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Abstract 
 
Work-related musculoskeletal disorders contribute to significant loss in productivity and higher costs for employers. 
This research utilizes body-worn motion and hand-worn force sensors to provide non-intrusive and continuous 
recognition of tasks, estimate force exertion, and evaluate if operators are working in safe ergonomic ranges. Work-
related motions such as lifting, carrying, pulling, and pushing are measured with varied loads up to 10 kg, and then 
recognized performed using the IBM Watson cloud service platform. The experiments use sequential and quasi-static 
postures and mimic those commonly found in an automotive assembly environment. Classification performance 
included generating 70 input features based on 6 motion and 4 force inputs and three of the resulting classifier had a 
greater than 90% accuracy in simultaneously classifying both the weight being carried and the task being completed. 
Future work includes measuring non-quasi-static motions and integrating additional sensors, such as those from smart 
tooling, which tracks tool position and orientation, to provide a continuous and unobtrusive evaluation of worker 
exertion and risk of musculoskeletal disorder. 
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1. Introduction 
Work related injuries constitute a significant cost in manufacturing: a field whose nature tends to contribute to their 
development due to the prevalence of strenuous, repetitive tasks. As a result, manufacturers are motivated to conduct 
ergonomic evaluations and engage in live monitoring to ensure employees’ movements do not cause undue physical 
strain. Ongoing advances in both sensing and machine learning capabilities permit the application of new techniques 
to such efforts. This paper builds upon prior literature by varying the task type and amount of weight grasped by 
participants and data were collected by both motion and normal force sensor integrated into a work glove. 
 
2. Related Research 
Musculoskeletal disorders (MSDs) are injuries caused by the use of muscles, tendons, and ligaments, and frequently 
result from motions which involve a high degree of repetition or awkward positioning: both common in manufacturing 
environments. The United States Bureau of Labor Statistics’ Survey of Occupational Injuries and Illnesses reports that 
in 2018, 30 percent of occupational injuries involving days away from work involved MSDs [1]. Furthermore, it lists 
manufacturing among the industries most affected by this lost productivity, while laborers and maintenance personnel 
are listed in the ten most impacted occupations. Consequently, manufacturers have a considerable incentive to ensure 
that tasks reside within ergonomically safe ranges. 
 
The proliferation of wearable devices within the Industry 4.0 paradigm [2] has allowed efforts to characterize and 
monitor ergonomic information beyond simulation and observation, including continuous, live monitoring: both in 
research and industrial applications [3]. Efforts in this area have expanded considerably in recent years, resulting in 
many proposed systems of sensors with varying types, quantities, and locations on the body [4]. Examples include 
sensors measuring the forces exerted by wearers [5, 6] and various types of body-worn motion sensors [7]. 
 
Analysis of the large quantities of data generated through the use of such sensors has benefited from recent and rapid 
advances in the capability and accessibility of machine learning technologies [3]. This application helps expedite the 
processing of collected data in controlled experiments [8] and enables analysis supporting the real-time monitoring of 
workers’ ergonomics [7, 9]. 
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3. Methodology 
A series of tests was conducted to determine if operators wearing the sensor glove system performed in a safe 
ergonomic range. Force signals were captured through Tacterion sensors placed on the right hand. Acceleration and 
gyroscopic information were also collected through an accelerometer within the circuit. The circuit utilized a 
breadboard and was placed in a forearm sleeve of each participant. A simple plastic container was used for each test 
with weights placed inside ranging from 0-10 kg. Each participant completed seven actions with 0, 1.0, 2.0, 5.0, and 
10.0 kg in the container. A light cloth material was placed in the container to mitigate the shifting of weights during 
tests. The actions are detailed in the Task Descriptions subsection below. Tests were repeated 3 times each for a total 
of 105 tests per person and 420 tests across all four participants. Participant grip pressure was not controlled to include 
greater variability in the collected data.  
 
