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Abstract

Graph convolutional networks (GCNs) have re-
cently achieved great empirical success in learn-
ing graph-structured data. To address its scala-
bility issue due to the recursive embedding of
neighboring features, graph topology sampling
has been proposed to reduce the memory and
computational cost of training GCNs, and it has
achieved comparable test performance to those
without topology sampling in many empirical
studies. To the best of our knowledge, this pa-
per provides the first theoretical justification of
graph topology sampling in training (up to) three-
layer GCNs for semi-supervised node classifica-
tion. We formally characterize some sufficient
conditions on graph topology sampling such that
GCN training leads to a diminishing generaliza-
tion error. Moreover, our method tackles the non-
convex interaction of weights across layers, which
is under-explored in the existing theoretical analy-
ses of GCNs. This paper characterizes the impact
of graph structures and topology sampling on the
generalization performance and sample complex-
ity explicitly, and the theoretical findings are also
justified through numerical experiments.

1. Introduction

Graph convolutional neural networks (GCNs) aggregate the
embedding of each node with the embedding of its neighbor-
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ing nodes in each layer. GCNs can model graph-structured
data more accurately and compactly than conventional neu-
ral networks and have demonstrated great empirical advan-
tage in text analysis (Hamilton et al., 2017; Kipf & Welling,
2017; Velickovi€ et al., 2018; Peng et al., 2017), computer
vision (Satorras & Estrach, 2018; Wang et al., 2018; Hu
et al., 2018), recommendation systems (Ying et al., 2018;
Van den Berg et al., 2018), physical reasoning (Battaglia
et al., 2016; Sanchez-Gonzalez et al., 2018), and biological
science (Duvenaud et al., 2015). Such empirical success is
often achieved at a cost of higher computational and memory
costs, especially for large graphs, because the embedding of
one node depends recursively on the neighbors. To alleviate
the exponential increase of computational cost in training
deep GCNss, various graph topology sampling methods have
been proposed to only aggregate the embeddings of a se-
lected subset of neighbors in training GCNs. Node-wise
neighbor-sampling methods such as GraphSAGE (Hamilton
et al., 2017), VRGCN (Chen et al., 2018b), and Cluster-
GCN (Chiang et al., 2019) sample a subset of neighbors for
each node. Layer-wise importance sampling methods such
as FastGCN (Chen et al., 2018a) and LADIES (Zou et al.,
2019) sample a fixed number of nodes for each layer based
on the estimate of node importance. Another line of works
such as (Zheng et al., 2020; Li et al., 2020; Chen et al.,
2021) employ graph sparsification or pruning to reduce the
computational and memory cost. Surprisingly, these sam-
pling methods often have comparable or even better testing
performance compared to training with the original graph
in many empirical studies (Chen et al., 2018a; 2021).

In contrast to the empirical success, the theoretical foun-
dation of training GCNs with graph sampling is much less
investigated. Only Cong et al. (2021) analyzes the conver-
gence rate of graph sampling, but no generalization analysis
is provided. One fundamental question about training GCNs
is still vastly open, which is:

Under what conditions does a GCN learned with graph
topology sampling achieve satisfactory generalization?

QOur contributions: To the best of our knowledge, this
paper provides the first generalization analysis of training
GCNs with graph topology sampling. We focus on semi-
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supervised node classification problems where, with all node
features and partial node labels, the objective is to predict
unknown node labels. We summarize our contributions
from the following dimensions.

First, this paper proposes a training framework that imple-
ments both stochastic gradient descent (SGD) and graph
topology sampling, and the learned GCN model with Recti-
fied Linear Unit (ReLU) activation is guaranteed to approach
the best generalization performance of a large class of target
functions. Moreover, as the number of labeled nodes and
the number of neurons increase, the class of target function
enlarges, indicating improved generalization.

Second, this paper explicitly characterizes the impact of
graph topology sampling on the generalization performance
through the proposed effective adjacency matrix A* of a
directed graph that models the node correlations. A* de-
pends on both the given normalized graph adjacency matrix
in GCNs and the graph sampling strategy. We provide the
general insights that (1) if a node is sampled with a low
frequency, its impact on other nodes is reduced in A* com-
pared with A; (2) graph sampling on a highly-unbalanced A,
where some nodes have a dominating impact in the graph, re-
sults in a more balanced A*. Moreover, these insights apply
to other graph sampling methods such as FastGCN (Chen
et al., 2018a).

We show that learning with topology sampling has the same
generalization performance as training GCNs using A™.
Therefore, a satisfactory generalization can still be achieved
even when the number of sampled nodes is small, provided
that the resulting A™ still characterizes the data correlations
properly. This is the first theoretical explanation of the
empirical success of graph topology sampling.

Third, this paper shows that the required number of labeled
nodes, referred to as the sample complexity, is a polynomial
of || A*|| s and the maximum node degree, where ||-|| . mea-
sures the maximum absolute row sum. Moreover, our sam-
ple complexity is only logarithmic in the number of neurons
m and consistent with the practical over-parameterization of
GCNes, in contrast to the loose bound of poly(m) in (Zhang
et al., 2020) in the restrictive setting of two-layer (one-
hidden-layer) GCNs without graph topology sampling.

1.1. Related Works

Generalization analyses of GCNs without graph sam-
pling. Some recent works analyze GCNs trained on the
original graph. Xu et al. (2019); Cong et al. (2021) char-
acterize the expressive power of GCNs. Xu et al. (2021)
analyzes the convergence of gradient descent in training lin-
ear GCNs. Lv (2021); Liao et al. (2021); Garg et al. (2020);
Oono & Suzuki (2020) characterize the generalization gap,
which is the difference between the training error and test-

ing error, through Rademacher complexity. Verma & Zhang
(2019); Cong et al. (2021); Zhou & Wang (2021) analyze
the generalization gap of training GCNs using SGD via the
notation of algorithmic stability.

To analyze the training error and generalization performance
simultaneously, Du et al. (2019) uses the neural tangent
kernel (NTK) approach, where the neural network width
is infinite and the step size is infinitesimal, shows that the
training error is zero, and characterizes the generalization
bound. Zhang et al. (2020) proves that gradient descent can
learn a model with zero population risk, provided that all
data are generated by an unknown target model. The result
in (Zhang et al., 2020) is limited to two-layer GCNs and
requires a proper initialization in the local convex region of
the optimal solution.

Generalization analyses of feed-forward neural net-
works. The NTK approach was first developed to analyze
fully connected neural networks (FCNNG), see, e.g., (Jacot
et al., 2018). The works of Zhong et al. (2017); Fu et al.
(2020); Li et al. (2022) analyze one-hidden-layer neural net-
works with Gaussian input data. Daniely (2017) analyzes
multi-layer FCNNs but focuses on training the last layer
only, while the changes in the hidden layers are negligible.
Allen-Zhu et al. (2019) provides the optimization and gen-
eralization of three-layer FCNNs. Our proof framework is
built upon (Allen-Zhu et al., 2019) but makes two important
technical contributions. First, this paper provides the first
generalization analysis of graph topology sampling in train-
ing GCNs, while Allen-Zhu et al. (2019) considers FCNNs
with neither graph topology nor graph sampling. Second,
Allen-Zhu et al. (2019) considers i.i.d. training samples,
while this paper considers semi-supervised GCNs where the
training data are correlated through graph convolution.

1.2. Notations

Vectors are in bold lowercase, matrices and tensors in are
bold uppercase. Scalars are in normal fonts. For instance,
Z is a matrix, and z is a vector. z; denotes the i-th entry of
z, and Z; ; denotes the (4, j)-th entry of Z. [K] (K > 0)
denotes the set including integers from 1 to K. I; € R4x¢
and e; represent the identity matrix in R?*? and the i-th
standard basis vector, respectively. We denote the column
¢, norm for W € RN (forp > 1) as

Wlap = (> flwil)> (1)

1€[m]

Hence, | W ||2,2 = ||W]||r is the Frobenius norm of W. We
use w; (w;) to denote the i-th column (row) vector of W
We follow the convention that f(z) = O(g(x)) (or Q(g(x)),
O(g(x))) means that f(x) increases at most (or at least, or in
the same, respectively,) order of g(x). With high probability
(w.h.p.) means with probability 1 — e—¢los”(m1.m2) for g
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sufficient large constant ¢ where m and msy are the number
of neurons in the two hidden layers.

Function complexity. For any smooth function ¢(z) with
its power series representation as ¢(z) = >~ ¢;2*, define
two useful parameters as follows,

co.0)=3 (€ mi+ CCE e my e @
=0 ’
Co(¢,R) = C Y (i + 1) °R|c (3)
i=0

where R > 0 and C'"* is a sufficiently large constant. These
two quantities are used in the model complexity and sample
complexity, which represent the required number of model
parameters and training samples to learn ¢ up to € error,
respectively. Many population functions have bounded com-
plexity. For instance, if ¢(z) is exp(z), sin(z), cos(z) or
polynomials of z, then C.(¢,O(1)) < O(poly(1/e)) and
C.(#,0(1) < O(1).

The main notations are summarized in Table 2 in Appendix.

2. Training GCNs with Topology Sampling:
Formulation and Main Components

GCN setup. Let G = {V, £} denote an un-directed graph,
where V is the set of nodes with size |V| = N and £ is
the set of edges. Let A € {0,1}N*¥ be the adjacency
matrix of G with added self-connections. Let D be the
degree matrix with diagonal elements D; ; = > y /Lv, ; and
zero entries otherwise. A denotes the normalized adjacency
matrix with A = D"2 AD™ % Let X € RV denote the
matrix of the features of N nodes, where the n-th row of
X, denoted by x,, € Rixd represents the feature of node
n. Assume ||Z, || = 1 for all n without loss of generality.
yn € Y represents the label of node n, where ) is a set of
all labels. y,, depends on not only x,, but the neighbors. Let
Q C V denote the set of labeled nodes. Given X and labels
in €2, the objective of semi-supervised node-classification is
to predict the unknown labels in V /().

Learner network We consider the setting of training a
three-layer GCN F' : RV x RV*d 3 RIXK with

Fa(es, X; W, V) = e;Aa(r + B>)C and
r=Ac(AXW + B,)V

where o(z) = max(z,0) is the ReLU activation function,
W € R¥™™ and V € R™*™2 represent the weights
of m; and mo hidden nodes in the first and second layer,
respectively. By € RVX™1 and By € R™*™2 represent
the bias matrices. C € RmXK is the output weight vector.
e, € RY belongs to {e;}¥ ;| and selects the index of the
node label. We write ' as FA(eg, X; W, V), because we

only update W and V in training, and A represents the
graph topology. Note that in conventional GCNs such as
(Kipf & Welling, 2017), C'is a learnable parameter, and B
and B can be zero. Here for the analytical purpose, we
consider a slightly different model where C, B, and B
are fixed as randomly selected values.

Consider a loss function L : RY** x ) — R such that for
every y € ), the function L(-,y) is nonnegative, convex, 1-
Lipschitz continuous and 1-Lipschitz smooth and L(0,y) €
[0,1]. This includes both the cross-entropy loss and the
{5-regression loss (for bounded )). The learning problem
solves the following empirical risk minimization problem:

min Lo(W, V) ZL (Fa(ei, X; W, V), y)

i€Q
&)
where Lg is the empirical risk of the labeled nodes in 2.
The trained weights are used to estimate the unknown labels
on V/Q. Note that the results in this paper are distribution-
free, and no assumption is made on the distributions of Z,,
and y,,.

—jal

Training with SGD. In practice, (5) is often solved by gra-
dient type of methods, where in iteration ¢, the currently
estimations are updated by subtracting the product of a posi-
tive step size and the gradient of L, evaluated at the current
estimate. To reduce the computational complexity in es-
timating the gradient, an SGD method is often employed
to compute the gradient of the risk of a randomly selected
subset of ) rather than using the whole set €.

However, due to the recursive embedding of neighboring
features in GCNs, see the concatenations of A in (4), the
computation and memory cost of computing the gradient
can be high. Thus, graph topology sampling methods have
been proposed to further reduce the computational cost.

Graph topology sampling. A node sampling method ran-
domly removes a subset of nodes and the incident edges
from G in each iteration independently, and the embedding
aggregation is based on the reduced graph. Mathematically,
in iteration s, replace A in (4) with' A® = AP®, where P°
is a diagonal matrix, and the ith diagonal entry is O, if node
1 is removed in iteration s. The non-zero diagonal entries
of P? are selected differently based on different sampling
methods. Because A® is much more sparse than A, the
computation and memory cost of embedding neighboring
features is significantly reduced.

"Here we use the same sampled matrix A® in all three layers in
(4) to simplify the representation. Our analysis applies to the more
general setting that each layer uses a different sampled adjacency
matrix, i.e., the three A matrices in (4) are replaced with A =
AP A2 — AP A5G = AP*®) respectively, as in
(Zou et al., 2019; Ramezani et al., 2020), where P*V, P*(® and
P*® are independently sampled following the same sampling
strategy.
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This paper will analyze the generalization performance, i.e.,
the prediction accuracy of unknown labels, of our algorithm
framework that implements both SGD and graph topology
sampling to solve (5). The details of our algorithm are
discussed in Section 3.2-3.3, and the generalization perfor-
mance is presented in Section 3.4.

3. Main Algorithmic and Theoretical Results
3.1. Informal Key Theoretical Findings

We first summarize the main insights of our results before
presenting them formally.

1. A provable generalization guarantee of GCNs be-
yond two layers and with graph topology sampling. The
learned GCN by our Algorithm 1 can approach the best
performance of label prediction using a large class of target
functions. Moreover, the prediction performance improves
when the number of labeled nodes and the number of neu-
rons my and mgy increase. This is the first generalization
performance guarantee of training GCNs with graph topol-
ogy sampling.

