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Abstract—The rapid deployment of renewable generations
such as photovoltaic (PV) generations brings great challenges to
the resiliency of existing power systems. Because PV generations
are volatile and typically invisible to the power system operator,
estimating the generation and characterizing the uncertainty are
in urgent need for operators to make insightful decisions. This
paper summarizes our recent results on energy disaggregation
at the substation level with Behind-the-Meter solar generation.

We formulate the so-called “partial label” problem for energy
disaggregation at substations, where the aggregate measurements
contain the total consumption of multiple loads, and the existence
of some loads is unknown. We develop two model-free disaggrega-
tion approaches based on deterministic dictionary learning and
Bayesian dictionary learning, respectively. Unlike conventional
methods which require fully annotated training data of individual
loads, our approaches can extract load patterns given partially
labeled aggregate data. Therefore, our partial label formulation is
more applicable in the real world. Compared with deterministic
dictionary learning, the Bayesian dictionary learning-based ap-
proach provides the uncertainty measure for the disaggregation
results, at the cost of increased computational complexity. All the
methods are validated by numerical experiments.

Index Terms—energy disaggregation, Behind-the-Meter solar
generation, partial labels, uncertainty modeling

I. INTRODUCTION

The presence of renewable generations in power systems,
especially solar generations, has increased rapidly in recent
decades. Reference [1] reports that the global capacity of
photovoltaic (PV) installment reached 634 GW in 2019. The
solar capacity in 2019 has grown nearly 400 times since 2000.
California Independent System Operator (ISO) estimates that
the renewable energy generations will contribute 50% power
supplies by 2030 in California [2].

The wide deployment of renewable generations decreases
greenhouse gas emissions, however, but also brings great
challenges to the reliability and resiliency of existing power
systems. For example, at the substation level, the measure-
ments of power consumptions are the net loads that contain
different types of loads. The solar generation is invisible
to the power system operator and thus is behind-the-meter
(BTM). Because of the stochastic nature and high volatility of
renewable generations, the accurate estimation of generated
energy is challenging. Energy disaggregation at the substation
level (EDS) aims to disaggregate each individual load1 from
aggregate measurement. The accurate information for load

1Generation is considered as a negative load in this paper.

consumption are crucial for power system planning and op-
erations, such as hosting capacity evaluation [3], [4], demand
response and load dispatching [5], [6] and load forecasting [7],
[8].

Energy disaggregation problem at the household level
(EDH) has been extensively studied, see, e.g., [9]–[12], also
under the terminology non-intrusive load monitoring (NILM)
[9]–[15]. The electric appliances are typically single-state
or multi-state devices and patterns of their power consump-
tions usually are repeatable. The general procedure for EDH
methods is to first collect historical power consumption for
each individual appliance and learn patterns from these well-
annotated data. Then EDH methods disaggregate power con-
sumptions for each appliance from the aggregate data based
on these patterns. In comparison, obtaining historical power
consumption for each individual load at the substation level is
more difficult, as the measurements at the substation level are
highly aggregated from different types of loads. Even though
the operator has information about load types attached to a
substation, whether a certain load is consuming/generating
energy or not in a certain time interval is not already clear.
One example is the BTM solar generation. Thus, the mea-
surements at the substation usually contain multiple loads
and are partially labeled. It is more challenging to learn
distinctive load profiles under this situation than learning from
measurements on individual loads. Moreover, the volatility
of load and renewable generation often lead to significant
estimation errors. However, to the best of our knowledge, there
is no work that provides a confidence measure of the energy
disaggregation results.

This paper summarizes our recent results for solving these
two challenges. Given partially labeled training data, our
work [16] proposes a deterministic dictionary learning-based
method to learn load patterns and disaggregate the aggregate
measurements into individual loads in real-time. Note that
[16] is a deterministic approach and therefore is unable to
provide the confidence measure of the estimation results. To
estimate the reliability of the disaggregation results, in [17], we
propose a probabilistic energy disaggregation approach based
on Bayesian dictionary learning.

The contributions of this paper are three folds: 1. We sum-
marize our works [16] and [17] for solving the “partial label”
problem and modeling the uncertainty. 2. We compare these
two methods and other two existing works in the experiment.
(3) We provide more testing cases for these two methods in
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this paper.
The remainder of this paper is organized as follows. Section

II explains our partial label formulation. Section III discusses
our proposed deterministic approach to solve the issue of
partial labels and introduces our proposed Bayesian method
for modeling the uncertainty of disaggregation results. Section
IV summarizes this paper.

