
Why Lottery Ticket Wins? A Theoretical Perspective
of Sample Complexity on Pruned Neural Networks

Shuai Zhang
Rensselaer Polytechnic Institute

Troy, NY, USA 12180
zhangs21@rpi.edu

Meng Wang
Rensselaer Polytechnic Institute

Troy, NY, USA 12180
wangm7@rpi.edu

Sijia Liu
Michigan State University

East Lansing, MI, USA 48824
MIT-IBM Watson AI Lab, IBM Research

liusiji5@msu.edu

Pin-Yu Chen
IBM Research

Yorktown Heights, NY, USA 10562
Pin-Yu.Chen@ibm.com

Jinjun Xiong
University at Buffalo

Buffalo NY, USA 14260
jinjun@buffalo.edu

Abstract

The lottery ticket hypothesis (LTH) [20] states that learning on a properly pruned
network (the winning ticket) improves test accuracy over the original unpruned net-
work. Although LTH has been justified empirically in a broad range of deep neural
network (DNN) involved applications like computer vision and natural language
processing, the theoretical validation of the improved generalization of a winning
ticket remains elusive. To the best of our knowledge, our work, for the first time,
characterizes the performance of training a pruned neural network by analyzing
the geometric structure of the objective function and the sample complexity to
achieve zero generalization error. We show that the convex region near a desirable
model with guaranteed generalization enlarges as the neural network model is
pruned, indicating the structural importance of a winning ticket. Moreover, when
the algorithm for training a pruned neural network is specified as an (accelerated)
stochastic gradient descent algorithm, we theoretically show that the number of
samples required for achieving zero generalization error is proportional to the
number of the non-pruned weights in the hidden layer. With a fixed number of
samples, training a pruned neural network enjoys a faster convergence rate to the
desired model than training the original unpruned one, providing a formal justifica-
tion of the improved generalization of the winning ticket. Our theoretical results
are acquired from learning a pruned neural network of one hidden layer, while
experimental results are further provided to justify the implications in pruning
multi-layer neural networks.

1 Introduction

Neural network pruning can reduce the computational cost of model training and inference signif-
icantly and potentially lessen the chance of overfitting [33, 26, 15, 25, 28, 51, 58, 41]. The recent
Lottery Ticket Hypothesis (LTH) [20] claims that a randomly initialized dense neural network al-

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ways contains a so-called “winning ticket,” which is a sub-network bundled with the corresponding
initialization, such that when trained in isolation, this winning ticket can achieve at least the same
testing accuracy as that of the original network by running at most the same amount of training time.
This so-called “improved generalization of winning tickets” is verified empirically in [20]. LTH has
attracted a significant amount of recent research interests [45, 70, 39]. Despite the empirical success
[19, 63, 55, 11], the theoretical justification of winning tickets remains elusive except for a few recent
works. [39] provides the first theoretical evidence that within a randomly initialized neural network,
there exists a good sub-network that can achieve the same test performance as the original network.
Meanwhile, recent work [42] trains neural network by adding the `1 regularization term to obtain a
relatively sparse neural network, which has a better performance numerically.

However, the theoretical foundation of network pruning is limited. The existing theoretical works
usually focus on finding a sub-network that achieves a tolerable loss in either expressive power or
training accuracy, compared with the original dense network [2, 71, 61, 43, 4, 3, 35, 5, 59]. To the
best of our knowledge, there exists no theoretical support for the improved generalization achieved
by winning tickets, i.e., pruned networks with faster convergence and better test accuracy.

Contributions: This paper provides the first systematic analysis of learning pruned neural networks
with a finite number of training samples in the oracle-learner setup, where the training data are
generated by a unknown neural network, the oracle, and another network, the learner, is trained on
the dataset. Our analytical results also provide a justification of the LTH from the perspective of
the sample complexity. In particular, we provide the first theoretical justification of the improved
generalization of winning tickets. Specific contributions include:

1. Pruned neural network learning via accelerated gradient descent (AGD): We propose an
AGD algorithm with tensor initialization to learn the pruned model from training samples. Our
algorithm converges to the oracle model linearly, which has guaranteed generalization.

2. First sample complexity analysis for pruned networks: We characterize the required number
of samples for successful convergence, termed as the sample complexity. Our sample complexity
bound depends linearly on the number of the non-pruned weights and is a significant reduction from
directly applying conventional complexity bounds in [69, 66, 67].

3. Characterization of the benign optimization landscape of pruned networks: We show analyt-
ically that the empirical risk function has an enlarged convex region for a pruned network, justifying
the importance of a good sub-network (i.e., the winning ticket).

4. Characterization of the improved generalization of winning tickets: We show that gradient-
descent methods converge faster to the oracle model when the neural network is properly pruned, or
equivalently, learning on a pruned network returns a model closer to the oracle model with the same
number of iterations, indicating the improved generalization of winning tickets.

Notations. Vectors are bold lowercase, matrices and tensors are bold uppercase. Scalars are in
normal font, and sets are in calligraphy and blackboard bold font. I denote the identity matrix. N
and R denote the sets of nature number and real number, respectively. ‖z‖ denotes the `2-norm of a
vector z, and ‖Z‖2, ‖Z‖F and ‖Z‖∞ denote the spectral norm, Frobenius norm and the maximum
value of matrix Z, respectively. [Z] stands for the set of {1, 2, · · · , Z} for any number Z ∈ N. In
addition, f(r) = O(g(r)) (or f(r) = Ω(g(r))) if f ≤ C · g (or f ≥ C · g) for some constant
C > 0 when r is large enough. f(r) = Θ(g(r)) if both f(r) = O(g(r)) and f(r) = Ω(g(r)) holds,
where c · g ≤ f ≤ C · g for some constant 0 ≤ c ≤ C when r is large enough.

1.1 Related Work

Network pruning. Network pruning methods seek a compressed model while maintaining the
expressive power. Numerical experiments have shown that over 90% of the parameters can be pruned
without a significant performance loss [10]. Examples of pruning methods include irregular weight
pruning [25], structured weight pruning [57], neuron-based pruning [28], and projecting the weights
to a low-rank subspace [13].

Winning tickets. [20] employs an Iterative Magnitude Pruning (IMP) algorithm to obtain the
proper sub-network and initialization. IMP and its variations [22, 46] succeed in deeper networks
like Residual Networks (Resnet)-50 and Bidirectional Encoder Representations from Transformers
(BERT) network [11]. [21] shows that IMP succeeds in finding the “winning ticket” if the ticket is

2

stable to stochastic gradient descent noise. In parallel, [36] shows numerically that the “winning
ticket” initialization does not improve over a random initialization once the correct sub-networks are
found, suggesting that the benefit of “winning ticket” mainly comes from the sub-network structures.
[18] analyzes the sample complexity of IMP from the perspective of recovering a sparse vector in a
linear model rather than learning neural networks.

Feature sparsity. High-dimensional data often contains redundant features, and only a subset of
the features is used in training [6, 14, 27, 60, 68]. Conventional approaches like wrapper and filter
methods score the importance of each feature in a certain way and select the ones with highest scores
[24]. Optimization-based methods add variants of the `0 norm as a regularization to promote feature
sparsity [68]. Different from network pruning where the feature dimension still remains high during
training, the feature dimension is significantly reduced in training when promoting feature sparsity.

Over-parameterized model. When the number of weights in a neural network is much larger than
the number of training samples, the landscape of the objective function of the learning problem
has no spurious local minima, and first-order algorithms converge to one of the global optima
[37, 44, 64, 50, 9, 49, 38]. However, the global optima is not guaranteed to generalize well on testing
data [62, 64].

Generalization analyses. The existing generalization analyses mostly fall within three categories.
One line of research employs the Mean Field approach to model the training process by a differential
equation assuming infinite network width and infinitesimal training step size [12, 40, 56]. Another
approach is the neural tangent kernel (NTK) [30], which requires strong and probably unpractical
over-parameterization such that the nonlinear neural network model behaves as its linearization
around the initialization [1, 17, 72, 73]. The third line of works follow the oracle-learner setup, where
the data are generated by an unknown oracle model, and the learning objective is to estimate the
oracle model, which has a generalization guarantee on testing data. However, the objective function
has intractably many spurious local minima even for one-hidden-layer neural networks [48, 47, 64].
Assuming an infinite number of training samples, [8, 16, 52] develop learning methods to estimate
the oracle model. [23, 69, 66, 67] extend to the practical case of a finite number of samples and
characterize the sample complexity for recovering the oracle model. Because the analysis complexity
explodes when the number of hidden layers increases, all the analytical results about estimating the
oracle model are limited to one-hidden-layer neural networks, and the input distribution is often
assumed to be the standard Gaussian distribution.

2 Problem Formulation

In an oracle-learner model, given any input x ∈ Rd, the corresponding output y is generated by a
pruned one-hidden-layer neural network, called oracle, as shown in Figure 1. The oracle network
is equipped with K neurons where the j-th neuron is connected to any arbitrary r∗j (r∗j ≤ d) input
features. LetW ∗ = [w∗1, · · · ,w∗K] ∈ Rd×K denotes all the weights (pruned ones are represented by
zero). The number of non-zero entries in w∗j is at most r∗j . The oracle network is not unique because
permuting neurons together with the corresponding weights does not change the output. Therefore,
the output label y obtained by the oracle network satisfies 1

y =
1

K

K∑
j=1

φ(w∗Tj x) + ξ := g(x;W ∗) + ξ = g(x;W ∗P) + ξ, (1)

where ξ is arbitrary unknown additive noise bounded by some constant |ξ|, φ is the rectified linear
unit (ReLU) activation function with φ(z) = max{z, 0}, and P ∈ {0, 1}K×K is any permutation
matrix. M∗ is a mask matrix for the oracle network, such that M∗j,i equals to 1 if the weightw∗j,i is
not pruned, and 0 otherwise. Then,M∗ is an indicator matrix for the non-zero entries ofW ∗ with
M∗ �W ∗ = W ∗, where � is entry-wise multiplication.

Based on N pairs of training samples D = {xn, yn}Nn=1 generated by the oracle, we train on a
learner network equipped with the same number of neurons in the oracle network. However, the j-th
neuron in the learner network is connected to rj input features rather than r∗j . Let rmin, rmax, and
rave denote the minimum, maximum, and average value of {rj}Kj=1, respectively. LetM denote the

1It is extendable to binary classification, and the output is generated by Prob
(
yn = 1|xn

)
= g(xn;W

∗).

3

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝑥𝑥

𝑊𝑊

Hidden layer with
K neurons

…
… …

…

1
𝐾𝐾

1
𝐾𝐾

1
𝐾𝐾

𝑔𝑔(𝑥𝑥) 𝑦𝑦
𝜉𝜉

+
Output

Noise

One-hidden-layer
Pruned Neural Network

Input

Figure 1: Illustration of the model

mask matrix with respect to the learner network, and wj is the j-th column ofW . The empirical
risk function is defined as

f̂D(W) =
1

2N

N∑
n=1

(1

K

K∑
j=1

φ(wT
j xn)− yn

)2
. (2)

When the maskM is given, the learning objective is to estimate a proper weight matrixW for the
learner network from the training samples D via solving

minW∈Rd×K f̂D(W) s.t. M �W = W . (3)

M is called an accurate mask if the support ofM covers the support of a permutation ofM∗, i.e.,
there exists a permutation matrix P such that (M∗P) �M = M∗. When M is accurate, and
ξ = 0, there exists a permutation matrix P such that W ∗P is a global optimizer to (3). Hence,
if W ∗P can be estimated by solving (3), one can learn the oracle network accurately, which has
guaranteed generalization performance on the testing data.

We assume xn is independent and identically distributed from the standard Gaussian distribution
N (0, Id×d). The Gaussian assumption is motivated by the data whitening [34] and batch normaliza-
tion techniques [29] that are commonly used in practice to improve learning performance. Moreover,
training one-hidden-layer neural network with multiple neurons has intractable many fake minima
[47] without any input distribution assumption. In addition, the theoretical results in Section 3 assume
an accurate mask, and inaccurate mask is evaluated empirically in Section 4.

The questions that this paper addresses include: 1. what algorithm to solve (3)? 2. what is the
sample complexity for the accurate estimate of the weights in the oracle network? 3. what is the
impact of the network pruning on the difficulty of the learning problem and the performance of
the learned model?

3 Algorithm and Theoretical Results

Section 3.1 studies the geometric structure of (3), and the main results are in Section 3.2. Section 3.3
briefly introduces the proof sketch and technical novelty, and the limitations are in Section 3.4.

3.1 Local Geometric Structure

Theorem 1 characterizes the local convexity of f̂D in (3). It has two important implications.

1. Strictly locally convex near ground truth: f̂D is strictly convex nearW ∗P for some permutation
matrix P , and the radius of the convex ball is negatively correlated with

√
r̃, where r̃ is in the order

of rave. Thus, the convex ball enlarges as any rj decreases.

2. Importance of the winning ticket architecture: Compared with training on the dense network
directly, training on a properly pruned sub-network has a larger local convex region near W ∗P ,
which may lead to easier estimation of W ∗P . To some extent, this result can be viewed as a
theoretical validation of the importance of the winning architecture (a good sub-network) in [20].
Formally, we have

4

Theorem 1 (Local Convexity). Assume the mask M of the learner network is accurate. Suppose
constants ε0, ε1 ∈ (0, 1) and the number of samples satisfies

N = Ω
(
ε−2

1 K4r̃ log q
)
, (4)

for some large constant q > 0, where

r̃ =
1

8K4

(∑K
k=1

∑K
j=1(1 + δj,k)(rj + rk)

1
2

)2

, (5)

δj,k is 1 if the indices of non-pruned weights in the j-th and k-th neurons overlap and 0 otherwise.
Then, there exists a permutation matrix P such that for anyW that satisfies

‖W −W ∗P ‖F = O
(
ε0
K2

)
, andM �W = W , (6)

its Hessian of f̂D, with probability at least 1−K · q−rmin , is bounded as:

Θ
(1− ε0 − ε1

K2

)
I � ∇2f̂D(W) � Θ

(1

K

)
I. (7)

Remark 1.1 (Parameter r̃): Clearly r̃ is a monotonically increasing function of any rj from (5).
Moreover, one can check that 1

8rave ≤ r̃ ≤ rave. Hence, r̃ is in the order of rave.

