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INTRODUCTION

Bacteria and archaea make up the para-
phyletic group of prokaryotes, and together
with eukaryotes they form the three major
domains of life. One can easily envi-
sion a world without eukaryotes, but it is
difficult to imagine a biosphere without
prokaryotes. Today prokaryotes colonize
virtually every corner of the surface Earth
system, from human guts to oceanic gyres
to hydrothermal vents. Earth is home to
millions of prokaryote species (SCHLOSS
& others, 2016), which amount to a stag-
gering number of individuals (WHITMAN,
CoLEMAN, & WIEBE, 1998; FLEMMING &
WuERTZ, 2019; LocEy & LENNON, 2019)
and account for ~14-50% of carbon in the
biosphere (WHITMAN, COLEMAN, & WIEBE,
1998; BAr-ON, PHiLLIPS, & MILO, 2018). In
fact, the biochemical capability to fix carbon
and to produce oxygen can be evolutionarily
traced to prokaryotes (cyanobacteria to be
exact), and nitrogen fixation in nature is
exclusively carried out by prokaryotes. Thus,
it is safe to say that there would not be a
biosphere without prokaryotes.

There are no credible reasons to doubt
that prokaryotes were as abundant and
important in the geological past as they are
today. Yet, the fossil record of prokaryotes is
extremely poor. This poor record is largely
related to the fact that most prokaryotes—
with the prominent exception of magneto-
tactic bacteria (BAZYLINSKI & FRANKEL, 2003)

and some cyanobacteria (BENZERARA &
others, 2014)—do not perform biologically
controlled mineralization. Thus, the pres-
ervation of prokaryotes as fossils requires
specific taphonomic conditions. Further-
more, the microscopic size and simple
morphology of prokaryotic fossils means that
they are difficult to study because of poten-
tial problems related to contamination from
younger microbes, conflation with abiotic
structures, and convergence with eukaryotic
microbes. Despite these challenges, there have
been many reports of fossil prokaryotes since
the late ninteenth century. This chapter is an
overview of fossil prokaryotes, with a focus on
bacteria, particularly cyanobacteria, preserved
in Precambrian rocks.

HISTORY OF THE STUDY OF
BACTERIAL FOSSILS

More detailed accounts of the history of
fossil prokaryote research can be found in
FENTON (1946), BANKS and others (1967),
ScHorr (1992a), and TAYLOR, TAYLOR, and
KRINGS (2009). Prokaryotic fossils had been
reported in the literature by the late nine-
teenth century, although some were not
originally identified as such, others may be
eukaryotic, and still others were later proven
abiotic. For example, the tubular microfossil
Girvanella NICHOLSON & ETHERIDGE, 1878
was first described as a foraminifer from
Ordovician strata but later understood as
a cyanobacterium (Woob, 1957; RIDING,
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1991). RENAULT (1896) described coccoidal
and rod-shaped microstructures preserved in
Carboniferous-Permian plant fossils under
the extant bacterial genera Micrococcus
ConN, 1872 and Bacillus EHRENBERG, 1835.
These structures were originally interpreted
and subsequently accepted as bacterial fossils
(P1a, 1927; Banks & others, 1967), but
many of them probably represent inorganic
particles (TAYLOR & KRINGS, 2005). During
the early twentieth century, definitively
biogenic and possibly bacterial fossils were
reported in the literature. Worth mentioning
are Gloeocapsomorpha ZALESSKY, 1917 from
Middle Ordoviclan kukersites of the Baltic
Shale Basin in Estonia, as well as the middle
Cambrian fossils Morania WarcorT, 1919
and Marpolia WarLcotT, 1919 from the
Burgess Shale in Canada. Glococapsomorpha
was compared with extant chroococcalean
cyanobacteria such as Gloeocapsa KUTZING,
1843 and Entophysalis KUTZING, 1843
(FOSTER, REED, & WICANDER, 1989; STASIUK
& OsADETZ, 1990), but a cyanobacterial
interpretation remains uncertain (BLOKKER
& others, 2001) and some authors have
interpreted Glococapsomorpha as a eukaryotic
organism (e.g., a green alga) on the basis of
organic geochemical evidence (HOFFMANN &
others, 1987; DERENNE & others, 1991). The
interpretation of Marpolia is also uncertain.
It is commonly regarded as a cyanobacterium
(WaLcorT, 1919; STEINER & FATKA, 1996),
although WarcorT (1919) also compared
it with modern green and red algae, and
fossils described as Marpolia may belong to
different taxa or indeed different domains
(LoDuca & others, 2017). Morania, on the
other hand, has been generally accepted as a
colonial organism consisting of cyanobacter-
ial filaments (WaLcoTT, 1919).

In addition to marine prokaryotes men-
tioned above, terrestrial cyanobacterial fossils
have also been known from Phanerozoic
deposits since the twentieth century. Among
these, the most famous examples are various
coccoidal and filamentous bacterial fossils
from the Devonian Rhynie chert (KipsTon
& LANG, 1921; see also CROFT & GEORGE,

1959; Epwarps & Lyon, 1983; KrINGS
& others, 2007; KrinGs, 2019; KrinGs &
HARPER, 2019).

By the first half of the twentieth century,
alleged bacterial microfossils had been
reported from Precambrian rocks (WALCOTT,
1914, 1915; MOORE, 1918; GRUNER, 1922,
1923, 1924, 1925; AsHLEY, 1937). Many of
these were later confirmed to be pseudofos-
sils. For example, tubular structures illus-
trated in GRUNER (1923) and possibly those
in AsHLEY (1937) are likely ambient pyrite
trails (TYLER & BARGHOORN, 1963; KNOLL &
BARGHOORN, 1974). Such trails are common
in cherts and phosphorites ranging from
the Archean (WACEY & others, 2008) to the
Ediacaran (X1a0 & KnoLL, 1999; SHE &
others, 2016), and they were likely produced
by pyrite crystal movement related to local
build-up of degradational gas and pressure
dissolution (KNOLL & BARGHOORN, 1974).
However, some of these early reports likely
included bona fide Precambrian microfossils
from the Proterozoic Belcher Supergroup
(MoorE, 1918, fig. 14), Gunflint Forma-
tion (GRUNER, 1922, pl. 7; GRUNER, 1924,
pl. 11), and Belt Supergroup (WaLcorr,
1914, pl. 20,2-6). In particular, GRUNER’s
reports were from the same stratigraphic
unit—the Gunflint Formation—where
paradigm-shifting discoveries were reported
three decades later (TYLER & BARGHOORN,
1954; BARGHOORN & TYLER, 1965; CLOUD,
1965). But these earlier reports did not spark
much interest at the time, perhaps because
the quality of photomicrographs was poor
(indeed, some reports had only camera
lucida drawings), the great antiquity of these
fossils was not appreciated, and preserva-
tion of bacterial fossils was not expected,
as pointed out by KNOLL, BARGHOORN, and
AWRAMIK (1978).

During the second half of the twentieth
century, the study of Precambrian prokary-
otes opened a new chapter. This was initiated
by several high-profile reports of silicified
bacterial microfossils from the Paleopro-
terozoic (~-1880 Ma) Gunflint chert in
Canada (TyLER & BARGHOORN, 1954; BARG-
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HOORN & TYLER, 1965; CLouD, 1965).
The Gunflint fossils include stromatolite-
associated coccoidal and filamentous fossils
(Fig. 1.1) (BARGHOORN & TYLER, 1965),
as well as coccoidal planktonic microbes
(KnoLL, BARGHOORN, & AWRAMIK, 1978).
These fossils were compared with extant
cyanobacteria, iron-oxidizing bacteria, and
fungi (BARGHOORN & TYLER, 1965; CLOUD,
1965). Serving as a search image in the
field and in the laboratory, Gunflint-type
stromatolitic cherts and microfossils soon
opened the floodgates to numerous discov-
eries of Precambrian microfossils. Within
a decade, Precambrian microfossils had
been reported from many Precambrian
cherts in North America and Australia,
including the Neoproterozoic Bitter Springs
Formation in Australia (Fig. 1.7) (BarG-
HOORN & ScHOPF, 1965; ScHOPF, 1968;
ScHorr & Bracic, 1971), the Neopro-
terozoic Skillogalee Dolomite in South
Australia (ScHOPF & BARGHOORN, 1969;
K~oLL, BARGHOORN, & GOLUBIC, 1975), the
Neoproterozoic Beck Springs Formation in
eastern California (CLouD & others, 1969),
the Paleoproterozoic Belcher Supergroup in
Canada (HormaNN, 1974; HOFMANN, 1976),
Archean strata in South Africa (ScHorF &
BARGHOORN, 1967; KNOLL & BARGHOORN,
1977), and many other units. These were
followed by reports of silicified microfossils,
many of which are interpreted as cyano-
bacteria, from Precambrian cherts around
the world (see summary in ScHoPF, 1983;
ScHorr & KLEIN, 1992; SERGEEV, SHARMA, &
SHUKLA, 2012). Among these, Paleoarchean
microfossils from Western Australia are
the most contentious (AWRAMIK, SCHOPF,
& WALTER, 1983; Buick, 1984; ScHOPF &
PACKER, 1987; ScHOPF, 1993; BRASIER &
others, 2002; ScHorF & others, 2002). The
combined geochemical, paleontological,
and sedimentological data indicate the exis-
tence of a microbial ecosystem on Earth at
~3500 Ma or earlier (ROSING, 1999; SCHOPF,
2006b), perhaps with diverse microbial
metabolic pathways (ScHorr & others,
2018).

Since the 1960-1970s, paleontologists
have also been investigating Precambrian
organic-walled microfossils preserved in
fine-grained siliciclastic rocks or shales using
hydrofluoric acid maceration techniques
(XinG & Liu, 1973; TiIMOFEEV, HERMANN, &
MIKHAILOVA, 1976; VIDAL, 1976), and some
of these are filamentous microfossils that
are interpreted as cyanobacteria (HERMANN,
1974). This line of research opened a new
taphonomic window onto the Precambrian
microbial world (VipaL, 1981; HorMANN &
JACKSON, 1994; GREY, 2005; TANG & others,
2013). Together, microfossils preserved in
cherts and shales provide a broader view of
the paleoecology and taphonomy of Precam-
brian microbes.

