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Abstract. In this note we deconstruct and explore the components of a theorem of
Carrasco Piaggio, which relates Ahlfors regular conformal gauge of a compact doubling
metric space to weights on Gromov-hyperbolic fillings of the metric space. We consider
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1. Introduction

Within the class of metric spaces, those that are Gromov hyperbolic possess the prop-
erties of negative curvature at large scale but are not concerned with small-scale behav-
ior; and as such, Gromov hyperbolicity is stable under biLipschitz changes in the met-
ric (unlike Alexandrov curvature conditions). First proposed as a structure useful in the
study of Cayley graphs of hyperbolic groups [13], the study of Gromov hyperbolic spaces
was subsequently found to be useful in the study of potential theory [4]. It is also con-
nected to the study of metric geometry, as there is a close connection between Gromov
hyperbolic spaces and uniform domains [5], and between rough quasiisometries between
Gromov hyperbolic spaces and quasisymmetries between their visual boundaries. It is
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this latter connection that is explored further in [11], and is based on the fact that ev-
ery compact doubling metric space is the boundary of a Gromov hyperbolic space, called
hyperbolic filling, of the space. Now there is extensive literature on various uses of hyper-
bolic filling, dating back to the seminal paper of Gromov [13, page 95], and made explicit
in [3, 6, 7, 8, 9, 11, 17, 18, 19, 20, 21, 23]; these are merely a sampling of current
literature on the topic of Gromov hyperbolicity and hyperbolic filling.

During the author’s stay at MSRI, there was an extensive discussion of the paper [11]
characterizing metrics on a compact space that are quasisymmetrically equivalent and at
least one of them an Ahlfors regular metric. The results of [11] were of great interest to
many participants at MSRI. However, the complicated system of parameters used there
made it difficult to see the underlying beautiful ideas in [11]. The goal of the current note
is to deconstruct the role of some of the parameters in used there, and to eliminate others,
thus providing a simplified expository discourse on parts of [11]. The focus is on [11,
Theorem 1.1]. The following theorem is the result of exploring the role of each of the
conditions (H1)–(H4) assumed in [11].

Theorem 1.1. Let (Z, dZ) be a compact doubling metric space. Fixing α ≥ 2, and
τ ≥ 2α2 + 1, we choose a hyperbolic filling X of Z associated with the parameters α and τ
as in Definition 2.1.

I. Suppose that ρ : X → (0, 1), and consider the function dρ on X × X associated
with ρ as in Definition 3.4.
(a) If ρ satisfies Condition (H1) of Definition 3.1, then dρ is a metric on X, with

(X, dρ) a locally compact, non-complete metric space. Let ∂ρX := X \X, with
X the completion of X with respect to the metric dρ.

(b) If ρ satisfies Conditions (H1) and (H3) of Definition 3.1, then there is a
homeomorphism Φ : Z → ∂ρX and positive constants c, C such that for every
x, y ∈ Z we have

c dZ(x, y)τ− ≤ dρ(Φ(x),Φ(y)) ≤ C dZ(x, y)τ+

with

τ− :=
log(η−)

log(1/α)
, τ+ :=

log(η+)

log(1/α)
.

(c) If ρ satisfies Conditions (H1), (H2), and (H3) of Definition 3.1, then the map
Φ is a quasisymmetry.

(d) If ρ satisfies Conditions (H1), (H2), and (H3) of Definition 3.1 and Condi-
tion (H4) of Definition 6.1, then (∂ρX, dρ) is Ahlfors p-regular.

II. Conversely, suppose that Z is CU -uniformly perfect for some CU > 2, and α > C3
U

with τ ≥ max{α2 + 1, 2C3
U (C2

U − 4)−1}. If θ is any metric on Z for which (Z, θ)
is Ahlfors p-regular and is quasisymmetric to (Z, dZ), then there exists a function
ρ : X → (0, 1) that satisfies Conditions (H1), (H2), (H3), and (H4).

Remark 1.2. Note in the above theorem that in Part I. we do not require (Z, dZ)
to be uniformly perfect; then, Conditions (H1)—(H3) do not imply uniform perfectness
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either (and indeed, the choice of ρ as the constant function ρ(x) = 1/α satisfies Condi-
tions (H1)—(H3) with the resulting quasisymmetry a biLipschitz map, see [3], claim I.(b)
of Theorem 1.1 above, or Theorem 4.2 below); however, Conditions (H1)—(H4) together
imply that (Z, dZ) must be uniformly perfect. Thus I.(a)—(c) on their own are not ex-
plicitly covered in [11], for Carrasco Piaggio [11] does explicitly require Z to be uniformly
perfect (see [11, Section 2.1]), that assumption is also implicit in the four conditions to-
gether (see Lemma 6.2 below), and conversely, if (Z, d) is quasisymmetric to (Z, θ) with
θ Ahlfors d-regular, then necessarily (Z, d) is uniformly perfect as well. Interestingly also,
in [11, page 507, (2.8)], Carrasco Piaggio requires τ ≥ 32 (there τ is denoted λ) and then
require α ≥ 6κ2 max{τ, CU} (with α denoted as a and CU denoted as KP in [11]). The
parameter κ is an additional one associated with the construction of hyperbolic filling as
given in [11]; with the simplified construction as considered in this note and in [3], we have
κ = 1. Thus, in [11] the parameter α depends on the choice of λ and CU , but in our note
τ depends on the choice of α while in Part II., both α and τ depend on CU as well.

As pointed out above, when considering only the conditions (H1)—(H3), the metric
space (Z, d) need not be uniformly perfect, but still the quasisymmetry Φ obtained in
Section 5 is necessarily a power quasisymmetry. Since there are compact doubling metric
spaces and quasisymmetries on them that are not power quasisymmetries (see for example
the discussion in [14]), it follows that not all quasisymmetries on a doubling space are
obtained using the method of Carrasco Piaggio [11].

Section 2 is devoted to describing the construction of hyperbolic filling, and the last
five sections of this note are devoted to the proof of the claims of the theorem. We choose
to use the construction of hyperbolic filling from [3] for its simplicity in relation to the one
used in [11]. While the construction in [11] (see also [21]) gives greater flexibility to the
choice of sets and vertices, it is perhaps this very flexibility that makes it difficult to see
what the effect of the conditions (H1)–(H4) are, and so we chose the simpler version given
in [3]. However, the ideas and basic premises are as in [11].

In Section 3 the conditions (H1)—(H3) are discussed and I.(a) of Theorem 1.1 is proved,
while in Section 4 the claim I.(b) of the theorem is verified. Section 5 is devoted to the proof
of I.(c) of Theorem 1.1, and the discussion in Section 6 completes the proof of the part I. of
Theorem 1.1. The focus of Section 7 is to prove part II. of Theorem 1.1. In Section 8 we list a
set of four conditions that parallel the conditions of Carrasco Piaggio [11], but couched from
the perspective of densities on a metric space that lead to conformal changes in the metric.
We end that section by posing a query regarding an Adams-type inequality [1, 2, 24],
which is known to hold in the case that the function ρ is the constant function ρ(x) = 1/α.
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2. Construction of hyperbolic filling

Recall that a metric space (Z, dZ) is metric doubling if there is a positive integer N
such that for each z ∈ Z and r > 0, if A ⊂ B(z, r) such that dZ(x, y) ≥ r/2 whenever
x, y ∈ A with x 6= y, then there are at most N number of elements in A.

In this note, (Z, dZ) is a compact metric space, such that it is a metric doubling space.
Later we will also assume that Z is uniformly perfect, that is, there is some CU > 1 such
that for each z ∈ Z and 0 < r < diam(Z)/2, the annulus BdZ (z, r) \ BdZ (z, r/CU ) is non-
empty; however, for now we do not need this assumption. We will, however, also assume
that 0 < diam(Z) < 1 without loss of generality (as we are not interested in singleton
metric spaces).