Remark 1.2 (Local landscape): Theorem 1 shows that with enough samples as shown in (4), in a
local region ofW ∗P as shown in (6), all the eigenvalues of the Hessian matrix of the empirical risk
function are lower and upper bounded by two positive constants. This property is useful in designing
efficient algorithms to recoverW ∗P , as shown in Section 3.2.

Remark 1.3 (Size of the convex region): When the number of samples N is fixed and r changes, ε1

can be Θ(
√
r̃/N) while (4) is still met. ε0 in (7) can be arbitrarily close to but smaller than 1− ε1

so that the Hessian matrix is still positive definite. Then from (6), the radius of the convex ball is
Θ(1) − Θ(

√
r̃/N), indicating an enlarged region when r̃ decreases. The enlarged convex region

serves as an important component in proving the faster convergence rate, summarized in Theorem
2. Besides this, as Figure 1 shown in [20], the authors claim that the learning is stable if the linear
interpolation of the learned models with SGD noises still remain similar in performance, which is
summarized as the concept “linearly connected region.” Intuitively, we conjecture that the winning
ticket shows a better performance in the stability analysis because it has a larger convex region. In
the other words, a larger convex region indicates that the learning is more likely to be stable in the
linearly connected region.

3.2 Convergence Analysis with Accelerated Gradient Descent

We propose to solve the non-convex problem (3) via the accelerated gradient descent (AGD) algorithm,
summarized in Algorithm 1. Compared with the vanilla gradient descent (GD) algorithm, AGD has
an additional momentum term, denoted by β(W (t) −W (t−1)), in each iteration. AGD enjoys a
faster convergence rate than vanilla GD in solving optimization problems, including learning neural
networks [65]. Vanilla GD can be viewed as a special case of AGD by letting β = 0. The initial point
W (0) can be obtained through a tensor method, and the details are provided in Appendix B.

Algorithm 1 Accelerated Gradient Descent (AGD) Algorithm
1: Input: training data D = {(xn, yn)}Nn=1, gradient step size η, momentum parameter β, and an

initializationW (0) by the tensor initialization method;
2: Partition D into T = log(1/ε) disjoint subsets, denoted as {Dt}Tt=1;
3: for t = 1, 2, · · · , T do
4: W (t+1) = W (t) − η ·M �∇f̂Dt(W

(t)) + β(W (t) −W (t−1))
5: end for
6: Return: W (T)

The theoretical analyses of our algorithm are summarized in Theorem 2 (convergence) and Lemma 1
(Initialization). The significance of these results can be interpreted from the following aspects.

5

1. Linear convergence to the oracle model: Theorem 2 implies that if initialized in the local convex
region, the iterates generated by AGD converge linearly toW ∗P for some P when noiseless. When
there is noise, they converge to a pointW (T). The distance betweenW (T) andW ∗P is proportional
to the noise level and scales in terms of O(

√
r̃/N). Moreover, when N is fixed, the convergence rate

of AGD is Θ(
√
r̃/K). Recall that Algorithm 1 reduces to the vanilla GD by setting β = 0. The rate

for the vanilla GD algorithm here is Θ(
√
r̃/K) by setting β = 0 by Theorem 2, indicating a slower

convergence than AGD. Lemma 1 shows the tensor initialization method indeed returns an initial
point in the convex region.

2. Sample complexity for accurate estimation: We show that the required number of samples
for successful estimation of the oracle model is Θ

(
r̃ log q log(1/ε)

)
for some large constant q

and estimation accuracy ε. Our sample complexity is much less than the conventional bound
of Θ(d log q log(1/ε)) for one-hidden-layer networks [69, 66, 67]. This is the first theoretical
characterization of learning a pruned network from the perspective of sample complexity.

3. Improved generalization of winning tickets: We prove that with a fixed number of training
samples, training on a properly pruned sub-network converges faster toW ∗P than training on the
original dense network. Our theoretical analysis justifies that training on the winning ticket can
meet or exceed the same test accuracy within the same number of iterations. To the best of our
knowledge, our result here provides the first theoretical justification for this intriguing empirical
finding of “improved generalization of winning tickets” by [20].
Theorem 2 (Convergence). Assume the maskM of the learner network is accurate. SupposeW (0)

satisfies (6) and the number of samples satisfies
N = Ω

(
ε−2

0 K6r̃ log q log(1/ε)
)

(8)

for some ε0 ∈ (0, 1/2). Let η = K/14 in Algorithm 1. Then, the iterates {W (t)}Tt=1 returned by
Algorithm 1 converges linearly toW ∗ up to the noise level with probability at least 1−K2T · q−rmin

‖W (t) −W ∗P ‖F ≤ν(β)t‖W (0) −W ∗P ‖F +O
(∑

j

√
rj log q

N

)
· |ξ|, (9)

and ‖W (T) −W ∗P ‖F ≤ε‖W ∗‖F +O
(∑

j

√
rj log q

N

)
· |ξ|, (10)

for a fixed permutation matrix P , where ν(β) is the rate of convergence that depends on β with
ν(β∗) = 1−Θ

(
1−ε0√
K

)
for some non-zero β∗ and ν(0) = 1−Θ

(
1−ε0
K

)
.

Lemma 1 (Initialization). Assume the noise |ξ| ≤ ‖W ∗‖2 and the number of samples N =
Ω
(
ε−2

0 K5rmax log q
)

for ε0 > 0 and large constant q, the tensor initialization method outputs
W (0) such that (6) holds, i.e., ‖W (0) −W ∗‖F = O

(
ε0σK
K2

)
with probability at least 1− q−rmax .

Remark 2.1 (Faster convergence on pruned network): With a fixed number of samples, when r̃
decreases, ε0 can increase as Θ(

√
r̃) while (8) is still met. Then ν(0) = Θ(

√
r̃/K) and ν(β∗) =

Θ(
√
r̃/K). Therefore, when r̃ decreases, both the stochastic and accelerated gradient descent

converge faster. Note that as long asW (0) is initialized in the local convex region, not necessarily
by the tensor method, Theorem 2 guarantees the accurate recovery. [66, 67] analyze AGD on
convolutional neural networks, while this paper focuses on network pruning.

Remark 2.2 (Sample complexity of initialization): From Lemma 1, the required number of samples
for a proper initialization is Ω

(
ε−2

0 K5rmax log q
)
. Because rmax ≤ Krave and r̃ = Ω(rave), this

number is no greater than the sample complexity in (8). Thus, provided that (8) is met, Algorithm 1
can estimate the oracle network model accurately.

Remark 2.3 (Inaccurate mask): The above analyses are based on the assumption that the mask of
the learner network is accurate. In practice, a mask can be obtained by an iterative pruning method
such as [20] or a one-shot pruning method such as [55]. In Appendix E, we prove that the magnitude
pruning method can obtain an accurate mask with enough training samples. Moreover, empirical
experiments in Section 4.2 and 4.3 suggest that even if the mask is not accurate, the three properties
(linear convergence, sample complexity with respect to the network size, and improved generalization
of winning tickets) can still hold. Therefore, our theoretical results provide some insight into the
empirical success of network pruning.

6

3.3 The Sketch of Proofs and Technical Novelty

Our proof outline is inspired by [69] on fully connected neural networks, however, major technical
changes are made in this paper to generalize the analysis to an arbitrarily pruned network. To
characterize the local convex region of f̂D (Theorem 1), the idea is to bound the Hessian matrix
of the population risk function, which is the expectation of the empirical risk function, locally
and then characterize the distance between the empirical and population risk functions through the
concentration bounds. Then, the convergence of AGD (Theorem 2) is established based on the desired
local curvature, which in turn determines the sample complexity. Finally, to initialize in the local
convex region (Lemma 1), we construct tensors that contain the weights information and apply a
decomposition method to estimate the weights.

Our technical novelties are as follows. First, a direct application of the results in [69] leads to a
sample complexity bound that is linear in the feature dimension d. We develop new techniques to
tighten the sample complexity bound to be linear in r̃, which can be significantly smaller than d
for a sufficiently pruned network. Specifically, we develop new concentration bounds (Lemmas
4 and 5 in Appendix) to bound the distance between the population and empirical risk functions
rather than using the bound in [69]. Second, instead of restricting the acitivation to be smooth for
convergence analysis, we study the case of ReLU function which is non-smooth. Third, new tensors
are constructed for pruned networks (see (21)-(23) in Appendix) in computing the initialization,
and our new concentration bounds are employed to reduce the required number of samples for a
proper initialization. Last, Algorithm 1 employs AGD and is proved to converge faster than the GD
algorithm in [69].

3.4 Limitations

Like most theoretical works based on the oracle-learner setup, limitations of this work include (1)
one hidden layer only; and (2) the input follows the Gaussian distribution. Extension to multi-layer
might be possible if the following technical challenges are addressed. First, when characterizing the
local convex region, one needs to show that the Hessian matrix is positive definite. In multi-layer
networks, the Hessian matrix is more complicated to compute. Second, new concentration bounds
need to be developed because the input feature distributions to the second and third layers depend on
the weights in previous layers. Third, the initialization approach needs to be revised. The team is also
investigating the other input distributions such as Gaussian mixture models.

4 Numerical Experiments

The theoretical results are first verified on synthetic data, and we then analyze the pruning perfor-
mance on both synthetic and real datasets. In Section 4.1, Algorithm 1 is implemented with minor
modification, such that, the initial point is randomly selected as ‖W (0) −W ∗‖F /‖W ∗‖F < λ for
some λ > 0 to reduce the computation. Algorithm 1 terminates when ‖W (t+1)−W (t)‖F /‖W (t)‖F
is smaller than 10−8 or reaching 10000 iterations. In Sections 4.2 and 4.3, the Gradient Signal Preser-
vation (GraSP) algorithm [55] and IMP algorithm [10, 20]2 are implemented to prune the neural
networks. As many works like [11, 10, 20] have already verified the faster convergence and better
generalization accuracy of the winning tickets empirically, we only include the results of some
representative experiments, such as training MNIST and CIFAR-10 on Lenet-5 [32] and Resnet-50
[27] networks, to verify our theoretical findings.

The synthetic data are generated using a oracle model in Figure 1. The input xn’s are randomly
generated from Gaussian distribution N (0, Id×d) independently, and indices of non-pruned weights
of the j-th neuron are obtained by randomly selecting rj numbers without replacement from [d]. For
the convenience of generating specific r̃, the indices of non-pruned weights are almost overlapped
(
∑
j

∑
k δjδk > 0.95K2) except for Figure 5. In Figures 2 and 4, rj is selected uniformly from

[0.9r̃, 1.1r̃] for a given r̃, and rj are the same in value for all j in other figures. Each non-zero entry
ofW ∗ is randomly selected from [−0.5, 0.5] independently. The noise ξn’s are i.i.d. from N (0, σ2),
and the noise level is measured by σ/Ey , where Ey is the root mean square of the noiseless outputs.

2The source codes used are downloaded from https://github.com/VITA-Group/CV_LTH_Pre-training.

7

4.1 Evaluation of theoretical findings on synthetic data

Local convexity near W ∗. We set the number of neurons K = 10, the dimension of the data
d = 500 and the sample size N = 5000. Figure 2 illustrates the success rate of Algorithm 1 when r̃

changes. The y-axis is the relative distance of the initialization W (0) to the ground-truth. For each
pair of r̃ and the initial distance, 100 trails are constructed with the network weights, training data and

the initialization W (0) are all generated independently in each trail. Each trail is called successful if
the relative error of the solution W returned by Algorithm 1, measured by ‖W −W ∗‖F /‖W ∗‖F ,
is less than 10−4. A black block means Algorithm 1 fails in estimating W ∗ in all trails while a white

block indicates all success. As Algorithm 1 succeeds if W (0) is in the local convex region near W ∗,

we can see that the radius of convex region is indeed linear in −r̃
1
2 , as predicted by Theorem 1.

Convergence rate. Figure 3 shows the convergence rate of Algorithm 1 when r̃ changes. N = 5000,
d = 300, K = 10, η = 0.5, and β = 0.2. Figure 3(a) shows that the relative error decreases
exponentially as the number of iterations increases, indicating the linear convergence of Algorithm 1.
As shown in Figure 3(b), the results are averaged over 20 trials with different initial points, and the
areas in low transparency represent the standard deviation errors. We can see that the convergence

rate is almost linear in
√
r̃, as predicted by Theorem 2. We also compare with GD by setting β as 0.

One can see that AGD has a smaller convergence rate than GD, indicating faster convergence.

Figure 2: The radius of the lo-

cal convex region against r̃
1
2 Figure 3: Convergence rate when r̃ changes

Sample complexity. Figures 4 and 5 show the success rate of Algorithm 1 when varying N and r̃. d
is fixed as 100. In Figure 4, we construct 100 independent trails for each pair of N and r̃, where the
ground-truth model and training data are generated independently in each trail. One can see that the
required number of samples for successful estimation is linear in r̃, as predicted by (8). In Figure 5,
rj is fixed as 20 for all neurons, but different network architectures after pruning are considered. One
can see that although the number of remaining weights is the same, r̃ can be different in different
architectures, and the sample complexity increases as r̃ increases, as predicted by (8).

Figure 4: Sample complexity
when r̃ changes

Figure 5: Relative error against
r̃

Figure 6: Relative error against

r̃
1
2 at different noise level

Performance in noisy case. Figure 6 shows the relative error of the learned model by Algorithm
1 from noisy measurements when r̃ changes. N = 1000, K = 10, and d = 300. The results are
averaged over 100 independent trials, and standard deviation is around 2% to 8% of the corresponding

relative errors. The relative error is linear in r̃
1
2 , as predicted by (9). Moreover, the relative error is

proportional to the noise level |ξ|.

4.2 Performance with inaccurate mask on synthetic data

The performance of Algorithm 1 is evaluated when the mask M of the learner network is inaccurate.
The number of neurons K is 5. The dimension of inputs d is 100. r∗j of the oracle model is 20 for

8

all j ∈ [K]. GraSP algorithm [55] is employed to find masks based only on early-trained weights
in 20 iterations of AGD. The mask accuracy is measured by ‖M∗ �M‖0/‖M∗‖0, where M∗ is
the mask of the oracle model. The pruning ratio is defined as (1− rave/d)× 100%. The number of
training samples N is 200. The model returned by Algorithm 1 is evaluated on Ntest = 105 samples,

and the test error is measured by
√∑

n |yn − ŷn|2/Ntest, where ŷn is the output of the learned model
with the input xn, and (xn, yn) is the n-th testing sample generated by the oracle network.