The sensors were incorporated into a wearable glove as seen in Figure 1 left. The sensors included four normal force 
sensors (Tacterion GmbH plyon) and a six-axis accelerometer and gryoscope (MPU-6500). The wearable unit was 
controlled with a Teensy 3.2 microcontroller and data was sent over wired USB to an experimenter’s PC for storage. 
 

 
Figure 1: Wearable sensor glove (left) circuit affixed to a forearm sleeve; (right) sensors 

 
 
The force sensors constituted three 16x16mm square sensors on the thumb, index, and middle fingertips and a 
50x10mm rectangular sensor placed on the palm near the base of the fingers. The sensors were manually sewn into a 
standard nitrile dipped work glove. The sensors are shown attached to the glove in Figure 1 right. For the exploratory 
study of this work, the sensor placement was chosen based on observations of production associates on an automotive 
assembly line and student participants in a production simulation laboratory, as well as past literature that examined 
associate finger engagement during manual assembly processes [10]. 
 
3.1 Test Setup 
All experiments were performed after Institutional Review Board approval. Participants donned the glove with force 
and motion sensors attached on their right hand, they were asked to ensure that the sensors aligned with their fingertips 
and that the wrist module remained in the same place throughout testing. To complete the required movements, 
participants were provided a plastic box with handles containing the requisite weight for each case. In completing 
these tasks, they utilize a 6 m long walkway for the carry task and a table with a standing position marked alongside 
it for the remaining tasks. The ergonomic range limit from the marked position on the floor was 30 cm from the table 
edge. This marking was the target for the short push and pull tasks. 
 
3.2 Task Descriptions 
Seven tasks were completed by each participant and replicated three times using the weighted box. Participants were 
instructed to complete these tasks as they naturally would. This effort focused on keeping the participants in a 
comfortable posture, and aimed to measure natural movements. After each action, the participants were asked to return 
to a neutral standing position. 
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• Lift from Floor: Participants lift the box from the marked point on the floor using both hands and holds the 
box in a comfortable position for 7 seconds while in a standing posture. When prompted, the participant 
places the box onto the table. A visual representation of the steps for this task are shown in Figure 2. 

• Lift from Table: Participants lift the box from the table using both hands and holds the box in a comfortable 
position for 7 seconds while in a standing posture. When prompted, the participant places the box onto the 
table. 

• Short (Ergonomic) Push: While standing at the end of the table, participants push the box using their right 
hand to the marked ergonomic limit (30 cm). 

• Short (Ergonomic) Pull: While standing at the end of the table, participants pull the box with their right hand 
from the ergonomic limit (30 cm) to the table’s edge. 

• Long (Less-ergonomic) Push: While standing at the end of the table, participants push the box using their 
right hand as far as they can without lifting their feet or leaning on the table. 

• Long (Less-ergonomic) Pull: While standing at the end of the table, participants pull the box using their right 
hand to the table’s edge without lifting their feet or leaning on the table. 

• Carry: Participants stand at the assigned starting mark with the box in their hands. When prompted, the 
participant walks a distance of 6 meters to the finish mark. 

 

 
Figure 2: Participant completing the Lift from Floor action 

 
4. Results 
The data classification was completed on the IBM Watson Cloud service using a Jupyterlab notebook running Python 
3.8.12 and Scikit Learn 1.0.2. The data were collected offline and uploaded to cloud storage for processing. The 
primary goal of this classification was to evaluate performance in predicting both the task being completed and the 
weight of the object being grasped by the user during the task. Data from all participants were included in the analysis 
to build a generalized classifier independent of the participant data included. 
 
The data were scaled to a 0-1 range based on the known sensor output limits and any outliers were removed. Scaling 
the input data better accounts for the varied ranges of input feature scale from the sensors, this is used to match the 
relative feature magnitudes. The motion and force data were separated due to being collected at 500 Hz and 30 Hz 
respectively and synchronized by using a sliding window to step through the data. The sliding window used a one 
second width and 0.5 second step over. The resulting windows were labeled by both the task and weight. A breakdown 
can be found in Table 1. Variations in the number of windows were expected due to the natural variations in the time 
it takes for individuals to complete tasks. 
 
