph-distance between (2’,n, — 1) and (29, n, + 3) is uniformly bounded, (by the
doubling property of Z again) it follows that

fim(Bay (x,1)) S 7((20, nr +3))".
From the above arguments, we obtain that for each positive integer m > n,. + 3,
pm(Ba, (x,7)) =~ 7((20, ny + 3))P = w((z',n, — 1))P.
Now from Lemma 6.2 together with Condition (H1),
diamg, (Bg, (v, ")) = 7((20, nr + 3)),
which completes the proof. ]

7. Obtaining p from quasisymmetric change in metric

The sections prior to this, together, completes the proof of part I. of Theorem 1.1. We
now consider the converse directional claim given in part II. of Theorem 1.1. To do so,
we consider a metric 6 on Z such that (Z,dz) and (Z,0) are quasisymmetric equivalent
with quasisymmetry parametric function 7 : [0,00) — [0,00). In the prior sections we
did not have to assume that (Z,dz) is uniformly perfect (with constant Cy > 2), and
indeed, the uniform perfectness of (Z,dz) followed from Condition (H4) needed only in
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establishing that d, is Ahlfors regular. In this section, however, we seem to need uniform
perfectness of (Z,dz) a priori, and then construct a choice of function p corresponding to
the quasisymmetry. We will give this construction in Definition 7.5 below.

The standing assumptions in this section are that (Z, dz) is compact, doubling, and uni-
formly perfect, and that (Z, 0) is quasisymmetric to (Z,dz). We will also use the construc-
tion of hyperbolic filling from Section 2, with & > 2 and 7 > max{a? + 1, C{(CE — 4)71},
where Cy is the uniform perfectness constant of (Z,dz). We will soon also require av > Cg,
but this requirement is not needed in the first lemma below. We reserve the notation B(z, )
to denote balls in Z, centered at z € Z, of radius r with respect to the metric dz. Balls
with respect to the metric § will be denoted By(x,r).

LEMMA 7.1. Let z,y € A, such that (x,n) ~ (y,n). Then
diamgy(B(z,a™™)) ~ diamg(B(y,a™™))

with the constant of comparison given by 2n(1)n(2TCy).
Moreover, if x,z € Z and ng., is the positive integer with a~ "> < dz(x,z) < al~ "=,
then
diamg(B(z,a” %)) ~ 0(z, 2),

with comparison constant max{2n(1), n(Cya)}.
Finally, if x € A,, then there exists y € B(x,a”™) such that

diamg(B(z,a™™)) = 0(z,y)
with comparison constant 2n(Cyr).

PROOF. The claim in the first part of the lemma follows immediately if x = y, so we
assume without loss of generality that = # y. Then we have that ™" < dz(z,y) < 2T7a™".
Let z1 € B(z,a™ ™) and 71 € B(y,a ™) such that

diamg(B(z,a™")) < 20(z,21),  dz(71,y) 2o "/Cu.
Then by the quasisymmetry of the metric § with respect to dz, we see that
O(z1,x dz(z1,x a "
i <1 () <0 () =
Therefore, by the choice of x1, we have that
diamg(B(z,a™™)) < 2n(1) 0(y, x). (7.2)

Again by the quasisymmetry,

0(y, x 2ra™"
. 2) §n< ki
e(yl’y) « /CU

) =n(27Cu),
and so
0(y,x) < n(27Cu) 0(41,y) < n(27Cy) diamg(B(y,a™")). (7.3)
Combining (7.2) with (7.3) gives
diamg (B(z, ")) < 2n(1)n(27Cy) diamg(B(y, a™")).
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The first part of the lemma is now proved by reversing the roles of x and y in the above
argument.

To prove the second part of the lemma, note that we can find z1,77 € B(x,a ") such
that

dz(x,z1) > o "% /Cy, diamg (B(x,a”"**)) < 20(z1, ).