MODES OF PRESERVATION

Because most prokaryotic microfossils
are preserved in cherts and shales, silicifi-
cation and carbonaceous compression are
the main modes of preservation. However,
prokaryotic microfossils can also be repli-
cated by phosphate, pyrite, gypsum, and
other minerals; and they have been reported
from ambers. These taphonomic modes are

briefly described below.
SILICIFICATION

As a major permineralization pathway,
silicification is responsible for the preserva-
tion of the majority of prokaryotic micro-
fossils (Fig. 1), including those preserved
in cherts of the Gunflint Formation (Fig.
1.1-1.3) and Bitter Springs Group in
Australia (Fig. 1.7). Generally understood
as a taphonomic process through which
organisms are replaced by diagenetic silica,
silicification of microbes is neither molecule-
by-molecule replacement of cellular struc-
tures by silica nor wholesale replacement
of the entire organism by silica, as some-
times occurs in silicification of animal skel-
etons (ButTs, 2014). Rather, at the micro-
scopic level, silicification is fundamentally
a casting and molding process, with silica
precipitating on organic substrates, such
as cell walls and laminae of cyanobacterial
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Fic. 1. Thin section photomicrographs of silicified prokaryotic microfossils from the ~1880 Ma Gunflint Forma-
tion in Canada (7-3), ~1400-1500 Ma Billyakh Group in Siberia (4-5), Tonian Draken Formation in Svalbard
(6), Tonian Bitter Springs Group in Australia (7), and Tonian Jiudingshan Formation in North China (8-12).
1, Coccoidal specimens of Huroniospora BARGHOORN in BARGHOORN & TYLER, 1965 and filamentous specimens
of Gunflintia BARGHOORN in BARGHOORN & TYLER, 1965. Although Gunflintia was described as a multicellular
filament (BARGHOORN & TYLER, 1965), most specimens do not preserve trichome structure and may be identified
as Siphonophycus; 2, Kakabekia BARGHOORN in BARGHOORN & TYLER, 1965; 3, possibly Eoastrion BARGHOORN in
BARGHOORN & TYLER,1965; 4, Archaeoellipsoides HOrRODYsKI & DONALDSON, 19805 5, Eoentophysalis HOFMANN, 19765
6, Polybessurus GREEN & others, 1987; 7, Myxococcoides ScHOPE, 1968; 8, stromatolites consisting of filamentous
Siphonophycus SCHOPF, 1968; 9—11, close-up views of Siphonophycus filaments, 9 being a magnification of 8 (dotted
line box); 12, Caryosphaeroides Scrorr, 1968 in the center, with coccoidal cells arranged in tetrads and enclosed in
a common envelope. Note intracellular inclusions that were interpreted as degraded nuclei (ScHorF, 1968; but see
KNoLL & BARGHOORN, 1975). Also note Siphonophycus filaments co-occurring with Caryosphaeroides. Fig. 1.1-1.3
and 1.7-1.12, new; Fig. 1.4—1.6 courtesy of Andrew H. Knoll, previously published as fig. 10,2 and 17,4 in Sergeev,
Knoll, & Grotzinger, 1995, and fig. 12,5 in Knoll, Swett, & Mark, 1991, respectively.
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sheaths, through chemical bonds between
organic functional groups and silicic acids
(LEOo & BARGHOORN, 1976) and perhaps
assisted by the presence of metallic ions
(Ferris, Fyre, & BEVERIDGE, 1988), thus
producing molds or casts of microbial cells
and sheaths. Thus, the organic substrates
are encased within the replicating silica
and are subsequently degraded to various
degrees. The taphonomic survival of the
organic substrates, albeit in degraded forms
and in trace amounts, aids the recognition
and identification of these fossils in thin
section microscopy and is regarded by some
geologists as an indispensable criterion for
affirmation of biogenicity (Buick, 1990).
A number of taphonomic experiments
have been carried out to understand the silic-
ification process. Degradation experiments
have demonstrated that cyanobacterial cells
degrade over periods of days to months
but cyanobacterial sheaths are much more
resistant and can remain recognizable over
longer time (GoLusiC & BARGHOORN, 1977;
BARTLEY, 1996). These experiments have
been borne out by field observations showing
the degraded but still recognizable cyano-
bacterial cells and sheaths in pigment-poor
layers of modern microbial mats (GOMEs &
others, 2020), and they indicate that fossil
mineralization must have occurred rapidly
during early diagenesis in order to preserve
cellular structures. Indeed, field observations
of microbial silicification in modern hot
spring sinters, which are widely regarded as
modern taphonomic analogs of microbial
silicification in Precambrian oceans, indicate
that cyanobacterial and other microbes can
be silicified shortly after death or even in
vivo (RENAUT, JONES, & TIERCELIN, 1998),
and that cyanobacterial sheaths are prefer-
entially preserved through silica encrusta-
tion and permeation (RENAUT, JONES, &
TIERCELIN, 1998; KONHAUSER & others,
2003). Mineralization experiments have also
demonstrated that silica and clay minerals
can coat on cyanobacterial sheaths, and silica
can permeate cyanobacterial sheaths and
cell walls, thus rapidly replicating cyano-

bacterial morphology in three dimensions
(OErHLER & ScHOPF, 1971; WESTALL, BONI,
& GUERZONI, 1995; Tororskr & others,
2002; NEwMAN & others, 2017). These
encrustation and permeation processes
may have been facilitated or accelerated by
elevated silica concentrations in Precambrian
seawaters and pore waters (MALIVA, KNoOLL,
& SIMONSON, 2005) and photosynthetic
activity of cyanobacteria themselves (MOORE
& others, 2020). Thus, it is not surprising
that microbial silicification was common
in Precambrian marine environments, but
as biosilification (e.g., in sponges, radiolar-
ians, and diatoms) became more important
and dissolved silica concentrations declined
in Phanerozoic oceans (CONLEY & others,
2017), this taphonomic mode declined in
and throughout the Phanerozoic, not only
for bacterial silicification but for silicification
in general (SCHUBERT, KIDDER, & ERWIN,
1997). Nor is it surprising that microbial
silicification is common in hydrothermal
settings (e.g., modern hot spring and Devo-
nian Rhynie chert) where dissolved silica
concentrations are high.

Yet silicification is not ubiquitous in all
Precambrian marine environments. KNOLL
(1985a) identified three sedimentary and
geochemical factors that control microbial
silicification: 1) sediment permeability, 2)
silica availability in pore waters, and 3)
local concentration of organic matter. It is
possible that these factors can interact with
each other to promote silicification. For
example, the degradation of organic matter
(and the partial degradation of organic
substrates) can activate organic functional
groups, thus facilitating the nucleation
of silica. It can also drive down local pH
values, thus promoting the precipitation of
silica as the solubility of silica decreases with
pH. These sedimentary and geochemical
factors mean that silicification of microbes is
environmentally restricted. Indeed, although
there are notable exceptions (e.g., the
Ediacaran Doushantuo Formation ZHANG
& others, 1998; MUSCENTE, HAWKINS,
& X1a0, 2015), most silicified microbial
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assemblages are preserved in either peritidal
or hydrothermal environments (KnoLt,
1985a; KNnoLL, 1985b; TREWIN, FAYERS,
& KELMAN, 2003). As such, silicification
provides a limited and probably biased
view of the environmental and ecological
ranges of prokaryotic microbes (KnoLL,
1985b; BUTTERFIELD & CHANDLER, 1992).
Fortunately, this limitation is mitigated to
some degree by other taphonomic modes,
such as phosphatization and pyritization that
are also known to preserve microbial fossils.

PHOSPHATIZATION

Although a different fossil mineralization
process, phosphatization is mechanisti-
cally similar to silicification, and fossilif-
erous phosphorites tend to be siliceous (Yao
& others, 2005; DoNG & others, 2009;
SERGEEV, SCHOPF, & KUDRYAVTSEV, 2020).
Like silicification, phosphate encrustation
and impregnation of organic substrates are
key processes that are responsible for the
three-dimensional preservation of micro-
bial cell morphology (X1a0, ZHANG, &
KNoLL, 1998; X1A0 & SCHIFFBAUER, 2009).
Unlike silicification, however, the phos-
phatization is largely restricted to subtidal
environments (ZHANG & others, 1998;
MUSCENTE, HAWKINS, & Xia0, 2015) and
occurs mostly in the Ediacaran and the
Phanerozoic (SCHIFFBAUER & others, 2014a;
MUsCeNTE & others, 2017). Phosphatized
cyanobacteria, for example, are best known
from Ediacaran-Cambrian strata, including
the Ediacaran Doushantuo Formation in
the South China Craton (Fig. 2) (ZHANG
& others, 1998; Yuan, Xia0, & TAYLOR,
2005), the early Cambrian (Terreneuvian)
Yurtus Formation in the Tarim Basin of
northwestern China (Yao & others, 2005;
DoNG & others, 2009) and equivalent strata
in the South China Craton (WaNG & others,
1984; DonNG & others, 2009; Guo, L,
& SHu, 2010), and the middle Cambrian
(Guzhuangian) Alum Shale Formation in
Sweden (CASTELLANI & others, 2018). In
addition, many Phanerozoic coprolites and
cololites contain micrometer-sized spherical

and rod-shaped structures interpreted as
bacteria (LAMBOY & others, 1994; CosMIDIS
& others, 2013; PESQUERO & others, 2014),
although some of these spherical structures
may be alternatively interpreted as phos-
phatic granules that may have been present
in the digestive guts of some invertebrate
animals (BUTTERFIELD, 2002; HAWKINS &
others, 2018).