Improved generalization by GraSP. Figure 7 shows the test error with different pruning ratios. For
each pruning ratio, we randomly generate 1000 independent trials. Because the mask of the learner
network in each trail is generated independently, we compute the average test error of the learned
models in all the trails with same mask accuracy. If there are less than 10 trails for certain mask
accuracy, the result of that mask accuracy is not reported as it is statistically meaningless. The test
error decreases as the mask accuracy increases. More importantly, at fixed mask accuracy, the test
error decreases as the pruning ratio increases. That means the generalization performance improves
when r̃ deceases, even if the mask is not accurate.

Figure 7: Test error against
mask accuracy with different
pruning ratios

Figure 8: Convergence
rate with mask accuracy in
[0.85, 0.9]

Figure 9: Test error against the
number of samples with mask
accuracy in [0.85, 0.9]

Linear convergence. Figure 8 shows the convergence rate of Algorithm 1 with different pruning
ratios. We show the smallest number of iterations required to achieve a certain test error of the learned
model, and the results are averaged over the independent trials with mask accuracy between 0.85 and
0.90. Even with inaccurate mask, the test error converges linearly. Moreover, as the pruning ratio
increases, Algorithm 1 converges faster.

Sample complexity with respect to the pruning ratio. Figure 9 shows the test error when the
number of training samples N changes. All the other parameters except N remain the same. The
results are averaged over the trials with mask accuracy between 0.85 and 0.90. We can see the test
error decreases when N increases. More importantly, as the pruning ratio increases, the required
number of samples to achieve the same test error (no less than 10−3) decreases dramatically. That
means the sample complexity decreases as r̃ decreases even if the mask is inaccurate.

4.3 Performance of IMP on synthetic, MNIST and CIFAR-10 datasets

We implement the IMP algorithm to obtain pruned networks on synthetic, MNIST and CIFAR-10
datasets. Figure 10 shows the test performance of a pruned network on synthetic data with different
sample sizes. Here in the oracle network model, K = 5, d = 100, and r∗j = 20 for all j ∈ [K]. The

noise level σ/Ey = 10−3. One observation is that for a fixed sample size N greater than 100, the test
error decreases as the pruning ratio increases. This verifies that the IMP algorithm indeed prunes the
network properly. It also shows that the learned model improves as the pruning progresses, verifying
our theoretical result in Theorem 2 that the difference of the learned model from the oracle model
decreases as rj decreases. The second observation is that the test error decreases as N increases for
any fixed pruning ratio. This verifies our result in Theorem 2 that the difference of the learned model
from the oracle model decreases as the number of training samples increases. When the pruning ratio
is too large (greater than 80%), the pruned network cannot explain the data properly, and thus the
test error is large for all N . When the number of samples is too small, like N = 100, the test error is
always large, because it does not meet the sample complexity requirement for estimating the oracle
model even though the network is properly pruned.

Figures 11 and 12 show the test performance of learned models by implementing the IMP algorithm
on MNIST and CIFAR-10 using Lenet-5 [32] and Resnet-50 [27] architecture, respectively. The

9

experiments follow the standard setup in [10] except for the size of the training sets. To demonstrate
the effect of sample complexity, we randomly selected N samples from the original training set
without replacement. As we can see, a properly pruned network (i.e., winning ticket) helps reduce
the sample complexity required to reach the test accuracy of the original dense model. For example,
training on a pruned network returns a model (e.g., P1 and P3 in Figures 11 and 12) that has better
testing performance than a dense model (e.g., P2 and P4 in Figures 11 and 12) trained on a larger
data set. Given the number of samples, we consistently find the characteristic behavior of winning
tickets: That is, the test accuracy could increase when the pruning ratio increases, indicating the
effectiveness of pruning. The test accuracy then drops when the network is overly pruned. The results
show that our theoretical characterization of sample complexity is well aligned with the empirical
performance of pruned neural networks and explains the improved generalization observed in LTH.

Figure 10: Test error of pruned
models on the synthetic dataset

Figure 11: Test accuracy of
pruned LeNet-5 on Mnist

Figure 12: Test accuracy of
pruned Resnet-50 on Cifar-10

5 Conclusions

This paper provides the first theoretical analysis of learning one-hidden-layer pruned neural networks,
which offers formal justification of the improved generalization of winning ticket observed from
empirical findings in LTH. We characterize analytically the impact of the number of remaining
weights in a pruned network on the required number of samples for training, the convergence rate of
the learning algorithm, and the accuracy of the learned model. We also provide extensive numerical
validations of our theoretical findings.

Broader impacts

We see no ethical or immediate societal consequence of our work. This paper contributes to the
theoretical foundation of both network pruning and generalization guarantee. The former encourages
the development of learning method to reduce the computational cost. The latter increases the public
trust in incorporating AI technology in critical domains.

Acknowledgement

This work was supported by AFOSR FA9550-20-1-0122, ARO W911NF-21-1-0255, NSF 1932196
and the Rensselaer-IBM AI Research Collaboration (http://airc.rpi.edu), part of the IBM AI Horizons
Network (http://ibm.biz/AIHorizons). We thank Tianlong Chen at University of Texas at Austin,
Haolin Xiong at Rensselaer Polytechnic Institute and Yihua Zhang at Michigan State University
for the help in formulating numerical experiments. We thank all anonymous reviewers for their
constructive comments.

References
[1] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-

parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019.

[2] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets via
a compression approach. In J. Dy and A. Krause, editors, Proceedings of the 35th International

10

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 254–263, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[3] C. Baykal, L. Liebenwein, I. Gilitschenski, D. Feldman, and D. Rus. Data-dependent coresets
for compressing neural networks with applications to generalization bounds. In International
Conference on Learning Representations, 2018.

[4] C. Baykal, L. Liebenwein, I. Gilitschenski, D. Feldman, and D. Rus. Sipping neural networks:
Sensitivity-informed provable pruning of neural networks. arXiv preprint arXiv:1910.05422,
2019.

[5] M. Ben, M. Osadchy, V. Braverman, S. Zhou, and D. Feldman. Data-independent neural pruning
via coresets. In International Conference on Learning Representations (ICLR), 2020.

[6] M. L. Bermingham, R. Pong-Wong, A. Spiliopoulou, C. Hayward, I. Rudan, H. Campbell, A. F.
Wright, J. F. Wilson, F. Agakov, P. Navarro, et al. Application of high-dimensional feature
selection: evaluation for genomic prediction in man. Scientific reports, 5(1):1–12, 2015.

[7] R. Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

[8] A. Brutzkus and A. Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 605–614. JMLR. org, 2017.

[9] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equa-
tions. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pages 6572–6583, 2018.

[10] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang. The lottery tickets
hypothesis for supervised and self-supervised pre-training in computer vision models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16306–16316, 2021.

[11] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin. The lottery ticket
hypothesis for pre-trained bert networks. arXiv preprint arXiv:2007.12223, 2020.

[12] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 3040–3050, 2018.

[13] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting parameters in deep
learning. In Proceedings of the 26th International Conference on Neural Information Processing
Systems-Volume 2, pages 2148–2156, 2013.

[14] V. C. Dinh and L. S. Ho. Consistent feature selection for analytic deep neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 2420–2431. Curran Associates, Inc., 2020.

[15] X. Dong, S. Chen, and S. Pan. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. In Advances in Neural Information Processing Systems, pages 4857–4867, 2017.

[16] S. S. Du, J. D. Lee, Y. Tian, A. Singh, and B. Poczos. Gradient descent learns one-hidden-
layer cnn: Don’t be afraid of spurious local minima. In International Conference on Machine
Learning, pages 1338–1347, 2018.

[17] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations,
2019.

[18] B. Elesedy, V. Kanade, and Y. W. Teh. Lottery tickets in linear models: An analysis of iterative
magnitude pruning. arXiv preprint arXiv:2007.08243, 2020.

[19] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets
winners. International Conference on Machine Learning, 2020.

11

[20] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

[21] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269. PMLR,
2020.

[22] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Stabilizing the lottery ticket hypothesis.
arXiv preprint arXiv:1903.01611, 2019.

[23] H. Fu, Y. Chi, and Y. Liang. Guaranteed recovery of one-hidden-layer neural networks via cross
entropy. IEEE transactions on signal processing, 68:3225–3235, 2020.

[24] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of machine
learning research, 3(Mar):1157–1182, 2003.

[25] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[26] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[28] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[29] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456,
2015.

[30] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–8580,
2018.

[31] V. Kuleshov, A. Chaganty, and P. Liang. Tensor factorization via matrix factorization. In
Artificial Intelligence and Statistics, pages 507–516, 2015.

[32] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[33] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

[34] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks:
Tricks of the trade, pages 9–48. Springer, 2012.

[35] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus. Provable filter pruning for efficient
neural networks. In International Conference on Learning Representations, 2019.

[36] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. In
International Conference on Learning Representations, 2018.

[37] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural
networks. In Advances in neural information processing systems, pages 855–863, 2014.

[38] Y. Lu, C. Ma, Y. Lu, J. Lu, and L. Ying. A mean field analysis of deep resnet and beyond: To-
wards provably optimization via overparameterization from depth. In International Conference
on Machine Learning, pages 6426–6436. PMLR, 2020.

12

[39] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. In International Conference on Machine Learning, pages 6682–6691.
PMLR, 2020.

[40] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

[41] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies deep neural networks.
In International Conference on Machine Learning, pages 2498–2507, 2017.

[42] B. Neyshabur. Towards learning convolutions from scratch. Advances in Neural Information
Processing Systems, 33, 2020.

[43] L. Orseau, M. Hutter, and O. Rivasplata. Logarithmic pruning is all you need. Advances in
Neural Information Processing Systems, 33, 2020.

[44] S. Oymak and M. Soltanolkotabi. Toward moderate overparameterization: Global convergence
guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information
Theory, 1(1), 2020.

[45] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. What’s hidden in a
randomly weighted neural network? In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11893–11902, 2020.

[46] A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-tuning in neural network
pruning. In International Conference on Learning Representations, 2019.

[47] I. Safran and O. Shamir. Spurious local minima are common in two-layer relu neural networks.
In International Conference on Machine Learning, pages 4430–4438, 2018.

[48] O. Shamir. Distribution-specific hardness of learning neural networks. The Journal of Machine
Learning Research, 19(1):1135–1163, 2018.

[49] S. Singh and A. Majumdar. Deep sparse coding for non–intrusive load monitoring. 9(5):4669–
4678, Feb. 2017.

[50] M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

[51] S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149, 2015.

[52] Y. Tian. An analytical formula of population gradient for two-layered relu network and its
applications in convergence and critical point analysis. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3404–3413. JMLR. org, 2017.

[53] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computa-
tional mathematics, 12(4):389–434, 2012.

[54] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

[55] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2019.

[56] F. Wang, K. Li, C. Liu, Z. Mi, M. Shafie-Khah, and J. P. S. Catalão. Synchronous pattern
matching principle-based residential demand response baseline estimation: Mechanism analysis
and approach description. IEEE Transactions on Smart Grid, 9(6):6972–6985, 2018.

[57] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural net-
works. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, pages 2082–2090, 2016.

13

[58] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional neural networks
using energy-aware pruning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5687–5695, 2017.

[59] M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu. Good subnetworks provably exist:
Pruning via greedy forward selection. In International Conference on Machine Learning, pages
10820–10830. PMLR, 2020.

[60] M. Ye and Y. Sun. Variable selection via penalized neural network: a drop-out-one loss approach.
In International Conference on Machine Learning, pages 5620–5629. PMLR, 2018.

[61] M. Ye, L. Wu, and Q. Liu. Greedy optimization provably wins the lottery: Logarithmic number
of winning tickets is enough. Advances in Neural Information Processing Systems, 33, 2020.

[62] G. Yehudai and O. Shamir. On the power and limitations of random features for understanding
neural networks. In Advances in Neural Information Processing Systems, pages 6594–6604,
2019.

[63] H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen, R. G. Baraniuk, Z. Wang, and Y. Lin. Drawing
early-bird tickets: Toward more efficient training of deep networks. In International Conference
on Learning Representations, 2019.

[64] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[65] S. Zhang, M. Wang, S. Liu, P.-Y. Chen, and J. Xiong. Fast learning of graph neural networks
with guaranteed generalizability:one-hidden-layer case. In 2020 International Conference on
Machine Learning (ICML), 2020.

[66] S. Zhang, M. Wang, S. Liu, P.-Y. Chen, and J. Xiong. Guaranteed convergence of training
convolutional neural networks via accelerated gradient descent. In 2020 54th Annual Conference
on Information Sciences and Systems (CISS), 2020.

[67] S. Zhang, M. Wang, J. Xiong, S. Liu, and P.-Y. Chen. Improved linear convergence of training
cnns with generalizability guarantees: A one-hidden-layer case. IEEE Transactions on Neural
Networks and Learning Systems, 32(6):2622–2635, 2020.

[68] L. Zhao, Q. Hu, and W. Wang. Heterogeneous feature selection with multi-modal deep neural
networks and sparse group lasso. IEEE Transactions on Multimedia, 17(11):1936–1948, 2015.

[69] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon. Recovery guarantees for one-
hidden-layer neural networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 4140–4149. JMLR. org, https://arxiv.org/abs/1706.03175, 2017.

[70] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery tickets: Zeros, signs, and the
supermask. In Advances in Neural Information Processing Systems 32, pages 3597–3607. 2019.

[71] W. Zhou, V. Veitch, M. Austern, R. P. Adams, and P. Orbanz. Non-vacuous generalization
bounds at the imagenet scale: a pac-bayesian compression approach. In International Confer-
ence on Learning Representations, 2018.

[72] D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep relu
networks. Machine Learning, 109(3):467–492, 2020.

[73] D. Zou and Q. Gu. An improved analysis of training over-parameterized deep neural networks.
In Advances in Neural Information Processing Systems, pages 2055–2064, 2019.

14

Supplementary Materials for:

Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on
Pruned Neural Networks

We first provide an overview about techniques used in proving the landscape (Theorem 1), linear
convergence to the ground truth (Theorem 2) and tensor initialization (Lemma 1).

