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Abstract

Work-related musculoskeletal disorders contribute to significant loss in productivity and higher costs for employers.
This research utilizes body-worn motion and hand-worn force sensors to provide non-intrusive and continuous
recognition of tasks, estimate force exertion, and evaluate if operators are working in safe ergonomic ranges. Work-
related motions such as lifting, carrying, pulling, and pushing are measured with varied loads up to 10 kg, and then
recognized performed using the IBM Watson cloud service platform. The experiments use sequential and quasi-static
postures and mimic those commonly found in an automotive assembly environment. Classification performance
included generating 70 input features based on 6 motion and 4 force inputs and three of the resulting classifier had a
greater than 90% accuracy in simultaneously classifying both the weight being carried and the task being completed.
Future work includes measuring non-quasi-static motions and integrating additional sensors, such as those from smart
tooling, which tracks tool position and orientation, to provide a continuous and unobtrusive evaluation of worker
exertion and risk of musculoskeletal disorder.
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1. Introduction

Work related injuries constitute a significant cost in manufacturing: a field whose nature tends to contribute to their
development due to the prevalence of strenuous, repetitive tasks. As a result, manufacturers are motivated to conduct
ergonomic evaluations and engage in live monitoring to ensure employees’ movements do not cause undue physical
strain. Ongoing advances in both sensing and machine learning capabilities permit the application of new techniques
to such efforts. This paper builds upon prior literature by varying the task type and amount of weight grasped by
participants and data were collected by both motion and normal force sensor integrated into a work glove.

2. Related Research

Musculoskeletal disorders (MSDs) are injuries caused by the use of muscles, tendons, and ligaments, and frequently
result from motions which involve a high degree of repetition or awkward positioning: both common in manufacturing
environments. The United States Bureau of Labor Statistics” Survey of Occupational Injuries and Illnesses reports that
in 2018, 30 percent of occupational injuries involving days away from work involved MSDs [1]. Furthermore, it lists
manufacturing among the industries most affected by this lost productivity, while laborers and maintenance personnel
are listed in the ten most impacted occupations. Consequently, manufacturers have a considerable incentive to ensure
that tasks reside within ergonomically safe ranges.

The proliferation of wearable devices within the Industry 4.0 paradigm [2] has allowed efforts to characterize and
monitor ergonomic information beyond simulation and observation, including continuous, live monitoring: both in
research and industrial applications [3]. Efforts in this area have expanded considerably in recent years, resulting in
many proposed systems of sensors with varying types, quantities, and locations on the body [4]. Examples include
sensors measuring the forces exerted by wearers [5, 6] and various types of body-worn motion sensors [7].

Analysis of the large quantities of data generated through the use of such sensors has benefited from recent and rapid
advances in the capability and accessibility of machine learning technologies [3]. This application helps expedite the
processing of collected data in controlled experiments [8] and enables analysis supporting the real-time monitoring of
workers’ ergonomics [7, 9].
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3. Methodology

A series of tests was conducted to determine if operators wearing the sensor glove system performed in a safe
ergonomic range. Force signals were captured through Tacterion sensors placed on the right hand. Acceleration and
gyroscopic information were also collected through an accelerometer within the circuit. The circuit utilized a
breadboard and was placed in a forearm sleeve of each participant. A simple plastic container was used for each test
with weights placed inside ranging from 0-10 kg. Each participant completed seven actions with 0, 1.0, 2.0, 5.0, and
10.0 kg in the container. A light cloth material was placed in the container to mitigate the shifting of weights during
tests. The actions are detailed in the Task Descriptions subsection below. Tests were repeated 3 times each for a total
of 105 tests per person and 420 tests across all four participants. Participant grip pressure was not controlled to include
greater variability in the collected data.

The sensors were incorporated into a wearable glove as seen in Figure 1 left. The sensors included four normal force
sensors (Tacterion GmbH plyon) and a six-axis accelerometer and gryoscope (MPU-6500). The wearable unit was
controlled with a Teensy 3.2 microcontroller and data was sent over wired USB to an experimenter’s PC for storage.

Figure 1: Wearable sensor glove (left) circuit affixed to a forearm sleeve; (right) sensors

The force sensors constituted three 16x16mm square sensors on the thumb, index, and middle fingertips and a
50x10mm rectangular sensor placed on the palm near the base of the fingers. The sensors were manually sewn into a
standard nitrile dipped work glove. The sensors are shown attached to the glove in Figure 1 right. For the exploratory
study of this work, the sensor placement was chosen based on observations of production associates on an automotive
assembly line and student participants in a production simulation laboratory, as well as past literature that examined
associate finger engagement during manual assembly processes [10].

3.1 Test Setup

All experiments were performed after Institutional Review Board approval. Participants donned the glove with force
and motion sensors attached on their right hand, they were asked to ensure that the sensors aligned with their fingertips
and that the wrist module remained in the same place throughout testing. To complete the required movements,
participants were provided a plastic box with handles containing the requisite weight for each case. In completing
these tasks, they utilize a 6 m long walkway for the carry task and a table with a standing position marked alongside
it for the remaining tasks. The ergonomic range limit from the marked position on the floor was 30 cm from the table
edge. This marking was the target for the short push and pull tasks.