Relative to silicification, taphonomic
experiments of phosphatization have been less
successful and mostly focused on invertebrate
degradation and mineralization (BRIGGS &
McMaHON, 2016). Degradation experiments
indicate that animal cells and tissues can be
pseudomorphed by heterotrophic microbes
and microbial biofilms (RAFF & others, 2008;
Rarr & others, 2013; BUTLER & others, 2015),
thus helping to stabilize anatomical details
to be phosphatized during subsequent fossil
mineralization. However, the giant sulfur
bacterium 7hiomargarita ScHuLZ & others,
1999 subjected to similar experiments did
not seem to be pseudomorphed by microbial
biofilms during degradation (CUNNINGHAM
& others, 2012). Mineralization experiments
thus far are limited and have only been able
to partially phosphatize invertebrate animals
(WiLBy & BRriGas, 1997; MARTIN, BriGas, &
PARKES, 2003; HirpLER & others, 2011). To
our knowledge, no mineralization experi-
ments have been carried out on prokaryotic
organisms, and this represents a key gap in
the study of prokaryote phosphatization and
an area for future research.

Exceptional preservation of microbial
fossils through silicification and phosphati-
zation depends on a delicate balance between
rapid mineralization and over-mineraliza-
tion. Over-mineralization results in thick
mineral coats that bias and disguise micro-
bial morphologies, making it difficult to
recognize mineralized microfossils in micros-
copy, particularly when organic substrates,
such as cell walls and sheaths are completely
obliterated. This has been observed in
modern hot spring sinters (JONES, RENAUT,
& ROsSEN, 2001; PENG & JONES, 2012)
as well as phosphatized microbes in the
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FiG. 2. Phosphatized Siphonophycus filaments from the Ediacaran Doushantuo Formation in South China. -3,
thin section photomicrographs (new; photos taken by and courtesy of Lei Chen); 4, scanning electron microscopic
(SEM) image (new; image by Shuhai Xiao).

Ediacaran Doushantuo Formation in South
China (X140 & SCHIFFBAUER, 2009).

The inhibition of post-mineralization
recrystallization is also an integral part of
exceptional preservation through phos-
phatization (X1ao & HocHELLA, 2017).
The successful fossilization of microscopic
prokaryotic organisms, in particular, is
critically dependent on the maintenance
of fossilization minerals at micrometers or
even nanometers in size; this is analogous to
the achievement of the highest resolution in
digital imaging by the smallest pixels. Excep-
tionally phosphatized microfossils from the
Ediacaran Doushantuo Formation (Fig.
2), for example, are replicated by apatite
minerals of tens to hundreds of nanometers
in size (X1A0 & SCHIFFBAUER, 2009). It is not
completely understood why these apatite
nanocrystals were prevented from dissolu-
tion and then recrystallization to become
larger crystals. However, it is possible that
the dissolution of phosphate nanocrystals in

the size range of tens to hundreds of nano-
meters is self-suppressed or self-inhibited by
the limited formation and growth of dissolu-
tion pits, the size of which is constrained by
the nanocrystal size (TANG, NANCOLLAS, &
ORME, 2001). This may be a fruitful area for
future exploration of phosphatization (X140
& HOCHELLA, 2017).

CALCIFICATION

Microbial calcification can occur as
biologically controlled in vivo intracellular
mineralization, biologically induced
in vivo extracellular mineralization, or
extrinsically induced 77 vivo or post-mortem
extracellular mineralization. All three
forms of mineralization can be found in
cyanobacteria. Some cyanobacteria carry
out biologically controlled mineralization
and precipitate intracellular carbonates
(CoUrRADEAU & others, 2012; BENZERARA
& others, 2014), but thus far these cyano-
bacterial biominerals are not known to be
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F1G. 3. Prokaryotic microfossils preserved in carbonate rocks. /-2, Girvanella NicHOLSON & ETHERIDGE, 1878 from
the Lower Ordovician Fenhsiang Formation at the Liujiachang section, Songzi, Hubei Province, South China; 3,
Epiphyton BORNEMANN, 1886 from Cambrian Stage 3, Zhangxia Formation in Laiwu, Shandong Province, North
China. Both Girvanella and Epiphyton have been interpreted as calcified cyanobacteria (RIDING, 1991); 4—6, Coc-
coid microfossils, interpreted as methanogens on the basis of extremely high §"°C_,, values up to 20%o of the
host dolomite concretions from the Middle Permian lacustrine deposits of the Lucaogou Formation in Xinjiang,
northwestern China (SUN & others, 2020). Note two size classes in 3, representing two different taxa. /—4 are thin
section photomicrographs and 5-6 are SEM images. Images /-3, new; photos taken by and courtesy of Jianbo
Liu; 4-6, courtesy of Funing Sun and Wenxuan Hu, previously published as fig. 2D, 2G, and 2F, respectively, in
Sun & others, 2020.

preserved and identified in the fossil record.
More commonly, metabolic activities of
cyanobacteria, particularly photosynthesis
and carbon dioxide concentration mech-
anisms, promote an increase in local pH
values and induce 77 vivo precipitation of
calcium carbonate that impregnate the sheath
(RIDING, 2006). This form of biologically
induced mineralization results in extracellular
sheath calcification and may be responsible
for the preservation of the majority of
calcified cyanobacterial fossils, such as
Girvanella N1CHOLSON & ETHERIDGE, 1878
(Fig. 3.1-3.2), Epiphyton BORNEMANN, 1886
(Fig. 3.3), and Renalcis VOLOGDIN, 1932.
Finally, microbes can be entombed in-vivo
or postmortem in carbonate deposits (Fig.
3.4-3.6) (KREMER & others, 2012; Sun &
others, 2020)—including tufas, travertines,
and speleothems whose precipitation is
primarily driven by abiotic processes such
as CO, degassing, although it is not always
possible to determine whether biological
processes also play a secondary role in
facilitating calcification (JONEs & PENG, 2012;
L1 & others, 2013; Jongs & PENG, 2014).

Microbial calcification is not uniformly
distributed across geological time, sedimen-
tary environments, and taxonomic groups.
As calcification is critically dependent on
carbonate supersaturation levels, it is not
surprising that microbial calcification tends
to be focused on tropical shallow marine
realms, for example evaporitic, peritidal,
and reefal or mud mound environments. In
addition, because various microbial metabo-
lisms have different impacts on the precipita-
tion and dissolution of carbonate minerals
(CANFIELD & RAISWELL, 1991), it is antici-
pated that different groups of microbes have
different propensities to induce calcification.
As mentioned earlier, photosynthesis and
carbon dioxide concentration mechanisms of
cyanobacteria facilitate fossilization through
calcification (RIDING, 2006). But calcified
cyanobacterial fossils have a non-uniform
distribution in warm shallow marine envi-
ronments across geological history. Although
they range from the Meso-Neoprotero-
zoic (KNOLL, FAIRCHILD, & SWETT, 1993;
TURNER, NARBONNE, & JAMES, 1993; KaH
& RIDING, 2007) to the Cenozoic (ARP,
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REIMER, & REITNER, 2001), they are mostly
concentrated in the Paleozoic and early
Mesozoic (ArP, REIMER, & REITNER, 2001).
Geochemical, atmospheric, and biological
factors have been implicated as controlling
factors for the non-uniform distribution
of calcified cyanobacterial microfossils in
marine environments. For example, RIDING
(20006) proposed that pCO, levels fell below
~0.4% (or 10x present atmospheric level)
at 750-700 Ma, driving the evolution of
CO,-concentrating mechanisms and facili-
tating in vivo calcification of cyanobacterial
sheaths in the Neoproterozoic and Paleo-
zoic. ARP, REIMER, and REITNER (2001)
suggested that the Paleozoic abundance of
cyanobacterial calcification may be related
to high calcium concentrations in Paleozoic
oceans. Biological factors were in play too.
KNoLL, FAIRCHILD, and SWETT (1993), for
example, suggested that, whereas the rarity
of cyanobacterial calcification in the Precam-
brian may be attributed to the abundance
of micrite (e.g., whiting) that outcompeted
cyanobacterial sheaths as nucleation sites
for calcite overgrowth in the sediment, the
post-Mesozoic decline of cyanobacterial
calcification was due to the ecological rise
of calcareous phytoplankton.

PYRITIZATION AND RELATED
PRESERVATION MODES

Bacteria and archaea are key players in the
sulfur cycle (EHRLICH & NEWMAN, 2009).
Thus, it is not surprising that they play
direct and indirect roles in the precipi-
tation of sulfur-bearing minerals. Some
sulfide-oxidizing bacteria (e.g., Beggiatoa
TREVISAN, 1842, Thiomargarita SCHULZ &
others, 1999, and Thioploca LAUTERBORN,
1907) produce intracellular sulfur granules
(EnrLicH & NEwWMAN, 2009; BalLEy &
others, 2013). Although such sulfur granules
are not supposed to be stable in geological
time scales, filamentous microfossils from
the Ediacaran Doushantuo Formation in
South China contain sulfur-rich granules that
are interpreted as intracellular sulfur granules
produced by sulfide-oxidizing bacteria (BAILEY

& others, 2013). More commonly, microbial
sulfate reduction promotes the precipita-
tion of pyrite, which can replicate microbes
in the fossil record through pyritization;
often, it is the organisms that are degraded
by sulfate reducing microbes, rather than
the sulfate reducing microbes themselves,
that are pyritized (SCHIFFBAUER & others,
2014b). Pyritized microfossils are common
in the geological record (ScHorF & others,
1965; RasmusseN, 2000; Moore & others,
2017). In some pyritized filamentous micro-
fossils (e.g., those from the Ediacaran Krol
Group in India; Fig. 4), pyrite crystals seem
to precipitate within a tubular sheath, thus
outlining the filamentous morphology but
not faithfully replicating the diameter of
the filaments until a full internal mold is
formed. Thus, pyritization seems to be initi-
ated within partially degraded filamentous
microbes (perhaps after the degradation of
trichomes but before the complete destruc-
tion of the sheath), and can proceed to
form pyritic internal mold of microbes.
Finally, microbial fossils can be replicated
by gypsum (Var & LuccHl, 1977; SCHOPE
& others, 2012), the precipitation of which
is primarily driven by abiotic processes such
as evaporation.