2. The explicit characterization of the impact of graph
sampling through the effective adjacency matrix A™.
We show that training with graph sampling returns a model
that has the same label prediction performance as that of
a model trained by replacing A with A* in (4), where A*
depends on both A and the graph sampling strategy. As
long as A* can characterize the correlation among nodes
properly, the learned GCN maintains a desirable prediction
performance. This explains the empirical success of graph
topology sampling in many datasets.

3. The explicit sample complexity bound on graph prop-
erties. We provide explicit bounds on the sample complex-
ity and the required number of neurons, both of which grow
as the node correlation increase. Moreover, the sample
complexity depends on the number of neurons only log-
arithmically, which is consistent with the practical over-
parameterization. To the best of our knowledge, (Zhang
et al., 2020) is the only existing work that provides a sam-
ple complexity bound based on the graph topology, but in
the non-practical and restrictive setting of two-layer GCNGs.
Moreover, the sample complexity bound by (Zhang et al.,
2020) is polynomial in the number of neurons.

4. Tackling the non-convex interaction of weights be-
tween different layers. The convexity plays a critical role
in many exiting analyses of GCNs. For instance, the anal-
yses in (Zhang et al., 2020) require a special initialization
in the local convex region of the global minimum, and the
results only apply to two-layer GCNs. The NTK approach
in (Du et al., 2019) considers the limiting case that the in-
teractions across layers are negligible. Here, we directly

address the non-convex interaction of weights W and V' in
both algorithmic design and theoretical analyses.

3.2. Graph Topology Sampling Strategy

Here we describe our graph topology sampling strategy
using A°®, which we randomly generate to replace A in
the sth SGD iteration. Although our method is motivated
for analysis and different from the existing graph sampling
strategies, our insights generalize to other sampling methods
like FastGCN (Chen et al., 2018a). The outline of our algo-
rithmic framework of training GCNs with graph sampling
is deferred to Section 3.3.

Suppose the node degrees in G can be divided into L groups
with L > 1, where the degrees of nodes in group [ are in the
order of d, i.e., between cd; and Cd; for some constants
¢ < C, and d; is order-wise smaller than d;;1, i.e., d; =
o(dj4+1)- Let N; denote the number of nodes in group .

Graph sampling strategy’.. We consider a group-wise
uniform sampling strategy, where S; out of [N; nodes are
sampled uniformly from each group /. For all unsampled
nodes, we set the corresponding diagonal entries of a di-
agonal matrix P? to be zero. If node i is sampled in this
iteration and belongs to group [ for any ¢ and [, the ith diag-
onal entry of P is set as p; N;/.S; for some non-negative
constant p;. Then A® = AP*. N;/S, can be viewed as
the scaling to compensate for the unsampled nodes in group
l. p; can be viewed as the scaling to reflect the impact of
sampling on nodes with different importance that will be
discussed in detail soon.

Effective adjacency matrix A™ by graph sampling. To
analyze the impact of graph topology sampling on the learn-
ing performance, we define the effective adjacency matrix

as follows:
A* = AP 6)

where P* is a diagonal matrix defined as

P}, =p; ifnode i belongs to degree group!  (7)
Therefore, compared with A, all the columns with indices
corresponding to group [ are scaled by a factor of p;. We
will formally analyze the impact of graph topology sampling
on the generalization performance in Section 3.4, but an
intuitive understanding is that our graph sampling strategy
effectively changes the normalized adjacency matrix A in
the GCN network model (4) to A*.

A" can be viewed as an adjacency matrix of a weighted
directed graph G’ that reflects the node correlations, where
each un-directed edge in G corresponds to two directed
edges in G’ with possibly different weights. A;i measures

Here we discuss asymmetric sampling as a general case. The
special case of symmetric sampling is introduced in Section A.1
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the impact of the feature of node ¢ on the label of node j.
If p; is in the range of (0, 1), the corresponding entries of
columns with indices in group [ in A* are smaller than those
in A. That means the impact of a node in group / on all other
nodes is reduced from those in A. Conversely, if p; > 1,
then the impact of nodes in group [ in A™ is enhanced from
that in A.

Parameter selection and insights

(1) The scaling factor p; should satisfy

c1

0<p/ <—, Wl 8

>P > L’l][}l7 ( )

for a positive constant c; that can be sufficiently large. v is
defined as follows,

Vdrd N,

v Y, diN;

vl e [L] )

Note that (8) is a minor requirement for most graphs. To see
this, suppose L is a constant, and every NV, is in the order
of N. Then #; is less than O(1) for all I. Thus, all constant
values of p}f satisfy (8) with ¢; from (9). A special example
is that pj are all equal, i.e., A* = cp A for some constant
¢o. Because one can scale W and V' by 1/¢5 in (4) without
changing the results, A is equivalent to A in this case.

The upper bound in (9) only becomes active in highly un-
balanced graphs where there exists a dominating group [
such that /d;N; > \/d;N; for all other I. Then the up-
per bound of pzf is much smaller than those for other pj.
Therefore, the columns of A™ that correspond to group
[ are scaled down more significantly than other columns,
indicating that the impact of group [ is reduced more signif-
icantly than other groups in A*. Therefore, the takeaway
is that graph topology sampling reduces the impact of
dominating nodes more than other nodes, resulting in a
more balanced A* compared with A.

(2) The number of sampled nodes shall satisfy

S 1
S arolvo)
N, Lpl P

where € is a small positive value. The sampling require-
ment in (10) has two takeaways. First, the higher-degree
groups shall be sampled more frequently than lower-
degree groups. To see this, consider a special case that
pf =1,and N; = N/L for all [. Then (10) indicates that
S; is larger in a group [ with a larger d;. This intuition is the
same as FastGCN (Chen et al., 2018a), which also samples
high-degree nodes with a higher probability in many cases.
Therefore, the insights from our graph sampling method
also apply to other sampling methods such as FastGCN. We
will show the connection to FastGCN empirically in Section

vie[Ll]  (10)

Algorithm 1 Training with SGD and graph topology sam-
pling
1: Input: Normalized adjacency matrix A, node features
X, known node labels in €2, the step size 7, the number
of inner iterations 77, the number of outer iterations 7',
Ows Ov, )\w’ )\1)'
Initialize W, vV(® B, B, C.
Wy=0,Vy=0.
fort=0,1,---,T—1do
Apply noisy SGD with step size 7 on the stochastic
objective ﬁQ(At; W,V) in (11) for T, steps. To
generate the stochastic objective in each step s, ran-
domly sample a batch of labeled nodes 2° from 2;
generate A°® using graph sampling; randomly gener-
ate W”, V* and X.
Let the starting pointbe W = W, V = V, and
suppose it reaches W1 and Vi 1.
6: )\t+1 = )\t . (1 — 77)
7: end for
8: Output:
wlout) — /)\T—1(W(O) + WP+ W)
v = A (VO L Ve L BV,

4.2. Second, reducing the number of samples in group [
corresponds to reducing the impact of group / in A*. To
see this, note that decreasing p; reduces the right-hand side
of (10).

3.3. The Algorithmic Framework of Training GCNs

Because (5) is non-convex, solving it directly using SGD
can get stuck at a bad local minimum in theory. The main
idea in the theoretical analysis to address this non-convexity
is to add weight decay and regularization in the objective of
(5) such that with a proper regularization, any second-order
critical point is almost a global minimum.

Specifically, for initialization, entries of W areiid. from
N(0, n“%) and entries of V(%) are i.i.d. from N(0, m%z)
B, (or B») is initialized to be an all-one vector multiply-
ing a row vector with i.i.d. samples from A/(0, n%) (or

N(0, %2)) Entries of C are drawn i.i.d. from A/(0, 1).

In each outer loop ¢t = 0,...,T — 1, we use noisy SGD?
with step size n for T, iterations to minimize the stochastic

objective function ﬁg in (11) with some fixed A\;_1, where

3Noisy SGD is vanilla SGD plus Gaussian perturbation. It is a
common trick in the theoretical analyses of non-convex optimiza-
tion (Ge et al., 2015) and is not needed in practice.
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Ao = 1, and the weight decays with A\;y1 = (1 — n)A;.

Lo(A; W, V)
=Lo(VN(WO 4+ W? + W), VA, (VO + V2 + V)
+ A VAW |24 + A [VAV |7

Y
La(M\; W, V) is stochastic because in each inner iteration
s, (1) we randomly sample a subset £2° of labeled nodes; (2)
we randomly sample A°® from the graph topology sampling
method in Section 3.2; (3) W* and V* are small perturba-
tion matrices with entries i.i.d. drawn from N(0, o2 and
N(0,02), respectively; and (4) X € R™X™1 is a random
diagonal matrix with diagonal entries uniformly drawn from
{1,—1}. W?” and V” are standard Gaussian smoothing
in the literature of theoretical analyses of non-convex opti-
mization, see, e.g. (Ge et al., 2015), and are not needed in
practice. 3 is similar to the practical Dropout (Srivastava
et al., 2014) technique that randomly masks out neurons and
is also introduced for the theoretical analysis only.

The last two terms in (11) are additional regularization terms
for some positive A\, and A,. As shown in (Allen-Zhu et al.,
2019), || - |l2,4 is used for the analysis to drive the weights
to be evenly distributed among neurons. The practical reg-
ularization || - | » has the same effect in empirical results,
while the theoretical justification is open.

Algorithm 1 summarizes the algorithm with the parame-
ter selections in Table 1. Let W°“ and V°“' denote the
returned weights. We use Fla+ (e;, X; W°"! V") to pre-
dict the label of node 7. This might sound different from the
conventional practice which uses A in predicting unknown
labels. However, note that A* only differs from A by a
column-wise scaling as from (6). Moreover, A™ can be set
as A in many practical datasets based on our discussion af-
ter (9). Here we use the general form of A™ for the purpose
of analysis.

We remark that our framework of algorithm and analysis
can be easily applied to the simplified setup of two-layer
GCNs. The resulting algorithm is much simplified to a
vanilla SGD plus graph topology sampling. All the ad-
ditional components above are introduced to address the
non-convex interaction of W and V theoretically and may
not be needed for practical implementation. We skip the
discussion of two-layer GCNs in this paper.

Table 1. Parameter choices for Algorithm 1

)\U QEOmQ/m}—O.m O 1/m;/2+0.01
)\w 250m‘:’70'002/03 Ow 1/m170’01
C | c(@)lA" ) /1A% +1 | C7 10C /P2
c” C.(®,0)/ A" 1% +1 Co | 02paK?CC™)

3.4. Generalization Guarantee

Our formal generalization analysis shows that our learning
method returns a GCN model that approaches the minimum
prediction error that can be achieved by the best function
in a large concept class of target functions, which have two
important properties: (1) the prediction error decreases as
size of the function class increases; and (2) the concept
class uses A* in (6) as the adjacency matrix of the graph
topology. Therefore, the result implies that if A™ accurately
captures the correlations among node features and labels,
the learned GCN model can achieve a small prediction error
of unknown labels. Moreover, no other functions in a large
concept class can perform better than the learned GCN
model. To formalize the results, we first define the target
functions as follows.

Concept class and target function F'*. Consider a concept
class consisting of target functions F* : RV x RNxd

RlXK:
Fu(eg, X) = egTA* (®(r1) ©@rz)C”
ri=A"p (A" XW7])V] (12)

where ¢1, ¢2, &: R — R all infinite-order smooth*. The
parameters Wi, W5 € R¥*P2 Vi Vi € Rr2XP1 C* ¢
RP1*F gatisfy that every column of W7, W3, Vi, V1 is
unit norm, and the maximum absolute value of C* is at
most 1. The effective adjacency matrix A* is defined in (6).
Define

Ce(¢, R) = max (Cc(¢1, R),Ce(¢2, R)),  (13)
Cs(¢, R) = max (Cs(¢1, R),Ca(é1,R)).  (14)

=

We focus on target functions where the function complexity
Cc(®,R),Cs(P, R), Cc(, R), Cs(, R), defined in (2)-(3),
(13)-(14), as well as p; and po, are all bounded.

(12) is more general than GCNss. If r4 is a constant matrix,
(12) models a GCN, where W and V'] are weight matrices
in the first and second layer, respectively, and ¢, and ® are
the activation functions in each layer.

Modeling the prediction error of unknown labels. We
will show that the learned GCN by our method performs
almost the same as the best function in the concept class in
(12) in predicting unknown labels. Because the practical
datasets usually contain noise in features and labels, we em-
ploy a probabilistic model to model the data. Note that our

*When ® is operated on a matrix r1, ®(r1) means applying
® on each entry of 7. In fact, our results still hold for a more
general case that a different function ®; is applied to every entry
of the jth column of 71, j € [p2]. We keep the simpler model to
have a more compact representation. The similar arguments hold

fOl‘ ¢1, ¢2.
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result is distribution-free , and the following distributions
are introduced for the presentation of the results.

Specifically, let Dz denote the distribution from which
the feature z,, of node n is drawn. For example, when
the noise level is low, Dz, can be a distribution centered
at the observed feature of node n with a small variance.
Similarly, let D, denote the distribution from which the
label y,, at node n is drawn. Let e, be uniformly selected
from {e;}Y; € RN. Let D denote the concatenation of
these distributions of a data point

z=(eg, X,y) e RV x RV* x . (15)

Then the given feature matrix X and partial labels in €2
can be viewed as || identically distributed but correlated
samples from D. The correlation results from the fact that
the label of node ¢ depends on not only the feature of node
1 but also neighboring features. This model of correlated
samples is different from the conventional assumption of
i.i.d. samples in supervised learning and makes our analyses
more involved.

Let

OPTa- = min_ Eq, x,)~pL(F4-(e4,X),y)
wi, wi,
Vi‘, V;, Cc*

(16)
be the smallest population risk achieved by the best target
function (over the choices of W7, W35, V], V5, C”)inthe
concept class . in (12). OPT 4~ measures the average
loss of predicting the unknown labels if the estimates are
computed using the best target function in (12). Clearly,
OPT 4~ decreases as the size of the concept increases, i.e.,
when p; and p, increase. Moreover, if A* indeed models
the node correlations accurately, OPT 4~ can be very small,
indicating a desired generalization performance. We next
show that the population risk of the learned GCN model by
our method can be arbitrarily close to OPT 4+.