1. Sample complexity scales in {rj}Kj=1: To guarantee the theoretical bounds depend on {rj}Kj=1
instead of d, we define an equivalent empirical risk function as shown in (12) in Appendix A, from
R

∑
j rj to R. Existing concentration theorems and landscape analysis built upon (2) can no longer be

used here, and thus we revised or updated the corresponding lemmas, which can be found in Appendix
G to I. In the initialization methods, for estimating a proper weights that match new empirical risk
function, the construction of high-momenta in Appendix B and corresponding proofs in Appendix J
are updated accordingly as well;

2. Local convex region: In proving Theorem 1 (Appendix C), we first bound the Hessian of the
expectation of the new empirical risk function and then obtain the distance of the Hessian of the
new empirical risk function to its expectation by concentration theorem. By triangle inequality, the
Hessian of the new empirical risk function is characterized in terms of sample size N ;

3. Linear Convergence: In proving Theorem 2 (Appendix D), we first characterize the gradient
descent term by Intermediate Value Theorem (IVT). However, since the empirical risk function is
non-smooth due to the ReLU activation function, IVT is applied in the expectation of the empirical
risk function instead, and we later show the gradient generated by finite number of samples is close
to its expectation. Therefore, the iterates still converge to the ground truth with enough samples.
Further, the linear convergence rate are determined by ‖W (t+1) −W ∗P ‖/‖W (t) −W ∗P ‖, which
turns out to be dependent on β;

4. Initialization via Tensor Method: The major challenge for tensor initialization is to construct the
proper high dimensional momenta. As we mentioned above, if one directly applies the method in
[69], the sample complexity is in Θ(d). In this paper, we select x̃ (see (20) in Appendix B), which is
the sum of the augmented xΩj . In proving Lemma 1, the major idea to bound the estimations of the
directions and magnitudes of wj,Ωj to the ground values, respectively (see in Appendix F).

A Notations

In this section, we first introduce some important notations that will be used in the following proofs,
and the notations are summarized in Table 1.

First, for the convenience of proofs, some notations in main contexts, namely, Ω∗j , r∗j and f̂D will be
re-defined. We emphasize here that the re-definition of these notations will not affect the presentation
of theoretical results in Section 3, and the explanations can be found in the following paragraphs.

Next, given a permutation matrix P , we define a group of sets {Ω∗j}Kj=1 with |Ω∗j | = r∗j , and Ω∗j
denotes the indices of non-zero entries inM∗P , which is also the non-pruned weights of the j-th
neuron in the oracle model with respect to ground truth weightsM∗P , instead ofM∗. Please note
that the sets {Ω∗j}Kj=1 and {r∗j }Kj=1 here are just a permutation of these in the main context. Since
the permutation of {rj}Kj=1 will not change the results in Section 3, we abuse the notations for the
convenience of proofs. Correspondingly, for the learner model, the indices of non-pruned weights of
the j-th neuron is denoted as Ωj , and |Ωj | = rj . Therefore, we have

wT
j x = wT

j,ΩjxΩj , (11)

where zΩj ∈ Rrj is the subvector of z with respect to indices Ωj for any vector z ∈ Rd.

Then, recall the empirical risk function defined in (2), it can be re-written as

f̂D(w̃) :=
1

2N

N∑
n=1

(1

K

K∑
j=1

φ(wT
j,Ωjxn,Ωj)− yn

)2

, (12)

15

Table 1: Table of Notations

Notation Description
N The number of training samples; a scalar in Z
K The number of neurons in the neural network; a scalar in R
d The dimension of input data; a scalar in R
x The input data/features; a vector in Rd
y The output label; a scalar in R
f̂D The empirical risk function defined in (12); a mapping from R

∑
j rj to R

f The population risk function defined as f = EDf̂D; a mapping from R
∑
j rj to R

P The permutation matrix; a binary matrix in {0, 1}K×K
W ∗ The ground truth weights of oracle network; a matrix in Rd×K
M∗ The mask matrix of the oracle network; a binary matrix in {0, 1}d×K
r∗j The number of non-pruned weights in the j-th neuron of oracle network
W The ground truth weights of learner network; a matrix in Rd×K
M The mask matrix of the learner network; a binary matrix in {0, 1}d×K
rj The number of non-pruned weights in the j-th neuron of learner network
rmin The minimal value in {rj}Kj=1

rmax The maximal value in {rj}Kj=1

Ω∗j The indices of non-pruned weights in teacher network; a set with size of r∗j
Ωj The indices of non-pruned weights in learner network; a set with size of rj
w̃ Contains the non-pruned weights of W and equals to

[wT
1,Ω1

,wT
2,Ω2

, · · · ,wT
K,ΩK

]T ; a vector in R
∑
j rj

w̃∗ Contains the non-pruned weights of the oracle model; a vector in R
∑
j rj

δi,j A binary scalar, and the value is 1 if Ωj and Ωk are overlapped and 0 otherwise
r̃ The value of 1

8K4

(∑
k

∑
j(1 + δj,k)(rj + rk)

1
2

)2
σi The i-th largest singular value of W ∗P , and the value equals to the i-th largest

singular value ofW ∗

κ The value of σ1/σK
γ The value of

∏K
i=1 σi/σK

ρ A fixed positive constant in R+

q Some large constant in R

where w̃ = [wT
1,Ω1

,wT
2,Ω2

, · · · ,wT
K,ΩK

]T ∈ R
∑
j rj . Here, we abuse the notation of f̂D to represent

a mapping from R
∑
j rj , instead of RK×d in (2), to R. In fact, under the constriant ofW = M �W ,

the degree of freedom ofW is actually
∑
j rj instead of Kd, and the definition in (2) is a easier way

for us to present the following proofs. Therefore, the optimization problem in (3) is equivalent as

min
w̃

: f̂D(w̃). (13)

Let us define w̃∗ = [w∗T1,Ω1
,w∗T2,Ω2

, · · · ,w∗TK,ΩK]T ∈ R
∑
j rj , where w∗Tj is the j-th column of

W ∗P . and it is clear that w̃∗ is the global optimal to (13). Additionally, the population risk function,
which is the expectation of the empirical risk function over the data D, is defined as

f(w̃) = EDf̂D(w̃) =ED
1

2N

N∑
n=1

(1

K

K∑
j=1

φ(wT
j,Ωjxn,Ωj)− yn

)2

=Ex
1

2

(1

K

K∑
j=1

φ(wT
j,ΩjxΩj)− y

)2

,

(14)

where x ∈ Rd belongs to standard Gaussian distribution, and y = g(W ∗P ∗;x).

Moreover, for the convenience of proofs, we use σi to denote the i-th largest singular value of
W ∗P , and it is clear that σi(W ∗P) = σi(W

∗) for all i. Then, κ is defined as σ1/σK , and

16

γ =
∏K
i=1 σi/σK . Factor ρ is defined in Property 3.2 [69] and a fixed constant for the ReLU

activation function. In addition, without special descriptions, α = [αT1 ,α
T
2 , · · · ,αTK]T stands for

any unit vector that in R
∑
j rj with αj ∈ Rrj . Therefore, we have

‖∇2f̂D‖2 = max
α
‖αT∇2f̂Dα‖2 = max

α

(K∑
j=1

αTj
∂f̂D
∂wj

)2

. (15)

Finally, since we focus on order-wise analysis, some constant number will be ignored in the majority
of the steps. In particular, we use h1(z) & (or .,h)h2(z) to denote there exists some positive
constant C such that h1(z) ≥ (or ≤,=)C · h2(z) when z ∈ R is sufficiently large.

B Initialization via tensor method

In this section, we present the revised tensor initialization based on that in [69]. To reduce the
dependency of input dimension from d to the order of rmax, we need to define x̃ in (20) instead
of directly using x to generate the high order momentum as shown in (21) to (23). In addition, as
wj,Ωj ’s are different in dimensions, we need to define the corresponding augmented weights by
inserting 0 such that augmented wj,Ωj are additive in a sense. The additional notations used in
presenting are summarized in Table 2, and one can skip this part if the focus is only on the local
convexity analysis (Theorem 1) and convergence analysis (Theorem 2). The intuitive reasons for
selecting x̃ mainly lie in two aspects: first, x̃ is much lower dimensional vector considering rj � d;
second, x̃ belongs to zero mean Gaussian distribution, which is rotational invariant and is correlate
with φ(w∗Tj x). Therefore, the magnitude and direction information of {wj,Ωj}Kj=1 are separable
after tensor decomposition, and the dimension of the tensors are at most in the order of rmax.

Table 2: Table of Additional Notations for Tensor method

Notation Description
x̃

(j)

Ω̃j
The argumented vector in Rrmax of xΩj by inserting 0; defined in (16)

Fj A linear mapping that generats a augmented vector; defined in (17)
F†j The pseudo inverse of Fj ; a linear mapping
x̃ The value of 1√

K

∑
j x̃

(j)

Ω̃j
;

u∗j The argumented vector in Rrmax of w∗j,Ωj by inserting 0; defined in (19)
u∗j The normalized vector of uj as u∗j/‖u∗j‖2
û
∗
j The estimation of the normalized vector of u∗j

ψ1, ψ2, ψ3 Some fixed constants depends on the distribution of {xΩj}Kj=1

M1 A vector in Rrmax defined in (21)
M̂1 The estimation ofM1

M2 A matrix in Rrmax×rmax defined in (22)
M̂2 The estimation ofM2

M3 A tensor in Rrmax×rmax×rmax defined in (23)
M̂3 The estimation ofM3

V The orthogonal matrix in RK×K that span the sub-space of the convex hull
of {uj}Kj=1

V̂ The estimation of V
M(V̂ , V̂ , V̂) A tensor in RK×K×K defined in (29)
M̂(V̂ , V̂ , V̂) The estimation ofM(V̂ , V̂ , V̂)

sj The value of V u∗j ; a vector in RK
ŝj The estimation of sj
αj The value of ‖u∗j‖2; a scalar in R
α̂j The estimation of αj

17

First, we define a group of augmented vectors {x̃(j)

Ω̃j
}Kj=1 based on {xΩj}Kj=1 such that Ωj ⊆ Ω̃j

with |Ω̃j | = rmax and

x̃
(j)
i =

{
xi if i ∈ Ωj
0 if i ∈ Ω̃j/Ωj

. (16)

For notation convenience, we use Fj to denote the mapping from Rrj to Rrmax as

Fj(z) = [zT ,0T(j)]
T , (17)

where 0 is a zero vector in Rrmax−rj . Obviously, we have

x̃
(j)

Ω̃j
= Fj(xΩj). (18)

Correspondingly, the augmented weights {u∗j}Kj=1 are defined as

u∗j = Fj(w∗j,Ωj) (19)

for j ∈ [K]. The steps above guarantee the augmented weights uj’s are in the same dimension
so that the high order momenta are able to characterize the directions of weights simultaneously.
Additionally, we define

x̃ =
1√
K

K∑
j=1

x̃
(j)

Ω̃j
, (20)

and corresponding high order momenta are defined in the following way instead:

M1 = Ex{yx̃} ∈ Rrmax , (21)

M2 = Ex
[
y
(
x̃⊗ x̃− Exx̃x̃T

)]
∈ Rrmax×rmax , (22)

M3 = Ex
[
y
(
x̃⊗3 − x̃⊗̃Exx̃x̃T

)]
∈ Rrmax×rmax×rmax , (23)

where Ex is the expectation over x and z⊗3 := z ⊗ z ⊗ z defined as

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (24)

for any vector v ∈ Rd1 and Z ∈ Rd1×d2 .

Following the same calculate formulas in the Claim 5.2 [69], there exist some known constants
ψi, i = 1, 2, 3, such that

M1 =
K∑
j=1

ψ1 · ‖u∗j‖2 · u∗j , (25)

M2 =
K∑
j=1

ψ2 · ‖u∗j‖2 · u∗ju∗Tj , (26)

M3 =
K∑
j=1

ψ3 · ‖u∗j‖2 · u∗⊗3
j , (27)

where u∗j = u∗j/‖u∗j‖2 in (21)-(23) is the normalization of u∗j .

M1, M2 and M3 can be estimated through the samples
{

(xn, yn)
}N
n=1

, and let M̂1, M̂2, M̂3

denote the corresponding estimates. First, we will decompose the rank-k tensor M3 and obtain
the {u∗j}Kj=1. By applying the tensor decomposition method [31] to M̂3, the outputs, denoted

by {û
∗
j}Kj=1, are the estimations of {u∗j}Kj=1. Next, we will estimate ‖u∗j‖2 through solving the

following optimization problem:

α̂ = arg min
α∈RK

:
∣∣∣M̂1 −

K∑
j=1

ψ1αjû
∗
j

∣∣∣, (28)

18

Subroutine 1 Tensor Initialization Method
1: Input: training data D = {(xn, yn)}Nn=1;
2: Generate augmented inputs and weights through Fj as shown in (17) and (19);
3: Partition D into three disjoint subsets D1, D2, D3;
4: Calculate M̂1, M̂2 following (21), (22) using D1, D2, respectively;
5: Obtain the estimate subspace V̂ of M̂2;
6: Calculate M̂3(V̂ , V̂ , V̂) through D3;
7: Obtain {ŝj}Kj=1 via tensor decomposition method [31] on M̂3(V̂ , V̂ , V̂);
8: Obtain α̂ by solving optimization problem (28);
9: Return: w(0)

j,Ωj
= F†j

(
|α̂j |V̂ ŝj

)
, j = 1, ...,K.

From (25) and (28), we know that |α̂j | is the estimation of ‖u∗j‖2. Thus, Û is given as[
|α̂1|û

∗
1, · · · , |α̂j |û

∗
j , · · · , |α̂K |û

∗
K

]
.

To reduce the computational complexity of tensor decomposition, one can project M̂3 to a lower-
dimensional tensor [69]. The idea is to first estimate the subspace spanned by {w∗j}Kj=1, and let V̂
denote the estimated subspace.

Moreover, we have

M3(V̂ , V̂ , V̂) = Ex
[
y
(
(V̂

T
x̃)⊗3 − (V̂

T
x̃)⊗̃Ex(V̂

T
x̃)(V̂

T
x̃)T

)]
∈ RK×K×K , (29)

Then, one can decompose the estimate M̂3(V̂ , V̂ , V̂) to obtain unit vectors {ŝj}Kj=1 ∈ RK . Since
u∗ lies in the subspace V , we have V V Tu∗j = u∗j . Then, V̂ ŝj is an estimate of u∗j . After
we obtain the estimated augmented weights û∗j , the estimated weights can be generated through
ŵ∗j,Ωj = F†j (û∗j), where F†j is the pseudo inverse of Fj . The initialization process is summarized in
Subroutine 1.