PRESERVATION OF BIOMINERALS
PRODUCED BY MAGNETOTACTIC
BACTERIA

A number of iron bacteria can produce
biologically controlled and biologically
induced biominerals (BAZYLINSKI &
FRANKEL, 2003; FRANKEL & BAZYLINSKI,
2003). Magnetotactic bacteria, for example,
produce intracellular minerals such as
magnetite (Fe,O,) and greigite (Fe,S,) that
can have distinct morphologies and crystal-
lographic features (Fig. 5) (BAzYLINSKI &
FRANKEL, 2003; L1 & others, 2013, 2020).
These distinct crystals allow their identifica-
tion in the fossil record, and indeed fossil
magnetotactic bacteria have been reported in
Mesozoic and Cenozoic sediments (CHANG
& KirscHVINK, 1989; Korr & KIirscH-
VINK, 2008). Some iron bacteria can also
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Fig. 4. Thin section photomicrographs of pyritized Siphonophycus filaments from the Ediacaran Krol Group in
northern India. 3 is magnified view of 2 (yellow dotted-line box). Note that organic sheath is largely degraded in
1 and well preserved in 2-3. All images are new and were taken by Shuhai Xiao.

produce biologically induced biominerals
with distinct morphologies. For example,
the iron bacteria Gallionella EHRENBERG,
1838 and Mariprofiundus EMERSON & others,
2007 can produce extracellular ferric-oxyhy-
droxide stalks that are twisted, branched, or
organized into ribbon-like bands (FRANKEL
& BazyLinskl, 2003; CHAN & others, 2011;
Krepsk1 & others, 2013). Morphologically
similar stalks have also been identified in
the fossil record and interpreted as evidence
for iron bacteria (HOFMANN & others, 2008;
KRrepsk1 & others, 2013; CRrOSBY, BAILEY, &
SHARMA, 2014).

CARBONACEOUS PRESERVATION

Although traces of carbonaceous mate-
rial are commonly found in mineralized
prokaryotic fossils, they are typically impreg-
nated or penetrated by replicating minerals
such as microquartz and apatite, so that
extraction of coherent organic-walled micro-
fossils using hydrofluoric (HF) digestion
method is difficult. In contrast, carbona-
ceous preservation of prokaryotic fossils in

fine-grained siliciclastic rocks may manifest
as compressed organic-walled structures with
little mineral permeation or impregnation
(X1a0 & others, 2002; CALLOW & BRASIER,
2009), and these fossils can be extracted
from the rock matrix using hydrofluoric acid
digestion methods without compromising
their structural integrity (Fig. 6) (TanG &
others, 2013; TANG & others, 2015). In
addition to carbonaceous compressions,
structurally recognizable organic residues of
prokaryotic microbes can also be preserved
in ambers (POINAR, WAGGONER, & BAUER,
1993; WAGGONER, 1994; DORFELT, SCHMIDT,
& WUNDERLICH, 2000; SCHMIDT & SCHAFER,
2005). Finally, carbonaceous coccoids, fila-
ments, and sheets have been reported on
the basis of scanning electron microscopic
observation of fractured rock surface (some-
times after acid etching), and these have been
interpreted as fossil microbes or as extracel-
lular polymeric substances (WESTALL & FOLK,
2003; Dal, SONG, & SHEN, 2004; RozaNov
& ASTAFIEVA, 2009; LaN & others, 2020),
although it is a significant challenge to
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2 W Y _
FiG. 5. Bright-field TEM (transmission electron microscopy) images (/-2) and high-resolution TEM image (3)
of chains of straight bullet-shaped magnetite nanocrystals produced by extant magnetotactic deltaproteobacteria

(strain WYHR-1) collected from Weiyang Lake, north of Xi’an city, Shaanxi Province, North China (Lt & others,
2020). Images are new and courtesy of Jinhua Li.

FiG. 6. Prokaryotic microfossils preserved as carbonaceous compressions in fine-grained sediments. I, Ostiana
microcystis HERMANN in TIMOFEEV, HERMANN, & MIKHAILOVA, 1976, a possible cyanobacterium (BUTTERFIELD,
KNoLL, & SWETT, 1994); 2-3, Siphonophycus typicum (HERMANN, 1974; transferred to the genus Siphonaophycus by
BUTTERFIELD in BUTTERFIELD, KNOLL, & SWETT, 1994); 4-5, Polytrichoides lineatus HERMANN, 1974; 6, ellipsoidal
cells of Eosynechococcus moorei HOFMANN, 1976. All specimens were extracted from shale samples using hydrofluoric
acid digestion method. 7—4 are from the Tonian Liulaobei Formation in the North China Craton (TANG & others,
2013, fig. 5G, 13C, 13D, and 14A, respectively), and 5-6 are from the Tonian Gouhou Formation in the North
China Craton (TaNG & others, 2015, fig. 19E and 5B, respectively). Fig. /-5 are transmitted light photomicro-
graphs; 6 is an SEM image.
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demonstrate their syngenicity (ALTERMANN,
2001; EpwARDs & others, 20006).

TRACE FOSSILS

Some prokaryotic micro-organisms,
particularly cyanobacteria, can bore into
hard substrates and leave a trace fossil record
(GoLruBIc, PerkINS, & Lukas, 1975; COCKELL
& HERRERA, 2008). Tunnels and galleries of
tunnels interpreted as traces of euendolithic
cyanobacteria have been reported from
many phosphatic small shelly fossils from
the Cambrian Period (RUNNEGAR, 1985; L1,
1997). These tunnels typically have smooth
walls and a constant diameter along their
length, but they are otherwise simple in
morphology, and the distinction between
cyanobacterial, fungal, and green algal
borings can be difficult (GoLuBi¢, PERKINS,
& Lukas, 1975). However, they can be easily
differentiated from ambient pyrite trails in
phosphorites and cherts, which are char-
acterized by striated walls and commonly
terminated by a pyrite grain (X1a0 & KnoLL,
1999; SHE & others, 2016; YANG & others,
2017). They can also be easily differentiated
from tubular structures in Paleoarchean
pillow basalts that were controversially inter-
preted as putative bioerosional structures
of early microbes (FURNES & others, 2004;
STAUDIGEL & others, 2006).

CHALLENGES IN THE
INTERPRETATION
OF PROKARYOTIC

MICROFOSSILS

To unambiguously demonstrate the
syngenicity, biogenicity, and affinity of
purported prokaryotic microfossils is a
significant challenge, particularly in the
study of Precambrian micropaleontology
because of the poor age constraints, diffi-
culty in stratigraphic correlation, and simple
(and sometimes exotic) morphologies of
ancient microorganisms. This challenge is
highlighted in the debate on the earliest
traces of microbial life on Earth (Buick,
1990; BraSIER & others, 2005; BRASIER &

others, 2006; Javaux, 2019). Below, indige-
nicity, syngenicity, biogenicity, and affinity
are discussed separately for clarity purpose,
although these are often intimately related.

INDIGENICITY AND SYNGENICITY

Syngenicity refers to the provenance of the
purported microfossils. Syngenetic micro-
fossils must be indigenous; they should
be demostrated to be enclosed within and
thus have the same age of the host rock,
rather than later contaminants. Contami-
nants can be introduced in the geolog-
ical past, in the field, or in the laboratory
(Croup & MORRISON, 1979). In early
studies of Precambrian microfossils, there
were numerous cases of contamination.
Such examples included modern chasmo-
lithic filaments or extracellular polysac-
charide strands, seemingly indigenous as
they pass beneath mineral grains in sedi-
ment (CLouD & MORRISON, 1979). Other
examples involved modern fungal spores and
hyphae that were introduced in the field and
laboratory, particularly when samples were
processed using acid digestion methods.
MENDELSON and ScHOPF (1992) provided a
comprehensive assessment of these contami-
nants.

An accepted criterion for indigenicity is
to demonstrate—typically through petro-
graphic observation of thin sections cut from
freshly collected rock samples—that the
purported microfossils are encased in rock
matrix. In order to confirm syngenicity in
thin sections, care must be taken to distin-
guish whether the purported microfossils
were buried in the rock matrix at the time
of deposition or are embedded in secondary
cements/crystals that fill voids, fractures,
veins, dikes, or volcanic vesicles (i.e., amyg-
dales). In the latter case, the secondary
cements/crystals should be independently
dated because they can be markedly younger
than the host rock. This can be achieved
through relative dating using cement stra-
tigraphy and cross-cutting relationships
(Zuou & others, 2015; GAN & others,
2021), analysis of mineral assemblages tied
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to dated metamorphic events (BENGTSON
& others, 2017), or (when carbonaceous
material is available) Raman spectroscopic
analysis of carbonaceous material to deter-
mine maximum metamorphic temperatures
(ScHorr & others, 2005; SCHIFFBAUER &
others, 2007; JAVAUX, MARSHALL, & BEKKER,
2010).

BIOGENICITY

Biogenicity refers to the biological origin
of the purported microfossils. It should be
emphasized that, to prove biogenicity, the
morphologies of the microfossils must be
shown to be biological in origin. This is
a distinction between morphological and
chemical biosignatures. For example, a pyrite
concretion may preserve chemical biosigna-
tures because its sulfur isotopic composi-
tion indicates the involvement of microbial
sulfate reduction, but this by itself does not
offer evidence for a biological origin of the
pyrite concretion.

Croup (1965, p. 27) argued that the
null hypothesis in Precambrian micropale-
ontology should be that purported micro-
fossils be initially regarded as abiotic in
origin. He wrote, “... in considering what
we may accept as unequivocal Precambrian
fossils, the crucial point is not whether mate-
rials observed might conceivably be of vital
origin, but whether they could have been
produced by non-vital processes; and, if not,
whether they are sure endemic to authentic
Precambrian rocks.” Only after an abiotic
origin can be ruled out and syngenicity is
confirmed can Precambrian microfossils be
accepted. This restrictive approach is neces-
sary because of the possibility of biomorphs
that are abiotic in origin but morphologi-
cally mimic microfossils (Garcia-Ruiz &
others, 2003; Javaux, 2019) and also because
the profound ramifications of false positives
in the study of Precambrian (particularly
Archean) microfossils.