Theorem 3.1. For every v € (0, i], every ey € (0, ﬁ],
every € € (0, (Kp1p3Cs(®, p2Cs(, O(1)))Cs(p, O(1))

[|A*12,) " o), as long as

my =Moo =M

1 (17
>poly(C.(®,€.(6,0(1))) . p2. [ A"l )

10 20(eg * | A5 K (1 + pip3Ce(®, v/p2Ce(9, O(1)))

+Ce(¢, O()) ([ A" || oo +1)*)(1 + )" log N log m),

(18)

(8) and (10) hold, there is a choice n =

1/poly(||A*[|oc, K, m) and T = poly(||A"||oc, K, m)
such that with probability at least 0.99 ,

E(emX}y)EDL(FA* (eg, ‘X7 W(Out)’ V(out))’ y)

(19)
<(1+7)OPT 4+ + €,

where A* is the effective adjacency matrix in (12).

Theorem 3.1 shows that the required sample complexity
is polynomial in ||A*|| and §, where § is the maximum
node degree without self-connections in A. Note that con-
dition (8) implies that || A*|| s is O(1). Then as long as d is
O(N®) for some small a in (0, 1), say o = 1/5, then one
can accurately infer the unknown labels from a small per-
centage of labeled nodes. Moreover, our sample complexity
is sufficient but not necessary. It is possible to achieve a de-
sirable generalization performance if the number of labeled
nodes is less than the bound in (18).

Graph topology sampling affects the generalization perfor-
mance through A*. From the discussion in Section 3.2,
graph sampling reduces the node correlation in A*, espe-
cially for dominating nodes. The generalization perfor-
mance does not degrade when OPT 4+ is small, i.e., the
resulting A* is sufficient to characterize the node correla-
tion in a given dataset. That explains the empirical success
of graph sampling in many datasets.

4. Numerical Results

To unveil how our theoretical results are aligned with GCN’s
generalization performance in experiments, we will focus
on numerical evaluations on synthetic data where we can
control target functions and compare with A™ explicitly. We
also evaluate both our graph sampling method and FastGCN
(Chen et al., 2018a) to validate that insights for our graph
sampling method also apply to FastGCN.

We generate a graph G with N = 2000 nodes. G has two
degree groups. Group 1 has N; nodes, and every node
degree approximately equals d;. Group 2 has Ny nodes,
and every node degree approximately equals do. The edges
between nodes are randomly selected. A is the normalized
adjacency matrix of G.

The node labels are generated by the target function
y = (sin(AXW*) ® tanh(AXW*))C*,  (20)

where A € RVXN_ X ¢ RV*d W* ¢ RI*P and C* €
RP*K  The feature dimension d = 10. p=10,and K = 2.
X, W™ and C* are all randomly generated with each entry
i.i.d. from A(0, 1).

We consider a regression task with the ¢5-regression loss
function. A three-layer GCN as defined in (4) with m neu-
rons in each hidden layer is trained on a randomly selected
set ) of labeled nodes. The rest N — |Q] labels are used
for testing. The learning rate 7 = 10~3. The mini-batch
size is 5, and the dropout rate as 0.4. The total number of
iterations is 7T, = 4/Q)|. Our graph topology sampling
method samples 57 = 0.9N; and Sy = 0.9N, nodes for
both groups in each iteration.
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4.1. Sample Complexity and Neural Network Width
with respect to || A™ ||

We fix N; = 100, No = 1900 and vary A by changing
node degrees d; and do. In the graph topology sampling
method, p; = 0.7 and p5 = 0.3. For every fixed A, the
effective adjacency matrix A* is computed based on (6)

using pj and p3. Synthetic labels are generated based on
(20) using A* as A.

Figure 1 shows the testing error decreases as the number of
labeled nodes |{2| increases, when the number of neurons
per layer m is fixed as 500. Moreover, as || A ||« increases,
the required number of labeled nodes increases to achieve
the same level of testing error. This verifies our sample
complexity bound in (18).

Figure 2 shows the testing error decreases as m increases
when || is fixed as 1500. Moreover, as || A* || increases,
a larger m is needed to achieve the same level of testing
error. This verifies our bound on the number of neurons in
17).

_ 107 B
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* _ ~ i
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Number of labeled nodes

Figure 1. The testing error when || and || A*||c change. m =
500
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e Y S, i
g | Nog..... |
& =.=§- 88
» ———2
2
10~ 2 3
10 10 10°

Total number of hidden neurons

Figure 2. The testing error when m and ||A*||s change. || =
1500.

4.2. Graph Sampling Affects A"

Here we fix A and the graph sampling strategy, and evaluate
the prediction performance on datasets generated by (20)
using different A. We generate A from A = AP, where
Pisa diagonal matrix with P, = Py for nodes ¢ in group 1
and P;; = po for nodes ¢ in group 2. We vary p; and ps to

generate three different datasets from (20). We consider both
our graph sampling method in Section 3.2 and FastGCN
(Chen et al., 2018a).

In Figure 3, N; = 100 and N = 1900. d; = 10 and
do = 1. Figure 3(a) shows the testing performance of a
learned GCN by Algorithm 1, where p; = 0.9 and p5 = 0.1.
the method indeed performs the best on Dataset 1 when A
is generated using p; = 0.9 and P2 = 0.1, in which case
A* = A. This verifies our theoretical result that graph
sampling affects A™ in the target functions, i.e., it achieves
the best performance if A™ is the same as A in the target
function.

. 1
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Figure 3. Generalization performance of learned GCNs on datasets
generated from different A by (a) our graph sampling strategy and
(b) FastGCN. A is very unbalanced.

Fig. 3 (b) shows the performance on the same three datasets
where in each iteration of Algorithm 1, the graph sampling
strategy is replaced with FastGCN (Chen et al., 2018a). The
method also performs the best in Dataset 1 when A™ is
generated using p; = 0.9 and po = 0.1. The reason is
that the graph topology is highly unbalanced in the sense
that \/d3 N5 > +/d; N1, which means group 2 has a much
higher impact on other nodes in group 1 in A. The graph
sampling reduces the impact of group 2 nodes more signifi-
cantly than group 1 nodes, as discussed in Section 3.2.

To further illustrate this, in Figure 4 we change the graph
topology by setting N; = 1000 and Ny = 1000, and all the
other settings remain the same. In this case, the graph is
balanced because v/d2 N and 1/d; N; are in the same order.
We generate different datasets using the new A following
the same method and evaluate the performance of both
our graph sampling method and FastGCN. Both methods
perform the best in Dataset 3 when Ais generated using
p1 = 0.5 and p, = 0.5. That is because on a balanced
graph, graph sampling reduces the impact of both groups
equally.
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Figure 4. Generalization performance of learned GCNs on datasets
generated from different A* by (a) our graph sampling strategy
and (b) FastGCN. A is balanced.

5. Conclusion

This paper provides a new theoretical framework for ex-
plaining the empirical success of graph sampling in training
GCN:s. It quantifies the impact of graph sampling explic-
itly through the effective adjacency matrix and provides
generalization and sample complexity analyses. One fu-
ture direction is to develop active graph sampling strategies
based on the presented insights and analyze its generaliza-
tion performance. Other potential extension includes the
construction of statistical-model-based characterization of
A" and fitness to real-world data, and the generalization
analysis of deep GCNs, graph auto-encoders, and jumping
knowledge networks.

Acknowledgements

This work was supported by AFOSR FA9550-20-
1-0122, ARO WO9I11NF-21-1-0255, NSF 1932196
and the Rensselaer-IBM AI Research Collaboration
(http://airc.rpi.edu), part of the IBM Al Horizons Network
(http://ibm.biz/AlHorizons). We thank Ruisi Jian, Haolin
Xiong at Rensselaer Polytechnic Institute for the help
in formulating numerical experiments. We thank all
anonymous reviewers for their constructive comments.

References

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and gener-
alization in overparameterized neural networks, going
beyond two layers. In Advances in neural information
processing systems, pp. 6158-6169, 2019.

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al.
Interaction networks for learning about objects, relations

and physics. In Advances in neural information process-
ing systems, pp. 4502—4510, 2016.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.

In International Conference on Learning Representations,
2018a.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. In Inter-
national Conference on Machine Learning, pp. 942-950.
PMLR, 2018b.

Chen, T., Sui, Y., Chen, X., Zhang, A., and Wang, Z. A
unified lottery ticket hypothesis for graph neural networks.

In International Conference on Machine Learning, pp.
1695-1706. PMLR, 2021.

Chiang, W.-L., Liu, X, Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257266,
2019.

Cong, W., Ramezani, M., and Mahdavi, M. On provable
benefits of depth in training graph convolutional networks.

Advances in Neural Information Processing Systems, 34,
2021.

Daniely, A. Sgd learns the conjugate kernel class of the
network. Advances in Neural Information Processing
Systems, 30:2422-2430, 2017.

Du, S. S., Hou, K., Salakhutdinov, R. R., Poczos, B., Wang,
R., and Xu, K. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels. In Advances in
Neural Information Processing Systems, pp. 5724-5734,
2019.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224-2232, 2015.

Fu, H., Chi, Y., and Liang, Y. Guaranteed recovery of one-
hidden-layer neural networks via cross entropy. [EEE
Transactions on Signal Processing, 68:3225-3235, 2020.

Garg, V., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. In In-

ternational Conference on Machine Learning, pp. 3419-
3430. PMLR, 2020.

Ge, R., Huang, F,, Jin, C., and Yuan, Y. Escaping from sad-
dle points—online stochastic gradient for tensor decom-
position. In Conference on learning theory, pp. 797-842.
PMLR, 2015.



Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024-1034, 2017.

Hu, H., Gu, J., Zhang, Z., Dai, J., and Wei, Y. Relation
networks for object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 3588-3597, 2018.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.

8571-8580, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proc. International
Conference on Learning (ICLR), 2017.

Li, H., Zhang, S., and Wang, M. Learning and generaliza-
tion of one-hidden-layer neural networks, going beyond
standard gaussian data. In 2022 56th Annual Conference
on Information Sciences and Systems (CISS), pp. 37-42.
IEEE, 2022.

Li, J., Zhang, T., Tian, H., Jin, S., Fardad, M., and Zafarani,
R. Sgen: A graph sparsifier based on graph convolutional
networks. In Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pp. 275-287. Springer, 2020.

Liao, R., Urtasun, R., and Zemel, R. A pac-bayesian ap-
proach to generalization bounds for graph neural net-
works. In International Conference on Learning Repre-
sentations, 2021.

Lv, S. Generalization bounds for graph convolutional neural
networks via rademacher complexity. arXiv preprint
arXiv:2102.10234, 2021.

Oono, K. and Suzuki, T. Optimization and generalization
analysis of transduction through gradient boosting and ap-
plication to multi-scale graph neural networks. Advances
in Neural Information Processing Systems, 33, 2020.

Peng, N., Poon, H., Quirk, C., Toutanova, K., and Yih, W.-
t. Cross-sentence n-ary relation extraction with graph
Istms. Transactions of the Association for Computational
Linguistics, 5:101-115, 2017.

Ramezani, M., Cong, W., Mahdavi, M., Sivasubramaniam,
A., and Kandemir, M. Gen meets gpu: Decoupling “when
to sample” from “how to sample”. Advances in Neural
Information Processing Systems, 33:18482-18492, 2020.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.
Graph networks as learnable physics engines for infer-
ence and control. In International Conference on Machine
Learning, pp. 4470-4479. PMLR, 2018.

Satorras, V. G. and Estrach, J. B. Few-shot learning with
graph neural networks. In International Conference on
Learning Representations, 2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Van den Berg, R., Kipf, T. N., and Welling, M. Graph
convolutional matrix completion. In KDD, 2018.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P, and Bengio, Y. Graph attention networks. Interna-
tional Conference on Learning Representations (ICLR),
2018.

Verma, S. and Zhang, Z.-L.. Stability and generalization
of graph convolutional neural networks. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 15391548,
2019.

Wang, X., Ye, Y., and Gupta, A. Zero-shot recognition
via semantic embeddings and knowledge graphs. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 6857-6866, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? International Conference on
Learning Representations (ICLR), 2019.

Xu, K., Zhang, M., Jegelka, S., and Kawaguchi, K. Opti-
mization of graph neural networks: Implicit acceleration
by skip connections and more depth. In International
Conference on Machine Learning. PMLR, 2021.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 974-983,
2018.

Zhang, S., Wang, M., Liu, S., Chen, P.-Y., and Xiong, J.
Fast learning of graph neural networks with guaranteed
generalizability: One-hidden-layer case. arXiv preprint
arXiv:2006.14117, 2020.

Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W.,
Chen, H., and Wang, W. Robust graph representation
learning via neural sparsification. In International Con-
ference on Machine Learning, pp. 11458-11468. PMLR,
2020.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neural



Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

networks. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 4140-4149.
JMLR. org, https://arxiv.org/abs/1706.03175, 2017.

Zhou, X. and Wang, H. The generalization error of graph
convolutional networks may enlarge with more layers.
Neurocomputing, 424:97-106, 2021.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu,
Q. Layer-dependent importance sampling for training
deep and large graph convolutional networks. Advances
in Neural Information Processing Systems, 32:11249—
11259, 2019.



Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

A. Preliminaries
Lemma A.1. ||a, X | < || A] co-

Proof:

N
lan X = || Zan,krikll

Z gy - Zank on

= ||
k=1 k 1 n,k

N a
< L\\wkll [ Aloo

k= 1Zk 1@
= [[Allo

where the second to last step is by the convexity of || - ||.