II. PROBLEM FORMULATION

A substation is connected to C (C > 1) types of loads in
total. Let x ∈ RP denote the aggregate measurement with
window length P . Let a binary vector y = [y1, y2, ..., yC ] ⊆
{0, 1}C denote the load existence in x. For example, when
C = 3, y = [0, 0, 1]T means that only load 3 exists in x.

In our paper [16], we propose a “partial label formulation”
where the operator only knows partial entries in y. The partial
labels can be obtained by designing a load detector for each
load separately [18], [19] or from engineering experience. As
described in [16], annotating partial labels has a lower cost
for manpower or communication burdens than annotating all
the labels. Moreover, if a detector fails to identify some loads
[20], we can only obtain partial labels.

Let X̄ = [x̄1, x̄2, ..., x̄N ] ∈ RP×N denote N mea-
surements. x̄i denotes the data at the ith time window.
yi ∈ {0, 1}C denotes the labels in x̄i. Let label matrix
Y = [y1,y2, ...,yN ] denote all the labels in X̄ . Let Ω denote
the indices of known entries in Y . YΩ denotes all the known
partial labels. In the above example, if one only knows x̄
contains load 3 and does not know whether the other two loads
exist or not, then the corresponding YΩ is [?, ?, 1]T where ?
denotes one does not know the corresponding load exists or
not.

Fig. 1 illustrates our partial label formulation. The aggregate
data are aggregated from two industrial loads and one solar
generation. Each subfigure shows patterns of aggregate data
and the corresponding individual loads at the same time
interval. In all these four cases, the label is [?, ?, 1]T , indicating
that load 3 always exists, while the existence of loads 1 and
2 is unknown.

Given training dataset X̄ , the corresponding partial label
matrix YΩ and an aggregate measurement x̂ ∈ RP , the
objective of this paper is to: (1) learn distinctive patterns
of individual loads from X̄ and disaggregate x̂, and (2)
characterize the uncertainty of the disaggregation results.

III. METHODOLOGY

In this section, we present our two model-free approaches
based on deterministic dictionary learning [16] and Bayesian
dictionary learning [17], respectively.

A. Deterministic Energy Disaggregation

To learn patterns of each individual load from the given
training data X̄ , we formulate a deterministic dictionary

Fig. 1: An example of partial label formulation. There are three load
types in the aggregate data. All four aggregate data have the same
partial label [?, ?, 1]T . The aggregate data contain (a) all three loads;
(b) load 1 and 3; (c) load 2 and 3; (d) only load 3. [16]

learning problem,

min
A,D

f(A,D) = ∥X̄ − ΣC
i=1DiAi∥2F +ΣC

i=1λiΣj:i/∈yj
∥Aj

i∥

+ λDTr(DΘD⊺) (1)
s.t. ∥dm∥2 ≤ 1, dm ≥ 0,m = 1, · · · ,K (2)

ciAi ≥ 0,∀i (3)

where Di ∈ RP×Ki denotes the dictionary for load i, and
Ai ∈ RKi×N denotes the corresponding coefficients of load
i. Aj

i is the jth column in Ai. A = [A1;A2; · · · ;AC ] ∈
RK×N is the matrix that contains all coefficients. D =[
D1, D2, · · · , DC

]
∈ RP×K is the matrix that contains all

dictionaries. dm is the mth column in D. K = ΣC
i=1Ki. Tr(·)

is the trace operator, and D⊺ represents the transpose matrix
of D. λi and λD are pre-defined hyper-parameters.

Fig. 2: The dictionary representation in Fig. 1. The coefficients A1

and A2 are column-sparse. [16]

The first term ∥X̄−ΣC
i=1DiAi∥2F is the standard reconstruc-

tion error in dictionary learning. It measures the reconstruction
error between the original data and the learned dictionaries and
coefficients.

∑
j:i/∈yj

∥Aj
i∥ is the column sparsity constraint.