C Proof of Theorem 1

The main idea in proving Theorem 1 is to use triangle inequality as shown in (33) by bounding the
second order derivative of the population risk function and the distance between the empirical risk
and population risk functions. Lemma 3 provides the lower and upper bound for the population risk
function, while Lemma 4 provides the error bound between the second order derivation of empirical
risk and population risk functions.

Lemma 2 (Weyl’s inequality, [7]). SupposeB = A+E be a matrix with dimension m×m. Let
λi(B) and λi(A) be the i-th largest eigenvalues ofB andA, respectively. Then, we have

|λi(B)− λi(A)| ≤ ‖E‖2, ∀i ∈ [m]. (30)

Lemma 3. Let f be the population risk function in (14). AssumeW satisfies (6), then the second-
order derivative of f over w̃ is bounded as

(1− ε0)ρ

11κ2γK2
I ≤ ∇2f(w̃) ≤ 7

K
I, (31)

where w̃ only contains the elements ofW with respect to the indices of non-pruned weights.

Lemma 4. Let f̂D and f be the empirical and population risk function in (12) and (14), respectively,
then the second-order derivative of f̂D is close to its expectation f with an upper bound as:

‖∇2f̂D −∇2f‖2 .
1

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
(rj + rk) log q

N
(32)

with probability at least 1− q−rmin .

19

Proof of Theorem 1 . Let λ̂max and λ̂min denote the largest and smallest eigenvalues of∇2f̂D, respec-
tively. Also, Let λmax and λmin denote the largest and smallest eigenvalues of∇2fD, respectively.

Then, from Lemma 2, we have

λ̂max ≤ λmax + ‖∇2f̂D −∇2f‖2 (33)

and
λ̂min ≥ λmin − ‖∇2f̂D −∇2f‖2. (34)

When the sample complexity satisfies N & ε−2
1 ρ−2κ4γ2K4

[
1
K2

∑K
k=1

∑K
j=1(1 +

δj,k)
√
rj + rk

]2
log q, then from Lemma 4, we have

‖∇2f̂D −∇2f‖2 ≤
ε1ρ

11κ2γK2
. (35)

Then, from (33), (34) and (35), we have

λ̂max ≤
8

K
, (36)

and

λ̂min ≥
(1− ε0 − ε1)ρ

11κ2γK2
, (37)

which completes the proof.

D Proof of Theorem 2

The major idea in proving Theorem 2 is to first characterize the gradient descent term by intermediate
value theorem. Let w̃(t) be the vectorized iterateW (t) with respect to the non-pruned weights, then
we have

∇f̂Ωt(w̃
(t)) =fΩt(w̃

(t)) +
(
f̂Ωt(w̃

(t))− fΩt(w̃
(t))
)

=〈∇2fΩt(ŵ
(t)), w̃(t) − w̃∗〉+

(
f̂Ωt(w̃

(t))− fΩt(w̃
(t))
)
,

(38)

where ŵ(t) lies in the convex hull of w̃(t) and w̃∗. The reason that intermediate value theorem is
applied on population risk function instead of empirical risk function is the non-smoothness of the
empirical risk functions. Due to the non-smoothness of ReLU activation function at zero point, the
empirical risk function is not smooth, either. However, the expectation of the empirical risk function
over the Gaussian input x is smooth. Hence, compared with smooth empirical risk function, i.e.,
neural networks equipped with sigmoid activation function, we have an additional lemma to bound
∇f̂Dt to its expectation∇f , which is summarized in Lemma 5.

The momentum term β(W (t) −W (t−1)) plays an important role in determining the convergence
rate, and the recursive rule is obtained in the following way:[

w̃(t+1) − w̃∗

w̃(t) − w̃∗

]
= A(β)

[
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]
, (39)

where A(β) is a matrix with respect to the value of β and defined in (44). Then, we know w̃(t),
which is equivalent to W (t), converges to the ground-truth with a linear rate which is the largest
singular value of matrixA(β). Recall that AGD reduces to GD with β = 0, so our analysis applies to
GD method as well. We are able to show the convergence rate of AGD is faster than GD by proving
the largest singular value ofA(β) is smaller thanA(0) for some β > 0.

Lemma 5. Let f̂D and f be the empirical and population risk function in (12) and (14), respectively,
then the first-order derivative of f̂D is close to its expectation f with an upper bound as:

‖∇f̂D(w̃)−∇f(w̃)‖2 .
1

K2

K∑
k=1

K∑
j=1

(1+δj,k)

√
rk log q

N
‖w̃−w̃∗‖2+

1

K

K∑
k=1

√
rk log q

N
·|ξ| (40)

with probability at least 1− q−rmin , where w̃ only contains the elements ofW with respect to the
indices of non-pruned weights.

20

Proof of Theorem 2. Since ‖W (t) −W ∗‖F = ‖w̃(t) − w̃∗‖2, we can explore the converges of
{w̃(t)}Tt=1 instead. Recall that

w̃(t+1) =w̃(t) − η∇f̂Dt(w̃
(t)) + β(w̃(t) − w̃(t−1))

=w̃(t) − η∇f(w̃(t)) + β
(
w̃(t) − w̃(t−1))

+ η
(
∇f(w̃(t))−∇f̂Dt(w̃

(t))
)
.

(41)

Since∇2f is a smooth function, by the intermediate value theorem, we have

w̃(t+1) = w̃(t) − η∇2f(ŵ(t))(w̃(t) − w̃∗) + β(w̃(t) − w̃(t−1))

+ η
(
∇f(w̃(t))−∇f̂Dt(w̃

(t))
)
,

(42)

where ŵ(t) lies in the convex hull of w̃(t) and w̃∗.
Next, we have [

w̃(t+1) − w̃∗

w̃(t) − w̃∗

]
=

[
I − η∇2f(ŵ(t)) + βI βI

I 0

] [
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]

+ η

[
∇f(w̃(t))−∇f̂Dt(w̃

(t))
0

] (43)

Let

A(β) =

[
I − η∇2f(ŵ(t)) + βI βI

I 0

]
, (44)

so we have∥∥∥∥∥
[
w̃(t+1) − w̃∗

w̃(t) − w̃∗

]∥∥∥∥∥
2

= ‖A(β)‖2

∥∥∥∥∥
[
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]∥∥∥∥∥
2

+ η

∥∥∥∥[∇f(w̃(t))−∇f̂Dt(w̃
(t))

0

]∥∥∥∥
2

. (45)

From Lemma 5, we know that

η
∥∥∥∇f(w̃(t))−∇f̂Dt(w̃

(t))
∥∥∥

2
≤ C5η

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
rk log q

Nt
‖w̃ − w̃∗‖2

+
C5η

K

K∑
k=1

√
rk log q

Nt
· |ξ|

(46)

for some constant C5 > 0. Then, we have

‖w̃(t+1) − w̃∗‖2 ≤
(
‖A(β)‖2 +

C5η

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
rk log q

Nt

)
‖w̃(t) − w̃∗‖2

+
C5η

K

K∑
k=1

√
rk log q

Nt
· |ξ|

:=ν(β)‖w̃(t) − w̃∗‖2 +
C5η

K

K∑
k=1

√
rk log q

Nt
· |ξ|.

(47)

Let∇2f(ŵ(t)) = SΛST be the eigendecomposition of∇2f(ŵ(t)). Then, we define

A(β) :=

[
ST 0
0 ST

]
A(β)

[
S 0
0 S

]
=

[
I − ηΛ + βI βI

I 0

]
(48)

Since
[
S 0
0 S

] [
ST 0
0 ST

]
=

[
I 0
0 I

]
, we knowA(β) andA(β) share the same eigenvalues.

Let λi be the i-th eigenvalue of ∇2f(ŵ(t)), then the corresponding i-th eigenvalue of (48), denoted
by δi(β), satisfies

ν2
i − (1− ηλi + β)δi + β = 0. (49)

21

Then, we have

δi(β) =
(1− ηλi + β) +

√
(1− ηλi + β)2 − 4β

2
, (50)

and

|δi(β)| =

{√
β, if β ≥

(
1−
√
ηλi
)2
,

1
2

∣∣∣(1− ηλi + β) +
√

(1− ηλi + β)2 − 4β
∣∣∣ , otherwise.

(51)

Note that the other root of (49) is abandoned because the root in (50) is always larger than or at least
equal to the other root with |1− ηλi| < 1. By simple calculation, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
, (52)

and specifically, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.
Let us first assume w̃(t) satisfies (6), then from Lemma 3, we know that

0 <
(1− ε0)

11κ2γK2
≤ λi ≤

7

K

provided that Nt & ε−2
0 ρ−1κ2γK3

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk + rj

]2
log q. Let γ1 = ρ(1−ε0)

11κ2γK2 and
γ2 = 7

K . If we choose β such that

β∗ = max
{

(1−√ηγ1)2, (1−√ηγ2)2
}
, (53)

then we have β ≥ (1−
√
ηλi)

2 for any i and δi = max
{
|1−√ηγ1|, |1−

√
ηγ2|

}
for any i.

Let η = 1
2γ2

, then β∗ equals to
(

1−
√

γ1
2γ2

)2

. Then, for any ε0 ∈ (0, 1
2) we have

‖A(β∗)‖2 = max
i
δi(β

∗) = 1−
√

γ1

2γ2
=1−

√
1− ε0

154ρ−1κ2γK

≤1− 1− 3/4 · ε0√
154ρ−1κ2γK

.

(54)

Then, let
C5η

K2

K∑
k=1

K∑
j=1

(1 + δj,k)

√
rk log q

Nt
≤ ε0

4
√

154ρ−1κ2γK
, (55)

we need Nt & ε−2
0 ρ−1κ2γK3

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk
]2

log q.

Combine (54) and (55), we have

ν(β∗) ≤ 1− 1− ε0√
154ρ−1κ2γK

. (56)

While let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1− 1− ε0

154ρ−1κ2γK
(57)

and
ν(0) ≤ 1− 1− 2ε0

154ρ−1κ2γK
(58)

if Nt & ε−2
0 ρ−1κ2γK4

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk + rj

]2
log q.

In conclusion, with η = 1
2γ2

and β =
(
1− γ1

2γ2

)2
, we have

‖w̃(t+1) − w̃∗‖2 ≤
(

1− 1− ε0√
154κ2γK

)
‖w̃(t) − w̃∗‖2 +

Cη

K

K∑
k=1

√
rk log q

Nt
|ξ|. (59)

if w̃(t+1) satisfies (6) and Nt & ε−2
0 ρ−1κ2γK4

[
1
K2

∑
j

∑
k(1 + δj,k)

√
rk + rj

]2
log q.

22

Then, we can start mathematical induction of (59) over t.

Base case: (6) holds for w̃(0) naturally from the assumption in Theorem 2. Since (6) holds and the
number of samples exceeds the required bound in (59), we have (59) holds for t = 0.

Induction step: Assume (59) holds for t, to make sure the mathematical induction of (59) holds, we
need w̃(t+1) satisfies (6). That is

K∑
k=1

η

K

√
rk log q

Nt
.

1− ε0√
132κ2γK

· ε0σK
44κ2γK2

. (60)

Hence, we need

Nt & ε−2
0 κ8γ3K6

(1

K

∑
k

√
rk

)2

log q. (61)

In addition, with (6) and (59) hold for all t ≤ T , the following equation∥∥∥∥∥
[
w̃(t+1) − w̃∗

w̃(t) − w̃∗

]∥∥∥∥∥
∞

= ‖A(β)‖2

∥∥∥∥∥
[
w̃(t) − w̃∗

w̃(t−1) − w̃∗

]∥∥∥∥∥
∞

+ η

∥∥∥∥[∇f(w̃(t))−∇f̂Dt(w̃
(t))

0

]∥∥∥∥
∞
(62)

holds as well, and ‖A(β)‖2 is bounded by ν(β). Hence, (59) also holds in infinity norm as

‖w̃(t+1) − w̃∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)
‖w̃(t) − w̃∗‖∞ + 2Cη

√
r log q

Nt
|ξ|. (63)

In conclusion, when Nt & ε−2
0 κ8γ3K6

(
1
K2

∑
k

∑
j(1 + δj,k)

√
rk + rj

)2

log d, we know that (59)

holds for all 1 ≤ t ≤ T with probability at least 1−K2T · q−rmin . By simple calculation, we can
obtain

‖w̃(T) − w̃∗‖2 ≤
(

1− 1− ε0√
132κ2γK

)T
‖w̃(0) − w̃∗‖2 +

C

K

K∑
k=1

√
κ2γK2rk log q

Nt
· |ξ|. (64)

for some constant C > 0.

E Obtaining a proper learner network via magnitude pruning

In this section, we show that how one can combine Algorithm 1 and magnitude pruning to find a
proper learner network such that rj ≥ r∗j and Ωj ⊇ Ω∗j from a fully-connected network under some
assumptions. Suppose the number of samples is at least Ω

(
K6d log q log(1/ε)

)
, we train directly on

the fully-connected dense network using Algorithm 1. The number of iteration in line 2 of Algorithm
1 is set as T1 = Θ

(
log(2Ŵmax/Ŵmin)

)
, where Ŵmin and Ŵmax denote the smallest and largest

value ofW ∗, respectively. From (63), after T1 iterations, the returned model, denote byW (T1), is
close to the ground-truthW ∗. Specifically, ifW ∗

i,j 6= 0 andW ∗
i′,j′ = 0, thenW (T1)

i,j >W
(T1)
i′,j′ for

any i, j, i′, j′. Then we sort the weights based on their absolute values and prune them sequentially
starting from the least absolute value. As long as the ratio of pruned weights is at most

(
1−

∑
j rj

Kd

)
,

all the weights are removed correctly, leading to a proper learner network. In fact, if we remove
exactly 1 −

∑
j rj

Kd fraction of weights, the pruned network has the same architecture as the oracle
network.

Specifically, supposeM (t) to denote the mask matrix by truncating the smallest
(

1−
∑
j rj

Kd

)
fraction

of entries in iterateW (t). LetM∗ denote the ground-truth mask matrix for the oracle network, the
following corollary holds from Theorem 2.