Lemma A.2. Given a graph G with L(> 1) groups of nodes, where the group i with node degree d; is denoted as N;.
Suppose that in iteration t, A" (or any of A AY)ATG) iy the general setting) is generated from the sampling strategy
in Section 3.2, if the number of sampled nodes satisfies l; > |N;|/(1 + Cil;of)qse)) we have

A" — A*||o < poly(e) (22)

Proof:
From Section 3.2, we can rewrite that

—t Vl\lff‘pZAn,j, if the nodes n, j are connected and j is selected and j € N}, 23)
a, = -
" 0, else
= pj Ay, j, if the nodes n, j are connected and j € N, 24)
0, else
Let A* = (aN*I, aN*;r, .-~ ,a*,)". Since that we need that Z;\Ll A;, ;- < O(1), we require
p; Y An; < O(1/L), holds forany i € [L],n € [N] (25)

JEN;

We first roughly compute the ratio of edges that one node is connected to the nodes in another group. For the node
with degree deg(i), it has deg(i) — 1 open edges except the self-connection. Hence, the group with degree deg(j) has
(deg(j) — 1)|NV;| open edges except self-connections in total. Therefore, the ratio of the edges connected to the group j to
all groups is

(deg(i) — DN _ d,IG|
S (deg(l) — DN S0 iG]

U(n,i) = 2. G 27
D= S A @n

1 d;| NG| ]
p; Y Anj=p; dy S pi(n,i) < O(1/L) (28)
JEIN;| vd Zz LA N

(26)

Define

Then, as long as

ie.,

. ¢ __a di Y212, il 29)
! L max, e {¥(n,i)}  L-Y(L,i) dr,  di|Ni]
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for some constant ¢; > 0, we can obtain that || A*||.c < O(1). Since that

1 d; | NG| I Iy
> A, W R Y A (30)
jESK T Vad S alN T jem,
1 ;||
Apj =~ : Api( ), 31)
gs:k T Vdidy S AN Wk\ Z il INkI
the difference between dfm and a*,, can then be derived as
||a’t - d*nHI
Wil
:’ZZAnjk "‘ZZAn]pk‘
k=1j€Sk k=1j¢8y
L \Nk
SO (5 - > A+ (1 e D Any) (32)
= lk |Nk|ye/\/ \N\ v
L
<poly(e) Y | ————= IO Z Anj
k=1 ’ ]ENk
=poly(e)I'(A")

where the first inequality is by (30, 31) and the second inequality holds as long as I; > |N;|/(1 + %). Combining
(41), we have '

L L
2D A S T Lq, 7 2 Ans =T(47) <OQ) (33)
i=1 JjEN; i=1 ]GN
Hence, (32) can be bounded by poly(e).

A.1. Symmetric graph sampling method

We provide and discuss a symmetric graph sampling method in this section. The insights behind this version of sampling
strategy is the same as in Section 3.2.

Similar to the asymmetric construction in Section 3.2, we consider a group-wise uniform sampling strategy, where S; nodes
are sampled uniformly from /V; nodes. For all unsampled nodes, we set the corresponding diagonal entries of a diagonal
matrix P? to be zero. If node i is sampled in this iteration and belongs to group [ for any 7 and [, the ith diagonal entry of
P? is set as \/p; N;/S; for some non-negative constant p;. Then A* = P°AP®.

Based on this symmetric graph sampling method, we define the effective adjacency matrix as

A" = P"AP™, (34)
where P* is a diagonal matrix defined as
P;, = \/p; if node i belongs to degree group ! (3%
The scaling factor pj should satisfy
0<yp < L%/)Q , Vi (36)
for a positive constant ¢, that can be sufficiently large. 1/; is defined in (9). The number of sampled nodes shall satisfy
S 1
Sy a4 @MWy (37)

l L\/}Tfiﬁl

where ¢ is a small positive value.
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Lemma A.3. Given a graph G with L(> 1) groups of nodes, where the group i with node degree d; is denoted as N;.
Suppose A® (or any of AN AY)ATG) iy the general setting) is generated from the sampling strategy in Section A.1, if

the number of sampled nodes satisfies 1; > |N;|/(1 + %) then we have
|A" — A%l < poly(e)
Proof:

From Section A.1, we can rewrite that

lilu

&t — { NIV |p;§puAn,j, if the nodes n, j are connected and j is selected and n € Ny, j € N}
f =
0,

else

- {, /D;p% An.j,  if the nodes n, j are connected and n € N, j € Ny,
a*, = ’

0, else
. ~T ~T - T
Then A* = (a*, ,a*,,--- ,a*,) . Then, for n € N,, as long as
> VP An ~ \/pipt L. LdiWi' dn S /PEPFY (0, 1) < \/p;¥(n,i) < O(1/L)
JEING| Viidn 377 di| M|
ie.,
< C2 _ €1 _ Ez 1 dl|-/\[l|
"7 Lomax,ep{¥(n,i)}  L-V¥(L,q) dL d;|N;|

for some constant c; > 0, we can obtain that ||A* || < O(1).

The difference between a!, and a*,, can then be derived as

lay, — a*ully

Nl [N
‘Z Z Anj\/ D3P i | kH .5V DDy,
k=1j€Sk k=1j¢Sy
‘ZZAW oipi( |NkHN| |'/<;|+ZZA,j\/pupk \N\ ‘
k=1jeN} k=1jEN%
Spoly(e)

aslong as ; > [N;|/(1+ %)2'

B. Node classification for three layers

In the whole proof, we consider a more general target function compared to (12). We write F* : RY x RV*d _ RK:

FZ* :(ff7f57 7f;()a

(38)

(39)

(40)

(41)

(42)

(43)

filew X) =e] 3 ci (AT Y vius00,(AXwi ) © (A" Y 03004 Xws ), v € (K], (49

ke[p1] J€(p2] l€[p2]

where each ¢y ;, ¢2 ;, ®;: R — Ris infinite-order smooth.

Table 2 shows some important notations used in our theorem and algorithm. Table 3 gives the full parameter choices for the

three-layer GCN. ploy(log(mymz2)) in the following analysis.
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Table 2. Summary of notations

G={V,¢&} G is an un-directed graph consisting of a set of nodes V and a set of edges £.

N The total number of nodes in a graph.

A=D *AD" A € RVXN ig the normalized adjacency matrix computed by the degree matrix D and the
initial adjacency matrix A.

A* The effective adjacency matrix.

A’ The sampled adjacency matrix using our sampling strategy in Section 3.2 at the ¢-th iteration.

eq, X yn e, belongs to {ei}ivzl and selects the index of the node label. X € RV*4 is the feature matrix. Un
is the label of the n-th node.

mi, Mo m1, mg are the number of neurons in the first and second hidden layer, respectively.

W,V, B, By X € RV*d s the data matrix. W, V are the weight matrices of the first and second hidden layer,
respectively. B1, B are the corresponding bias matrices.

W(O), v©O WO and V@ are random initializations of W and V, respectively.

WP, vPF WP and V* are two random matrices used for Gaussian smoothing.

b The Dropout technique.

Q, Qf ) is the set of labeled nodes and €); is the batch of labeled nodes at the ¢-th iteration.

T, Tw, 1, At In Algorithm 1, T is the number of outer iterations for the weight decay step, while T, is the
number of inner iterations for the SGD steps. 7 is the step size and )\; is the weight decay coefficient
at the ¢-th iteration.

L,d;, S;, N; L is the number of node groups in a graph. d; is the order-wise degree in the [-th group. IV; is the
number of nodes in group I.

Si The number of nodes we sample in group /.

B.1. Lemmas

Table 3. Full parameter choices for three-layer GCN

| om0 (fem, )
T | o/l tmy )
. m1/270.001/mé/2 > 7!
Tw 1/m3/A7000 5 71
Ay 2/(7—1/;)2

Aw 2/(ry,)*

- 1/m 1724001

Ow ow = 1/m7 09T

C | Ce(¢[|A]lo) VI AlZ +1
c’ 10C/ps

C" | C(2,C)V]A[% +1
Co O(pip2 K*CC")

€c 1

B.1.1. FUNCTION APPROXIMATION

To show that the target function can be learnt by the learner network with the Relu function, a good approach is to firstly
find a function h(-) such that the ¢ functions in the target function can be approximated by h(-) with an indicator function.
In this section, Lemma B.1 provides the existence of such i(-) function. Lemma B.2 and B.3 are two supporting lemmas to

prove Lemma B.1.

Lemma B.1. For every smooth function ¢, every ¢ € (0, m), there exists a function h : R? —
[—Ce(d,a)Va? + 1,Cc(¢,a)Va? + 1] that is also Cc(¢, a)Va? + 1-Lipschitz continuous on its first coordinate with the

following two (equivalent) properties:
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(a) For every x1 € [—a,a] where a > 0:

’E[lalzl“rﬁl a2*w%+b020h(a17 bo)} - (25(1'1)‘ Se€

where aq, 81, by ~ N (0, 1) are independent random variables.
(b) For every w*, x € R with |[w* ||z = 1 and ||z|| < a:

‘E[leerUZOh(wTw*,bo)} - qs(w*Tm)’ <e

where w ~ N (0, I) is an d-dimensional Gaussian, by ~ N(0,1).

Furthermore, we have E, y~nr0,1)[h(a1,b0)%] < (Cs(,a))?(a® + 1).

(c) For every w*, x € R? with |w*||s = 1, let w = (w, by) € R¥*L, & = (z,1) € R with ||| < Va2 + 1, then we
have

‘E[lﬁ,rizoh(ﬁ;[l L d) w*, wld + 1])} ~p(w @1 d)| <e

where w ~ N (0, I441) is an d-dimensional Gaussian.
We also have Egepnr(0,1,,1)[h(w[1 : d)"w*, wld + 1))2] < (Cs(9, a))2(a2 + 1).

Proof:

Firstly, since we can assume w* = (1,0, - -- ,0) without loss of generality by rotating « and w, it can be derived that x, w,
w™ are equivalent to that they are two-dimensional. Therefore, proving Lemma B.1b suffices in showing Lemma B.1a.
Letwy = (o, B), ¢ = (x1, /% — %) where « and /3 are independent. Following the idea of Lemma 6.3 in (Allen-Zhu et al.,

. . . 41
2019), we use another randomness as an alternative, i.e., we write & = (\/t? — 2}, —z1), wo = a% + %~ ~ N(0,I).

Then wo X = ta. Let a; = woy = %+ + /1 — f—; where o, 8 ~ N(0,1). Hence, a; ~ N (0, 1).
We first use Lemma B.2 to fit ¢(z1). By Taylor expansion, we have

d(x1) =co + Z cirt + Z cixt

=1, odd % =2, even (45)
(oo}
=co+ Z ¢iEa. g1y [hi(01)1[gi(bo)]1[wo X + by > 0]]
i=1
where h;(-) is the Hermite polynomial defined in Definition A.5 in (Allen-Zhu et al., 2019), and
Ci 20082|c;| V12 + 1 bo| < t/(21), 7 is odd
C; = | z| > | ”| 135 anin(bO) = ‘ 0| /( ) . .. (46)
P, =D ¢ 0 < —by <t/(2i), iiseven

Let B; = 100i2 + 104/log(% VA1) Define hi(ay) = hi(ay) - 1ea| < Bi] + hq(sign(ay)B;) - 1|as| > By as the

t1—1
truncated version of the Hermite polynomial. Then we have

¢(x1) = co + R(x1) + icéEa,ﬁNNm,n[ﬁi(al)l[qi(bo)]l[on +bo > 0],
where
R(z) = ic;EWNN(OJ) {(hi(al) ~1f|ar| > Bi] — hi(sign(a1)B; - 1|a| > Bi]))1[gi(bo)|1[wo X + by > 0]
Define
h(au,bo) = co + Z c Lqi(bo)]
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Then by Lemma B.3, we have

€
|Ea,p,00~A7(0,1) [L[wo X + bo > 0] - h(a1, bo) — ¢(x1)] < [R(z1)| < 1
We also have

il feg]?d® 2 +1
Eao b0, (01, b0)%] < (€ 4 c3) + O(1) - > G . 1'>..)2 (=)’
- I

(o]
Vit 41
§(€2+62)—|— 7;3.5' Ci|2'( ‘ )2
’ g | t 47)
o0 ) 2
<@+ + (E+ ) el Ve +1)
i=0
< Co(¢,t)*(t* +1)
Lemma B.2. Denote h;(x) as the degree-i Hermite polynomial as in Definition A.5 in (Allen-Zhu et al., 2019). For every
integer i > 1, there exists constant p; with |p}| > t ' G=DU o ch that

\/T 100i2
) i 1 bo t
Joreveni: zi = REwowN(O,I),bONN(O,l)[hi(al)l[a > —7]1[0 < —bg < 22}] (48)
. i 1 bO
foroddi: xi = REwONN(O,I),bONN(O,l)[h(al)l[ o > ——] [lbo] < ]] (49)
Sor ||z|| < t.
Proof:

For even i, by Lemma A.6 in (Allen-Zhu et al., 2019), we have

i

bo t t. x
Euwonn(0.1).50~n(0,1) [ (1) L > —7]1[0 < =bo < 5]l = Eprno[pi - 10 < —bo < ]I - 5
, Where
i—1 il
) (-1)= ( i/2-1 )
i = (i — ! —_— —bo/t)"
pi=(i=1) NG T:;()dd (= 1)2) T/
Define ¢, = %((:/_25}2) Then sign(c,) = —sign(c,42). We can derive
cr(—bo/t)" ‘7‘(1)70)21'+17T i<1
Cr_a(=bo/t)r=21 1Nt/ r(r—1) 4i — 4
Therefore,

3
> —|bg/t
> 2o/t

1—1
Y elboty
r=1,70

=1,r odd

Epgmnr(o,1) i - 1[0 < —bo/t < 1/(20)]]] - ¢

> [Epponlli - DL By aj0 < ot <12 -1

V2r
— /O(z - 1)!!exp(_b2i§rl + i) ),
. (50)
=t~ i - exp(—§(1 + %2))( - 1)!!%(4
i D (1 - et )
()
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For odd %, similarly by Lemma A.6 in (Allen-Zhu et al., 2019), we can obtain

b t t..
Ewoa (0.0 00~ x 0.0 [ien) 2 > = 10Jbo| < 1] = Engmnon i - Ulbo| < 11+ 5

, Where

L exp(—03/(27) < (-1)7F (/21 .
. Sl (@» ) /2) (<bo/t)