Constructions of hyperbolic fillings of compact doubling metric spaces can be found for
example in [8, 6, 7, 9, 11, 3]. The version we give here is that of [3]. The obtained graph
in this construction, when equipped with the path metric, is Gromov hyperbolic; however,
this fact is not essential for the discussion in this note, as we turn the graph into a metric
graph by adding unit interval edges to connect neighboring pairs of vertices and then use
path integrals to directly obtain a metric on the graph; hence its boundary can be realized
via a metric completion rather than as the visual boundary of a Gromov hyperbolic space.
For this reason, we do not devote space to discussing Gromov hyperbolicity here. We refer
the interested reader to the discussion in [3, Section 3].

Definition 2.1. By a rescaling of the metric if necessary, we may assume without loss of
generality that 0 < diam(Z) < 1. We fix α ≥ 2 and τ > 1, and for each non-negative integer
n we set An to be a maximal α−n-separated subset of Z, that is, if z, w ∈ Z with z 6= w,
then dZ(z, w) ≥ α−n, and Z =

⋃
w∈An BdZ (w,α−n). We can, via an inductive construction,

ensure that An ⊂ An+1 for each non-negative integer n. We set V =
⋃∞
n=0An×{n}. The set

V is the vertex set of the metric graph X to be constructed next. We do this construction
as follows. The vertex w0 = (x0, 0), with x0 ∈ A0, will play the role of a root of the graph.

(1) Two vertices v1 = (z1, n1), v2 = (z2, n2) ∈ V are neighbors, denoted v1 ∼ v2, if
v1 6= v2 and either n1 = n2 with BdZ (z1, τα

−n1) ∩ BdZ (z2, τα
−n2) 6= ∅, or else

n1 = n2 ± 1 and BdZ (z1, α
−n1) ∩BdZ (z2, α

−n2) 6= ∅.
(2) We turn V into a metric graph X by gluing a unit-length interval to each pair of

neighboring vertices.
(3) We call a vertex v2 = (z2, n2) a child of a vertex v1 = (z1, n1) if v1 ∼ v2 and

n2 = n1 + 1; we also then say that the edge [v1, v2] is a vertical edge. If [v1, v2]
is a vertical edge, then necessarily dZ(z1, z2) < α−n1 + α−n2 , and so with n =
min{n1, n2}, we have that dZ(z1, z2) < α1−n (we use our choice of α ≥ 2 here).

(4) If v1 ∼ v2 with n1 = n2, then we say that the edge [v1, v2] is a horizontal edge. In
this case we have that dZ(z1, z2) < τα1−n1 .

(5) We say that a point x ∈ X is a descendant of a point y ∈ X if there is a vertically
descending path from y to x.
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(6) A vertex v is said to be a common ancestor of two points x, y ∈ X if there are two
vertically descending paths, one from v to x and the other from v to y.

(7) Also, given a vertex v = (z, n) ∈ V , we set

Π1(v) = z and Π2(v) = n.

(8) If τ ≥ 1 + 1/α and (z, n), (x1, n− 1), (x2, n− 1) ∈ V such that (z, n) ∼ (xi, n− 1)
for i = 1, 2, then (x1, n− 1) ∼ (x2, n− 1).

(9) Thanks to the doubling property, there is a constant C ≥ 1, depending only on the
doubling constant related to the metric doubling property of (Z, dZ) and the choice
of α, τ , such that for each positive integer n we have

∑
x∈An χBdZ (x,τα−n) ≤ C

pointwise everywhere on Z.
(10) Suppose that · · · ∼ (xn+1, n+1) ∼ (xn, n) ∼ (yn, n) ∼ (yn+1, n+1) ∼ · · · is a path

in the graph, allowing for the possibility that xn = yn by a slight abuse of notation
above, we see that for each k ≥ n, dZ(xk, xk+1) ≤ α−k + α−k−1 ≤ α1−k (we use
the choice α ≥ 2 here). With similar estimates holding for d(yk, yk+1), we see that
the two sequences (xk)k≥n and (yk)k≥n are Cauchy sequences in Z, converging to
points denoted x and y respectively. We see that then for each j ≥ n,

dZ(x, xj) ≤
∞∑
n=j

α1−n =
α2−j

α− 1
,

with a similar estimate holding for dZ(y, yj). Suppose that x 6= y. With nxy a
non-negative integer such that α−nxy < dZ(x, y) ≤ α1−nxy , and j0 a non-negative
integer such that α−j0 < τ − 1 ≤ α1−j0 , we have that

α−nxy < dZ(x, y) ≤ dZ(x, xn) + dZ(xn, yn) + dZ(yn, y) ≤ 2α2−j

α− 1
+ 2τα−n ≤ α3+j0−n.

It follows that
n ≤ 3 + j0 + nxy. (2.2)

(11) Given a vertex v = (x, n) ∈ V , there is a vertically descending geodesic ray
w0 = v0 ∼ v1 ∼ · · · ∼ vk ∼ · · · with vk = v for each k ≥ n. This is done by
choosing vk = (xk, k) for k = 1, · · · , n−1 such that xk ∈ Ak with dZ(x, xk) ≤ α−k.

Note that A0 has only one point by our hypothesis that diam(Z) < 1. The vertex w0 =
(x0, 0) plays a distinguished role in the graph corresponding to x0 ∈ A0. If z ∈ An+1 \An,
then by the maximality of An there is a point wz ∈ An such that dZ(z, wz) < α−n, and
so (z, n + 1) ∼ (wz, n); therefore it is easy to see that X is path-connected. While this
construction is not exactly the one considered in [11], it is in the spirit of [11] and is
the one used in [3]. From [3, Theorem 3.4] we know that X is Gromov hyperbolic, with
hyperbolicity constant depending solely on α and τ .

Larger the choice of τ is, the greater the number of horizontal edges. Since Z is doubling,
each vertex v ∈ V has a uniformly bounded degree, with the upper bound on the degree
depending solely on the doubling constant associated with ν and the parameters α and τ .
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Henceforth, we will fix α ≥ 2 and τ ≥ 1+ 1
α . The condition on τ ensures that the conclusion

of (8) above holds.

3. Weighted uniformization metric and three conditions

Since diam(Z) > 0, the graph X, equipped with the path metric dX , is necessarily
unbounded. In this section we consider a family of uniformizations, each dampening the
metric dX at locations far from the root vertex w0, so that the dampened metric on X
turns X into a bounded non-complete metric space. The principal object of study in this
note is the boundary of the damped space, as it is in [11].

Definition 3.1. We consider a function ρ : V → R that satisfies the following condi-
tions (using the labels from [11]):

(H1) There exist 0 < η− ≤ η+ < 1 such that ρ : X → [η−, η+].
(H2) There is a constant K0 > 0 so that if v1, v2 ∈ V with v1 ∼ v2, and if w0 ∼ w1 ∼

· · · ∼ wk = v1 and w0 = u0 ∼ u1 ∼ · · · ∼ un = v2 are vertical edges, then

π(v1) :=
k∏
j=0

ρ(wj) ≤ K0

n∏
j=0

ρ(uj) =: K0 π(v2).

This also defines π : V → (0,∞). We extend π to all of X by setting π(x) =
tπ(v1) + (1 − t)π(v2) when x is a non-vertex point in the edge [v1, v2], and t
denotes the distance from x to the vertex v1.