23

Corollary 1. Suppose the noise |ξ| ≤ Ŵ ∗min and the number of samples satisfies N =

Ω
(
K6d log q log(1/ε)

)
. Let {W (t1)}T1

t1=1 be the iterates generated from Algorithm 1 by setting
r = d. Then, for any T1 ≥ log(Ŵ ∗max/Ŵ

∗
min), we have

M (T1) = M∗. (65)

Proof of Corollary 1. If we train on the dense network, from (63), we know that

‖W (t+1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)
‖W (t) −W ∗‖∞ + 2Cη

√
d log q

Nt
|ξ|. (66)

Hence, we have

‖W (T1) −W ∗‖∞ ≤
(

1− 1− ε0√
154κ2γK

)T1

‖W (0) −W ∗‖∞ + 2Cη

√
d log q

Nt
|ξ|. (67)

With T1 ≥ log(2Ŵ ∗max/Ŵ
∗
min), we have(

1− 1− ε0√
154κ2γK

)T1

‖W (0) −W ∗‖∞ ≤
1

4
Ŵ ∗min ·

‖W (0) −W ∗‖∞
‖W ∗‖∞

≤ 1

4
Ŵ ∗min. (68)

Since N = Ω
(
K6d log q log(1/ε)

)
and |ξ| ≤ Ŵ ∗min, we have

2Cη

√
d log q

Nt
|ξ| ≤ 1

4
Ŵ ∗min. (69)

From (68) and (69), we know that

‖W (T1) −W ∗‖∞ ≤
1

2
Ŵ ∗min. (70)

Therefore, for any entry in W (T1)
i,j , if the corresponding entry in augmented ground-truth weights

W ∗ is zero, we have

|W (T1)
i,j | ≤

1

2
Ŵ ∗min; (71)

if the corresponding entry inW ∗ is non-zero, we have

|W (T1)
i,j | ≥ |Ŵ

∗
i,j | −

1

2
Ŵ ∗min ≥

1

2
Ŵ ∗min. (72)

As we know that there are only
∑
j rj/(Kd) fraction of non-zero weights in the ground-truth model,

M (T1) = M∗ holds.

F Proof of Lemma 1

Instead of providing the proof for Lemma 1, we turn to prove a more general bound for the perfor-
mance of tensor initialization method as shown in Lemma 6. One can easily verify that Lemma 1
holds naturally from Lemma 6.

Recall that in Appendix B, the estimation ofw∗j,Ωj are converted into estimate the augmented vector
u∗j . Further, the estimation of u∗j are divided into estimating three parts: (1) the estimation of the
magnitude of u∗j , which is denoted as α̂j ; (2) the estimation of the subspace of u∗j , which is denoted
as V̂ ; (3) the estimation of the representation of u∗j on subspace V , which is denoted as ŝj . Hence,
the major idea of proving Lemma 6 is to characterize the difference of these three estimations to its
ground-truth, which are summarized in Lemmas 7, 8 and 9, respectively.

Lemma 6. Assume the noise level |ξ| ≤ Kσ1 and the number of samples N & κ8K5rmax log6 q

with some large constant q, the tensor initialization method in Subroutine 1 outputsW (0) such that

‖W (0) −W ∗‖2 . κ6

√
Krmax log q

N
(σ1 + |ξ|) (73)

with probability at least 1− q−rmax .

24

F.1 Proof of Lemma 6

Lemma 7. Suppose M2 is defined as in (22) and M̂2 is the estimation of M2 by samples D =
{(xn, yn)}Nn=1. Then, with probability 1− q−rmax , we have

‖M̂2 −M2‖ .
√
rmax log q

N
(σ1 + |ξ|), (74)

provided that N & rmax log4 q.

Lemma 8. Let V̂ be generated by step 4 in Subroutine 1. SupposeM3(V̂ , V̂ , V̂) is defined as in (29)
and M̂3(V̂ , V̂ , V̂) is the estimation of M3(V̂ , V̂ , V̂) by samples D = {(xn, yn)}Nn=1. Further,

we assume V ∈ Rr×K is an orthogonal basis of {u∗j}Kj=1 and satisfies ‖V V T − V̂ V̂
T
‖ ≤ 1/4.

Then, provided that N & K5 log6 d, with probability at least 1− q−rmax , we have

‖M̂3(V̂ , V̂ , V̂)−M3(V̂ , V̂ , V̂)‖ .
√

log q

N
(σ1 + |ξ|). (75)

Lemma 9. Suppose M1 is defined as in (21) and M̂1 is the estimation of M1 by samples D =
{(xn, yn)}Nn=1. Then, with probability 1− q−rmax , we have

‖M̂1 −M1‖ .
√
rmax log q

N
(σ1 + |ξ|) (76)

provided that N & rmax log4 d.
Lemma 10 ([53], Theorem 1.6). Consider a finite sequence {Zk} of independent, random matrices
with dimensions d1 × d2. Assume that such random matrix satisfies

E(Zk) = 0 and ‖Zk‖ ≤ R almost surely.
Define

δ2 := max
{∥∥∥∑

k

E(ZkZ
∗
k)
∥∥∥,∥∥∥∑

k

E(Z∗kZk)
∥∥∥}.

Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t
}
≤ (d1 + d2) exp

(−t2/2
δ2 +Rt/3

)
.

Lemma 11 ([69], Lemma E.6). Let V ∈ Rr×K be an orthogonal basis of w̃∗ and V̂ be generated
by step 4 in Subroutine 1. Assume ‖M̂2 −M2‖2 ≤ σK(M2)/10. Then, we have

‖V V T − V̂ V̂
T
‖2 ≤

‖M2 − M̂2‖
σK(M2)

. (77)

Lemma 12 ([69], Lemmas E.13 and E.14). Let V ∈ Rr×K be an orthogonal basis of w̃∗ and V̂
be generated by step 4 in Subroutine 1. Assume M1 can be written in the form of (25) with some
constant ψ1, and let M̂1 be the estimation of M1 by samples D = {xn, yn}Nn=1. Let α̂ be the
optimal solutions of (28) with û

∗
j = V̂ ŝj . Then, for each j ∈ {1, 2, · · · ,K}, if

T1 := ‖V V T − V̂ V̂
T
‖2 ≤

1

κ2
√
K
,

T2 := ‖û∗j − V̂
T
ŝj‖2 ≤

1

κ2
√
K
,

T3 := ‖M̂1 −M1‖2 ≤
1

4
‖M1‖2,

(78)

then we have ∣∣∣α∗j − α̂j∣∣∣ ≤ (κ4K
3
2

(
T1 + T2

)
+ κ2K

1
2T3

)
|α∗j |, (79)

where α∗j = ‖u∗j‖2.

25

Proof of Lemma 1. By simple calculation, we have

‖u∗j − |α̂j |V̂ ŝj‖2

≤
∥∥∥u∗j − ‖u∗j‖2V̂ ŝj + ‖u∗j‖2V̂ ŝj − |α̂j |V̂ ŝj

∥∥∥
2

≤
∥∥∥u∗j − ‖u∗j‖2V̂ ŝj∥∥∥

2
+
∥∥∥‖u∗j‖2V̂ ŝj − |α̂j |V̂ ŝj∥∥∥

2

≤‖u∗j‖2‖u∗j − V̂ ŝj‖2 +
∣∣∣‖u∗j‖2 − |α̂j |∣∣∣‖V̂ ŝj‖2

≤σ1

(
‖u∗j − V̂ V̂

T
u∗j‖2 + ‖V̂

T
u∗j − ŝj‖2

)
+
∣∣∣‖u∗j‖2 − |α̂j |∣∣∣

:=σ1

(
I1 + I2

)
+ I3.

(80)

From Lemma 11, we have

I1 = ‖u∗j − V̂ V̂
T
u∗j‖2 ≤‖V V

T − V̂ V̂
T
‖2 ≤

‖M̂2 −M2‖2
σK(M2)

, (81)

where the last inequality comes from Lemma 7. Then, from (26), we know that

σK(M2) . min
1≤j≤K

‖u∗j‖2 = min
1≤j≤K

‖w̃∗j,Ωj‖2 . σK . (82)

From Theorem 3 in [31], we have

I2 =‖V̂
T
u∗j − ŝj‖2 .

κ

σK
‖M̂3(V̂ , V̂ , V̂)−M3(V̂ , V̂ , V̂)‖2. (83)

To guarantee the condition (78) in Lemma 12 hold, according to Lemmas 7 and 8, we need N &
κ3Krmax log q. Then, from Lemma 12, we have

I3 =
(
κ4K3/2(I1 + I2) + κ2K1/2‖M̂1 −M1‖

)
σ1. (84)

When rmax � K, according to Lemmas 7, 8 and 9, we have∥∥u∗j − |α̂j |V̂ ŝj∥∥2
. κ6

√
rmax log q

N
(σ1 + |ξ|) (85)

provided that N & K3rmax log4 d.

In conclusion, we have

‖W (0) −W ∗‖F = ‖w̃∗ − w̃(0)‖2 ≤
√
K ·

∥∥w∗j,Ωj −w(0)
j,Ωj

∥∥
2

=
√
K ·

∥∥F†j (u∗j − û
∗
j)
∥∥

2

≤
√
K ·

∥∥u∗j − û∗j∥∥2

=
√
K ·

∥∥u∗j − |α̂j |V̂ ŝj∥∥2

.κ6

√
Krmax log q

N
(σ1 + |ξ|).

(86)

G Additional proof of the lemmas in Appendix C

G.1 Proof of Lemma 3

The eigenvalues of ∇2f at any fixed point w̃ is bounded through the ones at the ground truth w̃∗ by
using Lemma 2. The eigenvalues of∇2f at ground truth w̃∗ is bounded in (89) and (90).
Lemma 13. Let f be the population risk function in (14) and w̃ satisfy (6), then we have

‖∇2f(w̃)−∇2f(w̃∗)‖2 ≤
4‖w̃∗ − w̃‖2

σK
. (87)

26

Proof of Lemma 3. Let λmax(w̃) and λmin(w̃) denote the largest and smallest eigenvalues of ∇2fD
at point w̃, respectively. Then, from Lemma 2, we have

λmax(w̃) ≤ λmax(w̃∗) + ‖∇2f(w̃)−∇2f(w̃∗)‖2,
and λmin(w̃) ≥ λmin(w̃∗)− ‖∇2f(w̃)−∇2f(w̃∗)‖2.

(88)

Next, we provide the the lower bound of Hessian of population function at ground truth w̃∗. Then,
we have

min
‖α‖2=1

αT∇2f(w̃∗)α =
1

K2
min
‖α‖2=1

Ex
(K∑
j=1

αTj xΩjφ
′(w∗Tj,ΩjxΩj)

)2

=
1

K2
min

‖α̃‖2=1, supp(α̃j)= supp(w∗j)
Ex
(K∑
j=1

α̃Tj xφ
′(w∗Tj x)

)2

≥ 1

K2
min
‖α̃‖2=1

Ex
(K∑
j=1

α̃Tj xφ
′(w∗Tj x)

)2

≥ ρ

11κ2λK2
,

(89)

where α̃ ∈ RKd with α̃j ∈ Rd, and the last inequality comes from Lemma D.6 [69].

Next, the upper bound of Hessian of population function at ground truth w̃∗ can be bounded in the
following way. For any α, we have

αT∇2f(w̃∗)α =
1

K2
Ex
(K∑
j=1

αTj xΩjφ
′(w∗Tj,ΩjxΩj)

)2

≤ 2

K2
· Ex

K∑
j=1

(
αTj xΩjφ

′(w∗Tj,ΩjxΩj)
)2

=
2

K2

K∑
j=1

Ex
(
αTj xΩjφ

′(w∗Tj,ΩjxΩj)
)2

≤ 2

K2

K∑
j=1

(
Ex(αTj xΩj)

4Ex|φ′|4
) 1

2

≤ 2

K2
·K · 3 =

6

K
.

(90)

Then, from Lemma 13, when w̃ satisfies (6), we have that

‖∇2f(w̃)−∇2f(w̃∗)‖2 ≤
ε0ρ

11κ2γ
. (91)

Hence, from (88) and (91), we have that

(1− ε0)ρ

11κ2γK2
I ≤ ∇2f(w̃) ≤ 7

K
I. (92)

G.2 Proof of Lemma 4

We first show that the second order derivative of f̂D is a sum of several random sub-exponential
variables as shown in (101) and (102). Then, by concentration theory, i.e., Chernoff bound, we can
show that the error bound of∇2f̂D to its expectation.

27

Definition 1 (Definition 5.7, [54]). A random variable X is called a sub-Gaussian random variable
if it satisfies

(E|X|p)1/p ≤ c1
√
p (93)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖
2
ψ2
s2 (94)

for all s ∈ R and some constant c2 > 0, where ‖X‖φ2
is the sub-Gaussian norm of X defined as

‖X‖ψ2 = supp≥1 p
−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional
marginal αTX is sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of X is defined as
‖X‖ψ2

= sup‖α‖2=1 ‖αTX‖ψ2
.

Definition 2 (Definition 5.13, [54]). A random variable X is called a sub-exponential random
variable if it satisfies

(E|X|p)1/p ≤ c3p (95)
for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖
2
ψ1
s2 (96)

for s ≤ 1/‖X‖ψ1
and some constant c4 > 0, where ‖X‖ψ1

is the sub-exponential norm of X defined
as ‖X‖ψ1 = supp≥1 p

−1(E|X|p)1/p.

Lemma 14 (Lemma 5.2, [54]). Let B(0, 1) ∈ {α
∣∣‖α‖2 = 1,α ∈ Rd} denote a unit ball in Rd.

Then, a subset Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to within
ξ by some point α ∈ B(0, 1), i.e. ‖z −α‖2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ satisfies

|Sξ| ≤ (1 + 2/ξ)d. (97)

Lemma 15 (Lemma 5.3, [54]). LetA be an d1 × d2 matrix, and let Sξ(d) be a ξ-net of B(0, 1) in
Rd for some ξ ∈ (0, 1). Then

‖A‖2 ≤ (1− ξ)−1 max
α1∈Sξ(d1),α2∈Sξ(d2)

|αT1Aα2|. (98)

Proof of Lemma 4. Recall the definition of f and f̂ in (14) and (12), we have

∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

=Ex
[
φ′(wT

j1,Ωj1
xΩj1

)φ′(wT
j2,Ωj2

xΩj2
)xΩj1

xTΩj2

− 1

N

N∑
n=1

φ(wT
j1,Ωj1

xn,Ωj1)φ′(wT
j2,Ωj2

xn,Ωj2)xn,Ωj1x
T
n,Ωj2

]
.