Then we also have

M‘:‘(bjyﬁ 11
o | T 5 5 <
Therefore,
i—1
3 3 (3! 31 3
oty |2 ey =3 GDE 8 1 3
Tzlz’r:‘)dd 4 47'-(%%71) 471'71 271

[Ebomarco, P - 1lbol/t < 1/(20)]]] -t

exp(—b3/2t*)

2170 ol = DIZEE )< 1/20)

T
i /_i;(l_ l)uexp(—g‘;;l—i— %)) -%dbo

:tfi.(i_1)!!4§’2i, t2t+1,m.<2q)( tz;l)_l) 51)
—t= (i — 1)!!47::’% . t2t+1 Wors 2@(?) 1

N t=t (=1
V2 £ 1 100:2

Lemma B.3. For B; = 100i'/? + 10\/10g(ti—1\/t2 + 1/€2) where €2 = t'=1\/t2 + 1€2, we have

L322 16l [Bannn1hi(@)] - Ll2] = D] < §VE2 +1
2. 2 16l [Bannon [1Ri(B)] - 1|2 > B]]] < §vE2 +1
3. Y1 ldlBzenolhi(2)[1]z] < Bi]] < Ce(,)VE? +1

4. 37 el Brenon & hi(2)I1l2] < Bi]] < Ce(,t)VEZ +1

Proof:
By the definition of Hermite polynomial in Definition A.5 in (Allen-Zhu et al., 2019), we have

Li/2) | ji—2j.25
| |29
ER L

Combining (46), we can obtain

27 44 Li/2] ) i—2j:24
Vi + 140 |z|* =274 (52)

s BT

|cihi(x)] < O(1)]es]
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(BT e,
(1) Letb = 100129 and 6, =1+ A for € = Y= €2 where i > 1, then we have
log (% Y1) RS == tos( & VITAL)
22 Blez =7 2 _g9q02 L % 2 ¢ v
G ~102%0 ) :((1+ z\/ ).6710 e 077 .10 W)
10V
1—i log (% YI=T) tox( y YD) (53)
_ o t ~10% ( ¢ 210 —t——
VR F1 IOxﬁ
< €2 i
~100000¢ \/£2 + 1

where the second step comes from that (1+s) - e~210%s < 1 for any s > 0. Combining the equation C.6, C.7 in (Allen-Zhu
et al., 2019) and (53), we can derive

Z lcil - Eannvio,n) [1hi(2)] - [|z] = 0]

=1
> .
2+14* . o .
SZO(1)|ci\Tm. i -1200% - (0; - e 109) (54)
i=1
<oV 1

forany ¢ > 0and t < O(1).
(b) Similarly, following (53) and (54), we have

oo .
\/ A I -
S lell - [Eunnon[hs(®)] - Lla| = b < Zo el e T @) < SVE T
— 1
(c) Similar to (52),
o0 4 Li/2] Bz 27 . QJ )
S I Eenon Ihi(=)[1]12] < Bi] Z|cz| > PtV
i=1 ! j=0 ’
(55)
<Z|cl| Y2 41
< Ce(p, ) V2 +1,
where the step follows from Claim C.2 (c) in (Allen-Zhu et al., 2019).
(d) Since we have
Li/2]
z)| < Z |z|'~27427 (56)
by Definition A.5 in (Allen-Zhu et al., 2019), we can derive
> d
> Il Bsenon - hi(2)|1ll2] < Bil] < Cel@ 1) V2 +1 (57)
i=1

B.1.2. EXISTENCE OF A GOOD PSEUDO NETWORK

We hope to find some good pseudo network that can approximate the target network. In such a pseudo network, the activation
1:>0 is replaced by 1,,0) > where x(9) is the value at the random initialization. We can define a pseudo network without
bias as

(O)(qu W V B Zq anp Z Czr Tn,itBa(n, 1)>Ozan] Z 'UlllaJX'wl-‘rBl(] L)a'_]le (58)

le[mz] le[ml]
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Lemma B.4 shows the target function can be approximated by the pseudo network with some parameters. Lemma B.5 to

B.8 provides how the existence of such a pseudo network is developed step by step.
1
" K||qll1p1p3Cs (®,p2Cs (¢, ]| Alloo))Cs (4] Alloc ) /T AllZ +1

M = pOIY(Ce((pv \/ITQCE(¢? HAHOO) V ”A”go + 1)7 1/6)
= Ce(0, [ Allc) V[ All% + 1 (59)

Lemma B.4. Foreverye € (0 ), there exists

C' =10C/p2 (60)
C" =Cc(2,C) VAL +1 (61)
Co = O(pip2 K*CC") (62)
such that with high probability, there exists ﬁ\/ V with mi, mg > M,
C N
<0 Pz < Y
my ma
such that
K
Ecxpen| D 1£(a,4,X) — g0(q, A, X, W.V)|| <
r=1
Ecxyenll LG (q. A, X, W, V))|| < OPT + ¢
Proof:
For each ¢ ;, we can construct hy ; : R? = [—C, C] where C' = C(¢, || Al|) /|| Al|% + 1 using Lemma B.1 satisfying
« T, .(0) 10 -
Elhg,; (w} ;T w! >,B;(;,i)>1mw B an) = 025(@n Xwa ) £ ¢ (63)
for ¢ € [my]. Consider any arbitrary b € R™* with v; € {—1, 1}. Define
7 - (CoC"/C) . T Bl
W = EET(U,; > 05 ke (wh ;T w, BY) Yea)icpm) (64)

J€(p2]

% K
_1 c %
= (CoC"/C) ™2 Z m—’;(vh(va Z Ul,jai,ijé((Jg))Zci,r)ie[mﬂ (65)
r=1

ke (p1] J€lp2]
Then,

9”(q, A,W,V,B)

N N
:ZqTan Z Cirlr, i+ By >0 Z Zan,jlanwEO)JrBl(j,i)ZoanWin',z"

n=1 i€[mq] i’ E[ma] j=1

c* N N
. * 0 * *

=> m"Q S qlan Y e, 1By z0h(Vimz Y v1,jai,jaB§(g))Zan,j > vsdau(a; Xws))

kelpr] 2 ¢ n=1 i€[mi] i€lp2] =1 iclp)
= Z Zq anc,®( Z V1,5 Z am,n¢17j(ame1,j))Za7l,j Z U2,l¢27l(an'w2,l)

ke[pi] n=1 j€lp2] m=1 Jj=1 l€[p2]

jEO(mp Cs (D, p2Cs(9, [ Allo0))Cs (@, | Alloo) VI Al%, + 1)

:ZqTan Y (@ Y vi o1 (AX W] ))an Y 05 dei(AXw]))

n=1 k€(p1] J€([p2] lelp2]

+ O(||Q\\1p1pgcs(¢7p2cs(¢a HAHOO))Cs(qba HA”OO) ”Allgo + 16)
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where the first step comes from definition of g(o), the second step is derived from (64) and (65) and the second to last step is
by Lemma B.8.

Lemma B.5. For every smooth function ¢, every w* € R? with ||w*|| = 1, for every ¢ € (0

1
’ cs(¢,||Anx)\/HAH§o+1)’

), R(@,X,v\” w© By ana

there exists real-valued functions p(vgo), w O, Bﬁozl)), J(a, X, vgo)’ w0 BY 1(n)

( 1(n)
oe(@nX) such that for every X

N
rn1(X) = p@” WO, B S a0 noc(a; Xw) + (X, 00, WO, BY ) + R(X, {0, W, B )
j=1

Moreover, letting C = Cc(¢, ||Alls) V|| All% + 1 be the complexity of ¢, and if v1,; ~ N(0, ) and wl(oj), Bgtzzl)

N(0, i) are at random initialization, then we have
1. for every fixed a, X, p(v, ) WO B( ))) is independent ofJ(an,vgo), w), B;?Zz))'
(0 0
2. p(0)”, W' B(s)) ~ N O, gy
3. |¢6(anX'wi) gb(anX'w;»*)| % € . B ) ) B B
~ . ~ e -
E[J(X, 0", w® Bgog D=0,

With hlgh probablllty we also have

Proof:
By Lemma B.1, we have

(@ Xwy)

0, « ~ 0
Ew§°>~N(oym%>,b1<n,i>~N(o,m%)[h(vmlwz(' D by U Xl + by > 0] = =277

with
|pe(@anXw") — ¢la, Xw*)| < e

T
and |A(, /mlwl(-o) w*, by(n))| € [0, 1]. Note that here the / function is rescaled by 1/C.
Then, applying Lemma A .4 of (Allen-Zhu et al., 2019), we define

.
I = I(h(ymw” w*, Bymi)) C [-2,2]
S ={i€m]: ymav) € I}

_ ORB /g
s; = s(h(v/miw; " w*, Bin)),vV/mavy ;)

Si_ o ifie S
s — \/ﬁ it
0, ifs¢ S

where u;, i € [m4] is independent of W®). We can write
wO =qequ’ + 3,

where o = u egW( ~ N(0,1/m;) and B € R¥*™1 are two independent random variables given u. We know « is
independent of w. Since each ¢ € S with probability 7, we know with high probability,

|S] = (Tml) (67)
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Since v = ) ;g Ui [egW(O)]i and |u;le] W O], < O(1/1/m1]S]). by (67) and the Wasserstein distance bound of central
limit theorem we know there exists g ~ N (0, %1) such that

(a‘w(O) B(O) ’g) < (\/>m1)

Then,
N mq
0 0
rn1(X) = Zaj,nZv( ) (a]Xw( ) + Bg(i 2))
j=1 i=1
N
0 (0 0 0)
= aj,nzvz(l) (a Xw1)+B§(nz) +Zaj7lz © (aJXw§)+B((nz)) (68)
Jj=1 iezs Jj=1 €S
=J1+ ZaL sz 1 a]X'w 0y Bi(()Zz,i))
€S
Tn, 1(X) — Jl

7201] " Z (0)1 anw(O) + B(?) Si o+ Zaj . Z (0)1 anw(O) + B((()) Kanﬂz + B;%)lz)) (69)

€S €S
=P1 + P
Here, we know that since
0 0 0 0 0 0
E[ol}o(a; Xw(” + B{(), )] = EW] - Elo(a, Xw!” + B, )] = 0 (70)
Hence,
E[J1] = E[ Z ajn Y v o(a; Xwl” + BY) )] =0 (71)
¢S
Then we can derive
0 0 @ ol .
Zaj n Y 1a; Xw!” Bi(; ])]ﬁh(‘ﬁmlwg " w*, Byn.yy) + Ri (72)
€S ‘ |m2

where |R;| < O(y/ mISWIL ). We write P; = £2=£1_ Then,

VEIRS - 1
p,7§ aindec(a; Xw")| < O(||Al| oo ——
C/ma al « ~ C
_ . . < -
o T 2 andelas X)) < Ol Al )
Define
) pr© gO vrm T
p(vy 1(n)) C\/i ~ N0, C’ng)
Then,

N
Z Clj77,¢€(an’lU*) + Ry + R2(X’ '050)7 W(O) BE?ZL))
j=1

P =p(”, w® Bg%

where |Ry| < O(\/W)
We can also define
m1 T
pi”) = &g ~ N (O, )
ma
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Therefore,
1
(p|W(0) B(O) 7p) < (C\/—)
Meanwhile,
(0) L
a; Xw,’ = —a;XB,+B" +0
) /|S‘ ) J ’8 l(n 7,) ( ‘S|m1)

we have

Za]nZv” [a; X 3; +b( Z,])](an5¢+b§?3L,,;))+Rs =Jo+ R3

€S
E[J] =0 (73)
IA]
with |R3| < O(m)
Let J = Ji + J», R = Ry + Ry + Ry. Then, whp., E[J] = 0, |J| < O(14l=UHAl=)) |p| < O(J2l=).