The motivation of using this regularization is illustrated in
Fig. 2, which shows the dictionary representation of Fig. 1.
Because the training data only have partial label 3, load 1
and load 2 may not exist in the training data. Therefore, we
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Fig. 3: An illustrative framework of the proposed Bayesian method. In the training stage, our method learns the posterior distribution of atom
labels, coefficients and load labels from the training data. In the testing stage, the method samples learned distributions of the dictionary
and learns the posterior distribution for atom labels, coefficients and load labels, respectively, for test data. [17]

impose the column sparsity on A1 and A2 to promote the
group sparsity of A1 and A2.

The incoherence term Tr(DΘD⊺) is defined as

Tr(DΘD⊺) = ΣK
m=1Σ

K
p=1θmp(d

m)⊺dp. (4)

The (m, p)th entry θmp in the weight matrix Θ ∈ RK×K is
0 if dm and dp are in the same dictionary and 1 otherwise.
The incoherence term promotes a discriminative dictionary
such that Di and Dj are as different as possible. The dis-
criminative dictionaries are able to enhance the disaggregation
performance.

Given an aggregate test data x̂, we aim to disaggregate the
aggregate measurement into individual load c, denoted by x̂c.
The objective function in the testing stage can be written as

min
w∈Rq

∥x̂− D̂Ãw∥2 + µ∥w∥1, (5)

where we select a submatrix Ã = [Ã1; · · · ; Ãn] ∈ RK×q from
Â. D̂, Â is the solution by solving the objective function (1).
µ is a pre-defined hyper-parameter. The intuition is that some
load combinations are repetitive in the training data. We can
select some representative combinations and disaggregate the
aggregate measurement with respect to these combinations to
improve the disaggregation accuracy. Let ŵ be the solution to
(5), then the estimated load for load c is x̂c = D̂iÃiŵ.

B. Bayesian Energy Disaggregation

In [17], we propose a Bayesian method to deal with
partial label data and provide the confidence measure of our

disaggregation results. An overall framework is shown in
Fig. 3. Given the training data X̄ and partial labels YΩ, the
proposed Bayesian method learns the posterior distribution of
dictionaries and coefficients in the training stage. At the testing
stage, the method learns the distributions of coefficients based
on the learned distributions of dictionaries. The distribution
of x̂c is then computed, where x̂c is the estimated power
consumption of load c. The mean of the distribution of x̂c

is used as the estimation of the load c and the covariance is
computed to measure the uncertainty.

The proposed method is based on a hierarchical probabilistic
model. The prior distribution of the aggregate data xi can be
written as

x̄i =
C∑

c=1

Dcω
c
i + ϵi (6)

ωc
i = (zc

i ⊙ sci )y
c
i (7)

for all i = 1, 2, 3, ..., N , c = 1, 2, 3, ..., C, where ωc
i ∈ RKc

is the coefficients for Dc, and ϵi is the measurement noise.
In (7), ⊙ represents the element-wise product. Let dc

k denote
the kth column in the dictionary Dc. dc

k is sampled from a
multivariate Gaussian distribution N (0, 1

λd
IP ), where λd is

a pre-defined scalar, and IP is an identity matrix with size
P × P . The noise ϵi is sampled from Gaussian N (0, 1

γϵ
IP ).

One can see from (7) that ωc
i is the element-wise product of

zc
i and sci and then multiplied by yci . yci is a binary variable

sampled from a Bernoulli distribution and yci = 1 indicates that
load c exists in xi. zc

i is a binary vector. Let zc
ik denote the kth
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entry of zc
i . zc

ik = 1 indicates dck is used to represent xi and 0
otherwise. zc

ik is sampled from the Bernoulli distribution. Note
that the Bayesian method is able to infer the actual dictionary
size Kc by gradually pruning the dictionary size based on
zc
i in the training stage. Therefore, the Bayesian method is

not sensitive to the selection of initial dictionary size. sci is
sampled from N (0, 1

γc
s
IKc). We put Gamma priors on γc

s and
γϵ, respectively. The Gamma priors are conjugate priors of the
Gaussian distribution. If conjugate priors are selected, we can
derive the analytical solution of the posterior distribution in the
variational inference, which simplifies the updating process.
Note that our model selects conjugate priors to simplify the
updating process.