O(x,x1) o Mz
< =n(1
mxw>-”<amM) i
and so diamg(B(z,a™"**)) < 2n(1) (x, z). On the other hand,

al_nzz
<pl——) = .
H(x’a) =7 <Oé_nxz/CU> U(CUOK)

0(x, z)
n(Cua)

The second claim of the lemma follows.
To prove the final claim of the lemma, by the use of uniform perfectness we can
find a point y € B(x,a™) \ B(z,a™/Cy). Let * € B(z,a ") such that 0(x,z) >

diamg(B(z,a™™))/2. Then
0(x,x) a~ " B
sors) < (7 ) =

Then

It follows that

S 9($7§§I) S dlamg(B(gj’ a_”mz)).

It follows that

%diamg(B(az, a ™) <n(Cy)b(y,z) <n(Cy) diamg(B(z,a™")).

Throughout the rest of this section we also assume that

3
Cy > 2, o> C[?}, T > max {a2 +1, 220U } (7.4)
Cr —4
The first of the above conditions can always be assumed without loss of generality, and the
remaining two conditions merely give us control over the hyperbolic filling parameters «
and 7 in terms of Cyy. Note that these assumptions are independent of the quasisymmetric
metric §. We are now ready to construct the function p: V' — [0, 00) as follows.
As in [11] and in the converse statement given in Theorem 1.1, we assume that (Z,0) is
also an Ahlfors p-regular space for some p > 0, and set j to be the p-dimensional Hausdorff
measure on Z induced by the metric 0.

DEFINITION 7.5. We fix a maximal spanning tree T' C X of the graph X such that wyg
is the root of the spanning tree made up solely of vertical edges, and so that if [v, w] is an
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edge in T with w a child of v, then dz(I1;(v), I} (w)) < a2, We set p(wo) = u(2)'/?,
and for each positive integer n and x € A,, we set

_ (B, o) \ P
oo = (pra=)

where z € A,,_; such that (z,n — 1) is the parent of (z,n) in T.

While the definition of p uses the measure u associated with the metric 0, the balls
B(z,7a™™) are with respect to the metric dz. However, note that as 6 is quasisymmetric
with respect to dz, balls with respect to the metric dz are quasi-balls with respect to the
metric 0, as seen in Remark 6.3. The reason for using the balls with respect to dz is that
we do not know what the #-radius of corresponding balls should be.

In [18, (2.11)] and [18, Proof of Theorem 3.14(b)|, (see [18, (2.17)] for yet another
variant) the authors propose an alternative construction of p in the absence of Ahlfors
regularity:

3 —n
pllam)) i= SomalBLEa T

iamg(B(z,at="))
where z € A,,_1 such that (x,n) is a child of (z,n — 1) in T. However, their construction
requires the choice of parameter « involved in the hyperbolic filling to be dependent on the
quasisymmetry scaling function 7 in relation to the uniform perfectness constant Cy, and
so gives a slightly different result than that of [11]; see the comment at the top of page 33
of [18], where the uniform perfectness constant Cyr is denoted Kp, 7 is denoted by A, and
« is denoted by a.

LEMMA 7.6. The function p from Definition 7.5 satisfies Conditiions (H1) of Defini-
tion 3.1.

PROOF. Let (z,n),(z,n — 1) € V such that (z,n) ~ (z,n — 1) in the tree T. Now, if
w € B(x,7a~™), then by triangle inequality and (7.4),

T+1
«

dz(w,z) <Ta"+a "ol = ( + 1) ol < %al_".
That is, B(z,7a™") C B(z,[1 + 2Z]a!™") ¢ B(z,7a'™™). By the uniform perfectness
o y

of (Z,dz) we can find a point vy € B(z, Fa'™™)\ B(z,ﬁak"). We now show that
B(vg, Zzar™™) C B(z, 7o ™) \ Bz, 7). Indeed, if y € B(vg, Zra'™"), then by triangle
inequality we have

dz(y,z) < %ak” + %ak" <Tal™,

dz(y,2) = dz(2,v0) — dz(vo,y) > MU - O;] o 1+ L al
where we have used (7.4) again and the fact that a® > o. Hence

p(Brra™) | p(Blzral™\ Blr.ra™) _ p(Blo, Sa' )

w(B(z, Tal=m)) w(B(z, Tal=m)) - u(B(z,ral=m))
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As (Z,dyz) is quasisymmetric to (Z,0), we know that balls in the metric dz are quasi-balls
in the metric 0, see Remark 6.3 above. Hence, as in the proof of Lemma 7.1, by the Ahlfors
regularity of p with respect to theta, we have that

w(B(vo, Zal™™))
>
u(B(z, Tal =)
for some constant 0 < ¢y < 1 that depends on the quasisymmetry function n and the
Ahlfors regularity constant of u, but does not depend on vy, x, z,n. Hence we have that

pl(z,m)) < (1= co)'/7.