(99)

For any α, we have

‖∇2f −∇2f̂D‖2

= max
‖α‖2=1

∣∣∣αT (∇2f −∇2f̂D)α
∣∣∣

=
K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣∣∣αTj1(∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

)
αj2

∣∣∣∣∣
=

1

K2

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

Ex
[
φ′(wT

j1,Ωj1
xΩj1)φ′(wT

j2,Ωj2
xΩj2)αTj1xΩj1α

T
j2xΩj2

− 1

N

N∑
n=1

φ′(wT
j1,Ωj1

xn,Ωj1)φ′(wT
j2,Ωj2

xn,Ωj2)αTj1xn,Ωj1α
T
j2xn,Ωj2

]
.

(100)

28

Then, define Zn(j1, j2) = φ(wT
j1,Ωj1

xn,Ωj1)φ′(wT
j2,Ωj2

xn,Ωj2)αTj1xn,Ωj1α
T
j2
xn,Ωj2 , and we say Z

belongs to sub-Exponential distribution by Definition 2. If |Ωj1 ∩Ωj2 | 6= ∅, namely, Ωj1 and Ωj2 are
not disjointed, we have

(
E|Zn|p

)1/p ≤(E∣∣∣∣(αTj1xn,Ωj1) · (αTj2xn,Ωj2)∣∣∣∣p)1/p

≤
(
E
∣∣∣(αTj1xn,Ωj1)∣∣∣2p)1/(2p)

·
(
E
∣∣∣(αTj2xn,Ωj2)∣∣∣2p)1/(2p)

≤Cx ·
√

2p · Cx
√

2p

=2C2
x · p.

(101)

While if |Ωj1 ∩ Ωj2 | = ∅, namely, Ωj1 and Ωj2 are disjointed, we have

(
E|Zn|p

)1/p ≤(E∣∣∣∣(αTj1xn,Ωj1) · (αTj2xn,Ωj2)∣∣∣∣p)1/p

=

(
E
∣∣∣(αTj1xn,Ωj1)∣∣∣p)1/(p)

·
(
E
∣∣∣(αTj2xn,Ωj2)∣∣∣p)1/(p)

≤Cx ·
√
p · Cx

√
p

=C2
x · p.

(102)

Then, we have

EZnes(Zn−EZn) ≤ e−C‖Zn‖
2
ψ1
s2 (103)

for some constant C > 0 and any s ∈ R. From Chernoff bound, we have

Prob
{∣∣∣ 1

N

N∑
n=1

(Zn − EZn)
∣∣∣ < t

}
≤ 1− e−C‖Zn‖

2
ψ1
·Ns2

eNst
. (104)

Let us select t = ‖Zn‖ψ1

√
(rj1+rj2) log q

N and s =
√

2
C‖zn‖2ψ1

· t, then we have

∣∣∣ 1

N

N∑
n=1

(
Zn(j1, j2)− EZn(j1, j2)

)∣∣∣ ≤ ‖Zn‖ψ1

√
(rj1 + rj2) log q

N
(105)

with probability at least 1− q−(rj1+rj2).

Hence, from Lemma 15, we have

max
‖αj1‖2≤1,‖αj2‖2≤1

∣∣∣∣∣αTj1(∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

)
αj2

∣∣∣∣∣
≤2
∣∣∣ 1

N

N∑
n=1

(Zn − EZn)
∣∣∣ (106)

with probability at least 1−
(
|S 1

2
(rj1)| · |S 1

2
(rj2)|

)
· q−(rj1+rj2), where S 1

2
(rj1) and S 1

2
(rj2) are

the covering sets defined in Lemma 14. From Lemma 14, we know that |S 1
2
(rj1)| · |S 1

2
(rj2)| ≤

5(rj1+rj2). As long as q is a constant that is larger than 5, (106) holds with the probability at least
1−

(
q
5

)−(rj1+rj2)
. For notation simplification, we use probability 1− q−(rj1+rj2) instead.

From (101) and (102), we know that

‖Zn(j1, j2)‖ψ1
≤
{

2C2
x, if Ωj1 and Ωj2 are joint sets

C2
x, if Ωj1 and Ωj2 are disjoint sets

. (107)

29

Hence, we have

‖∇2f(w̃)−∇2f̂Ω(w̃)‖2

≤
K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣∣∣αTj1(∂2f

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f̂D
∂wj1,Ωj1

∂wj2,Ωj2

)
αj2

∣∣∣∣∣
≤ 2

K2

K∑
j1=1

K∑
j2=1

max
‖α‖2=1

∣∣∣ 1

N

N∑
n=1

(
Zn(j1, j2)− EZn(j1, j2)

)∣∣∣
.

1

K2

K∑
j1=1

K∑
j2=1

√
(1 + δj1,j2)2(rj1 + rj2) log q

N

(108)

with probability at least 1 − q−rmin , where δj1,j2 equals to 0 if Ωj1 and Ωj2 are disjoint and 1
otherwise.

H Proof of Lemma 5

Proof of Lemma 5. The first-order derivative of the empirical risk function is written as

∂f̂D
∂wk,Ωk

=
1

K ·N

N∑
n=1

(
yn −

1

K

K∑
j=1

φ(wT
j,Ωjxn,Ωj)

)
xn,Ωkφ

′(wT
k,Ωk

xn,Ωk)

=
1

K2 ·N

N∑
n=1

K∑
j=1

(
φ(w∗Tj,Ωjxn,Ωj)− φ(wT

j,Ωjxn,Ωj)
)
xn,Ωkφ

′(wT
k,Ωk

xn,Ωk)

+
1

K ·N

K∑
j=1

ξnxn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

(109)

Define zn(j, k) =
(
φ(w∗Tj,Ωjxn,Ωj)− φ(wT

j,Ωj
xn,Ωj)

)
φ′(wT

k,Ωk
xn,Ωk)xn,Ωk . Then, for any αk ∈

Rr, we have

p−1
(
Ex
∣∣αTk zn∣∣p) 1

p

=p−1
(
Ex
∣∣(αTk xn,Ωk)

(
φ(w∗Tj,Ωjxn,Ωj)− φ(wT

j,Ωjxn,Ωj)
)
φ′(wT

k,Ωk
xn,Ωk)

∣∣p) 1
p

≤p−1
(
Ex
∣∣(αTk xn,Ωk)

(
φ(w∗Tj,Ωjxn,Ωj)− φ(wT

j,Ωjxn,Ωj)
)∣∣p) 1

p

.

(110)

If Ωj and Ωk are joint, then

p−1
(
Ex
∣∣αTk zn∣∣p) 1

p

≤p−1
(
Ex|αTk xn,Ωk |2p

) 1
2p ·

(
Ex
∣∣φ(w∗Tj,Ωjxn,Ωj)− φ(wT

j,Ωjxn,Ωj)
∣∣2p) 1

2p

≤p−1
(
Ex|αTk xn,Ωk |2p

) 1
2p ·

(
Ex
∣∣(w∗j,Ωj −wj,Ωj)

Txn,Ωj
∣∣2p) 1

2p

≤2‖w∗j,Ωj −wj,Ωj‖2 ≤ 2‖w̃∗ − w̃‖2.

(111)

If Ωj and Ωk are disjoint, then

p−1
(
Ex
∣∣αTk zn∣∣p) 1

p

≤p−1
(
Ex|αTj xn,Ωj |p

) 1
p ·
(
Ex
∣∣φ(w∗Tj,Ωjxn,Ωj)− φ(wT

j,Ωjxn,Ωj)
∣∣p) 1

p

≤p−1
(
Ex|αTj xn,Ωj |p

) 1
p ·
(
Ex
∣∣(w∗j,Ωj −wj,Ωj)

Txn,Ωj
∣∣p) 1

p

≤‖w∗j,Ωj −wj,Ωj‖2 ≤ ‖w̃
∗ − w̃‖2.

(112)

30

Following similar steps in (104), by Chernoff bound, we have

∥∥∥ 1

N

N∑
n=1

(zn − Exzn)
∥∥∥

2
. ‖zn(j, k)‖ψ1

√
rj log q

N
· ‖w∗j,Ωj −wj,Ωj‖2 (113)

with probability at least 1− q−rj , where

‖zn(j, k)‖ψ1 =

{
2‖w̃ − w̃∗‖2, if Ωk and Ωj are joint,
‖w̃ − w̃∗‖2, if Ωk and Ωj are disjoint

(114)

That is ‖zn(j, k)‖ψ1
= (1 + δj,k)‖w̃ − w̃∗‖2. Also, we know that xn,Ωkφ

′(wT
k,Ωk

xn,Ωk) belongs
to sub-Gaussian distribution as well. Then, by Chernoff bound, we have

∥∥∥ 1

N

N∑
n=1

ξnxn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

∥∥∥
2
.|ξ| ·

∥∥∥ 1

N

N∑
n=1

xn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

∥∥∥
2

.|ξ| ·
√
rk log q

N

(115)

with probability at least q−rk .

In conclusion, we have

‖∇f̂D −∇f‖2 ≤
K∑
k=1

∥∥∥ ∂f̂D
∂wk

− ∂f

∂wk

∥∥∥
2

≤
K∑
k=1

1

K2

K∑
j=1

∥∥∥ 1

N

N∑
n=1

(zn(j, k)− Exzn(j, k))
∥∥∥

2

+
K∑
k=1

1

K

∥∥∥ 1

N

N∑
n=1

ξnxn,Ωkφ
′(wT

k,Ωk
xn,Ωk)

∥∥∥
2

.
1

K2

K∑
k=1

K∑
j=1

√
(1 + δj,k)2rk log q

N
‖w̃∗ − w̃‖2 +

1

K

K∑
k=1

√
rk log q

N
· |ξ|.

(116)

I Proof of Lemma 13

Proof of Lemma 13. Recall the definition of population risk function, we have

∂2f(w∗)

∂wj1,Ωj1
∂wj2,Ωj2

=
1

K2
Exφ′(w∗Tj1,Ωj1xΩj1)φ′(w∗Tj2,Ωj2xΩj2)xΩj1x

T
Ωj2 (117)

and

∂2f(w)

∂wj1,Ωj1
∂wj2,Ωj2

=
1

K2
Exφ′(wT

j1,Ωj1
xΩj1)φ′(wT

j2,Ωj2
xΩj2)xΩj1x

T
Ωj2 (118)

31

Then, we have

∂2f(w∗)

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f(w)

∂wj1,Ωj1
∂wj2,Ωj2

=
1

K2
Ex
[
φ′(w∗Tj1,Ωj1xΩj1)φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j1,Ωj1
xΩj1)φ′(wT

j2,Ωj2
xΩj2)

]
xΩj1x

T
Ωj2

=
1

K2
Ex
[
φ′(w∗Tj1,Ωj1xΩj1)

(
φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j2,Ωj2
xΩj2)

)
+ φ′(wT

j2,Ωj2
xΩj2)

(
φ′(w∗Tj1,Ωj1xΩj1)− φ′(wT

j1,Ωj1
xΩj1)

)]
xΩj1x

T
Ωj2

=
1

K2

[
Exφ′(w∗Tj1,Ωj1xΩj1)

(
φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j2,Ωj2
xΩj2)

)
xΩj1x

T
Ωj2

+ Exφ′(wT
j2,Ωj2

xΩj2)
(
φ′(w∗Tj1,Ωj1xΩj1)− φ′(wT

j1,Ωj1
xΩj1)

)
xΩj1x

T
Ωj2

]
:=

1

K2
(I1 + I2).

(119)

For any αj1 ∈ Rrj1 and αj2 ∈ Rrj2 , we have

max
‖αj1‖2,‖αj2‖2=1

αTj1I1αj2

= max
‖αj1‖2,‖αj2‖2=1

Exφ′(w∗Tj1,Ωj1xΩj1)
(
φ′(w∗Tj2,Ωj2xΩj2)− φ′(wT

j2,Ωj2
xΩj2)

)
· (αTj1xΩj1) · (αTj2xΩj2)

≤ max
‖a‖2=1

Exφ′(w∗Tj2 x)
(
φ′(w∗Tj2 x)− φ′(wT

j2x)
)
· (aTx)2,

(120)

where a ∈ Rd. Let I = φ′(w∗Tj1 x)
(
φ′(w∗Tj2 x)−φ′(wT

j2
x)
)
· (aTx)2. It is easy to verify there exists

a basis such that B = {a, b, c,a⊥4 , · · · ,a⊥d } with {a, b, c} spans a subspace that contains a,wj2

and w∗j2 . Then, for any x, we have a unique z = [z1 z2 · · · zd]
T such that

x = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Also, since x ∼ N (0, Id), we have z ∼ N (0, Id). Then, we have

I =Ez1,z2,z3 |φ′
(
wT
j2x
)
− φ′

(
w∗Tj2 x

)
| · |aTx|2

=

∫
|φ′
(
wT
j2x
)
− φ′

(
w∗Tj2 x

)
| · |aTx|2 · fZ(z1, z2, z3)dz1dz2dz3,

where x = z1a+z2b+z3c and fZ(z1, z2, z3) is probability density function of (z1, z2, z3). Next, we
consider spherical coordinates with z1 = Rcosφ1, z2 = Rsinφ1sinφ2, z3 = z2 = Rsinφ1cosφ2.
Hence,

I =

∫
|φ′
(
wT
j2x
)
− φ′

(
w∗Tj2 x

)
| · |r cosφ1|2 · ·fZ(R,φ1, φ2)R2 sinφ1dRdφ1dφ2. (121)

It is easy to verify that φ′
(
wT
j2
x
)

only depends on the direction of x and

fZ(R,φ1, φ2) =
1

(2π)
3
2

e
x21+x22+x23

2 =
1

(2π)
3
2

e
R2

2

32

only depends on R. Then, we have

I(i2, j2)

=

∫
|φ′
(
wT
j2(x/R)

)
− φ′

(
w∗Tj2 (x/R)

)
| · |R cosφ1|2 · fZ(R)R2 sinφ1dRdφ1dφ2

=

∫ ∞
0

r4fz(R)dR

∫ π

0

∫ 2π

0

| cosφ1|2 · sinφ1 · |φ′
(
wT
j2(x/R)

)
− φ′

(
w∗Tj2 (x/R)

)
|dφ1dφ2

≤
√

8

π

∫ ∞
0

R2fz(R)dR

∫ π

0

∫ 2π

0

sinφ1 · |φ′
(
wT
j2(x/R)

)
− φ′

(
w∗Tj2 (x/R)

)
|dφ1dφ2

=

√
8

π
Ez1,z2,z3

∣∣φ′(wT
j2x
)
− φ′

(
w∗Tj2 x

)
|

=

√
8

π
Ex
∣∣φ′(wT

j2x
)
− φ′

(
w∗Tj2 x

)
|.