Let Θ denote all the latent variables. Given X̄ and
partial labels YΩ, the objective is to obtain the posterior
P (Θ,YΩ̄|X,YΩ). From the Bayes theorem,

P (Θ,YΩ̄|X̄,YΩ) =
P (Θ, X̄,Y )

P (X̄,YΩ)
(8)

Because computing (8) directly is intractable, we use Gibbs
sampling [21] to compute the posterior distribution. Gibbs
sampling sequentially samples from the conditional probability
of one variable in Θ and YΩ̄ while keeping all other vari-
ables fixed. These conditional distributions have closed-form
expressions because of the conjugate priors, which leads to an
efficient updating process.

In the testing stage, given the aggregate test data x̂, the
goal of our approach is to estimate x̂c. A similar probabilistic
model for x̂ and x̂c is described as:

x̂ =
C∑

c=1

Dc(ẑ
c ⊙ ŝc)ŷc + ϵ̂ (9)

x̂c = Dc(ẑ
c ⊙ ŝc)ŷc +

ϵ̂

C
. (10)

for all c = 1, ..., C, k = 1, ...,Kc.
The dictionary atom dck is sampled from learned distribution

p(dck|X,YΩ) in the training stage. We also assume that ŷc

and ẑc are sampled from Bernoulli distributions. ŝc is sam-
pled from N (0, 1

γc
s
IKc

) and ϵ̂ is sampled from N (0, 1
γ̂ϵ
IP ).

Gibbs sampling is also employed for computing probabilistic
distributions of ŷc, ẑc, ŝc, and γ̂ϵ.

The per-iteration computational complexity of the Bayesian
offline training is O(CKcPN). The per-iteration computa-
tional complexity of the online testing is O(CKcP ). Thus,
the computational complexity scales linearly with respect to
the number of loads.

C. Uncertainty Modeling

Equipped with all learned posterior distributions, we then
estimate the distribution of x̂c. However, it is intractable to
obtain the explicit expression for the distribution of x̂c. Monte-
Carlo integration [22] is employed to approximately compute
the predictive mean and predictive variance.

Define
f(Ψ) = Dc(ẑ

c ⊙ ŝc)ŷc (11)

where Ψ = {Dc, ẑ
c, ŝc, ŷc, γ̂ϵ}. The predictive mean of x̂c is

computed by

E[x̂c] ≈ 1

L

l=L∑
l=1

f(Ψl) (12)

where L is the number of Monte-Carlo samples. More Monte-
Carlo samples increase the estimation accuracy, at the cost of
higher computational burden. Our experiments show that 50
Monte-Carlo samples suffice to provide accurate estimations of
the predictive mean and the predictive variance. Ψl is sampled
from the learned distributions of variables in Ψ. E[x̂c] is then
used as the estimation of the power consumption of load C.

The predictive covariance is approximated by

Var[x̂c] =E[x̂cx̂cT ]− E[x̂c]E[x̂c]
T

≈ IP
LC

l=L∑
l=1

1

γ̂l
ϵ

+
1

L

l=L∑
l=1

f(Ψl)f(Ψ
l)
T

−(
1

L

l=L∑
l=1

f(Ψl))(
1

L

l=L∑
l=1

f(Ψl)
T
)

(13)

Let σi (i = 1, ..., P ) denote all the singular values of
Var[x̂c]. The uncertainty index Uc for individual load c and the
uncertainty index Uall for total estimated loads are computed
as

Uc = ΣP
i=1σi (14)

Uall = ΣC
c=1Uc (15)

The intuition is that a large variance indicates higher un-
certainty of the estimation. The uncertainty index is able to
characterize the confidence level of disaggregation results.

IV. NUMERICAL EXPERIMENT

The performance of the proposed methods is evaluated on
a partially labeled dataset. The dataset contains two industry
loads and one solar generation. N = 360 training samples
and M = 300 testing samples are generated. Even though
the generated training samples contain up to three loads,
each sample is annotated with only one label. The testing
samples also contain up to three loads and have no label.
In the following experiments, γ represents the percentage of
the training data that measure individual loads. For example,
γ = 50% denotes that 50% training data labeled as load c
contain pure load c and the remaining 50% data contain other
loads.