By the Ahlfors regularity of p, we also have that p(z,n) > ¢; > 0 with ¢; depending only
on the quasisymmetry parameter 7 and the Ahlfors regularity constant of . Thus we can
take 7 = ¢; and 7y = (1 — ¢)'/? to complete the proof. O

LEMMA 7.7. The function p satisfies Conditions (H3) and (H2).

PRrROOF. From the definition of p, for each v € V' we have that
m(v) = (B (v), a2,
Since dz-balls are quasi-balls in the metric 6 (see Remark 6.3), we have by the Ahlfors
p-regularity of p with respect to 6 that
7(v) &~ diamg(B (I} (v), a 12()Y),

Let u,w € V be two distinct vertices, and let vy, € V be as described in Condition (H3),
and let v be any curve in X with end points u,w. Denoting the vertices in v by u = ug ~
up ~ -+ ~u, = w, we have that

k—1 k—1

/ﬂ(v(t)) dt = Z diamy ( (uj),Toz_HQ(“j))) :
v 7=0 7=0
For j =0,---,k—1we have that B(II;(u;), 7a~"12(4)) intersects B(T; (uj41), ra12(t+1),

see the construction given in Definition 2.1. Hence by the triangle inequality and the second
part of Lemma 7.1, we have that

/ m(y(t)) dt > (I (u), II; (w)) ~ diamg(B(IL; (vyy ), o 12 ww)Y),
N

from which the first claim of the lemma follows.
Condition (H2) now follows from an application of the first part of Lemma 7.1. O

LEMMA 7.8. The function p satisfies Condition (H/j) given in Definition 6.1.

PROOF. Let m be a positive integer and x € A. We fix a positive integer n such that
n > m. Note that for each v € D, (z,m) we have that there is a vertically descending path
(x,m) =vg ~ vy~ -+~ Vy_p =0, and so we have that

m—-n 2

m—n
—m—j+1 —m—i _
dz(z, I (v Zdzﬂlv] 1), 1 (vy)) SZam] —I—amjga_la m

]:1 ]21
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and so we have that II; (D, (z,m)) C B(z, Aa™™), where A = 2/(a — 1). It follows from
the pairwise disjointness property of the balls B(II;(v),a™™) that

Yo wwf= ) wBL(v),a ) < p(Blz,(A+1)a ™))
vEDy (z,m) vEDy, (z,m)
< Cp(B(z,a”™))
= Cr((z,m)).
Here we have used the fact that p is Ahlfors regular and also from the construction of p,
for each z € A, we have pu(B(z,a™™)) = 7((z,m))P.

On the other hand, for each y € B(z,a™"™/2) there exists z € A, such that dz(z,y) <
a~ ™. It follows from the choice of o« > 2 that

—m —m —m

dz(2,2) < dg(e,y) +dz(y,2) < G- +a " < o4 T—<a

Therefore (2,n) € Dp(x,m). It follows that B(z,a™™/2) C Uyep, (z.m) B(II; (v),a™™),
and so we have

m((z,m))? = p(B(z,a™™)) < Cu(B(z,a™™/2)) <C Y p(B(IL(v),a™™))

VE Dy (x,m)

completing the proof. O

8. An alternative formulation of Conditions (H1)—(H4), and a query

A different perspective of the construction in [11] is to begin with a density function
w:V —[0,1] on the vertex set V such that the following four conditions are satisfied:

(H1-a) There exist n—,n+ with 0 < n— < n; < 1 such that for each v,w € V with v ~ w,
we have
w(v)

n- < /A
w(w)

(H2-a) There is a constant Ky > 0 such that whenever v,w € V with v ~ w, we have
w(v) < Kogw(w).