(H3) There is a constant K1 > 0 satisfying the following condition. Whenever x, y ∈ X
with x, y belonging to different edges of X, there are two vertically descending
paths w0 = v0 ∼ v1 ∼ · · · ∼ vk, w0 = u0 ∼ u1 ∼ · · · ∼ un with x ∈ [vk−1, vk],
y ∈ [uk−1, uk]. Let vxy denote the vertex in the path w0 = v0 ∼ v1 ∼ · · · ∼ vk
with largest possible value of Π2(vxy) such that either vxy = uΠ2(vxy) or else vxy ∼
uΠ2(vxy). For every path γ in X with end points x and y, we must haveˆ

γ
π(γ(t)) dt ≥ K−1

1 π(vxy).

Remark 3.2. Note that in Condition (H2), if we have v2 = v1 instead of v2 ∼ v1 =
(xv, n), then k = n and necessarily

dZ(Π1(wn−1),Π2(un−1)) ≤ dZ(Π1(wn−1), xv) + dZ(xv,Π2(un−1))

≤ 2
[
α−(n−1) + α−n

]
≤ 4α1−n.

It follows that if α ≥ 2 and τ ≥ 2α2 + 1 > 4, then wn−1 ∼ un−1. Hence from (H2) we have
that π(v), up to the ambiguity of the multiplicative constant K0, is well-defined in that the
choice of the descending path used to define π(v) is not crucial.

Remark 3.3. If x ∈ X, we can find paths = w0 = v0 ∼ v1 ∼ · · · in X so that
for each positive integer n we have that Π1(vn) ∈ An with dZ(x,Π1(vn)) < α−n. Let
w0 ∼ w1 ∼ · · · be another such path associated with a point y ∈ X, and let vxy be the
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vertex point in the path {vn : n = 0, 1, · · · } that is a neighbor of wΠ2(vxy) such that Π2(vxy)
be the largest possible (i.e., the latest common ancestor). Then from (H3) above, when γ
is the concatenation of the curves from vxy to x and to y respectively via the sequences
(vn)n≥Π2(vxy), vxy ∼ wΠ2(vxy), and (wn)n≥Π2(vxy), we have thatˆ

γ
π(γ(t)) dt ≥ K−1

1 π(vxy),

see point (10) of Definition 2.1 above.

We will use the weight π as the conformal density, to modify the metric on the graph
X from the path metric to the metric dρ.

In [11] a fourth condition is also required, but we will not consider that condition
until the penultimate section of this note. We postpone its definition to that section, see
Definition 6.1 below.

Definition 3.4. Let dρ : X ×X → [0,∞) be given as follows. For x, y ∈ X, we set

dρ(x, y) = inf
γ

ˆ
γ
π(γ(t)) dt,

where the infimum is over all paths γ in X with end points x and y. We only consider
paths that are arc-length parametrized with respect to the graph metric dX .

Lemma 3.5. Suppose that ρ satisfies Condition (H1). Then dρ is a metric on X.
Moreover, (X, dρ) is locally compact, non-complete metric space.

Proof. Let x, y ∈ X with x 6= y and γ be a curve inX with end points x and y. If x and
y belong to the same edge [v1, v2] in X, then any curve γ connecting x to y has to contain
a subcurve of dX -length at least dX(x, y) that lies in the subgraph obtained by adding the
edges that have either v1 or v2 as a vertex-endpoint. Hence, with n = max{Π2(v1),Π2(v2)},
we have that ˆ

γ
π(γ(t)) dt ≥ ηn+1

− dX(x, y) > 0,

and taking the infimum over all curves γ gives dρ(x, y) ≥ ηn+1
− dX(x, y) > 0.

Next, suppose that x and y belong to different edges. Then any curve γ connecting x
to y has to have a sub-curve of positive dX -length that passes through a vertex v 6= x such
that v is a neighbor of one of the two vertices that make up the edge x lies in. It follows
that Π2(v) ≤ nx + 1, with nx a positive integer that depends solely on x. Henceˆ

γ
π(γ(t)) dt ≥ π(v)dX(x, v) ≥ ηnx+1

− dX(x, v) > 0.

Taking the infimum over all γ gives dρ(x, y) ≥ ηnx+1
− dX(x, v) > 0. Thus, in both cases

we have that if x 6= y then dρ(x, y) > 0. The triangle inequality and symmetry follow
immediately from the definition of dρ, and so dρ is a metric on X.

From the first paragraph of this proof, we know that for each vertex v, the subgraph
made up of all the edges that have v as an end-point is a compact subset of (X, dρ), and
moreover, v is in the dρ-interior of this subgraph. Hence (X, dρ) is locally compact.
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Finally, for each non-negative integer n we set wn = (x0, n). Then w0 ∼ w1 ∼ · · · ∼
wn ∼ wn+1 ∼ · · · , and as the edge [wn, wn+1] is a path connecting the two vertices wn and
wn+1, we see that

dρ(wn, wn+1) ≤ ηn+. (3.6)

As 0 < η+ < 1, it follows that (wn)n is a Cauchy sequence in (X, dρ). This sequence does
not converge to any element in X. Therefore (X, dρ) is non-complete. �

If ρ is the constant function ρ(x) = 1/α, where α (together with τ) is the parameter
used in constructing the hyperbolic filling X of Z, then π(v) ≈ α−n where n = Π2(v).
Therefore, from [3, Proposition 4.4] we know that ∂ρX =: X \X is biLipschitz equivalent
to Z. Here, the completion X is taken with respect to the metric dρ. We will not need this
information for our discussion in this note, and so we do not elaborate on this further but
refer the interested reader to [3].

In Lemma 3.5 only (H1) played a role. In the next section Conditions (H1) and (H3)
together will play a key role, but Condition (H2) will not.

4. Bi-Hölder property

Recall from the pervious section that (X, dρ) is locally compact but not complete. We
set ∂ρX := X \ X, where X is the completion of X with respect to dρ. As X is locally
compact with respect to dρ (see Lemma 3.5), it follows that X is an open subset of X.

As shown in [3, Proposition 4.1], if η− < 1/α, then there is no guarantee that ∂ρX
is even homeomorphic to Z; hence if η− < 1/α, then Condition (H3) becomes vital in
obtaining that ∂ρX is homeomorphic to Z.

We now construct a natural map Φ : Z → ∂ρX as follows.

Definition 4.1. For z ∈ Z and for each positive integer n we can find vn ∈ V such
that with xn = Π1(vn) ∈ An and Π2(vn) = n, with dZ(xn, z) < α−n. Note that then
z ∈ BdZ (xn, α

−n) ∩ BdZ (xn+1, α
−(n+1)), and so vn ∼ vn+1, and hence w0 = v0 ∼ v1 ∼

· · · ∼ vn ∼ vn+1 ∼ · · · is a vertically descending path in X, with π(vn) ≤ ηn+. Hence
the sequence (vn)n is a Cauchy sequence in (X, dρ), for we have that dρ(vn, vn+1) ≤ 2ηn+,
see (3.6). We set Φ(x) to be the class of all Cauchy sequences in (X, dρ) that are equivalent
to this Cauchy sequence.

To see that Φ is well-defined, suppose that yn ∈ An for each positive integer n such
that dZ(x, yn) < α−n. Then (yn, n) ∼ vn, because z ∈ BdZ (xn, α

−n) ∩ BdZ (yn, α
−n).

As above, the sequence ((yn, n))n is also Cauchy with respect to the metric dρ, but also
dρ(vn, (yn, n)) ≤ ηn+ + ηn+1

+ , and so the two Cauchy sequences are equivalent with respect
to the metric dρ. Thus, Φ : Z → ∂ρX is well-defined.

Theorem 4.2. Suppose that ρ satisfies Conditions (H1) and (H3). Then Φ is a home-
omorphism with

C−1 dZ(x, y)τ− ≤ dρ(Φ(x),Φ(y)) ≤ C dZ(x, y)τ+ (4.3)
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for each x, y ∈ Z, where

τ− :=
log(η−)

log(1/α)
, τ+ :=

log(η+)

log(1/α)
.