Feature extraction provided additional derived data to better inform the learning and generalization of the classifier. 
The features used were selected based on past literature in characterizing body worn sensors and included the signal 
mean, variance, minimum value, maximum value, and area under the curve which resulted in 70 total features. Area 
under the curve was calculated using the composite trapezoidal rule to integrate the signal. It was noted that co-
linearity and correlations were observed between resultant features. Future work is included to examine the feature 
selection in depth and reduce the total number of input features computed. 
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Table 1. Breakdown of dataset window counts by task and weight 

Label Sum 0 kg 1 kg 5 kg 10 kg 
Carry 524 141 134 119 130 
Lift Floor 1228 309 302 296 321 
Lift Table 1132 282 287 286 277 
Pull Long 318 74 74 86 84 
Pull Short 234 61 50 57 66 
Push Long 302 72 63 79 88 
Push Short 274 74 60 61 79 

 
 
Multiple model types were trained on the dataset and were selected based on prior literature and past experiences with 
modeling body worn sensor data. The top seven performing models will be presented classifying both task and weight; 
Support Vector Machine (SVM) with Linear kernel, SVM using a Radial Basis Function Kernel (RBF), k=3 Nearest 
Neighbors, Random Forest, Naïve Bayes, Decision Tree, and Adaboost Ensemble Classifier. The data were evaluated 
using three measures, Accuracy (ACC), Balanced Accuracy (Bal ACC), and the Matthew’s Correlation Coefficient 
(MCC). ACC provides overall classification performance, but in cases of imbalanced data where one class is larger 
than the others, accuracy is not as reliable as it tends to overestimate the ability to predict the majority class [11]. From 
Table 1, a class imbalance is present in the data. The second metric, Bal ACC is commonly used on datasets with 
unequal distributions as it considers class-balanced sample weights. Finally, the MCC was used, which measures the 
classification quality and includes both true and false positives and negatives. MCC is generally regarded as providing 
a more balanced measure of classification model performance even when the classes are very different sizes [12, 13] 
 

 

Figure 3: Classifier performance considering both task type and grasped weigh 
 
To further validate the performance of the top models, k-fold cross-validation was completed for each model using 3 
folds and shuffled data. K-fold cross-validation holds out a portion of the dataset during training of the classifier. The 
partitioning used is propagated through the dataset by splitting the dataset into k smaller sets or folds and training the 
model using k–1 folds. The model is then iteratively trained on each split of folds until all folds have been used for 
both training and testing. The resulting performance metrics for each iteration or split are used to compute the average 
value. The k-fold method provides an increased percentage of training data allowed the resulting classifier to learn 
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from more data points, potentially encompasses more data variability when compared to the more common fixed 60% 
training/40% testing dataset split. The data collected was time series data that changes over time and different areas 
of the dataset contain differing distributions of information. By iterating over the full dataset, the resulting classifier 
is validated against all variability in the collected dataset. 
 
From the model classification performance in Figure 3, the two SVM and Nearest Neighbor classifiers achieved over 
0.9 out of a possible 1.0 indication perfect classification performance in predicting both task type completed and the 
weight being grasped. The high classification performance of the models indicates the use of the integrated force and 
motion sensors are sufficient on quasi-static variable weight tasks. Further work is needed to expand the types of tasks, 
weight levels, and non-quasi-static movement. 
 
5. Conclusion 
This work detailed collecting worker data across 7 tasks and 5 weights using an instrumented glove with integrated 
force and motion. The classification accuracy achieved greater than 90% in describing both the weight borne and the 
task type. The high performance of the classifier underscores the potential for a multi-sensor approach using low-cost 
body-worn sensors for continuous evaluation of real-time ergonomics. Future extensions of this work include 
evaluation of additional task types, non-quasi-static movements, and further integration with smart tooling. 
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