1) Error Metrics: Several metrics are employed to compute
the disaggregation error. The standard Root Mean Square Error
(RMSE) [23], [24] is defined as,

RMSEc =

√
ΣM

i=1∥x̂c
i − xc

i∥22
P ×M

. (16)

where x̂c
i , x

c
i ∈ RP are the estimated and the ground-truth load

c in the ith testing sample, respectively.
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A new Total Error Rate (TER) is proposed to compute the
disaggregation error of all the loads as follows,

TER =
ΣM

i=1Σ
C
c=1 min(∥x̂c

i − xc
i∥1, ∥xc

i∥1)
ΣM

i=1Σ
C
c=1∥xc

i∥1
(17)

The Weighted Root Mean Square Error (WRMSE) is pro-
posed to take the uncertainty index into account. The weighted
average disaggregation error is computed as,

WRMSEc =

√√√√ΣM
i=1

∥x̂c
i−xc

i∥2
2

Uc(x̂c
i )

PΣM
i=1

1
Uc(x̂c

i )

(18)

where Uc(x̂
c
i ) denotes the uncertainty index of x̂c

i . A larger
Uc(x̂

c
i ) represents a less reliable estimation. If the estimated

loads with higher disaggregation errors are accompanied by
larger uncertainty indices, the RMSEc could be much larger
than WRMSEc. The scenario that RMSEc is much larger than
WRMSEc indicates that the unreliable estimation results are
correctly flagged by higher uncertainty indices.

2) Methods: Our deterministic EDS method in [16] is
abbreviated as “D-EDS.” Our Bayesian EDS method in [17]
is abbreviated as “B-EDS.” Two other existing methods are
employed for comparison. The work in [9] that is based
on discriminative sparse coding is abbreviated as “DDSC,”
and the work [23] based on sum-to-k matrix factorization is
abbreviated as “sum-to-k”. Because we set the Monte-Carlo
samples L = 50 in our method B-EDS, then D-EDS, DDSC
and sum-to-k are averaged over 50 runs for a fair comparison.
The comparisons of disaggregation performance of B-EDS,
D-EDS, DDSC and sum-to-k are shown in Table I. γ = 70%.
Note that all the existing works such as DDSC and sum-to-k
methods require fully labeled data to obtain accurate estima-
tion. Directly applying the existing methods to partially labeled
data leads to a low disaggregation accuracy. The proposed
two approaches B-EDS and D-EDS are designed for partially
labeled data and can achieve state-of-the-art disaggregation
performance. Between these two methods, the disaggregation
accuracy of B-EDS is slightly better. Moreover, one can see
from Table I that the WRMSEc is much smaller than the
corresponding RMSEc. As we discussed above, this means
that those estimations with larger disaggregation errors also
have large uncertainty indices. This validates the effectiveness
of applying the proposed uncertainty index to measure the
reliability of the disaggregation results.

The major advantage of B-EDS over D-EDS is that B-
EDS is able to measure the confidence level of disaggregation
results from the uncertainty index. We provide five case studies
to verify the performance of uncertainty modeling of B-EDS.

• Case 1: we select test data from the testing datasets in
Table I and this test data contains three types of loads.

• Case 2: the test data is as same as the data in Case 1 with
an additional Gaussian noise N (0, 42) in each entry.

• Case 3: the test data is as same as the data in Case 1 with
an additional Gaussian noise N (0, 62) in each entry.

Table I: Comparison between B-EDS, D-EDS, sum-to-k and DDSC
methods on disaggregation accuracy

B-EDS D-EDS sum-to-k DDSC
RMSE1 6.20 6.62 13.17 22.77
RMSE2 5.19 6.34 11.35 23.86
RMSE3 5.82 4.65 10.70 13.49
WRMSE1 0.16 - - -
WRMSE2 0.13 - - -
WRMSE3 0.13 - - -
TER 8.97% 9.95% 20.61% 37.12%

• Case 4: the test data only contains one solar generation,
but the pattern of solar generation is different from the
solar patterns in the training data.

• Case 5: the test data contains the same load 1 and 2 as
those in Case 1, and as well as a solar generation with
a pattern different from the solar patterns in the training
data.

Figs. 4 and 5 show the disaggregation performance of
D-EDS on Case1 and Case 4. The aggregate measurement
is shown in (a), and the disaggregation results are shown in
(b)-(d) in both figures. In Case 1, the disaggregation results
by D-EDS follow the actual load pattern. In Case 4, the
disaggregation result of the solar generation does not follow
the actual solar pattern because it is different from the learned
pattern from the training data. In both cases, the disaggregation
results contain some errors. That motivates using the Bayesian
approach to compute a probabilistic distribution of load con-
sumption rather than computing one deterministic estimation.