Moreover, dρ(Φ(x),Φ(y)) ≈ π(vxy).

We remind the reader that the root of X is denoted w0 = (x0, 0).

Proof. Let j0 be the unique integer such that α−j0 < τ − 1 ≤ α1−j0 .
We first aim to prove (4.3). Let x, y ∈ Z, and choose a positive integer nxy such

that α−nxy < dZ(x, y) ≤ α1−nxy . We fix a path w0 = v0 ∼ v1 ∼ · · · such that for
each non-negative integer n we have that Π1(vn) ∈ An with dZ(Π1(vn), x) ≤ α−n. Let
v0 = w0 ∼ w1 ∼ · · · be a corresponding choice of descending sequence with respect to y.
We claim that for each non-negative integer n with n ≤ nxy − j0 − 1, either vn = wn or
vn ∼ wn. To this end, we assume that vn 6= wn and 1 ≤ n ≤ nxy − j0 − 1, for otherwise
there is nothing to prove. Since dZ(x,Π1(vn)) ≤ α−n and dZ(y,Π1(wn)) ≤ α−n, and as
n ≤ nxy − j0 − 1, it follows that

dZ(x,Π1(wn)) ≤ α−n + α1−nxy ≤ α−n(1 + α−j0) < τα−n.

It follows that x ∈ BdZ (Π1(vn), α−n)∩BdZ (Π1(wn), τα−n), and so vn ∼ wn. Next we claim
that if n is a positive integer with vn ∼ wn, then n ≤ nxy + (−j0)+ + 3. Indeed, we have
that

α−nxy < d(x, y) ≤ d(x,Π1(vn)) + d(y,Π1(wn)) + 2τα−n ≤ 2(1 + τ)α−n ≤ α1−n(1 + τ),

with 1 + τ ≤ 2 ≤ 1 + α1−j0 ≤ α3−n if j0 ≥ 0, and 1 + τ ≤ α3−n−j0 if j0 < 0. From this we
obtain n+(−j0)+−3 < nxy. As n and nxy are integers, it follows that n ≤ nxy+(−j0)+ +3.

We now fix a choice of sequences vn, wn, n = 0, 1, · · · as above corresponding to the
points x, y ∈ Z, and let F [x, y] denote the collection of all vertices vn for which vn ∼ wn
or vn = wn. Let vxy be the vertex in F for which Π2(vxy) = max{Π2(v) : v ∈ F [x, y]}.
For symmetry’s sake, we also set wxy to be from the sequence corresponding to y such that
wxy = wΠ2(vxy).

Recall that j0 is the integer such that α−j0 < τ −1 ≤ α1−j0 . From the above argument,
we see that

nxy − |j0| − 1 ≤ Π2(vxy) = Π2(wxy) ≤ nxy + |j0|+ 1, (4.4)
and that either wxy = vxy or wxy ∼ vxy. The curve β given by the path · · · ∼ vn ∼ vn−1 ∼
· · · ∼ vxy ∼ wxy ∼ · · · ∼ wn−1 ∼ wn ∼ · · · has Φ(x) and Φ(y) as its end points, and so

dρ(Φ(x),Φ(y)) ≤
ˆ
β
π(β(t)) dt = π(vxy)

∞∑
j=Π2(vxy)

[
π(vi)

π(vxy)
+

π(wi)

π(wxy)

]
.

Note that for j ≥ Π2(vxy),

η
j−Π2(vxy)
− ≤ π(vi)

π(vxy)
≤ ηj−Π2(vxy)

+ , and η
j−Π2(vxy)
− ≤ π(wi)

π(vxy)
≤ ηj−Π2(vxy)

+ .
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Therefore

dρ(Φ(x),Φ(y)) ≤ 2

1− η+
π(vxy).

On the other hand, by (H3) we have that for all curves γ in X that have Φ(x) and Φ(y) as
their endpoints (with respect to the metric dρ),ˆ

γ
π(γ(t)) dt ≥ K−1

1 π(vxy).

It follows that

K−1
1 π(vxy) ≤ dρ(Φ(x),Φ(y)) ≤ 2

1− η+
π(vxy). (4.5)

Finally, we note from (4.4) that

η
nxy
− ≤ π(vxy) ≤ η

nxy−1−|j0|
+ .

Recall that we choose nxy so that α−nxy < d(x, y) ≤ α1−nxy . Now the definition of τ+ and
τ−, together with the choice of nxy above, gives us the validity of (4.3) with constant C
depending only on η−, η+, and j0 (which in turn depends only on τ and α). The last claim
of the theorem follows from (4.5).

Note that Z is compact. Therefore, to prove that Φ is a homeomorphism, it now suffices
to prove surjectivity of Φ. Let (wk)k be a Cauchy sequence in (X, dρ) that is not convergent
in (X, dρ). By replacing wk with its nearest vertex if necessary, we may assume without loss
of generality that each wk is in the vertex set V (for this change in the sequence gives us a
Cauchy sequence that is equivalent to the original sequence). By passing to a subsequence
if necessary, we may also assume that for each positive integer k,

• dρ(wk, wk+1) < (K2
1α)−k,

• Π2(wk) < Π2(wk+1).
Indeed, if there is some positive integer n0 such that Π2(vk) ≤ n0 for each positive integer
k, then the sequence lies in the dX -ball {w ∈ X : dX(w,w0) ≤ n0} where dX is the graph
metric on X (obtained by considering path metric with each edge in X to be of unit length).
In this case, we would have from the proof of Lemma 3.5 that d and dρ are biLipschitz on
this ball and hence (wk)k would be convergent to a point in this dX -ball with respect to dX
and hence with respect to dρ, violating our assumption that the sequence is not convergent
in (X, dρ). Thus the above two conditions can be met by choosing a subsequence.

For positive integers k we set xk = Π1(wk). Then by the compactness of Z we have
that there is some x∞ ∈ Z and a subsequence of the sequence (xk)k, also denoted (xk)k,
such that xk → x∞ with respect to the metric dZ . For each positive integer n we choose
vn ∈ V such that dZ(Π1(vn), x∞) < α−n. As in the construction of Φ we know that (vk)k is
a Cauchy sequence with respect to dρ, and that Φ(x∞) = [(vn)n]ρ (where [(vn)n]ρ denotes
the collection of all Cauchy sequences in (X, dρ) that are equivalent to the Cauchy sequence
(vn)n). We now show that (wk)k ∈ [(vn)n]ρ, for this would conclude the proof of surjectivity
of Φ. Since dZ(xk, x∞)→ 0 as k →∞, for each positive integer n we can find kn > n such
that dZ(x∞, xkn) < α−n−1. Then by the choice of vk we have that dZ(Π2(vn), xkn) < α1−n.
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Then with un a common ancestor of vn and wkn with the largest value of Π2(un), we have
from Condition (H3) and (H1) that

dρ(vn, wkn) ≈ π(un) ≤ ηΠ2(un)
+ → 0 as n→∞,

the last assertion above following from (4.4). It follows that (wkn)n and (vn)n are equivalent
Cauchy sequences in (X, dρ), completing the proof of surjectivity of Φ. �

5. Quasisymmetry

Recall that a homeomorphism Ψ : W → Y , with (W,dW ) and (Y, dY ) two metric spaces,
is quasisymmetric if there is a homeomorphism η : (0,∞) → (0,∞) with limt→0+ η(t) = 0
such that for every triple of distinct points x1, x2, x3 ∈W we have

dY (Ψ(x1),Ψ(x2))

dY (Ψ(x1),Ψ(x3))
≤ η

(
dW (x1, x2)

dW (x1, x3)

)
.