In early debates on putative microfos-
sils from the Paleoarchean Warrawoona
Group in Western Australia, Buick (1990)
proposed a seven-point test to assess their

syngenicity and biogenicity. He argued that
bona-fide microfossils should be observed
in petrographic thin sections, preserved
in sedimentary rocks or low-grade meta-
sediments, no smaller than the smallest
extant modern microbes (i.e., >0.01 um?),
comprised of kerogen, part of a larger
population of similar morphologies, hollow
structures, and show cellular elaborations.
Subsequently, a number of authors proposed
additional criteria to assess the morphology,
ontogeny, metabolism, behavior, tapho-
nomy, chemistry, and geological context of
purported microfossils (ScHorF & others,
2010; Brasier & WACEY, 2012; ROUILLARD
& others, 2018; JavAaux, 2019; ROUILLARD &
others, 2021). For example, bona fide micro-
fossils should have a stable species-specific
morphology with a unimodal size distribu-
tion and would exhibit evidence of develop-
ment (e.g., cell division and development
of branching filaments), distinct cell wall
ultrastructures, taphonomic degradation
(e.g., degradation of cytoplasm, deflation of
cell vesicles, and deformation of cell walls
and sheaths), ecological interactions (e.g.,
aggregations and attachment to substrates),
and metabolic activities (e.g., organic C and
N isotope signatures, trace metal enrich-
ment) (Lerot, 2020).

Recent exploration of ancient microfos-
sils have pushed the envelope beyond the
preservation of organic-walled structures in
sedimentary rocks as stipulated by Buick
(1990). Coccoidal, rod-shaped, and fila-
mentous structures preserved in igneous
rocks, sometimes with no traces of organic
walls, may represent evidence for ancient
life, including both prokaryotes and eukary-
otes (Fig. 7.1) (BENGTSON & others, 2017;
IvarssoN & others, 2020). More controver-
sial are micrometer-sized titanite filaments
or microtextures in altered volcanic glass of
Paleoarchean pillow basalts that have been
interpreted as bioerosional structures or trace
fossils produced by chasmoendolithic and
euendolithic microbes (Fig. 7.2) (FURNES
& others, 2004; STAUDIGEL & others, 20006)
and micrometer-sized hematitic tubular
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FiG. 7. Coccoidal, filamentous, and tubular structures with no preservation of organic walls. 7, synchrotron-based
X-ray tomographic rendition of coccoidal structures (interpreted as unicellular prokaryotes) suspended in filamentous
cobweb-like structures (interpreted as fungal hyphae) from Koko Seamount (Ivarsson & others, 2020, fig. 4C);
2, titanite microtextures from the ~3350 Ma Euro Basalt in Western Australia (see MCLOUGHLIN & others, 2020)
(new; image by Nicola McLoughlin); 3, hematitic tubes in chert from jasper banded iron formation in hydrothermal
vent deposits of the Nuvvuagittuq Supracrustal Belt (NSB) in Québec, Canada, constrained between ~3750 and
~4280 Ma (Dodd & others, 2017, fig. 2¢). Photographed in a one-cm-thick polished slab under dark-field reflected
light. 7 is courtesy of Magnus Ivarsson and Stefan Bengtson; 2 courtesy of Nicola McLoughlin; and 3 courtesy of
Matthew Dodd and Dominic Papineau.

structures from >3.77 Ga ferruginous sedi-
mentary rocks in the Nuvvuagittuq supra-
crustal belt in Canada that are regarded as
putative microfossils, possibly representing
iron-oxidizing bacteria (Fig. 7.3) (DobD
& others, 2017). Given that inorganic and
morphologically simple tubes and spheres
can be produced abiotically (Garcia-Ruiz
& others, 2003; Garcia-Ruiz & others,
2017; McMaHoON, 2019), extra efforts
must be made to affirm the biogenicity of
these purported microfossils, and alterna-
tive abiotic origins must be ruled out before
they can be considered evidence for ancient
life (STAUDIGEL & others, 2008; GROSCH
& McLOUGHLIN, 2014; McMAHON, 2019;
McLoUGHLIN & others, 2020). Controver-
sies notwithstanding, igneous rocks and
inorganic preservation may represent under-
explored archives of microbes in deep time
and deep Earth (Ivarsson & others, 2020).

AFFINITY

With syngenicity and biogenicity estab-
lished, the next challenge is to assess the
affinity of the microfossils: whether they
are prokaryotes or eukaryotes, and which
group of prokaryotes they belong to. The
most common microfossils are filaments,
bacilloids, and coccoids, but these morpho-
types occur in both eukaryotes and prokary-
otes. To complicate interpretations further,
subcellular structures such as melanosomes

can be superficially similar in size and shape
to bacilloidal and coccoidal bacteria (MOYER
& others, 2014; VINTHER, 2015), although
they are less relevant in the study of Precam-
brian microfossils. Eukaryotic cells are typi-
cally larger than prokaryotic cells, but there
is a significant overlap (ScHOPF, 1992b;
PANG & others, 2018). Thus, cell size is a
suggestive but inconclusive criterion. Other
morphological features, such as branching
filaments, fused filaments, anastomosed
filaments, coccoidal diads and tetrads, cell
differentiation, and cell wall ornaments
can be useful in distinguishing eukaryotic
from prokaryotic microfossils. Typically,
eukaryotic cells are morphologically more
complex than prokaryotic cells. However,
many of the features listed above may occur
in bacterial cells. For example, actinobac-
teria can develop branching filaments and
some of them (e.g., Streptomyces WAKSMAN
& HENRIcI, 1943) have been reported to
form anastomosis of network (ERIKSON,
1949; GREGORY, 1956). A number of cyano-
bacteria can develop branching filaments
(e.g., Fischerella GoMONT, 1895), coccoidal
diads and tetrads (e.g., Chroococcus NAGELL,
1849 and Glococapsa KurzINg, 1843), and
morphologically and functionally differenti-
ated cells (e.g., heterocysts and akinetes in
Anabaena BORY ex BORNET & FLAHAULT,
1886b) (CastEnHOLZ, 2001). Thus, these
features are not exclusively eukaryotic, and
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only more complex features such as spinose
cell wall ornaments, differentiated hold-
fast, apical meristem, and parenchymatous
thallus are regarded diagnostic characters
for eukaryotes (KnorL & others, 2006).
Cell wall ultrastructures can also be useful.
For example, the trilaminar structure with
two electron-dense layers around a thicker
electron-tenuous layer is said to be char-
acteristic of eukaryotic cell walls (Javaux,
KNoLL, & WALTER, 2004; MOCZYDLOWSKA,
ScHoPF, & WILLMAN, 2010), although cell
wall ultrastructures of modern eukaryotes
and prokaryotes have not been thoroughly
surveyed. Geochemical evidence can also be
used to infer the prokaryotic versus eukary-
otic affinities of microfossils. For example,
combined micro-FTIR (Fourier-transform
infrared spectroscopy) and Raman spectro-
scopic data—that is, FTTR CH3/CH2 absor-
bance ratio and Raman I-1350/I-1600 ratio
of carbonaceous material—may be useful in
distinguishing prokaryotic from eukaryotic
microfossils (IGisu & others, 2009; Qu &
others, 2015; Qu & others, 2018; BONNEV-
ILLE & others, 2020), although diagenetic
and thermal alteration of these parameters
has not been completely understood (IGisu
& others, 2018). As another example, meth-
anogenic archaea can generate large carbon
isotope fractionations that can be preserved
in the geological record (STUEKEN & others,
2017; Lerot, 2020). The assignment of
prokaryotic microfossils to the various
phylogenetic and physiological groups is
another major challenge; but ecological,
morphological, and chemical comparison
with modern prokaryotic groups can provide
some insights. This is discussed below for
selected groups of prokaryotic microfossils.

SELECTED GROUPS
OF PROKARYOTIC
MICROFOSSILS

CYANOBACTERIA

Modern cyanobacteria consist of five
morphological groups (CasTeENHOLZ, 2001).
Subsection I includes unicellular/colonial
cyanobacteria that reproduce by binary

fission (e.g., Prochlorococcus CHISHOLM &
others, 1992, Synechococcus NAGELI, 1849,
Gloeocapsa, Entophysalis KUTZING, 1843,
Chroococcus). Subsection 11 includes unicel-
lular/colonial cyanobacteria that reproduce
by internal multiple fissions and forma-
tion baeocytes (e.g., Pleurocapsa THURET in
Hauck, 1885, Hyella BORNET & FLAHAULT,
1888). Subsection III (e.g., Lyngbya AGARDH
ex GOMONT, 1892b, Microcoleus DESMAZIERES
ex GOMONT, 1892a, Oscillatoria VAUCHER
ex GOMONT, 1892b, Spirulina TURPIN ex
GOMONT, 1892b, Trichodesmium EHRENBERG
ex GOMONT, 1892b) and Subsection IV
(e.g., Anabaena, Nostoc VAUCHER ex BORNET
& FranauvLr, 1886b, Calothrix AGARDH
ex BORNET & FLAHAULT, 1886a) are both
characterized by uniseriate and unbranched
trichomes produced by binary fission in one
plane, but the latter have differentiated cells
(e.g., specialized N,-fixing heterocysts and
resting akinetes). Subsection V is character-
ized by multiseriate or branching trichomes
produced by binary fission in more than one
plane, with some members having differen-
tiated heterocysts (e.g., Stigonema AGARDH
ex BORNET & FraHAULT 1886¢, Fischerella).
Recent Phylogenetic analyses indicate that
Subsections IV and V are monophyletic
groups, whereas the other three are para-
phyletic (SANCHEZ-BARACALDO, 2015; SCHIR-
RMEISTER, GUGGER, & DONOGHUE, 2015).
Cyanobacteria play a major role in modern
ecosystems and in the global carbon and
oxygen cycles. The cyanobacteria Prochlo-
rococcus and Synechococcus are the most
abundant photosynthetic organisms in
modern oceans, accounting for about 10%
of the total ocean picoplankton cells in
the euphotic zone and responsible for as
much as 25% of ocean net primary produc-
tivity (FLomBaUM & others, 2013). A single
cyanobacterial genus, Trichodesmium, is
responsible for nearly 50% of global marine
N, fixation (SouMm, WEBB, & CAPONE, 20115
BERGMAN & OTHERS, 2013). Benthic cyano-
bacteria are also important sedimentary
agents. They build microbial mats and stro-
matolites (STAL, 2012), stabilize sediments
(NOFFKE, 2010), and perform bioerosion and
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biodegradation (Gorusic, PIETRINI, & Riccr,
2015). Cyanobacteria also played a trans-
formative role in Earth history. The origin
of oxygenic photosynthesis in a common
ancestor of cyanobacteria is the geobiological
foundation of the Great Oxidation Event
and the origin of photosynthetic eukaryotes
(Knott, 2008). Thus, it is expected that
cyanobacteria should be richly archived in
the geological record. Indeed, they are the
most common and widespread prokaryotic
microfossils in the geological record, and
some of the Precambrian microfossils first
reported in the literature were compared and
identified with cyanobacteria (BARGHOORN
& TYLER, 1965; CLOUD, 1965).