Lemma B.6. For every e € (0 ), there exists real-valued functions ¢1 ;. () such that

1
T Co(¢llAlloo) /AR +1

01,5, (an Xw] ;) — ¢1 j(an Xwi ;)| < €
Jor j € |pa). Denote by

* 1 *
= Ce(@, [ Alloo) VIAIE +1, €' =100 /P2, duje(a; Xwi) = z0150(a; Xwi )

For every i € [ma), there exist independent Gaussians

1 1
i,5 ™ s )y Mi X)~ s )
0y ~ N0, =), Bi(X) ~ (0, =)
satisfying
2
- 3
Walrni(X), S aiy Z mn®1 e (@m Xw? ;) + CiBi(X)) < O(—2—)
J€lp2] m=1 my /M
Proof:

Define po S many chunks of the first layer with each chunk corresponding to a set S, ;, where |S; ;| = m1/(p2S) for j € [p2]
and | € [S], such that

. mi mi mi
S = - 1)—+(I-1)—S+klke|—} C
0 =1{( )p2 ( )p2 | [pzsﬁ [m1]

By Lemma B.5, we have

ri(X) = Y p 1,0, w51, B, [,1) zamme an Xws )
J€lp2],l€[5] (74)
+ > L0, WO, B, 0) + Ry (X0 (5,1, WO 5, 1), BYY [5.1),
J€[p2],l€[S]

where p(v”[j,1], WOj,1], B, [j,1]) ~ N (0, toembms). Then p; = Syepg pin ~ N(0, o) for €7 =
10C'/pz2. Define
TEX) = > Ji(X 0[5, WO, B, [5.1)

le[S]

R§(X) = > Ry(X,v[,1), WOL,1), BY) [5,1])
1€[S]
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Then there exists Gaussian random variables (X)) and '(X) = >, (,,,) 8;(X) such that

[Alloo (1 + [[Alloo)
J/mapS

Wa(J7(X), Bj(X)) <

Sp2_ VP2l Ao (1 + [|A]l)
mimeo moS

Wa(rni(X), > pj Z U d1ge(amXwi ;) + 5'(X)) < O(

j€lp2] m=1

)

We know there exists a positive constant C; such that 8'/C; ~ N (0, Tr%) Let o, ; = C'p;, B; = B'/C;. Notice that
0. ‘ ). ~
E[ Y cispicipn 72X 00 1,0, WO 5,11,687 [1,1)]] = O AlI% (1 + | Allc)? /m2). Hence, we have

< O(IAllso(1+ [|Allsc)

Let S = (my/ps)3, we can obtain

N
Wa(rnai(X), Y @iy Y amndrjc(anXwi,) + Cifi(X)) < O(—2—)
jElps]  m=1 my \/ma

Lemma B.7. There exists function h : R? — [-C",C"] for C"" = C.(®,C")\/||A||2, + 1 such that

* 0 * ~ *
()80, b (VM2 D 0F 50305000 ( D 03502, (@n X w3 ;)

j€lp] Jj€lp2]

E[1

=0( ) i, Z A1) D V3 62,5(@n Xw} ) £ OP5C(P, paCy(, | Alloo))Cs (¢, | A]lo0) VI AllZ + 1e)

J€(p2] J€lp2]

(75)

Proof:

Choose w = (O‘i,lv s G ps 51), T = (Z:X:l am,n¢1,1,57 e 727]:]1:1 am,n¢1,p2,e7 C ) and w* ( T 1 ﬂvipyo)'
Then, ||z| < O(]|A||%, + ||A|l~)- By Lemma B.1, there exists h : R? — [-C”,C"] for C"" = C4(®,C’ )\/||A||gO +1
such that

0 * ~ *
ElL x| ol (VW w0500 ) (D7 05 505(@n X w3, )
J€lp2]

— (0) - .
_E‘“ﬁi[lz,-e[m] @iy SN am e (@n Xwi )+Ci+b), >0 h(ymaw ' w " ba (i) Z v2,i92.5(@n X w3 ;)]

2(n,i) = .
Jj€lp2]

(76)

=o(C’ Z vy Z AmonP1,je) Z vy 02 j(an Xws; ;) £+ eC"”

J€Elp2] J€[p2]

where

C" =sup| Y 05 ;¢,5(@nXw3 ;)| < paCs(d, | Alle) VAR +1

JElp2]
By Lemma B.6, we know
N
Wa(rni(X), Y @i > amndijelamXwi ;) + Cifi(X)) < O(—2— 2
jelps)  m=1 mi /i

N colno

Denote H = {Z S [ml] : |Zj€[p2] Q; g Z’anzl am,n(bl,j,e(&anik,i) + 015” > O~( 2p

T
6
my

)}. Then, for every i € [H],

g

we have that

1 5O (77)

=1 - «
T, (X)+bs 5, 20 Y iclpg] @i omet Amnd1j,e(@n Xw] )+CiB] +b§z')n. 920
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2 2
3 - 2 §
Pr(| 3 iy Zamnqsm(anxqu“ +Cipl| < O 7)) O(—22 ). simm =022y, a8)
j€lp2] m=1 my\/m mf’ V2 my
which implies with probability at least 1 — 2/ 3 / ml/ 6 , (77) holds. Therefore,
E[lrn Z(X)-i—b(o) >0 Z vl jalja ) nz))( Z U;,j(bQ,j(anw;,j))]
j€(p2] J€lp2]
:E[lzje[m] iy SNy am b g e(@n Xw) )+CiB4bY), ”zo (vm Z vy Qi g, b 2(n z))( Z V3 j¢p2,j(an Xws ;)]
Jj€lp2] J€lp2]
iralli
+ E[lrn,i(x)ergc(’L >0 71 Y elpgl Vi N1 Amin @1 e (@n Xw] )+CiBIAbY) >0}O(C c”)
_ p(©) x ~ x
_E[lzje[m] ai; N am,ncbl,j,e(lianji)+Ci5§+b(2[();1i)>0 Z vy Jawv 2(n, 7,))( Z U2,j¢2,j (aanz,j)>]
j€lp2] J€lp2]
2/3
2
+0(2 )
ml
=B( > vi; Z Unn1j) > 3 02,5(x)) £ O(P3C(®, paCa(0, | Allo))Ca(0: | Alloo) VA% +1-6),
J€[p2) J€[p2]

(79)
where the first step is by Lemma B.6, the second step is by (77) and (78) and the last step comes from (76) and m; > M.

Lemma B.S.

1 S 02 * ~ *
nTQE[Z El 1r",i(x)+b§§’ >0 Z v1 ;5 b 2(n z))( Z 02,j¢’2,j(anX’w2,j))]
i=1 ¢ J€[p2] j€E[p2]
®(Y i, Zamnamxaqsl]) ST vk (@ Xws ;)
J€lp2] J€[p2]
+ O(p5Cs (P, p2Cs(9, | Alloc))Cs (6, [| Allso) VI A2, + 1 €)
Proof:
Recall ﬁ(vgo)) ~ N(0, 7). Define pj;; = [)(vgo)[ j,1]). Therefore,
- ~ 1
W2(Pj7l|W<o)’B§<Z)n)’pj,l) < O(W) (81)
- ~ 1

where 5; = ;g1 pj1- We then define &; ; = C'p;
Next modify r,, ;(X). Define

N 0 0 0
Zm:l Am,n Zje[ml] vj( Z) (a’me( ) + b( (')n %) )

where u = (o (aan + bl(n 1)) jelm]- By definition, we know

~ Ha’nH2 2
ni ~N(0,—=E
Pni ~ N(0, = == E[[ulll)

Then we have

2
Al /TATE T, )

Wa(1.4(X), 7n (X)) < O( NG
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Combining (81), (82), (83) and Lemma B.7, we have

1 mz 2

ci7l * ~ *
miE[Z 67217'71,1:(}()-"-5;?21 o> \/ Z Ul FioND 2(n 2))( Z v2,j¢27j(anxw2,j))]
2 =1 e J€lp2] J€[p2]
=B( Y v, Z A1) > V3025 (@nXws ;) + O(P3C(R, paCs(6, [|Allo))Cs (@, | Alloo) (VA2 +1-€)
J€lp2] J€lp2]

(84)

B.1.3. COUPLING

This section illustrates the coupling between the real and pseudo networks. We first define diagonal matrices D), 4,
D, + D}, ,, Dy + D, ,, for node n as the sign of Relu’s in the first layer at weights wO wO + W and

n,w?

WO L WP+ W', respectively. We also define diagonal matrices D, ,Dyy+D), . D, +D;, , fornode n as the sign
of Relu’s in the second layer at weights {W ) V(O fw @ w? v Oyt and (WO rwr4w’ v O vriv'),

respectively. For every | € [K], we then introduce the pseudo network and its semi-bias, bias-free version as

9(4. A, X, W.V) = ¢  A(A(AXW + B1) @ (Dyy + D)V + B2) © (D, + D), ))e (85)
9(q, A, X, W,V) =q" A(A(AXW + B;) ® (Dw + D, )V) ® (Dy + D’,))c; (86)
6" (a. A, X, W.V) = g A(A(AXW) © (Dyy + D}, )V) © (Dy + D,))ex (87)

Lemma B.9 gives the final result of coupling with added Drop-out noise. Lemma B.10 states the sparse sign change in Relu
and the function value changes of pseudo network by some update. To be more specific, Lemma B.11 shows that the sign
pattern can be viewed as fixed for the smoothed objective when a small update is introduced to the current weights. Lemma
B.12 proves the bias-free pseudo network can also approximate the target function.

Lemma B.9. Let Fa = (f1, fa, - , fx). With high probability, we have for any |W'||2.4 < 7w, |V'||F < Ty, such that

g, A X, WO Lt ws vO L nv)
:qTA(A((AXW(O) + B(O)) oDV, V® 1 B o D))e+qT A(A(AXW') © DY, V') © DP),)e; 88)

~ 8 T
+O(7 Pl Vi rami®) - T Al A%
FV

where we use Dgﬂ)w and DEE)m to denote the sign matrices at random initialization WO v and we let D(O) + Diu -
DY), + D, , be the sign matrices at W + W', V + V'

Proof: ~
Since ap Xw” + B, = @, X"

ignore the bias term for simplicity. Define

(©)

where w, ©

= (w; ', By, ) € R™! and X = (X,1) € RV*@+D) we can

Z=AAXW") o DY,

Z, = A(AXW'S)o DY),
Zy=AAX(W + W) o D), ,
Then by Fact C.9 in (Allen-Zhu et al., 2019) we have

mao

1Z,=V'|3 < ZZEV’ Z (1Za1% - 1VEI3) @)
i=1 =

< O(|A|Zmy ')
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~ — l
Therefore, we have || Z,ZV" |2 < O(||Al|oomy 2 Ty).
Let s be the total number of 51gn changes in the first layer caused by adding W'. Note that the total number of coordinated

i such that |a,LXw( )| < §” = 2% is at most s’ m1 with high probability. Since |[W'||24 < 7,, we must have
s4

s <O(s"m?) = O(Zem 15) Therefore, || Z2 0 < s = O(ﬂgmf) Then,

s4

1Z2ll2 =l (A(AX (W + W'S)) © DY, o)l

Al

<(s- (AAXW® + AAXW'S) )
(D'/w,m)n;'éo

I,

<<s- 3 (AAXW’E)?M-) (90)
(DY, o)n#0
<s7[| Al oo
<O(rimi" || Alls)
Then we have

~ 6 3
12202V [|l2 < O(rumim{° || Alloc)
With high probability, we have

N ma
Yoalan) cin(o(rait i) = o(ra) < Olallvma)llr),
n=1 i=1

fi(g, A X, WO+ WS, v 4 mv7)
ma

N

=S T o ((Z+ 20+ Z2) [ (Vi + (2):V))
n;l zmzl

2.

a"an Yo ((Zn+ Zin+ Z20) Vit Z1,(5V:) = Ollall| Al 22m + v lall | Allori mi?)
=1
oD

‘We consider the difference between
A =q A((Z + 21+ Z,)VD + Z,3V') o (DY), + D}y )
A =q"A((Z+ 21+ Z)V" + Z2,2V') @ DY) )ey

where D7) _, is the diagonal sign change matrix from ZV D10 (Z + Z, + Z,)V'? + Z, 2V, The difference includes
three terms.

~ 1 _1
121,V O < O(|| Alloemf rmy ) 92)
~ _ 1 ~ 9 8 _1
122, Vo < O([| Za,nllmy *v/5) < O(| Allsmi® rgmy ?) (93)
~ 1
||Z1,n2vl|| < O(Tv”AllooTwmf) (94)

where (92) is by Fact C.9 in (Allen-Zhu et al., 2019). Then we have

A1 — A < g7 Ally - O(m3 Al (m mumy * + miSnimy 2)2 + mi i | A rimi )
From Aj to our goal

A3 =q"AZVY o DP))e, + q" A(A(AXW' © DY, V') © DY))e;
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There are two more terms.

9

4" A(Z:V') © D) )er] < Ol Al Z2,0]1V5) < O(lgllv | Allooimi®)

~ 1
la"A(Z, V) © DY) )er] < O(llg " Al | Allomumy)

v,
Therefore, we have
- T 8 9 1 1
|A2 — A3| < O(llg " Al [|Allcmim{® + [lgll1[|AllccTwmi + llgl[170 || AllcoTwmy)

Finally, we have
filg, A, X, WO+ w's vO L sv)

=q'A(ZzV Y o DP))e; + q" A(A(AXW' © DY), V') © D) )¢y

v 95)
s JMa | a2 s 8
+0(my N Tomi®) - gl Al
Lemma B.10. Suppose 7, € (0,1], 7, € [25, 2], 0w € [ 25, 74, 00 € (0, —L)]. The perturbation matrices satisfies
m12 m2 m2 m{l m22

1 1
Wil2.a < 7w IV ||F < T, [W |24 < T, [|V"||F < 7 and random diagonal matrix  has each diagonal entry i.i.d.
drawn from {£1}. Then with high probability, we have
(1) Sparse sign change

4
5

1D}, wllo < O(rimy)

=l

M)

1

~ 3 1 2 I 2
1D, 5 llo < O(m3 0w (| Alloe + [[Allocwmy) + ma|| Alld (| Alloomo + | AlloTwmy (1 + 7)) %)

(2) Cross term vanish

9@, A, X, WO+ WP W + qgW"s, VO L vP 4V 4 pmv?")

(0) 1 (0) ! (b,b) " " / (6)
:gT(quvaw +WP+W3V +VP+V)+QT, (Q;AaXﬂ?W Eanzv)+gr

for every r € K|, where Ex;[gl] = 0 and |g..| < nllq" A||1|| A% 7.