Given that η is a homeomorphism, it can be seen that Ψ−1 is also a quasisymmetry if Ψ
is. In the event that W (and hence Y ) is uniformly perfect, then η can be chosen to be a
power function; there are constants C ≥ 1 and 0 < Θ ≤ 1 such that the following choice of
η works:

η(t) = C max{tΘ, t1/Θ}.
We refer the interested reader to the discussion on quasisymmetric and quasiconformal
maps found in [14]. We will see in Lemma 6.2 in the next section that when ρ satisfies
Conditions (H1) through (H4), Z is necessarily uniformly perfect. We do not assume
Condition (H4) here, and so the space Z need not be uniformly perfect; however, the
quasisymmetric maps we obtain are still of the above-mentioned power function format.

In this section we will focus on quasisymmetric aspects of the map Φ defined in the
previous section. Here Condition (H2) plays a vital role.

Theorem 5.1. Suppose that ρ satisfies all three of the conditions (H1), (H2), and (H3).
Then the map

Φ: Z → ∂ρX

constructed in Definition 4.1 is a quasisymmetric map.

Proof. Let x, y, z be three distinct points in Z. Then by Theorem 4.2, and in partic-
ular, by (4.5), we have that

dρ(Φ(x),Φ(y))

dρ(Φ(x),Φ(z))
≈ π(vxy)

π(vxz)
.

Suppose first that Π2(vxy) ≥ Π2(vxz). Let γ be a descending path from the root vertex
w0 to x, passing through vxy, and let β be a descending path from w0 to x, passing
through vxz. Then there is a vertex w in the path γ such that Π2(w) = Π2(vxz); it follows
that x ∈ BdZ (Π1(vxz), α

−Π2(vx,z)) ∩ BdZ (Π1(w), α−Π2(w)), and so w ∼ vxz. Therefore, by
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Condition (H2) and Remark 3.2, we have that π(vxz) ≈ π(w) with comparison constant
K0. Let γ be the path w0 = v0 ∼ v1 ∼ · · · ∼ vxy. It follows that

dρ(Φ(x),Φ(y))

dρ(Φ(x),Φ(z))
≈ π(vxy)

π(w)
=

Π2(vxy)∏
j=Π2(vxz)

ρ(wj) ≤ η
Π2(vxy)−Π2(vxz)
+ = α−τ+(Π2(vxy)−Π2(vxz)).

Now by (4.4), we see that
dρ(Φ(x),Φ(y))

dρ(Φ(x),Φ(z))
.

(
dZ(x, y)

dZ(x, z)

)τ+
.

Now suppose that Π2(vxy) ≤ Π2(vxz). Then, reversing the roles of y and z in the above
argument gives us (with β = (w0 = u0 ∼ u1 ∼ · · · ) and u the vertex in β such that
Π2(u) = Π2(vxy)),

dρ(Φ(x),Φ(z))

dρ(Φ(x),Φ(y))
≈ π(vxz)

π(u)
=

Π2(vxz)∏
j=Π2(vxy)

ρ(uj) & η
Π2(vxz)−Π2(vxy)
− = α−τ−(Π2(vxz)−Π2(vxy)).

Invoking (4.4) again, we see that
dρ(Φ(x),Φ(z))

dρ(Φ(x),Φ(y))
&

(
dZ(x, z)

dZ(x, y)

)τ−
,

from whence we obtain
dρ(Φ(x),Φ(y))

dρ(Φ(x),Φ(z))
.

(
dZ(x, y)

dZ(x, z)

)τ−
.

Thus Φ is η-quasisymmetric with

η(t) ≈ max{tτ+ , tτ−}.
�

Up to now we have made use of Conditions (H1), (H2), and (H3). In the next section
we introduce and use Condition (H4).

6. Ahlfors regularity

For each non-negative integer m and x ∈ Am, and for each positive integer n with
n > m, we set Dn((x,m)) to be the collection of all vertices (y, n) ∈ V such that there is a
vertically descending path from the vertex (x,m) to (y, n). Observe that such a path is a
sub-path of a vertically descending path from the root vertex w0 to (y, n).

Definition 6.1. We say that ρ : V → R satisfies Condition (H4) if there exist p > 0
and K2 > 0 such that whenever x ∈ Am and n > m, we have

K−1
2 π((x,m))p ≤

∑
v∈Dn(x,m)

π(v)p ≤ K2 π((x,m))p.

For the rest of this section we consider the Condition (H4) in addition to the three
conditions given in Definition 3.1.
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Lemma 6.2. Suppose that ρ satisfies Conditions (H1) through (H4). Then (Z, dZ) is
uniformly perfect, and for each x ∈ An, diamdρ Φ((BdZ (x, α−n))) ≈ π((x, n)).

Proof. To prove uniform perfectness, it suffices to show that there is some posi-
tive integer N > 1 such that for each positive integer n and each x ∈ An, the annulus
BdZ (x, α−n) \BdZ (x, α−n−N ) is non-empty. To this end, suppose that N > 2 is an integer
and x ∈ An such that the annulus BdZ (x, α−n) \ BdZ (x, α−n−N ) is empty. Then from
Condition (H4) we see that

π((x, n))p ≤ K2π((x, n+N))p = K2π((x, n))p
N−1∏
j=0

ρ((x, n+ j))p ≤ K2η
Np
+ π((x, n))p.

It follows that K2η
Np
+ ≥ 1. Hence if

N >
1

p

log(K2)

log(1/η+)
,

then the annulus BdZ (x, α−n) \BdZ (x, α−n−N ) must be non-empty. It follows that (Z, dZ)
is uniformly perfect, with uniform perfectness constant CU = αN where N satisfies the
above inequality.

The second claim now follows from the restriction on N given above as well. Indeed,
we can find z ∈ BdZ (x, α−n) such that dZ(x, z) ≥ α−n−N . With vxz as in Condition (H3),
we see from (4.4) that α−Π2(vxz) ≈ α−nxz ≈ α−n and that the graph-distance between
the vertices vxy and (x, n) is bounded by a constant that depends only on the constants
η+, η−,K0, and K1. By (H2) and (H1) we have that π((v, n)) ≈ π(vxz). Now by the last
claim of Theorem 4.2 we have that

π(vxz) ≈ dρ(Φ(x),Φ(z)) ≤ diamdρ(Φ(BdZ (x, α−n)).

Now if we choose w ∈ BdZ (x, α−n) such that 1
2 diamdρ(Φ(BdZ (x, α−n)) ≤ dρ(Φ(x),Φ(w)),

then as there is a vertically descending path from the root w0, through (x, n), ending at
Φ(w), it follows that vxw is a descendant of (x, n); it follows that π(vxw) ≤ π((x, n)), and
so by Theorem 4.2 again,

1

2
diamdρ(Φ(BdZ (x, α−n)) ≤ dρ(Φ(x),Φ(w)) ≈ π(vxw) ≤ π((x, n)) ≈ π(vxz).

The combination of the above two inequalities yields the final claim of this lemma. �

From now on we will denote Φ(x) by x as well whenever x ∈ Z; thus we will also conflate
Φ(BdZ (x, α−n) with BdZ (x, α−n), as this will not lead to confusion.

Remark 6.3. We fix 0 < l ≤ L <∞. A set E ⊂ Z is said to be an (L, l)-quasi-ball in
(Z, θ) with center x ∈ E if there is some ρ > 0 such that Bθ(x, lρ) ⊂ E ⊂ Bθ(x, Lρ). Now,
for x ∈ An, we set

r := sup
y∈BdZ (x,α−n)

θ(x, y), τ := inf
y∈X\BdZ (x,α−n)

θ(x, y).
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By the quasisymmetry of (Z, θ) with respect to (Z, dZ), we see that r ≤ η(1) τ . If τ ≥ r,
then we have that BdZ (x, α−n) = Bθ(x, r), and so we can take l = L = 1 and ρ = r. If τ < r,
then we have that τ < r ≤ η(1)τ , and so Bθ(x, τ) ⊂ BdZ (x, α−n) ⊂ Bθ(x, r) ⊂ Bθ(x, η(1)τ),
and we can then take ρ = τ and l = 1, L = max{1, η(1)}. Thus for each x ∈ An we have
that BdZ (x, α−n) is (1,max{1, η(1)})-quasi-ball in (Z, θ) with center x.