Fig. 6 shows the disaggregation performance of B-EDS
on these five cases, and Table II shows the corresponding
uncertainty index. Each subfigure in Fig. 6 plots the ground-
truth load, the estimated load and the 99.7% confidence
interval of the estimated load. One can see that in Cases 1-3,
although there are some errors in the disaggregation results,
the ground-truth loads are within the confidence interval.
Moreover, the estimation errors increase slightly when the
noise levels increase. Correspondingly, Table II shows that
the total uncertainty indices in Case 1-3 also increase as the
noise level increases, which indicates the effectiveness of using
the uncertainty index to characterize the uncertainty in the
estimation. In Case 4 and Case 5, because the patterns of
solar generation are far from the patterns in the training data,
the ground-truth load consumption may not fall inside the
confidence interval (especially Case 5). The uncertainty in-
dices in Table II also increase significantly, indicating that the
estimated results are less reliable in these cases. Therefore, the
users can use the uncertainty index to evaluate the accuracy of
the disaggregation results. Table II also compares the TER of
B-EDS and D-EDS, and B-EDS has a smaller disaggregation
error of D-EDS.

The Bayesian method B-EDS has slightly better disaggre-
gation performance than the deterministic approach D-EDS.
The major advantage of the Bayesian approach is to measure
the confidence level of the disaggregation results. However, the
deterministic approach is much more computationally efficient
than the Bayesian method. In Table I, the B-EDS requires
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(a) (b) (c) (d)

Fig. 4: Disaggregation performance of D-EDS on Case 1.(a) Net load. (b) The ground-truth and disaggregated load 1.(c) The ground-truth
and disaggregated load 2. (d) The ground-truth and disaggregated solar.

(a) (b) (c) (d)

Fig. 5: Disaggregation performance of D-EDS on Case 4.(a) Net load. (b) The ground-truth and disaggregated load 1.(c) The ground-truth
and disaggregated load 2. (d) The ground-truth and disaggregated solar.

(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Fig. 6: The disaggregation performance of B-EDS on Cases 1-5. Each subfigure shows the ground-truth load, disaggregated load and the
corresponding confidence interval. (a)-(c): the disaggregation results for Case 1. (d)-(f): the disaggregation results for Case 2 where the test
data contains Gaussian noise N (0, 42). (g)-(i): the disaggregation results for Case 2 where the test data contains Gaussian noise N (0, 62).
(j)-(l): the disaggregation results for Case 4 where the test data is a solar generation and its pattern is different from the training data.
(m)-(o) the disaggregation results for Case 5 where the test data contains three loads, and the pattern of solar generation is different from
the training data.
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Table II: The uncertainty indices and disaggregation accuracy on five
testing cases

Case 1 Case 2 Case 3 Case 4 Case 5
U1 243.72 280.35 201.52 0.058 160.89
U2 116.07 101.24 215.23 0.060 394.41
U3 249.89 257.78 287.23 703.48 440.26
Uall 609.69 639.37 703.98 703.60 788.44

B-EDS TER 4.77% 5.10% 7.00% 6.77% 12.97%
D-EDS TER 7.19% 8.86% 11.60% 11.01% 16.45%

around 50 seconds for the offline training and 4 seconds
for each testing sample. In comparison, the D-EDS requires
around 15 seconds for the offline training, and 0.9 seconds for
each testing sample. If users want to know the reliability of
the estimation results, the Bayesian method should be selected.
In contrast, if users need to disaggregate the aggregate mea-
surement with limited computational resources in real-time,
the deterministic approach is a better option.

V. CONCLUSION

Energy disaggregation at substations with BTM solar gen-
erations has drawn increasing attention. Accurate energy dis-
aggregation results are crucial for power system planning and
operations. However, collecting training data with full labels at
the substation level is challenging. Therefore, we propose the
concept of partially labeled data which is applicable in practice
and significantly reduces the burden of annotating data. This
paper summarizes two new load disaggregation approaches.
Both the deterministic approach and the Bayesian approach
can achieve accurate disaggregation results on partially labeled
data. Moreover, an uncertainty index is proposed to measure
the reliability of the disaggregation results. To the best of our
knowledge, this is the first work to provide the uncertainty
measure for the energy disaggregation problem.
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