A number of researchers have reviewed
Precambrian cyanobacterial microfossils from
different perspectives (KnoLL & GOLUBIC,
1992; GoruBiCc & LEE, 1999; ScHoPF, 2012;
SERGEEV, SHARMA, & SHUKLA, 2012; KNoOLL,
2015; SCHIRRMEISTER, SANCHEZ-BARACALDO,
& WaCEY, 2016; DEMOULIN & others,
2019). The identification of cyanobacte-
rial microfossils is based on their combined
morphologic, taphonomic, paleoecological,
paleoenvironmental, and behavioral features
that are considered with modern counter-
parts (KnoLL & Gotusic, 1992; GoLuslcC
& LEE, 1999). Relative to other bacteria,
cyanobacteria are typically larger in size
and more complex in morphologies, some
have sheaths, many are associated with stro-
matolites, and they commonly live in the
photic zone or shallow marine environments
where silicification occurs, although there
are aspects of morphological and ecological
convergences between cyanobacteria and
some mat-forming sulfide-oxidizing bacteria.
Some purported cyanobacterial fossils are
morphologically simple. Examples include
micrometer-sized coccoids such as Myxococ-
coides SCHOPF, 1968 (Fig. 1.7) and tubular
filaments such as Siphonophycus SCHOPE,
1968 (Fig. 1.9-1.12; Fig. 2.4). Their cyano-
bacterial interpretation is primarily based
on their preservation, sometimes in life
position (Fig. 1.8-1.9) in stromatolitic
laminae (Gorusic & LEE, 1999; Cao, YUAN,

& Xi1A0, 2001)—it is assumed that these
stromatolites were likely constructed by
cyanobacteria. Others have a combina-
tion of morphologies and ecologies that
support a cyanobacterial interpretation.
These include Eoentophysalis HOFMANN,
1976 with colonial coccoidal cells forming
microbial crusts (Fig. 1.5); Eohyella ZHaNG
& GoLusIc, 1987 being euendolithic and
psuedofilamentous; and Polybessurus GREEN
& others, 1987, with a stalk consisting of
stacked cup-like gelatinous material (Fig.
1.6). Still others are character-rich and have
distinctive, if not diagnostic, cyanobacte-
rial features such as fossilized akinetes. The
co-occurrence of Archaeoellipsoides Horo-
DYSKI & DONALDSON, 1980 and Filiconstric-
tosus SCHOPF & Bracic, 1971—which are
interpreted as akinetes and short-trichome
germlings, respectively—from the Mesopro-
terozoic Billyakh Group in Siberia provides
a plausible case for fossil akinetes (GoLUBIC,
SERGEEV, & KNoLL, 1995; SERGEEV, KNOLL,
& GROTZINGER, 1995). Akinetes also occur
in the Tonian fossil Anhuithrix PanG &
others, 2018, and both akinetes and hetero-
cysts have been reported in the Devonian
microfossils Langiella CROFT & GEORGE,
1959 and Kidstoniella CROFT & GEORGE,
1959. These features facilitate morpho-
logical comparisons with modern cyanobac-
teria, where akinetes and heterocysts occur
only in Subsections IV-V (CasTENHOLZ,
2001; Uvyepa, HARMON, & BraNnk, 2016,
fig. S7). Various ecological and morpho-
logical comparisons have been proposed
for a number of well-known cyanobacterial
fossils (Table 1, p. 18-19), many of which
were named after their modern counterparts
(ScHorr, 1994; KNoLL, 2015). Accepting the
interpretations presented in Table 1, all five
cyanobacterial subdivisions are represented
in the fossil record.

When did cyanobacteria first evolve? This
question can be addressed from the perspec-
tives of molecular clocks, geochemical signa-
tures, and fossils, but currently available
data do not provide a tight constraint on
this important evolutionary event. Molec-
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ular clocks give divergent results, with
the estimated divergence time of crown-
group cyanobacteria ranging widely from
more than 3600 Ma to less than 2000 Ma,
with very large error bars (SCHIRRMEISTER,
GUGGER, & DONOGHUE, 2015; SHIH &
others, 2017; see summary in DEMOULIN
& others, 2019; Garcia-PicHEL & others,
2019). Stable carbon isotope signatures
of Archean organic carbon are consistent
with but are not uniquely diagnostic of
cyanobacterial metabolism (DEMOULIN &
others, 2019), although LyoNs, REINHARD,
AND PLANAVSKY (2014) argue that the total
organic carbon content in Archean shales
presents strong evidence for oxygenic photo-
synthesis (and perhaps cyanobacteria) before
the Great Oxidation Event at 2320-2450
Ma (BEkKER & others, 2004; HOLLAND,
2006; Luo & others, 2016). The report of
2-methylhopanoids—which were regarded
as a biomarker of cyanobacteria—from the
~2700 Ma Jeerinah Formation in Western
Australia (BRocks & others, 1999) was later
shown to be compromised by contamina-
tions (RasMUSSEN & others, 2008; FRENcH &
others, 2015), leaving the 1.64 Barney Creek
Formation in Western Australia as the oldest
known unit to contain appreciable amount
of 2-methylhopanoids (SumMMONS & others,
1999; Brocks & others, 2005). More recent
studies, however, have brought uncertainty
to the interpretation of 2-methylhopanoids
as a cyanobacterial biomarker; it seems that
2-methylhopanoids can also be produced
by diverse alphaproteobacteria, including
the anoxygenic purple nonsulfur photo-
troph Rhodopseudomonas palustris (RasuBy &
others, 2007) and the nitrifying bacterium
Nitrobacter vulgaris (ELLING & others, 2020).
Thus, it is possible that the biochemical
capability to synthesize 2-methylhopanoids
may have a broader phylogenetic distribu-
tion and a deeper evolutionary history than
cyanobacteria. More convincing biomarker
evidence for cyanobacteria comes from
fossil porphyrins, coupled with compound-
specific nitrogen isotope data, from the
~1100 Ma El Mreiti Group in the Taoudeni

Basin of Mauritania in northwestern Africa
(GueNEeL & others, 2018).

The Archean micropaleontological record
is sparse and intensely debated. Various
microfossils have been reported from the
~3400-3500 Ma Warrawoona Group and
Strelley Pool Formation in Western Australia
(ScHorr, 2006a; ScHorr, 2006b; Sucl-
TANIA & others, 2013), and some have been
compared with and interpreted as cyano-
bacteria (AWRAMIK, SCHOPF, & WALTER,
1983; ScHorr & PACKER, 1987; SCHOPF,
1993), although their biogenicity is a
continual debate (Buick, 1984; Brasier &
others, 2002; WACEY, EILOART, & SAUNDERS,
2019). More convincing Archean and early
Paleoproterozoic filamentous microfossils
have been known from ~3235 Ma volca-
nogenic massive sulfide deposit in in Sulfur
Spring Group (RasmUsseN, 2000) and the
2450-2210 Ma Kazput Formation of the
Turee Creek Group in Western Australia
(ScHorr & others, 2015; FADEL & others,
2017; BarRLow & KRANENDONK, 2018),
but none of these have been interpreted
as cyanobacterial filaments. Filamentous
microfossils described as Siphonophycus
transvaalensis BEUKES, KLEIN, & SCHOPF in
KLEIN, BEUKES, & SCHOPF, 1987 from the
~2500 Ma Gamohaan Formation and the
~2600 Ma Campbellrand Group of the
Transvaal Supergroup in South Africa are
among the oldest microfossils that have been
interpreted as cyanobacteria (KLEIN, BEUKES,
& ScHoPF, 1987; ALTERMANN & SCHOPF,
1995), but the simple morphology of Sipho-
nophycus (see Fig. 1.9-1.12, 2, 4, 6.2-6.3)
means that this interpretation is open to
scrutiny. Indeed, among the genera listed in
Table 1, only Eoentophysalis (Fig. 1.5), Eohy-
ella, and Polybessurus (Fig. 1.6) are regarded
as uncontested cyanobacteria (DEMOULIN &
others, 2019), although several others are
likely or probable cyanobacteria when addi-
tional paleonenvironmental and taphonomic
conditions are considered together with
morphological features (KNOLL, 2015). As
such, Eoentophysalis belcherensis HOFMANN,
1976 from the 2015-2018 Ma Belcher
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Table 1. Selected microfossils that have been interpreted as cyanobacteria. With the exception of Anhuithrix PANG
& others, 2018, most are a few to a few tens of micrometers in cell/trichome diameter/width. See DEMOULIN &
others (2019) for a more complete list of occurrences.