(122)

Define a set A1 = {x|(w∗Tj2 x)(wT
j2
x) < 0}. If x ∈ A1, then w∗Tj2 x and wT

j2
x have different signs,

which means the value of φ′(wT
j2
x) and φ′(w∗Tj2 x) are different. This is equivalent to say that

|φ′(wT
j2x)− φ′(w∗Tj2 x)| =

{
1, if x ∈ A1

0, if x ∈ Ac1
. (123)

Moreover, if x ∈ A1, then we have

|w∗Tj2 x| ≤|w
∗T
j2 x−wj2

Tx| ≤ ‖w∗j2 −wj2‖ · ‖x‖. (124)

Define a set A2 such that

A2 =
{
x
∣∣∣ |w∗Tj2 x|‖w∗j2‖‖x‖

≤
‖w∗j2 −wj2‖
‖w∗j2‖

}
=
{
θx,w∗j2

∣∣∣| cos θx,w∗j2
| ≤
‖w∗j2 −wj2‖
‖w∗j2‖

}
. (125)

Hence, we have that

Ex|φ′(wT
j2x)− φ′(w∗Tj2 x)|2 =Ex|φ′(wT

j2x)− φ′(w∗Tj2 x)|
=Prob(x ∈ A1)

≤Prob(x ∈ A2).

(126)

Since x ∼ N (0, I), θx,w∗j2 belongs to the uniform distribution on [−π, π], we have

Prob(x ∈ A2) =
π − arccos

‖w∗j2−wj2‖
‖w∗j2‖

π
≤ 1

π
tan(π − arccos

‖w∗j2 −wj2‖
‖w∗j2‖

)

=
1

π
cot(arccos

‖w∗j2 −wj2‖
‖w∗j2‖

)

≤ 2

π

‖w∗j2 −wj2‖
‖w∗j2‖

=
2

π

‖w∗j2,Ωj2 −wj2,Ωj2
‖

‖w∗j2,Ωj2 ‖

≤ 2

π

‖w̃∗ − w̃‖
σK

.

(127)

Hence, (122) and (127) suggest that

I ≤ 6

π

‖w̃∗ − w̃‖
σK

. (128)

33

The same bound that shown in (128) holds for I2 as well.

Therefore, we have

‖∇2f(w̃)−∇2f(w̃∗)‖2

≤
K∑
j1=1

K∑
j2=1

∥∥∥∥∥ ∂2f(w̃∗)

∂wj1,Ωj1
∂wj2,Ωj2

− ∂2f(w̃)

∂wj1,Ωj1
∂wj2,Ωj2

∥∥∥∥∥
2

≤‖I1 + I2‖2 ≤ ‖I1‖2 + ‖I2‖2

≤12

π

‖w̃∗ − w̃‖2
σK

(129)

J Additional proofs of lemmas in Appendix F

J.1 Error bound for the second-order moment

Proof of Lemma 7. For M̂2 −M2, we have

M̂2 −M2

=
1

N

N∑
n=1

yn(x̃n ⊗ x̃n − Ex̃nx̃Tn)− Ex y(x̃⊗ x̃− Ex̃x̃T)

=
1

N

N∑
n=1

(1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j + ξn

)
(x̃n ⊗ x̃n − Ex̃nx̃Tn)

− Ex
1

K

K∑
j=1

φ(u∗j
T x̃Ω̃j

)(x̃⊗ x̃− Ex̃x̃T)

=
1

K ·N

N∑
n=1

K∑
j=1

(
φ(u∗j

T x̃n,Ω̃j)(x̃n ⊗ x̃n − Ex̃nx̃Tn)− Ex φ(u∗j
T x̃Ω̃j

)(x̃⊗ x̃− Ex̃x̃T)
)

+
1

N

N∑
n=1

ξn(x̃n ⊗ x̃n − Ex̃nx̃Tn)

(130)

Following the notations in Lemma E.2 of [40], we denote

B2(xn) :=
1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j)(x̃n ⊗ x̃n − Ex̃nx̃Tn). (131)

Following the similar calculations of (I) - (III) in Lemma E.2 [40], we know that

‖B2(x)‖2 . σ1rmax log
3
2 q,

‖ExB2(x)‖2 . σ1,

‖ExB2
2(x)‖2 .

1

K
σ2

1rmax

(132)

hold with probability at least 1− q−rmax .

Define Z2,n = 1
N

(
B2(xn)− ExB2(x)

)
for xn with n ∈ [N], and it is obvious Z2,n is zero mean.

Also, we have

R2 = ‖Z2,n‖2 ≤
1

N

(
‖B2(xn)‖2 + ‖ExB2(x)‖2

)
.

1

K

K∑
j=1

N−1σ1rk log
3
2 q, (133)

34

and

δ2
2 =

∥∥∥ N∑
n=1

EZ2
2,n

∥∥∥2

2
≤
∥∥∥ N∑
n=1

1

N2

(
EB2

2(xn)−
(
EB2(xn)

)2)∥∥∥
2

≤ 1

N

(
‖EB2

2(xn)‖2 + ‖EB2(xn)‖22
)

.N−1σ2
1rmax.

(134)

Next, let t = Θ(σ1

√
rmax log q

N). To make sure δ2
2 ≥ R2t/3, we need N & rmax log4 q. Then, by

Lemma 10, we have

Prob
{∥∥∥∑

n

Z2,n

∥∥∥
2
≥ t
}
≤2r exp

(−t2/2
δ2
2 +R2t/3

)
≤ 2r exp

(−t2
4δ2

2

)
. (135)

That is ∥∥∥ N∑
n=1

Z2,n

∥∥∥
2
. σ1

√
rmax log q

N
(136)

with probability at least 1− q−rmax . Because x̃n belongs to the sub-Gaussian distribution, we know
that ∥∥∥ 1

N

N∑
n=1

(x̃n ⊗ x̃n − Ex̃nx̃Tn)
∥∥∥

2
.

√
rmax log q

N
(137)

with probability at least 1− q−rmax .

In conclusion, we have

‖M̂2 −M2‖
1

K

K∑
k=1

. (σ1 + |ξ|)
√
rmax log q

N
(138)

with probability at least 1− q−rmax provided that N & rmax log4 q.

J.2 Error bound for the third-order moment

Proof of Lemma 8. For M̂3(V̂ , V̂ , V̂)−M3(V̂ , V̂ , V̂), we have

M̂3(V̂ , V̂ , V̂)−M3(V̂ , V̂ , V̂)

=
1

N

N∑
n=1

yn
[
(V̂

T
x̃n)⊗3 − (V̂

T
x̃n)⊗(E(V̂

T
x̃n)(V̂

T
x̃n)T)

]
− Ex y

[
(V̂

T
x̃)⊗3 − (V̂

T
xT)⊗E(V̂

T
x̃n)(V̂

T
x̃n)T

]
=

1

N

N∑
n=1

(1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j) + ξn

)
·
[
(V̂

T
x̃n)⊗3 − (V̂

T
x̃n)⊗(E(V̂

T
x̃n)(V̂

T
x̃n)T)

]
− Ex

1

K

K∑
j=1

φ(u∗j
T x̃Ω̃j

)
[
(V̂

T
x̃)⊗3 − (V̂

T
x̃)⊗(E(V̂

T
x̃)(V̂

T
x̃)T)

]
=

1

K ·N

N∑
n=1

K∑
j=1

[
φ(u∗j

T x̃n,Ω̃j) ·
[
(V̂

T
x̃n)⊗3 − (V̂

T
x̃n)⊗(E(V̂

T
x̃n)(V̂

T
x̃n)T)

]
− Exφ(u∗j

T x̃Ω̃j
)
[
(V̂

T
x̃)⊗3 − (V̂

T
x̃)⊗(E(V̂

T
x̃)(V̂

T
x̃)T)

]]
+

1

N

N∑
n=1

ξn
[
(V̂

T
x̃)⊗3 − (V̂

T
x̃)⊗(E(V̂

T
x̃)(V̂

T
x̃)T)

]

(139)

35

Following the notations in Lemma E.8 of [40], we define

T (x) :=
1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j) ·

[
(V̂

T
xn)⊗3 − (V̂

T
xn)⊗(E(V̂

T
xn)(V̂

T
xn)T)

]
. (140)

Then, B3(x) ∈ RK×K2

is defined as flattening the tensor T (x) along the first dimension. Hence,
we have

‖B3(x)‖2 .max
j
|u∗j x̃Ω̃j

| ·
(
‖V̂

T
xn‖32 + 3K‖V̂

T
xn‖2

)
.σ1K

3
2 log

5
2 q

(141)

with probability at least 1− q−K .

Following the similar calculations of (II) and (III) in Lemma E.8 of [40], we know that

‖ExB3(x)‖2 . σ1,

max

{∥∥Ex[B3(x)TB3(x)]
∥∥

2
,
∥∥Ex[B3(x)TB3(x)]

∥∥
2

}
. K2σ2

1 .
(142)

Define Z3,n = 1
N

(
B3(xn) − ExB3(x)

)
for (xn, yn) ∈ D, and it is obvious Z3,n is zero mean.

Also, we have

R3 = ‖Z3,n‖2 ≤
1

N

(
‖B3(xn)‖2 + ‖ExB3(x)‖2

)
.N−1σ1K

3
2 log

5
2 q,

(143)

and

δ2
3 =

{∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2
,
∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2

}
≤ 1

N

(
‖EB2

3(xn)‖2 + ‖EB3(xn)‖22
)

.N−1K2σ2
1 .

(144)

Similar to (135), by applying Lemma 10, we have∥∥∥ N∑
n=1

Z3,n

∥∥∥
2
. σ1

√
log q

N
(145)

with probability at least 1− q−K provided that N & K5 log6 q.

Similar to (141), we define B by flattening the tensor
∑N
n=1

[
(V̂

T
x̃)⊗3 −

(V̂
T
x̃)⊗(E(V̂

T
x̃)(V̂

T
x̃)T)

]
along the first dimension. Then, we know that

‖B‖2 ≤
∥∥∥ N∑
n=1

V̂
T
x̃n

∥∥∥3

2
+ 3K

∥∥∥ N∑
n=1

V̂
T
x̃n

∥∥∥
2
.

(
K−4 log q

N

) 3
2

+ 3K

(
K−4 log q

N

) 1
2

.

(
log q

N

) 1
2

+

(
log q

N

) 1
2

.

√
log q

N
,

(146)

provided that N & K5 log q.

In conclusion, we have∥∥∥M̂3(V̂ , V̂ , V̂)−M3(V̂ , V̂ , V̂)
∥∥∥ . (σ1 + |ξ|)

√
log q

N
(147)

with probability at least 1− q−K provided that N & K3 log6 q.

36

J.3 Error bound for the first-order moment

Proof of Lemma 9. For M̂1 −M1, we have

M̂1 −M1 =
1

N

N∑
n=1

ynx̃n − Ex yx̃

=
1

N

N∑
n=1

(1

K

K∑
j=1

φ(u∗j
T x̃n,Ω̃j) + ξn

)
x̃n − Ex

K∑
j=1

1

K
φ(u∗j

T x̃Ω̃j
)x̃

=
1

K ·N

K∑
j=1

N∑
n=1

(
φ(u∗j

T x̃n,Ω̃j)x̃n − Ex φ(u∗j
T x̃Ω̃j

)x̃
)

+
1

N

N∑
n=1

ξn · x̃n.

(148)

DefineB1(x) := 1
K

∑K
j=1 φ(u∗j

T x̃n,Ω̃j)x̃n, then we have

‖B1(x)‖2 .
1

K

K∑
k=1

σ1rk log
3
2 q;

‖ExB1(x)‖2 . σ1;{∥∥Ex[B1(x)B1(x)T]
∥∥

2
,
∥∥Ex[B1,j(x)TB1(x)]

∥∥
2

}
. σ2

1 .

(149)

Next, define Z1,n = 1
N

(
B1,j(xn)− ExB2(x)

)
for (xn, yn) ∈ D, by calculation, we can obtain

R1 = ‖Z1,n‖2 . N−1σ1rmax log
3
2 q, (150)

and

δ2
1 = max

{∥∥∥ N∑
n=1

EZ1,nZ
T
1,n

∥∥∥2

2
,

∣∣∣∣ N∑
n=1

ZT1,nZ1,n

∣∣∣∣} . N−1σ2
1rmax. (151)

By applying Lemma 10, we have ∥∥∥∥∥
N∑
n=1

Z1,n

∥∥∥∥∥
2

. σ1

√
rmax log q

N
(152)

with probability at least 1 − q−rmax provided that N & rmax log4 q. Since x ∈ Rr belongs to the
Gaussian distribution, we have ∥∥∥ 1

N

N∑
n=1

x̃n

∥∥∥
2
.

√
rmax log q

N
(153)

with probability at least 1− q−rmax .

In conclusion, we have

‖M̂1 −M1‖ . (σ1 + |ξ|)
√
rmax log q

N
(154)

with probability at least 1− q−rmax , provided that N & rmax log4 q.

37

	Introduction
	Related Work

	Problem Formulation
	Algorithm and Theoretical Results
	Local Geometric Structure
	Convergence Analysis with Accelerated Gradient Descent
	The Sketch of Proofs and Technical Novelty
	Limitations

	Numerical Experiments
	Evaluation of theoretical findings on synthetic data
	Performance with inaccurate mask on synthetic data
	Performance of IMP on synthetic, MNIST and CIFAR-10 datasets

	Conclusions
	Notations
	Initialization via tensor method
	Proof of Theorem 1
	Proof of Theorem 2
	Obtaining a proper learner network via magnitude pruning
	Proof of Lemma 1
	Proof of Lemma 6

	Additional proof of the lemmas in Appendix C
	Proof of Lemma 3
	Proof of Lemma 4

	Proof of Lemma 5
	Proof of Lemma 13
	Additional proofs of lemmas in Appendix F
	Error bound for the second-order moment
	Error bound for the third-order moment
	Error bound for the first-order moment