(H3-a) We extend w to edges v ~ w in X linearly by setting w(tv + (1 — t)w) = tw(v) +
(1 —t)w(w), where tv + (1 — t)w is the point on the edge v ~ w that is a distance
t € [0,1] away from v. There is a constant K; > 0 such that whenever v is a curve
in X connecting z,y € X, then

[oto)ds > Kiw(e,).
Y
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(H4-a) There exist p > 0 and K3 > 0 such that whenever z € A,, and n > m, we have

Gel@m)y < 3w < Kawl(w,m).
vEDy, (x,m)

It is not difficult to see that setting p(v) = % where w is any ancestor of v with
w ~ v, we have the original four conditions with 7 ~ w. Indeed, Condition (H1-a) corre-
sponds to Condition (H1) of [11], Condition (H2-a) corresponds to Condition (H2) of [11],
Condition (H3-a) corresponds to Condition (H3) of [11], and Condition (H4-a) corresponds
to Condition (H4) of [11]. This perspective allows us to see that d, is actually a conformal
change in the path-metric on the graph X. In this note we chose to use the original formula-
tion of the conditions as found in [11], see Definition 3.1 and Definition 6.1, as the purpose
of this note is to provide an analysis of [11, Theorem 1.1]. However, this perspective helps
bridge the gap between the construction proposed in [11] and the conformal changes in
metrics associated with a Harnack density w : X — (0,00). A density w is a Harnack
density if there are constants C, A > 1 such thatfor z,y € X with d(z,y) < A we have

1 w(x)
= < <
C ™ wly)
Given such a density w, we can equip the (not complete, but locally complete) metric space
(X, d) with the new metric (X,d,) given by

dy(z,y) = inf /wds,
Ty

where z,y € X and the infimum is over all rectifiable curves in X with end points x, y.
The papers [4, 5, 10, 12, 15, 16] are some of the many papers in current literature using
such transformations. Any density w that satisfies the conditions listed at the beginning of
this section is automatically a Harnack density, thanks to (H2-a).

Concluding remarks: The results of [11] link the quasisymmetric geometry of Z, the
boundary of the hyperbolic filling, to the metrics on this filling. We note here that in po-
tential theory as well there is a connection between nonlocal energy minimization problems
on the boundary of compact doublings spaces and local energy minimization problems in
the hyperbolic filling [10]; and this connection is given through the perspective of Adams
inequality, on the compactification of the hyperbolic filling, via a measure supported on the
boundary Z. In [3] it was shown that if Z is equipped with a doubling measure, then its
hyperbolic filling, modified according to the density wq(z) = a4 (@w0) vields a uniform
domain which can be equipped with a lift p,, of the measure on Z so that the corresponding
metric measure space X, := (X, d,, , fiw, ) 1s bounded, doubling and supports a 1-Poincaré
inequality, as does its metric completion (with the zero-extension of the measure p,,, to
0w, X). Moreover, the trace of the Sobolev classes on X, are certain Besov classes on Z.
This fact was exploited in [10] to study Neumann boundary value problem on X, and link
it to certain nonlocal fractional operators on Z, and one of the key motivating ideas behind
that analysis was an Adams-type inequality [1, 2, 24|, with the singular measure given by
the doubling measure on Z = 9J,,, X. Such an inequality was possible because the measure
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on Z has a co-dimensional relationship with the measure p,, on X. If X is equipped with
the metric d,, corresponding to a general density function w satisfying Conditions (H1-a)—
(H3-a) and Z is equipped with a doubling measure, then it would be interesting to know
whether it is possible to lift the measure on Z to X so that a corresponding co-dimensional
relationship between the lift and the measure on Z is valid and supports an Adams inequal-
ity, and would indicate a connection between the study done in [11] and nonlinear potential
theory as in [22]. The author recently was able to prove the validity of Poincaré inequality,
and as a consequence the Adams inequality (using [24]) under certain additional conditions
on the parameters o and 7.
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