Proof: -

(1) We first consider the sign changes by W*. Since an'wEO) + BE((?L o= anﬁJZ(»O) where 1111(0) = ('wl(.o), Bg()i i)) €

RI1 and X = (X,1) € RV*(4+1) "we can ignore the bias term for simplicity. We have

o, lan X

an X ~ N(
mq

)
an, Xw? ~ N(0, ||a, X |*c2)
Therefore,
an X" ) 1
— = z) =
&nXﬁ}f b T(owy/Mm122 + gw\l/nTl)

Prlja, Xw”| < |a, X @[] = Pr[z| < 1]

1
1
:/ 2 T dz
_1 (owy/m12% + me)

@imnt 97
_ / it ©7)
~(ozmn)} T2+ 1)

2

= — arctan o,,v/mq
T

< O(0y/m1)
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Then, we have '
1D} llo < O(oumy)
- 515 (0 Sils -5 %
|an XW D, yll2 < O([|an X [lowmy)
We then consider the sign changes by W'. Let s = || D;, ,, — D, ,, |0 be the total number of sign changes in the first layer
caused by adding W' Note that the total number of coordinated 4 such that |a,, X (VV(O) +W) < = 25%%1" is at most

3
s""m? with high probability. Since |[W'||2.4 < 7,,, we must have

~ ~ 3
s<O(s"m?) = O(T—Tmf)
sS4
/ " ~ & 8
D D =s < O(tgm;
|| naw n,wHO =85> (Twml )

lan X (W + WD, — DL )l < O(si7,) < O(rimi®)
To sum up, we have

~ 3 4 6 . 4 6
1D}, wllo < Olowmi +7emi) < O(rim;)

Denote 2,0 = @n X W' Dyp and 242 = @n X (W + W+ W')(Dro + Dl ) — @ X W' D, 1. With high
probability, we know
a0 X ~ P
|Zn 2]l <l@n X W' + [la, X W

SO(mlsz”A”oo + HA”ooawmlE) (98)
<O(||AllseTwm{)

Denote Zo = (2{ g, -+ ,2x) | € RN™, Zy = (2], ,2},) " € RV*™1 . The sign change in the second layer is
from @, ZoV Y to @, (Zo + Z)(V? + V* + V'). We have

an(Zo + Z2)V" e < O(0u]| Allso (210l + llz1.2[1))

|@n(Zo + Z2)V' +@nZ2V |2 < O(| Alloo (21,0l + [|21,2]
Combining ||z1,0]| < O(||A||e), by Claim C.8 in (Allen-Zhu et al., 2019) we have

)

)T + [121,2]

Wl

-3 1 2 1
D5, wllo < O(m3 ou(|Al% + | Al mwmy ) +mal| Al & (| Alloomo + | Allscwmy (1 +7,))3)

(2) Diagonal Cross terms.
Denote D, = (diag(D1.4) ", ,diag(Dym,) ") " € RVN*™1 and define D), D,,, D, D.,, D’ accordingly.
Recall

9-(a. A, X, W, V) = q" A(A(AXW + B1) © (Do + D',,)V + B2) © (Do + D) )er

9 (q, A, X, W,V) =q" A(A(AXW + B;) ® (Dy + D.,)V) ® (D, + Dl))c,
9" (q, A, X, W, V) = q" A(A(AXW) ® (Dy + D,,,)V) ® (Dy + D,))c,

Then
9, A, X, WO WP e W +qgW's, vO L vr L v 4 gmv”)

=0,(q, A, X, WO WP W' VO L yvr v 4 g0 (g A X gW'S, V") (99)
+90(q, A, X, WO + W* + W' nZV") 4 gV (q, A, X,y WS, VO L vr 4 V)

where the last two terms are the error terms. We know that

WO < max |[a”W®|| < max
llall=1 llall=1
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Therefore,

199 (q, 4, X, WO L W* L W' =V

N mo N mi
=1 Z Z q' ancirDp o, Z nk Z (BV)/i Doy (arx X (WO + WP + W), + Biiy))
n=1i=1 k=1 1=1
N N (100)
=0 q"an Y ani((@X(W® + WP + W)+ Byy) © Do) SV © Dy ve,
n=1 k=1
1 1
<nlla" All1| Al (| Alloo(m ™2 + 00 + 70) +m 2 )rym
~ 1 _1
<O(nllq" Al || AlZ7omsmy ?),
where the last step is by the value selection of o, 7, and 7,,.
9" (q. A WS, X VO 1V 1 V)|
N N
=Y q'an Y ani(@xXW'E 0 (D + Dy’ ) (VO + VP 4+ V") © (Dyw + Diw')er|
n=1 k=1
N N
§|77 Z qTan Z an,k(akXW/IE © (Dk,w + Dk,w/))vl © (Dn,v + Dn,vl)cr|
n=1 k=1
N N (101)
+11Y q"an Y an k(@ XW'E 0 (Diw + Dy’ ) (VO +VP) © Dy ey |
n=1 k=1
N N
+1Y q'an Y an k(@ XW'E 0 (Dia + Diw')) (VY +V?) 0 D, e
n=1 k=1
1 1
<Inlla" Al [|AlZmwroms | + 2lnlla T Al | AlZrwm? |
<O(Inllqg" Al | A2 rwm3 )
Lemma B.11. Denote
By =Falqg, X, W + W’ +gW"S,V + V' + V") (102)
=q  A(A(AX(W + W’ + nW"E) + B1) ® Dy py(V+ VP +nEV") © Dy )
r_ P " p 1z
P, _GT(q,A,X,W+W W EH,V+V L=V ) 109
=q A(A(AX(W+ WP’ 4+nW"E)+ B1) ® Dy ,(V +V? +nXV") 0 D, ,)ec,
There exists 1y = m such that for every n < no, for every W", V" that satisfies |W"||2,00 < Tw 000 |V ||2,00 <

Tv,00r We have

pP,,—P ~ 72 2 472 gl
EWKVP[M] =O0(q" A1||A||*(2=2m, + (Tawoo + To.00™1 )
n Ow Oy

where Oy, hides polynomial factor of m, and ma.

Proof:

P,y ' =q A(A(AX(W +W? + gW"E) + B1) ® (Dawpy — D)V + VP +02V") 0 D, e,

“tom—
+q " A(A(AX(W + W?* + gW"E) + B1) © Dy py(V + VP +2V") © (Do py — Do p))er
(104)
‘We write
Z=AAX(W + W’ 4+ nW"S) + B1) ® Dy,



Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

Z+Z =AAX(W + W’ 4+ qgW"E) + B1) ® Doy .y
Since for all n € [N], [n(AAXW"X),|lo < 1|l AllcoTw 00> We have

”Z/n”oo <Nl All o Tw, 00

n Al oo Tw, 0
| Al oc T, )

Ow

D[z, # 0] < O( i € [ma]

Then we have
Pr(|Z}]lo > 2] < O,(n*)

Then we only need to consider the case || Z/,||o = 1. Let Z}, n, 7 0. Then the first term in (104), q"AZ'(V+VP+
nEV")® D, ,)c, should be dealt with separately.

The term ¢ " A(Z'nXV" ® D, ,)c,) contributes to O,(n?) to the whole term.

Then we have

la" A(Z'n(V + V") © Dy,p)e.]| < Ollllg™ Al || AllsoTe,0)

~ A oo Tw,co ~ A oo Tw, o0

Ow Ow B

~ -2
Therefore, the contribution to the first term is O(n?||q " A1 || A|% “=my) + 0,(n?).
Denote
§=AAX(W + W’ 4+ qW"E) 4+ B1) ® Dy n(V +V’? +EV")

1
—A(AX(W + W?) 4+ B1) © Dy ,(V + V?) e

d € R™2 has the following terms:
1. Z'(V + V? 4+ nEV"). We have its n-th row norm bounded by O, (n).

2. ZnXV". We have its n-th row infinity norm bounded by O(HA”oonTv,ooml_%)'

3. A(AXnW"E ® Dy, ,)(V + V?), of which the n-th row infinity is bounded by O (|| A||oo7w.c0 )-
4. A(AXn*W"E ® Dy, ,,XV"). Bounded by O,(n?).

Therefore,

18nllo0 < Ol Allocn(To,0my * + Tw,o)) + Op(1)

~ 2 2 -1
Similarly, we can derive that the contribution to the second term is O(n?||q " Al|1 || A%, Tt o™ )

5 ma) + Op(n°).
Lemma B.12. Let F'y = (f{, -+, f). Perturbation matrices W', V' satisfy

HW/”QA < Tw, HV/HF <7y

There exists ‘/7[\/' and V' such that

— C o~ K/m
[Wla,00 < =2, [[V]l2,00 < -
mi
K —~ o~ —~ o~
ED 1£7(0, A, X, W, V) - g (q, A, X, W, V)] <e
r=1

E[GOY (q, A, X, W, V)] < OPT +¢

Proof:
By Lemma B.10, we have

4
5

||D/n,wH0 < O(Twmlg) < O(ml)

~ 3 1 2 1 2 ~
1D}, ullo < O(m3 0w (| A2+ AllZ rwmi ) +ma || All% (| Al s To | Allcomwmi (147,))3) < O(ma|| A2 (e/Co) ™M)
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Applying Lemma B.9, we know

q A(A(AXW) © (D,,)V) ® (Dy))er
N N e N
=> q'an Y ani((@xXW)© Dyo’)V © Dy e,
n=1 k=1 (106)
<llqT Al A2 mf BV
mi1 M2

<e

7' A((A(AXW) © (Dw)V) @ (D),))er

N N . R
= Z qTan Zamk((akXW) © Dk’,’w)v © D;L,vcr

n=1 k=1 107)

1 Cy Ky\/m1 € .6

<llag™ 2 3 20 Sy . 2 (5 \6(1)
<lla" Al Almy SV g AL ()
<e

Then, the conclusion can be derived.

B.1.4. OPTIMIZATION

This section states the optimization process and convergence performance of the algorithm. Lemma B.13 shows that
during the optimization, either there exists an updating direction that decreases the objective, or weight decay decreases the
objective. Lemma B.14 provides the convergence result of the algorithm.

Define

L/(A*a A*a A*> )‘t7 Wt7 Vt)

12°|
1
=i 2_Eweve s [LOMFa (e, Xs WO + W2+ WS VO 1 VP L V), )] + R(VAW L VAV
=1
(108)
where

R(VAW , VAV ) = A [VAV |3 + A [VAW |13 4

L B.13. F € (0,1) and € € (0, 0 d~ € (0,%].
emma or every € € (0,1) and e € (0, o e Ale el Al viareT) @ 7 € (03]

consider any W, 'V, with
L'(A*, A" A"\, W, V) € [(1+7)OPT + Q(qTA*1||A*||ioeo/’y), (5(1)}

‘7||F < 1 such that for every

With high probability on random initialization, there exists ﬁ\/ V with ||WH <1,
n € (0

e
> poly(mi,m2) I’

min{Es[L/ (A%, A*, A* A\, W, + /IWE,V, + /1EV)], L'(A*, A*, A* (1 — n)A\,, Wy, V)}

; (109)
<(L—my/4)L(A", A", A" N, W, V)

Proof:
Recall the pseudo network and the real network for every r € [K] as

9-(g, A", X, W V)= q" A" (A" (A X (WD + WP £ W)+ B1) © Do p (VO + VP + V') © D, ,1)e,

fr(g, A", X, W V') =q" A*(A*(A*X(WO - W* + W)+ B1) © Dy, w (VO + VP + V') © D, , v )e,

where D, ,: and D, ,; are the diagonal matrices at weights WO L Wwr W, and VO +vP LV, D, ,w and
D,, v are the diagonal matrices at weights W + W* + W/ and VI© + v? + V',
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Denote G(qvA*aXaW/aV,) = (gla"' g{()’FA*(q7X7W/7V/) = (fla"' 7fK)

Aslongas L'(A*, A*, A" )\, W, V) < O(1), according to C.32 to C.34 in (Allen-Zhu et al., 2019), we have
Ml VAW[3 4 < €0
MlVAV [ < e
IW]lr <1

IVlr <1

The we need to study an update direction
W=W,+ /WX

V=V,+/1EV
Changes in Regularizer. Note that here W, € R¥X™1 V, ¢ R™*™2_ 3 ¢ R™ X1 We know that

Ex[lVe+ VviEVIE] = [VelE +nlVIE

Exl|W. +viWS|3.] = Y Elllwe + viWEi||3]

i€[mq]

For each term ¢ € [m1], we can bound

lwei + VAW Eill3 = [well3 + 0l WEill3 + 2w, " W

lwei + VW Sill3 = llwellz +0°[WEillz + 4nllwes " WS + 2n]lweq |3 W 13

4 211 TA7 2 2 (110)
< Jlweillz + 6nllwe il WEill2 + Op(n°)
Therefore, by Cauchy-Schwarz inequality, we have
Ex[|Wi + ViWE|34] < Wil + 60 W34 W34+ Op(°)
Therefore, by Ay VAW |54 < R(VAW ¢, VA V), we have
E[R(VAW, VA V)] SRWVAW o VAV + 1y/éy RO W o VAV + 160 .