Fossil genus Proposed Oldest occurrence Proposed Cyanobacteria?
cyanobacterial features modern analogs
Eosynechococcus ~ Rod-shaped cells, no 2015-2018 Ma Belcher Synechococcus, Probable
Hofmann, 1976 sheath, sometimes Supergroup, Canada (Hofmann,  Subsection I
(Fig. 6.6) two cells attached 1976; Hodgskiss & others,
end-to-end, indicating 2019)
symmetrical transverse
binary fission in a single
plane
Gloeocapsomorpha Nested planar cell Middle Ordovician oil shale, Gloeocapsa & Possible
Zalessky, 1917 aggregates surrounded by Baltic Shale Basin, Estonia Entophysalis,
multilaminated sheaths  (Zalessky, 1917; Foster, Reed, Subsection I
& Wicander, 1989)
Eoentophysalis Layers or crusts 2015-2018 Ma Belcher Entophysalis, Likely
Hofmann, 1976 consisting of solitary Supergroup, Canada (Golubic Subsection 1
cells, paired cells, & Hofmann, 1976; Hofmann,
planar tetrads, or 1976; Hodgskiss & others,
irregular clusters of 2019)
cells embedded in
multilaminated sheaths
Palaeopleurocapsa Sheathed ~800 Ma Skillogalee Dolomite,  Pleurocapsa, Probable
Knoll, Barghoorn,  pseudofilamentous Adelaide Geosyncline, southern ~ Subsection II
& Golubic, 1975.  cell packets Australia (Knoll, Barghoorn,
& Golubic, 1975).
Eohyella Zhang &  euendolithic ~1625 Ma Dahongyu Hyella, Likely
Golubic, 1987 pseudofilamentous Formation, North China Subsection II
cyanobacterium (Zhang & Golubic, 1987)
Polybessurus Spherical cell subtended ~ ~1200 Ma Avzyan Formation, Cyanostylon, Likely
Green & others, by a cylindrical stalk Ural Mountains, Russia (Sergeev, Subsection II
1987 (Fig. 1.6) consisting of stacked 1994); ~1050 Ma Uluksan
cup-like envelopes and Group (Kah & Knoll, 1996;
may have reproduced by ~ Gibson & others, 2018); Tonian
baeocytes Eleanor Bay Supergroup in
eastern Greenland (Green &
others, 1987); Tonian Draken
Formation in Svalbard (Knoll,
Swett, & Mark, 1991)
Palaeolyngbya Cellular trichome Tonian (~-825 Ma) Bitter Springs  Lyngbya, Probable
Schopf, 1968 singularly enclosed in Group, Australia (Schopf, 1968;  Subsection IIT
sheath Normington & others, 2019)
Oscillatoriopsis Unsheathed uniseriate Tonian (~-825 Ma) Bitter Springs ~ Oscillatoria, Probable
Schopf, 1968 trichome, cells wider Group, Australia (Schopf, 1968;  Subsection IIT
than long, slightly Normington & others, 2019)
differentiated apical cells
Obruchevella Helical tubular filaments  ~1560 Ma Gaoyuzhuang Spirulina, Possible

Reitlinger, 1948

Formation, North China
(Shi & others, 2017)

Subsection III

Table 1 continued on next page
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Fossil genus Proposed Oldest occurrence Proposed Cyanobacteria?
cyanobacterial features modern analogs
Siphonaphycus Tubular filament ~2600 Ma Campbellrand Group ~ Tubular sheath ~ Probable
Schopf, 1968 (Fig.  interpreted as cyano- (Altermann & Schopf, 1995) of Subsection
1.9-1.12, 2,4) bacterial sheaths; form  and ~2500 Ma Gamohaan 111 filaments
genus Formation (Klein, Beukes, &
Schopf, 1987), both of Transvaal
Supergroup, South Africa
Eoschizothrix Sheathed multi- ~1560 Ma Gaoyuzhuang Microcoleus &  Probable
trichomous filaments Formation, North China Craton  Schizothrix
(Lee & Golubic, 1998) Subsection 111
Archaeoellipsoides  Large (-100 pm) (?) ~2100-2040 Ma Akinetes of Likely
Horodyski & elongate sausage-shaped ~ Francevillian Group (Amard & ~ Member IV
Donaldson, 1980  vesicles interpreted Beertrand-Sarfati, 1997); ~1560  cyanobacteria
(Fig. 1.4) as isolated akinetes, Ma Gaoyuzhuang Formation,
sometimes co-occurring  North China Craton (Shi &
with short trichomes others, 2017); 1653-1647 Ma
interpreted as germlings ~ McArthur Group, Australia
(Sergeev, Knoll, & (Tomtani & others, 2006);
Grotzinger, 1995) 1400-1500 Ma Billyakh Group,
Siberia (Golubic, Sergeev, &
Knoll, 1995; Sergeev, Knoll, &
Grotzinger, 1995; Gorokhov &
others, 2019); ~1400 Ma Dismal
Lake Group, Canada (Horodyski
& Donaldson, 1980)
Veteronostocale Unsheathed uniseriate Tonian (~-825 Ma) Bitter Springs  Nostoc, Probable
Schopf & Blacic,  trichome with rounded ~ Group, Australia (Schopf & Subsection
1971 cells, no apical Blacic, 1971; Normington & IV according
attenuation others, 2019) to Schopf &
Blacic (1971)
Anhuithrix Pang Unbranched, uniseriate ~ Tonian Liulaobei Formation, Anabaena Likely
& others, 2018 trichomes with sheathed  North China (Pang & others, & Nostoc,
vegetative cells and 2018) Subsection TV
akinetes
Langiella Croft &  Branching trichomes Early Devonian (-400-412 Ma)  Stigonema, Likely

George, 1959 &
Kidstoniella Croft
& George, 1959

with sheathed cells as
well as differentiated
heterocysts and (in
Langiella) akinetes

Rhynie Chert, Scotland (Croft
& George, 1959)

Subsection V/

Supergroup in Canada (HOFMANN, 1976;
Hobaskiss & others, 2019) represents the
oldest unequivocal cyanobacterial fossil
and provides a minimum age constraint on
cyanobacterial divergence (Fig. 8).
Stromatolites have been reported from
a number of Archean successions. Puta-
tive stromatolites are known from the
~3470 Ma Dresser Formation in Western
Australia (Fig. 9.1) (Buick, Duntor, &
GROVES, 1981). Conical stromatolites from
the ~3430 Ma Strelley Pool Formation in

Western Australia (Fig. 9.2) are regarded
as biosedimentary structures (HOFMANN &
others, 1999; ALLwooD & others, 2006),
possibly related to cyanobacterial activ-
ities (ScHOPF, 2012). More convincing
evidence for cyanobacterial metabolism
comes from disrupted stromatolitic laminae
due to bubble formation related to oxygenic
photosynthesis (Bosak & others, 2009), and
such evidence first appears in stromatolites
from the ~2700 Ma Tumbiana Formation in
Western Australia (Fig. 9.3). Consistent with
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this inference, limited evidence for Fe and S
cycling in strata hosting the Tumbiana stro-
matolites indicates photoautotrophy using
water rather than iron or sulfur as electron
donors (Buick, 1992; StuekeN & others,
2017). Overall, microfossils and stromatolites
indicate that cyanobacteria may have diverged
between 2700 Ma and 2000 Ma. If one
accepts that the origin of cyanobacteria must
predate the Great Oxidation Event (BEKKER
& others, 2004; HoLrLaND, 2006; Luo &
others, 2016), this window can be further
narrowed to be 2700-2450 Ma (Fig. 8).

NON-CYANOBACTERIAL MICROBES

The identification of non-cyanobacterial
microbes in the geological record is usually
based only on geochemical data (e.g., carbon,

iron, and sulfur isotopes) indicative of
specific physiology or metabolism (e.g.,
STUEKEN & others, 2017; Lerot, 2020).
Thus, unlike cyanobacterial fossils, these
inferred physiologies—because of their
diverse phylogenetic distributions—do not
define monophyletic groups. For example,
iron oxidation (EMERsON, FLEMING, &
McBETH, 2010), dissimilatory iron reduction
(LoviEey, 2013), dissimilatory sulfate/sulfur
reduction (CANFIELD & Raiswerr, 1999),
and methanotrophy (Hanson & Hanson,
1996; Kn1TTEL & others, 2005) occur in both
bacteria and archaea. And methanogensis
occurs in multiple archaeal groups (Lyu & Liu,
2018). Nonetheless, there are reports of body
fossils of non-cyanobacterial prokaryotes,
and their interpretations are sometimes based
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FI1G. 9. Field photographs of representative Archean and Paleoproterozoic stromatolites. 1, possible coniform stro-
matolites (top view) from the ~3470 Ma Dresser Formation, North Pole, Western Australia (Buick, Dunlop, &
Groves, 1981); 2, Conical stromatolite (vertical cross-sectional view) from the ~3430 Ma Strelley Pool Formation in
Western Australia (Hofmann & others, 1999; Allwood & others, 2006); 3, microbial stromatolites (cross-sectional
view) from the ~2700 Ma Tumbiana Formation of the Fortescue Group in Western Australia (AWRAMIK & BucH-
HEIM, 2009); 4, branching stromatolites (cross-sectional view) from the ~-2450-2210 Ma Kazput Formation of the
Turee Creck Group in Western Australia (Martindale & others, 2015). All photos are new and by Shuhai Xiao.
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on characteristic morphological features and
aided by geochemical data. These are briefly
described below.