Theorem 6.4. Suppose that ρ satisfies Conditions (H1), (H2), (H3), and (H4). Then
(∂ρX, dρ) is Ahlfors p-regular.

Proof. To prove the claim we construct an Ahlfors p-regular measure on Z as a weak
limit of a sequence of measures on Z. We fix a positive integer n and set the measure µn
on Z as follows: for each Borel set E ⊂ Z, we set

µn(E) :=
∑

x∈An∩E
π((x, n))p.

Note that, thanks to Condition (H4), there is a relationship between µn and µm for n > m
given by

K−1
2 µn(Z) ≤ µm(Z) ≤ C K2µn(Z).

Here the constant C is the bounded overlap constant mentioned in Definition 2.1 (9). It
follows that for each positive integer n,

0 < (CK2)−1µ1(Z) ≤ µn(Z) ≤ K2µ1(Z) <∞,

and hence the sequence of measures (µn)n is tight on Z, and so there is a subsequence
(µnk)k and a Radon measure µ on Z such that µnk converges weakly to µ; moreover,
K−1

2 µ1(Z) ≤ µ(Z) ≤ K2µ1(Z). Thus µ is non-trivial on Z.
Note also that for each x ∈ Z = ∂ρX,

dρ(w0, x) ≤ sup
γ

ˆ
γ
π(γ(t)) dt ≤

∞∑
n=0

ηn+ =
1

1− η+
<∞.

We now wish to show that µ is Ahlfors p-regular on Z with respect to the metric dρ. Since
Φ is a quasisymmetric map from (Z, dZ) to (Z, dρ), it follows that balls in the metric dZ are
quasi-balls in the metric dρ, see Remark 6.3 above. Hence it suffices to verify the regularity
condition for dZ-balls.

Note first that if n is a positive integer and z ∈ An, then µn(BdZ (z, α−n)) = π((z, n))p.
We fix x ∈ Z and 0 < r < 1

2 diamdZ (Z), and choose the unique positive integer nr such
that α−nr−1 < r ≤ α−nr . Then, for integers m > nr + 3, by the definition of µm we have

µm(BdZ (x, r)) =
∑

z∈Am∩BdZ (x,r)

π((z,m))p.

With z0 ∈ Anr+2 such that d(x, z0) < α−nr−2, note that necessarily z0 ∈ BdZ (x, r). More-
over, form ≥ nr+3, if z ∈ Am such that there is a vertically descending path from (z0, nr+3)
to (z,m), then d(z, z0) < α−nr−2, and so d(x, z) < α−nr−2 + α−nr−2 < α−nr−1 ≤ r, that
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is, z ∈ Am ∩ BdZ (x, r). Hence Π1(Dm(z0, nr + 3)) ⊂ BdZ (x, r), whence we obtain from
Condition (H4) that

µm(BdZ (x, r)) ≥
∑

v∈Dm(z0,nr+3)

π(v)p ≥ K−1
2 π(z0, nr + 3)p.

Next, let us consider two points z, w ∈ Am ∩ BdZ (x, r). Then d(z, w) < α1−nr . Let
v0 ∼ v1 ∼ · · · ∼ vm = (z,m) and v0 ∼ v′1 ∼ · · · ∼ v′m = (w,m) be two vertically descending
paths from the root vertex w0 to the vertices (z,m) and (w,m) respectively. Then as
m ≥ nr + 3, we can find (z′, nr − 1) in the first path and (w′, nr − 1) in the second path.
We will show that (z′, nr − 1) ∼ (w′, nr − 1). Indeed,

d(z′, w) ≤ d(z′, z) + d(z, w) <
α+ 1

α− 1
α−nr + α1−nr ≤ 2α

α− 1
α1−nr ,

and hence as τ ≥ 2α/(α−1), we conclude that w is in bothBdZ (w′, α1−nr) andBdZ (z′, τα1−nr);
that is, (z′, nr − 1) ∼ (w′, nr − 1). It follows that

Am ∩BdZ (x, r) ⊂
⋃

(a,nr−1)∼(z′,nr−1)

Dm(a, nr − 1).

Hence
µm(BdZ (x, r)) ≤

∑
(a,nr−1)∼(z′,nr−1)

π((a, nr − 1))p.

Given that Z is doubling, the number of vertices (a, nr−1) that are neighbors of (z′, nr−1)
is at most the doubling constant, and so by Condition (H1) we have that

µm(BdZ (x, r)) ≤ C π((z′, nr − 1))p.

As the graph-distance between (z′, nr − 1) and (z0, nr + 3) is uniformly bounded, (by the
doubling property of Z again) it follows that

µm(BdZ (x, r)) . π((z0, nr + 3))p.

From the above arguments, we obtain that for each positive integer m ≥ nr + 3,

µm(BdZ (x, r)) ≈ π((z0, nr + 3))p ≈ π((z′, nr − 1))p.

Now from Lemma 6.2 together with Condition (H1),

diamdρ(BdZ (x, α−nr)) ≈ π((z0, nr + 3)),

which completes the proof. �

7. Obtaining ρ from quasisymmetric change in metric

The sections prior to this, together, completes the proof of part I. of Theorem 1.1. We
now consider the converse directional claim given in part II. of Theorem 1.1. To do so,
we consider a metric θ on Z such that (Z, dZ) and (Z, θ) are quasisymmetric equivalent
with quasisymmetry parametric function η : [0,∞) → [0,∞). In the prior sections we
did not have to assume that (Z, dZ) is uniformly perfect (with constant CU ≥ 2), and
indeed, the uniform perfectness of (Z, dZ) followed from Condition (H4) needed only in
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establishing that dρ is Ahlfors regular. In this section, however, we seem to need uniform
perfectness of (Z, dZ) a priori, and then construct a choice of function ρ corresponding to
the quasisymmetry. We will give this construction in Definition 7.5 below.

The standing assumptions in this section are that (Z, dZ) is compact, doubling, and uni-
formly perfect, and that (Z, θ) is quasisymmetric to (Z, dZ). We will also use the construc-
tion of hyperbolic filling from Section 2, with α ≥ 2 and τ ≥ max{α2 + 1, C3

U (C2
U − 4)−1},

where CU is the uniform perfectness constant of (Z, dZ). We will soon also require α > C3
U ,

but this requirement is not needed in the first lemma below. We reserve the notation B(x, r)
to denote balls in Z, centered at z ∈ Z, of radius r with respect to the metric dZ . Balls
with respect to the metric θ will be denoted Bθ(x, r).

Lemma 7.1. Let x, y ∈ An such that (x, n) ∼ (y, n). Then

diamθ(B(x, α−n)) ≈ diamθ(B(y, α−n))

with the constant of comparison given by 2η(1)η(2τCU ).
Moreover, if x, z ∈ Z and nxz is the positive integer with α−nxz < dZ(x, z) ≤ α1−nxz ,

then
diamθ(B(x, α−nxz)) ≈ θ(x, z),

with comparison constant max{2η(1), η(CUα)}.
Finally, if x ∈ An, then there exists y ∈ B(x, α−n) such that

diamθ(B(x, α−n)) ≈ θ(x, y)

with comparison constant 2η(CU ).

Proof. The claim in the first part of the lemma follows immediately if x = y, so we
assume without loss of generality that x 6= y. Then we have that α−n ≤ dZ(x, y) ≤ 2τα−n.