1
<R(VAMW e, VAV + ZUR(\/EWM VAV ) + 143560

Changes in Objective. Recall that here W and V satisfy Ty, 00 < Lo~ and To,00 < —455-. By Lemma B.11, we have
mll(]OU m22000

for every r € [K]

Ewe vellfr(g, A" X, W+ WP+ WE,V+V +3'V) - g.(q, A*, X, W+ W’ + WE.V + V’ + V)]
< O(lq" A |11 ]| A*[1Z.e0m) + Op(n*?)
(112)
By Lemma B.10, we have
G(qu A*7 X7 ‘7‘77 ‘7) = G((L A*v X» th Vt) + WG(b’b) (q7 A*7 X7 ‘//‘727 2‘7) + \/ﬁG/
= Fa-(q, X, W;,Vy) +nG*(q, A", X, WE,BV) + /G’ (113)
- FA* (q7 X7 Wt7 Vt) + UG(b’b) (q7 A*a Xa ‘//‘77 ‘/}) + \/EG/
where Ex;[G’] = 0 and |G’| < e with high probability. By C.38 in (Allen-Zhu et al., 2019), we have

EW”,V”,E[L()\tFA* (q7 X7 W} ‘7)7 y)]

B . (114)
SEW",V" [L()\tFA* (qa Xa W) V) + UFZ* (q7 A*v X7 W’ V)7 y)] + O(HqTA*Hl ||A*Hgo€0’rl) + Op(nlf))
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Following C.40 in (Allen-Zhu et al., 2019), we have
EWP,VP [L()\tFA* (q7 X7 Wt7 Vt) + UFZ* (q7 A*7 X7 Wta Vt)a y)]

. (115)
é(l - T))(QL(/\tFA* (qa Xa Wta Vt)a y) - L((l - U))‘tFA* (qa Xa Wta Vt)a y)) + nL(FA* ) y) + Op(772)
Putting all of them together. Denote
1 . _
‘= o7 > Ewrvesms [LMFa-(eg, X, WO + WP+ WS, VO + VP £ 3'V), )] (116)
i=1
¢y = Ex[L/(A*, A*, A* N\, W, +V)] = ¢1 + Eg[R(V AW, VAV)] (117)
T
2 = 17 > Eweve[L(1 = mAFa-(eg, X, WO + WP + W,/ VO + VP £ S'V) )] (118)
i=1
C/Q = L/(A*, .z4.*,14*7 (1 — ’l’]))\t, Wt, Vt) = C2 + R(\/ (1 — ’I’]))\tWt7 \ (1 — n)AtVt) (119)
1 A
¢ = 7 > EwevelL(MFa-(eg, X, WO + WP+ W, B VO 4+ VP 4 5'V,), yy)] (120)
i=1
ch =L (A", A" A* N\, W, V) = cs + R(V MW, VAV)) (121)
Then following from C.38 to C.42 in (Allen-Zhu et al., 2019), we have
/ _ r_ ﬂ / TA* A* 4 1.5
1 < (1=n)(2¢3 —c3) + 73 +n(OPT + O(llg” A™[l1][ A" [sce0/7)) + Op(11™), (122)
which implies
-//<,1ﬂ/ lp TA* A*|? 1.5
min{cy, o} < (1 =n5 + e +150PT + O(llg” A™[[1][A™[Se0n/7) + Op(n°)

Aslongascy > (1+7v)OPT + Q(|lg" A*||1||A*||% €0 /7) and v € [0, 1], we have

min{c}, ¢b} < (1= 1)

Lemma B.14. Note that the three sampled aggregation matrices in a three-layer learner network can be be different. We
denote them as A'™, A'® and A*®). Let W, V', be the updated weights trained using A* and let W', V', be the updated
weights trained using A", i € [3]. With probability at least 99/100, the algorithm converges in TT,, = poly(mi, ms)
iterations to a point with m € (0

1
s pols(rmr e TAT T K )

L’(A*,A*,A*,)\t,Wt,Vt) < (1 +’)/)OPT+ €0

If
L/(At(l), At(2), 14t(3)7 )\t’ W;, V;)
1
:W Z EWRV&E[L()\tFA(l),A(z),Aw) (q, X, w© + WP+ W;E” v +LVPL EIV;), yz)] (123)
i=1
+ R(VAMW L, VANV,
where
Fpun ar a0 (@, X, W, V) =q" A'®g(APo(A'WXW + B,)V + B,)C, (124)

we also have

LA AM A N | WL VL) < LAY, A", A Ap, W, Vi) + Ap_1 - O(poly(e)) < (1 +~)OPT + €
(125)
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Proof:
By Lemma B.13, we know that as long as L' (A*, A*, A* A\, W, V) € [(1+7)OPT +Q(q" A*1||A*||% €0/7), O(1)],
then there exists ||[W||r < 1, ||[V||F < 1 such that either

Ex s [L/(A*, A", A* A, W, + /IWES SV, + /1E'SV)] < (1-1y/4) L' (A", A*, A"\, W, V) (126)

or
L/(A*, 14*7 A*, ( )At, Wt7 Vt) (1 — 7’]’}//4)LI(A* A* A* >\t7 Wf, Vt) (127)

Denote W = WO + W* + W, + WSS,V =V L VP BV, + /7'SV. Note that

OL <~ L 3f;

_ (128)
awj im1 8]"1 awj
b . N
%fr(q, A X WO L we Ly w, s+ awEy VO L Ve LSV, + /S EV)
J
N ma N (129)
=Y q"an )y cirle, 1By 020 ) V5, L Xwyt By 20(@ 0 X) T
n=1 =1 k=1

2
5915 ) gwf‘;, ng functions and their multiplications. It can be found that no

5(x)é'(z), 6(x)? or 6’2( ) exist in these terms. Therefore, by [%_8(t)f(t)dt = f(0) and [_&'(¢)f(t)dt = —f'(0),
we can obtain that the value of the third-order derivative w.r.t. W7’ of EWp7Vp)g[L()\tFA* (eq, X, wO L wre 4
w2, VO 4 v L 5V,) y)] is proportional to poly(||A*||s, K), some certain value of the probability density
function of W” and its derivative, i.e., poly(c,,'). Similarly, the value of the third-order derivative w.r.t. W? of
Ewr ves[L(MFa-(eg, X, WO 1 W? + W, B,V L V7 £ %V,) y)] is polynomially depend on o ! and || A*| .
By the value selection of o, and o, we can conclude that I is B = poly(ml7 ma, || A" ||eo, K) second-order smooth.

By Fact A.8 in (Allen-Zhu et al., 2019), it satisfies with n € (0

which implies

’ POI}’(ml’mZ’”A oo, EC ))

1
)\min(VQL/(A*aA*7A*7>\t717Wt7Vt)) < —F—3 (130)

(m1ma)®

Meanwhile, for ¢ > 1, by the escape saddle point theorem of Lemma A.9 in (Allen-Zhu et al., 2019), we know with
probability at least 1 — p, Amin (V2L (A*, A, A* N1, W, V7)) > m holds. Choosing p = 10})T, then this
holds fort = 1,2, - - - , T with probability at least 0.999.Therefore, fort = 1,2, --- , T, the first case cannot happen, i.e., as
long as L' (A", A", A" A\, W, V) > (14 ~v)OPT + Q(qTA*1|\A*||ioeo/7),

L/(A*7 A*7 A*a (1 - 77))‘157 Wt7 Vt) S (1 - 777/4)L/(A*’ A*a A*7 )\tv Wta Vt) (131)
On the other hand, fort =1,2,--- ,T — 1,as longas L' < O(l) by Lemma A.9 in (Allen-Zhu et al., 2019), we have
L/(A*7 A*a A*a )\ty Wt+1; Vt-‘rl) S LI(A*v A*a A*a )‘ta Wt, Vt) + (m1m2)_1 (132)

By L'(A*, A*, A* A\, W, V() < O(1) with high probability, we have L'(A*, A*, A*, \;, W,,,V;) < O(1) with
high probability for ¢ = 1,2,---,T. Therefore, after T = O(n ' log °& ) rounds of weight decay, we have
L'(A*, A" A" N\, W, V) < (1 +5)OPT + Q(q TA*1||A*||§060/7) Rescale down €q and we can obtain our fi-
nal result.

Consider L’ (At(l), At(z)7 At(3), e, W', V). Let w;, v; be the output weights updated with all the aggregation matrices
equal to A", and let w}, v} be the output weights updated with our sampling strategy in Section 3.2. We know that

- Ty,—1 N N

lw; —w;|| < Z lm Z Zq a, ch a*,o(A"XW)v,; > 0] Zank vjilla* Xw; > 0](a*) — a'V) X |
t=0  1=0 n=1 k=1
1

= poly(mi,ms) poly(e)

poly(mi, ma)ec|| A"l - poly(e) = O(e)
(133)
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Tw—1 N

i —vill < len > Y q'a ch a0 (A XW)v; > 0)(a*,0(A*XW) — alP o (A" XW))|
=0 =0 n=1
1

= poly(mi,ms)  poly(e)

poly(mi, ma)ec||A” || - poly(e) = O(e)
(134)
With a slight abuse of notation, for r € [K], we denote
fr(g, A'D AT A X W V) =q" AP (AP oAV XW + B,)V + Bs)e, (135)

The difference between f,(q, A*, X, W, V) and f.(q, A'V, A'® A X W' V!)iscaused by |A* — A*D) ||,
!

[A* — AP ||, |A* — A, wgt) - wgt) and v( ) vgt) . Following the proof in Lemma A.2, we can easily obtain

that if |p; — p}| < p} - O(poly(e)) and I; > |N;|/(1 + po’TlgL(g) it can be derived that [|A* — AW ||, < O(poly(e)),

[A* — AP < O(poly(e)) and ||A* — A®)||o, < O(poly(e)). Then, by (133) and (134), we have

" A0 (Ao (A* XW)V)e, —q' A*c(APDoc(ADVXW )V e, |

IN

N
S q'a nzmo "o (ATX W) = o(aP o (A XW)))|

mo

N
Y q'a*n)) cirlat,o(ATXW)v; — alPo (A XW ),

<
n=1 i=1
N mo N
<> q"a" > cil@t, — a)o(A X W), —|—‘ZqT Zc”|a(2) (A*XW)v; — o(ADXW')v)))
n=1 =1 n=1
N mo

(a*, —a'?)o(A* XW)v,|

IA
M
Q
—
@*
S
g
o
5

—l—‘Zq Zc”|a(2) (A*XW) - (A(l)XW'))vZ-+0(A(1)XW’)(vi—v;))|‘

+\Zq Zcmw (ADXW')(v; - )|

N
Jr'ZqT Zc”,!Zanka”\ “r—ap)Xw; +ap X (w; — wl||’
=1

n=1

<O(poly(e)).

s\ZqT Zcm “n = a)o(ATX W)
n=1

(136)
Hence,

leg A0 (A" 0(A*XW)V)e, —e) AP o(APc(AVXW)V)c,|
<leg A*0(A*c(A*XW)V)c, — e, A"o(APc(AVXW )V )e,| + |e] (A" — AB))o(AP (A XW)V)c, |

<O(poly(e)). -
7
which implies

LA A A Ny | Wi Vi) < LA, A A" Ar, W, Vi) + Ar—1 - O(poly(e)) < (14 ~)OPT + ¢
(138)

Proof of Theorem 3.1:
By Lemma B.14, we have that the algorithm converges in T'T), iterations to a point

(At(l) At(2) A3 A Wi, V) < (1+7)OPT + ¢
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We know w.h.p., among O(1/€2) choices of j,

min{Ewr ve 5, zcolAr_1Fa-(eg, X, WO 1 WP L W5 VO L Vil L SV < (14 9)OPT + ¢ (139)
J

Then we have L
W24 <e5, (140)

1
|Vrlr < egr) (141)

By Lemma B.9, we know that

frleg, A X, WO L w? e Wi v L ve L 3V B)

142
=fr(eg, A, X;, WO L wr vO L yvre By 4 gV (e, A*, X;, W, Vi, B) + % (142)

Denote ' = A*o(A* X (W + W*) + B,)(V® + V*). Then,
7] < [IA*]|(JIA [[oo - O(1)) - O(1) < | A*[|w (143)

Therefore,
|fr(eg, A", X, WO L wr v L yre B

=le, A*o(r' + Ba)c,| (144)
<O(|A" oo (| A [loo + D)ec)

‘We also have
19 (eg, A, X;, W, V1, B)|

<leg A*A*(A"XW7 @ DY) V1) © DY)c,|

YL

j (145)
<||A*|Z, il mi /maec
<Co|lA*||%
Hence, ~
frleg, A X, WO L WP e Wis VO L ve 4 v B) < O(|| A% (e + C)) (146)

Combining (135, 137), we can obtain
frleg, A' A1 At x. WO LWy Wes VO L Ve 4 SV B) < O(| AT (e + Co))  (147)

aslong as ||A™ — At(l)Hoo < poly(e), [|A" — At(2)||oo < poly(e) and ||A* — At(?’)HOO < poly(e).
For any given { X, yi}ﬁl, the dependency between y;, y;, where 4, j € || can be considered in two steps. Figure 5(a)
shows a; X is dependent with at most (1 + 6)? a; X's. This is because each a; X is determined by at most (1 + &) row
vector &; s, while each &; is contained by at most (1 + &) a, X"s. Similarly, y; is determined by at most (1 + &) a, X's and
by Figure 5(b) we can find y; is dependent with at most (1 + 6)* y; (including y;). Since the matrix A* shares the same
non-zero entries with A, the output with A™ indicates the same dependence.

Denote u; = 1/]0 0 1LOr_1Fa- (e, X, WO + W? + Wrn VO + VP 4+ SV ) —
E(e, xp)enLOAT_1Fa- (e, X, WO + W* + W2, V® 4+ VP £ 2V3),y;)]. Then, E[u;] = 0. Since that
L is 1-lipschitz smooth and L(0%,y) € [0, 1], we have

ILOr—1Fa-(eg, X, WO 4+ W? 1 W VO L VP L V1) y,) — L0K, )|
<Or-1Fa(eg, X, WO 4+ WP 1 WE, VO L VP L V1), 4) — (05,4, (148)
<O(VK|A*||% (e + Cp))

Then,
|ui] < 2VK| A%, (ec + Co)
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X 1+6 _ apX (1+8)*
ap X al X
1+6 146 146
aq X S z
alX ar X
0
i:\.
4 al X agX ah X

Figure 5. (a) Dependency between as X and a, X (b) Dependency between y; and y;

t2

P(lu;| >t) <1< 1-—

) (149)

Then, u; is a sub-Gaussian random variable. We have Ee%i < el ATII% (ec+Co)?s® By Lemma 7 in (Zhang et al., 2020), we

have ol
Eed izt Wi < e(1+5)4KHA* 1% (ec+Co)? |02 s>

Therefore,
12

4 .
forany s > 0. Let s = ZHA*H‘éO(ec-s-kCo)?K(l—s-é)‘l Jk=[|AY|4 (e + Co)2 K/ (Hzﬂ)#, we can obtain

12

°(| %

Therefore, with probability at least 1 — IV —K we have

> k) < exp(| A"l (e + Co) K (1 + 8)*12]s* — |Q2ks) (150)

> k) < exp(—||A"||4 (0 + Co)*K log N) < N ¥ (151)

Ete, x)-plLOT 1 Far (e, X, WO 4 WP WS, VO 4 VO 4 SV ), 1)

|
1
- S L 1Fa (e, X, WO+ WP+ W, VO 1 VP L SV 1), ) (152)
=1

<eo
as long as || > O(eq 2| A*[|5, (1 + pip3Ce(, | A* [0 )Ce(®, v/P2Ce(, [ A*[|00)) (|4 [0 + 1) KO(1 4 6)* log N). iie.,

E(e, x.)~DLOT-1Fa+(eg, X, W + W* + WrE, VO + VP £ BV 7),5:)] <OPT +¢ (153)