3.2 Task Descriptions

Seven tasks were completed by each participant and replicated three times using the weighted box. Participants were
instructed to complete these tasks as they naturally would. This effort focused on keeping the participants in a
comfortable posture, and aimed to measure natural movements. After each action, the participants were asked to return
to a neutral standing position.
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e Lift from Floor: Participants lift the box from the marked point on the floor using both hands and holds the
box in a comfortable position for 7 seconds while in a standing posture. When prompted, the participant
places the box onto the table. A visual representation of the steps for this task are shown in Figure 2.

e Lift from Table: Participants lift the box from the table using both hands and holds the box in a comfortable
position for 7 seconds while in a standing posture. When prompted, the participant places the box onto the
table.

e  Short (Ergonomic) Push: While standing at the end of the table, participants push the box using their right
hand to the marked ergonomic limit (30 cm).

e  Short (Ergonomic) Pull: While standing at the end of the table, participants pull the box with their right hand
from the ergonomic limit (30 cm) to the table’s edge.

o Long (Less-ergonomic) Push: While standing at the end of the table, participants push the box using their
right hand as far as they can without lifting their feet or leaning on the table.

e Long (Less-ergonomic) Pull: While standing at the end of the table, participants pull the box using their right
hand to the table’s edge without lifting their feet or leaning on the table.

e Carry: Participants stand at the assigned starting mark with the box in their hands. When prompted, the
participant walks a distance of 6 meters to the finish mark.

Figure 2: Participant completing the Lift from Floor action

4. Results

The data classification was completed on the IBM Watson Cloud service using a Jupyterlab notebook running Python
3.8.12 and Scikit Learn 1.0.2. The data were collected offline and uploaded to cloud storage for processing. The
primary goal of this classification was to evaluate performance in predicting both the task being completed and the
weight of the object being grasped by the user during the task. Data from all participants were included in the analysis
to build a generalized classifier independent of the participant data included.

The data were scaled to a 0-1 range based on the known sensor output limits and any outliers were removed. Scaling
the input data better accounts for the varied ranges of input feature scale from the sensors, this is used to match the
relative feature magnitudes. The motion and force data were separated due to being collected at 500 Hz and 30 Hz
respectively and synchronized by using a sliding window to step through the data. The sliding window used a one
second width and 0.5 second step over. The resulting windows were labeled by both the task and weight. A breakdown
can be found in Table 1. Variations in the number of windows were expected due to the natural variations in the time
it takes for individuals to complete tasks.

Feature extraction provided additional derived data to better inform the learning and generalization of the classifier.
The features used were selected based on past literature in characterizing body worn sensors and included the signal
mean, variance, minimum value, maximum value, and area under the curve which resulted in 70 total features. Area
under the curve was calculated using the composite trapezoidal rule to integrate the signal. It was noted that co-
linearity and correlations were observed between resultant features. Future work is included to examine the feature
selection in depth and reduce the total number of input features computed.
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Table 1. Breakdown of dataset window counts by task and weight

Label Sum 0 kg 1 kg Skg 10 kg
Carry 524 141 134 119 130
Lift Floor 1228 309 302 296 321
Lift Table 1132 282 287 286 277
Pull Long 318 74 74 86 84
Pull Short 234 61 50 57 66
Push Long 302 72 63 79 88
Push Short 274 74 60 61 79

Multiple model types were trained on the dataset and were selected based on prior literature and past experiences with
modeling body worn sensor data. The top seven performing models will be presented classifying both task and weight;
Support Vector Machine (SVM) with Linear kernel, SVM using a Radial Basis Function Kernel (RBF), k=3 Nearest
Neighbors, Random Forest, Naive Bayes, Decision Tree, and Adaboost Ensemble Classifier. The data were evaluated
using three measures, Accuracy (ACC), Balanced Accuracy (Bal ACC), and the Matthew’s Correlation Coefficient
(MCC). ACC provides overall classification performance, but in cases of imbalanced data where one class is larger
than the others, accuracy is not as reliable as it tends to overestimate the ability to predict the majority class [11]. From
Table 1, a class imbalance is present in the data. The second metric, Bal ACC is commonly used on datasets with
unequal distributions as it considers class-balanced sample weights. Finally, the MCC was used, which measures the
classification quality and includes both true and false positives and negatives. MCC is generally regarded as providing
a more balanced measure of classification model performance even when the classes are very different sizes [12, 13]
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Figure 3: Classifier performance considering both task type and grasped weigh

To further validate the performance of the top models, k-fold cross-validation was completed for each model using 3
folds and shuffled data. K-fold cross-validation holds out a portion of the dataset during training of the classifier. The
partitioning used is propagated through the dataset by splitting the dataset into k smaller sets or folds and training the
model using k—1 folds. The model is then iteratively trained on each split of folds until all folds have been used for
both training and testing. The resulting performance metrics for each iteration or split are used to compute the average
value. The k-fold method provides an increased percentage of training data allowed the resulting classifier to learn
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from more data points, potentially encompasses more data variability when compared to the more common fixed 60%
training/40% testing dataset split. The data collected was time series data that changes over time and different areas
of the dataset contain differing distributions of information. By iterating over the full dataset, the resulting classifier
is validated against all variability in the collected dataset.

From the model classification performance in Figure 3, the two SVM and Nearest Neighbor classifiers achieved over
0.9 out of a possible 1.0 indication perfect classification performance in predicting both task type completed and the
weight being grasped. The high classification performance of the models indicates the use of the integrated force and
motion sensors are sufficient on quasi-static variable weight tasks. Further work is needed to expand the types of tasks,
weight levels, and non-quasi-static movement.

5. Conclusion

This work detailed collecting worker data across 7 tasks and 5 weights using an instrumented glove with integrated
force and motion. The classification accuracy achieved greater than 90% in describing both the weight borne and the
task type. The high performance of the classifier underscores the potential for a multi-sensor approach using low-cost
body-worn sensors for continuous evaluation of real-time ergonomics. Future extensions of this work include
evaluation of additional task types, non-quasi-static movements, and further integration with smart tooling.
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