Let x1 ∈ B(x, α−n) and ŷ1 ∈ B(y, α−n) such that

diamθ(B(x, α−n)) ≤ 2 θ(x, x1), dZ(ŷ1, y) ≥ α−n/CU .
Then by the quasisymmetry of the metric θ with respect to dZ , we see that

θ(x1, x)

θ(y, x)
≤ η

(
dZ(x1, x)

dZ(y, x)

)
≤ η

(
α−n

α−n

)
= η(1).

Therefore, by the choice of x1, we have that

diamθ(B(x, α−n)) ≤ 2η(1) θ(y, x). (7.2)

Again by the quasisymmetry,

θ(y, x)

θ(ŷ1, y)
≤ η

(
2τα−n

α−n/CU

)
= η(2τCU ),

and so
θ(y, x) ≤ η(2τCU ) θ(ŷ1, y) ≤ η(2τCU ) diamθ(B(y, α−n)). (7.3)

Combining (7.2) with (7.3) gives

diamθ(B(x, α−n)) ≤ 2η(1)η(2τCU ) diamθ(B(y, α−n)).
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The first part of the lemma is now proved by reversing the roles of x and y in the above
argument.

To prove the second part of the lemma, note that we can find x1, x̂1 ∈ B(x, α−nxz) such
that

dZ(x, x̂1) ≥ α−nxz/CU , diamθ(B(x, α−nxz)) ≤ 2θ(x1, x).

Then
θ(x, x1)

θ(x, z)
≤ η

(
α−nxz

α−nxz

)
= η(1),

and so diamθ(B(x, α−nxz)) ≤ 2η(1) θ(x, z). On the other hand,

θ(x, z)

θ(x, x̂1)
≤ η

(
α1−nxz

α−nxz/CU

)
= η(CUα).

It follows that
θ(x, z)

η(CUα)
≤ θ(x, x̂1) ≤ diamθ(B(x, α−nxz)).

The second claim of the lemma follows.
To prove the final claim of the lemma, by the use of uniform perfectness we can

find a point y ∈ B(x, α−n) \ B(x, α−n/CU ). Let x̂ ∈ B(x, α−n) such that θ(x̂, x) ≥
diamθ(B(x, α−n))/2. Then

θ(x̂, x)

θ(y, x)
≤ η

(
α−n

α−n/CU

)
= η(CU ).

It follows that
1

2
diamθ(B(x, α−n)) ≤ η(CU ) θ(y, x) ≤ η(CU ) diamθ(B(x, α−n)).

�

Throughout the rest of this section we also assume that

CU > 2, α > C3
U , τ ≥ max

{
α2 + 1,

2C3
U

C2
U − 4

}
. (7.4)

The first of the above conditions can always be assumed without loss of generality, and the
remaining two conditions merely give us control over the hyperbolic filling parameters α
and τ in terms of CU . Note that these assumptions are independent of the quasisymmetric
metric θ. We are now ready to construct the function ρ : V → [0,∞) as follows.

As in [11] and in the converse statement given in Theorem 1.1, we assume that (Z, θ) is
also an Ahlfors p-regular space for some p > 0, and set µ to be the p-dimensional Hausdorff
measure on Z induced by the metric θ.

Definition 7.5. We fix a maximal spanning tree T ⊂ X of the graph X such that w0

is the root of the spanning tree made up solely of vertical edges, and so that if [v, w] is an
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edge in T with w a child of v, then dZ(Π1(v),Π1(w)) < α−Π2(v). We set ρ(w0) = µ(Z)1/p,
and for each positive integer n and x ∈ An we set

ρ((x, n)) =

(
µ(B(x, τα−n))

µ(B(z, τα1−n))

)1/p

,

where z ∈ An−1 such that (z, n− 1) is the parent of (x, n) in T .

While the definition of ρ uses the measure µ associated with the metric θ, the balls
B(x, τα−n) are with respect to the metric dZ . However, note that as θ is quasisymmetric
with respect to dZ , balls with respect to the metric dZ are quasi-balls with respect to the
metric θ, as seen in Remark 6.3. The reason for using the balls with respect to dZ is that
we do not know what the θ-radius of corresponding balls should be.

In [18, (2.11)] and [18, Proof of Theorem 3.14(b)], (see [18, (2.17)] for yet another
variant) the authors propose an alternative construction of ρ in the absence of Ahlfors
regularity:

ρ((x, n)) :=
diamθ(B(x, α−n))

diamθ(B(z, α1−n))
,

where z ∈ An−1 such that (x, n) is a child of (z, n − 1) in T . However, their construction
requires the choice of parameter α involved in the hyperbolic filling to be dependent on the
quasisymmetry scaling function η in relation to the uniform perfectness constant CU , and
so gives a slightly different result than that of [11]; see the comment at the top of page 33
of [18], where the uniform perfectness constant CU is denoted KP , τ is denoted by λ, and
α is denoted by a.

Lemma 7.6. The function ρ from Definition 7.5 satisfies Conditiions (H1) of Defini-
tion 3.1.

Proof. Let (x, n), (z, n − 1) ∈ V such that (x, n) ∼ (z, n − 1) in the tree T . Now, if
w ∈ B(x, τα−n), then by triangle inequality and (7.4),

dZ(w, z) < τα−n + α−n + α1−n =

(
τ + 1

α
+ 1

)
α1−n <

τ

2
α1−n.

That is, B(x, τα−n) ⊂ B(z, [1 + 1+τ
α ]α1−n) ⊂ B(z, τα1−n). By the uniform perfectness

of (Z, dZ) we can find a point v0 ∈ B(z, τ2α
1−n) \ B(z, τ

2CU
α1−n). We now show that

B(v0,
τ
α3α

1−n) ⊂ B(z, τα1−n) \B(x, τα−n). Indeed, if y ∈ B(v0,
τ
α3α

1−n), then by triangle
inequality we have

dZ(y, z) <
τ

α3
α1−n +

τ

2
α1−n < τα1−n,

dZ(y, z) ≥ dZ(z, v0)− dZ(v0, y) ≥
[
τ

2CU
− τ

α3

]
α1−n ≥

[
1 +

τ

α

]
α1−n,

where we have used (7.4) again and the fact that α3 > α. Hence

µ(B(x, τα−n))

µ(B(z, τα1−n))
= 1− µ(B(z, τα1−n) \B(x, τα−n))

µ(B(z, τα1−n))
≤ 1−

µ(B(v0,
τ
α3α

1−n))

µ(B(z, τα1−n))
.
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As (Z, dZ) is quasisymmetric to (Z, θ), we know that balls in the metric dZ are quasi-balls
in the metric θ, see Remark 6.3 above. Hence, as in the proof of Lemma 7.1, by the Ahlfors
regularity of µ with respect to theta, we have that

µ(B(v0,
τ
α3α

1−n))

µ(B(z, τα1−n))
≥ c0

for some constant 0 < c0 < 1 that depends on the quasisymmetry function η and the
Ahlfors regularity constant of µ, but does not depend on v0, x, z, n. Hence we have that

ρ((x, n)) ≤ (1− c0)1/p.

By the Ahlfors regularity of µ, we also have that ρ(x, n) ≥ c1 > 0 with c1 depending only
on the quasisymmetry parameter η and the Ahlfors regularity constant of µ. Thus we can
take η− = c1 and η+ = (1− c0)1/p to complete the proof. �

Lemma 7.7. The function ρ satisfies Conditions (H3) and (H2).

Proof. From the definition of ρ, for each v ∈ V we have that

π(v) = µ(B(Π1(v), α−Π2(v)))1/p.

Since dZ-balls are quasi-balls in the metric θ (see Remark 6.3), we have by the Ahlfors
p-regularity of µ with respect to θ that

π(v) ≈ diamθ(B(Π1(v), α−Π2(v))).