IRON-METABOLIZING MICROBES

Iron is involved in the metabolism of diverse
bacteria and archaea, including dissimila-
tory Fe?* reducing or Fe®* respiring bacteria
(LovLEy, 2013) such as Geobacter LoviEY &
others, 1993 and Shewanella MACDONELL
& CoLwELL, 1985, Fe** oxidizing bacteria
(some of which are anoxygenic phototrophs)
(Brock & others, 1994), and magnetotactic
bacteria (BazYLINSKI & FRANKEL, 2003).
There are a number of reports of iron-
oxidizing microbial fossils. For example,
Frutexites-like microstromatolites in Ceno-
zoic basaltic seafloor are interpreted as
structures produced by biofilms involving
iron-oxidizing bacteria (HEmM & others,
2017; IvarssoN & others, 2020). Some
filamentous microfossils from the Ediacaran
Qigebulake Formation in China (ZHou
& others, 2015), the ~1880 Ma Gunflint
Formation in Canada (BARGHOORN & TYLER,
1965; CLoup, 1965), and the ~2450-2210
Ma Kazput Formation of the Turee Creek
Group in northwestern Australia(FADEL
& others, 2017) were compared with iron-
oxidizing bacteria, but these microfossils
do not seem to have diagnostic features
uniquely characteristic of iron bacteria.
Similarly, the Gunflint microfossil Eoas-
trion BARGHOORN in BARGHOORN & TYLER,
1965 (Fig. 1.3) has been compared with
the extant Fe- and Mn-oxidizing bacterium
Metallogenium PERFILEV & GABE, 1961
(CrLoup, 1965; ZavarzIN, 1981), although
the nature of Metallogenium remains enig-
matic (KLAVENESS, 1999), and a recent
study of Eoastrion-like structures from the
~2100 Ma FC Formation of the Francevil-
lian in Gabon was unable to unequivocally
confirm its biogenicity (LEKELE BAGHEKEMA
& others, 2017). Additionally, tubular struc-
tures from the >3750 Ma Nuvvuagittuq
supracrustal belt in Canada (Fig. 7.3) were
tentatively compared with iron-oxidizing
bacteria (DobD & others, 2017), but their

biogenicity has been debated (MCMAHON,
2019). Some extant iron-oxidizing bacteria
do produce morphologically distinct stalks
(e.g., branching and twisted Fe-oxyhydroxide
stalks in Gallionella) (CHAN & others, 2011)
that can be preserved in the fossil record
and thus offer promising diagnostic features
for this group of bacteria (JOHANNESSEN
& others, 2020). Morphologically similar
stalks have been reported from Jurassic
hydrothermal deposits at ODP site 801 in
the western Pacific Ocean (Kreprsk1 & others,
2013), Pennsylvanian coal beds in Ohio,
USA (e.g., ScHOPF & others, 1965, fig.
12), the late Paleoproterozoic (-1700 Ma)
Jhamarkotra Formation in India (CrOSBY,
BaiLEy, & SHARMA, 2014), the late Paleo-
proterozoic Chuanlinggou Formation in the
North China Craton (LIN & others, 2019),
and late Paleoproterozoic (1.74 Ga) jasper
in the lower Cleopatra Rhyolite in central
Arizona, USA (LitTLE & others, 2021).
These are intriguing and more convincing
evidence for iron-oxidizing bacteria in the
fossil record.

Both microaerophilic iron-oxidizing
bacteria and anoxygenic photoferrotrophs
have been implicated in the deposition
of Precambrian banded iron formations
(KarpLER & others, 2005; KONHAUSER &
others, 2002; CH1 Fru & others, 2013;
CHAN, EMERSON, & LUTHER, 2016). If so,
then Archean and Paleoproterozoic banded
iron formations can be regarded as indi-
rect evidence for iron-oxidizing bacteria
(see HEMANN, 2021, Chapter 6). In fact,
CH1 Fru and others (2013) reported what
appears to be anoxygenic photoferrotroph
fossils from a Quaternary hydrothermal vent
field on Milos Island, Greece.

Magnetotactic bacteria represent a special
group of iron bacteria that can uptake
complexed ferric iron and, through reduc-
tion and partial oxidation of Fe, precipitate
intracellular magnetite (Fe,O,) or greigite
(Fe,S,) nanocrystals in membranous magne-
tosomes (BAzYLINSKI & FRANKEL, 2003).
Magnetite crystals produced by magneto-
tactic bacteria have distinct morphologies
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and crystallographic features that allow their
identification in the fossil record (see Fig. 5)
(BazyLinski & FRANKEL, 2003; Li & others,
2020). Magnetofossils have been reported
from Mesozoic and Cenozoic sediments
(CHANG & KIRsCHVINK, 1989; Korr &
KirscHVINK, 2008; ROBERTS & others, 2011)
and even Precambrian stromatolites (CHANG
& others, 1989).

SULFUR-METABOLIZING MICROBES

Sulfur cycling in the water column and
sediments can be inferred from geochemical
data. For example, sulfate reduction, sulfide
oxidation, and sulfur disproportionation
can be inferred from sulfur isotope data
(CANFIELD & RAISWELL, 1999; SHEN &
Buick, 2004; JouNsTON & others, 2005),
and anoxygenic photosynthesizers such
as green and purple sulfur bacteria can
be inferred from biomarker data (BRocKks
& others, 2005). The body fossil record
of sulfur-metabolizing microbes is scarce,
primarily because they generally do not
have diagnostic morphological features.
Nonetheless, sulfur-metabolizing microbial
fossils have been reported in the literature.
For example, ScHOPF and others (2015)
reported filamentous microbial communi-
ties from the Paleoproterozoic Turee Creek
Group and Duck Creek Formation in
Australia, and interpreted them as sulfureta
in which sulfate/sulfur-reducing and sulfide-
oxidizing microbes worked together to cycle
sulfur species. This interpretation is based
on inferred community ecology and the
cobweb-like microbial fabrics that are often
found in sulfureta. It is possible that these
microbes also recycled iron species (FADEL
& others, 2017). Additionally, BAILEY and
others (2013) reported septate filamentous
microfossils with sparse intracellular sulfur
globules from the Ediacaran Doushantuo
Formation and interpreted them as sulfide-
oxidizing bacteria analogous to the extant
Beggiatoa. Finally, BAtLEY and others (2007)
interpreted the animal embryo-like micro-
fossil Megasphaera CHeEN & Liu, 1986 from
the Ediacaran Doushantuo Formation in

the South China Craton as a giant sulfide-
oxidizing bacterium analogous to the extant
genus Thiomargarita, but this interpretation
has been refuted (X1a0, ZHou, & YUAN,
2007; CUNNINGHAM & others, 2012).

METHANOGENS AND
METHANOTROPHS

Microbial activities of methanogens in
the geological record are chiefly inferred
from 8"°C data, because they produce a
CH, pool extremely depleted in '*C and
correspondingly a CO, pool enriched in
BC (Leror, 2020). This isotopic signal can
be recorded as extremely high 3C_, values
of carbonate sourced from the CO, pool as
long as CH, is effectively removed from the
system (SUN & others, 2020) or as extremely
negative 6"°C_, values of carbonate related
to anaerobic oxidation of methane (J1ANG,
KENNEDY, & CHRISTIE-BLICK, 2003; WANG
& others, 2008), or as extremely negative
8"°C,, values of organic carbon produced
by methanotrophs or methylotrophs in
general (STUEKEN & others, 2017; X1a0 &
others, 2017). Thus, extremely negative
8"°C,,, values (as low as =57%o) from the
~2700 Ma Fortescue Group in Western
Australia indicate that both methanogens
and methanotrophs must have evolved by
the Neoarchean. Body fossils of metha-
notrophs or methylotrophs, however, are
extremely rare, although Sun and others
(2020) recently reported micrometer-sized
coccoidal methanogens from dolomite
concretions in Permian lacustrine deposits
of northwestern China. These coccoids are
morphologically indistinct and their inter-
pretation as fossil methanogens was largely
based on the extremely positive §°C
values of the host dolomite concretions.

SUMMARY AND FUTURE
PROSPECTS

Prokaryotes (bacteria and archaea) are
ubiquitous, abundant, and physiologically
diverse. They play essential roles in modern
Earth systems and were likely as important
in the geological past as they are today. Yet,

carb
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their fossil record is rather sparse, and the
prokaryote paleontology is a relatively young
science. Since the 1950s, however, we have
learned a great deal about prokaryotes in
the geological past and the field continues
to grow rapidly. Prokaryotic microfossils are
known in a number of taphonomic modes:
silicification, phosphatization, calcifica-
tion, pyritization, carbonaceous compres-
sion in fine-grained siliciclastic sediments
and in amber, biomineral preservation,
and trace fossil preservation. The study of
prokaryotic microfossils faces many chal-
lenges. Given their microscopic sizes, simple
morphologies, and possible confusion with
biomorphs and eukaryotic microbes, it is a
difficult task to demonstrate the syngenicity,
biogenicity, and phylogenetic affinity of
purported prokaryotic microfossils. None-
theless, authentic prokaryotic microfossils
are known in the geological record, and they
extend as far back as 3200 Ma and perhaps
3500 Ma. Some of these microfossils can
be assigned to phylogenetic or physiolog-
ical groups, including cyanobacteria, iron-
oxidizing bacteria, magnetotactic bacteria,
sulfur-oxidizing bacteria, and methanogens.
Of these, cyanobacteria have the richest
record, one that goes back to 2000 Ma
and perhaps 2700 Ma, and their identifica-
tion is aided by ecological association with
stromatolites and sometimes diagnostic
morphological features.

Despite notable progress in the study of
prokaryotic fossils since the 1950s, there
remain enormous opportunities for future
research. Prokaryotic micropaleontology
continues to be a frontier in scientific inves-
tigation. The vast majority of prokaryotic
groups are poorly (or not at all) represented
in the fossil record, including archaea and
various nitrogen-metabolizing microbes,
which are fundamental in the origin and
function of the biosphere. The full spectrum
of environmental distribution of prokary-
otes is poorly documented in the geological
record. This is particularly true for microbes
in the terrestrial realm, cryptic spaces, deep-
sea settings, deep lithosphere, and other

extreme environments. We know very little
about how prokaryotes interacted with the
environment and with other organisms
in the geological record. It is likely that
new advances will be made in the study
of prokaryote micropaleontology at the
interface with other sciences (e.g., geochem-
istry, sedimentology, microbiology, big data
science) and advanced analytical techniques.
Ultimately, the vast phylogenetic, physi-
ological, and ecological diversity of bacteria
and archaea evident today must surely have
substantial geological and evolutionary
roots, and much more awaits discovery.
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