Let u,w ∈ V be two distinct vertices, and let vuw ∈ V be as described in Condition (H3),
and let γ be any curve in X with end points u,w. Denoting the vertices in γ by u = u0 ∼
u1 ∼ · · · ∼ uk = w, we have that

ˆ
γ
π(γ(t)) dt =

k−1∑
j=0

π(uj) ≈
k−1∑
j=0

diamθ

(
B(Π1(uj), τα

−Π2(uj))
)
.

For j = 0, · · · , k−1 we have that B(Π1(uj), τα
−Π2(uj)) intersects B(Π1(uj+1), τα−Π2(uj+1)),

see the construction given in Definition 2.1. Hence by the triangle inequality and the second
part of Lemma 7.1, we have thatˆ

γ
π(γ(t)) dt & θ(Π1(u),Π1(w)) ≈ diamθ(B(Π1(vuw), α−Π2(vuw))),

from which the first claim of the lemma follows.
Condition (H2) now follows from an application of the first part of Lemma 7.1. �

Lemma 7.8. The function ρ satisfies Condition (H4) given in Definition 6.1.

Proof. Let m be a positive integer and x ∈ A. We fix a positive integer n such that
n > m. Note that for each v ∈ Dn(x,m) we have that there is a vertically descending path
(x,m) = v0 ∼ v1 ∼ · · · ∼ vm−n = v, and so we have that

dZ(x,Π1(v)) ≤
m−n∑
j=1

dZ(Π1(vj−1),Π1(vj)) ≤
m−n∑
j=1

α−m−j+1 + α−m−j ≤ 2

α− 1
α−m,



20 NAGESWARI SHANMUGALINGAM

and so we have that Π1(Dn(x,m)) ⊂ B(x,Aα−m), where A = 2/(α − 1). It follows from
the pairwise disjointness property of the balls B(Π1(v), α−n) that∑

v∈Dn(x,m)

π(v)p =
∑

v∈Dn(x,m)

µ(B(Π1(v), α−n)) ≤ µ(B(x, (A+ 1)α−m))

≤ C µ(B(x, α−m))

= C π((x,m))p.

Here we have used the fact that µ is Ahlfors regular and also from the construction of ρ,
for each z ∈ Am we have µ(B(z, α−m)) = π((z,m))p.

On the other hand, for each y ∈ B(x, α−m/2) there exists z ∈ An such that dZ(z, y) ≤
α−n. It follows from the choice of α ≥ 2 that

dZ(x, z) ≤ dZ(x, y) + dZ(y, z) <
α−m

2
+ α−n ≤ α−m

2
+
α−m

α
≤ α−m.

Therefore (z, n) ∈ Dn(x,m). It follows that B(x, α−m/2) ⊂
⋃
v∈Dn(x,m)B(Π1(v), α−n),

and so we have

π((x,m))p = µ(B(x, α−m)) ≤ Cµ(B(x, α−m/2)) ≤ C
∑

v∈Dn(x,m)

µ(B(Π1(v), α−n))

= C
∑

v∈Dn(x,m)

π(v)p,

completing the proof. �

8. An alternative formulation of Conditions (H1)—(H4), and a query

A different perspective of the construction in [11] is to begin with a density function
ω : V → [0, 1] on the vertex set V such that the following four conditions are satisfied:
(H1-a) There exist η−, η+ with 0 < η− ≤ η+ < 1 such that for each v, w ∈ V with v ∼ w,

we have

η− ≤
ω(v)

ω(w)
≤ η+.

(H2-a) There is a constant K0 > 0 such that whenever v, w ∈ V with v ∼ w, we have

ω(v) ≤ K0 ω(w).

(H3-a) We extend ω to edges v ∼ w in X linearly by setting ω(tv + (1− t)w) = tω(v) +
(1− t)ω(w), where tv + (1− t)w is the point on the edge v ∼ w that is a distance
t ∈ [0, 1] away from v. There is a constant K1 > 0 such that whenever γ is a curve
in X connecting x, y ∈ X, thenˆ

γ
ω(γ(t)) ds ≥ K1 ω(vxy).
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(H4-a) There exist p > 0 and K2 > 0 such that whenever x ∈ Am and n > m, we have
1

K2
ω((x,m))p ≤

∑
v∈Dn(x,m)

ω(v)p ≤ K2 ω((x,m))p.

It is not difficult to see that setting ρ(v) = ω(v)
ω(w) where w is any ancestor of v with

w ∼ v, we have the original four conditions with π ∼ ω. Indeed, Condition (H1-a) corre-
sponds to Condition (H1) of [11], Condition (H2-a) corresponds to Condition (H2) of [11],
Condition (H3-a) corresponds to Condition (H3) of [11], and Condition (H4-a) corresponds
to Condition (H4) of [11]. This perspective allows us to see that dρ is actually a conformal
change in the path-metric on the graph X. In this note we chose to use the original formula-
tion of the conditions as found in [11], see Definition 3.1 and Definition 6.1, as the purpose
of this note is to provide an analysis of [11, Theorem 1.1]. However, this perspective helps
bridge the gap between the construction proposed in [11] and the conformal changes in
metrics associated with a Harnack density ω : X → (0,∞). A density ω is a Harnack
density if there are constants C,A ≥ 1 such thatfor x, y ∈ X with d(x, y) < A we have

1

C
≤ ω(x)

ω(y)
≤ C.

Given such a density ω, we can equip the (not complete, but locally complete) metric space
(X, d) with the new metric (X, dω) given by

dω(x, y) = inf
γ

ˆ
γ
ω ds,

where x, y ∈ X and the infimum is over all rectifiable curves in X with end points x, y.
The papers [4, 5, 10, 12, 15, 16] are some of the many papers in current literature using
such transformations. Any density ω that satisfies the conditions listed at the beginning of
this section is automatically a Harnack density, thanks to (H2-a).
Concluding remarks: The results of [11] link the quasisymmetric geometry of Z, the
boundary of the hyperbolic filling, to the metrics on this filling. We note here that in po-
tential theory as well there is a connection between nonlocal energy minimization problems
on the boundary of compact doublings spaces and local energy minimization problems in
the hyperbolic filling [10]; and this connection is given through the perspective of Adams
inequality, on the compactification of the hyperbolic filling, via a measure supported on the
boundary Z. In [3] it was shown that if Z is equipped with a doubling measure, then its
hyperbolic filling, modified according to the density ωα(x) = α−dX(x,w0), yields a uniform
domain which can be equipped with a lift µω of the measure on Z so that the corresponding
metric measure space Xα := (X, dωα , µωα) is bounded, doubling and supports a 1-Poincaré
inequality, as does its metric completion (with the zero-extension of the measure µωα to
∂ωαX). Moreover, the trace of the Sobolev classes on Xα are certain Besov classes on Z.
This fact was exploited in [10] to study Neumann boundary value problem on Xα and link
it to certain nonlocal fractional operators on Z, and one of the key motivating ideas behind
that analysis was an Adams-type inequality [1, 2, 24], with the singular measure given by
the doubling measure on Z = ∂ωαX. Such an inequality was possible because the measure
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on Z has a co-dimensional relationship with the measure µωα on X. If X is equipped with
the metric dω corresponding to a general density function ω satisfying Conditions (H1-a)—
(H3-a) and Z is equipped with a doubling measure, then it would be interesting to know
whether it is possible to lift the measure on Z to X so that a corresponding co-dimensional
relationship between the lift and the measure on Z is valid and supports an Adams inequal-
ity, and would indicate a connection between the study done in [11] and nonlinear potential
theory as in [22]. The author recently was able to prove the validity of Poincaré inequality,
and as a consequence the Adams inequality (using [24]) under certain additional conditions
on the parameters α and τ .
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