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Abstract

We consider whether distributed subgradient methods can achieve a linear speedup over a
centralized subgradient method. While it might be hoped that distributed network of n
nodes that can compute n times more subgradients in parallel compared to a single node
might, as a result, be n times faster, existing bounds for distributed optimization methods
are often consistent with a slowdown rather than speedup compared to a single node.

We show that a distributed subgradient method has this “linear speedup” property
when using a class of square-summable-but-not-summable step-sizes which include 1/tβ

when β ∈ (1/2, 1); for such step-sizes, we show that after a transient period whose size
depends on the spectral gap of the network, the method achieves a performance guarantee
that does not depend on the network or the number of nodes. We also show that the
same method can fail to have this “asymptotic network independence” property under
the optimally decaying step-size 1/

√
t and, as a consequence, can fail to provide a linear

speedup compared to a single node with 1/
√
t step-size.
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1. Introduction

We consider the standard setting of distributed convex optimization: f1(x), . . . , fn(x) are
convex functions from Rd to R, with node i of the network being the only node which can
compute subgradients of the function fi(x). The goal is to compute a minimizer

x∗ ∈ arg min
x∈Ω

F (x), (1)

where

F (x) :=
1

n

n∑
i=1

fi(x),

and Ω is a closed compact convex set. The underlying method must be decentralized, relying
only on local subgradient computations and peer-to-peer message exchanges in a certain
graph G. In particular, we will consider the “standard model” of distributed optimization
where at each step, node i computes a subgradient of its local function, possibly performs
a projection step onto the set Ω, and broadcasts a message to its neighbors.

This problem setup is a natural model for machine learning over a network of proces-
sors. Minimizing the function F (x) typically comes from empirical loss minimization. The
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function F (x) typicaly measures how well a model parametrized by the vector x can fit
a collection of data points; distributing the data points among n processors will result in
the problem formulation of Eq. (1). While it is possible to make additional assumptions,
such as the functions fi(x) being identical or nearly identical (Haddadpour et al. (2019);
Stich (2018)), or having gradients or Hessians that are not too far apart (Karimireddy et al.
(2020); Khaled et al. (2020)), in this work we will assume that the functions fi(x) can be
arbitrarily different.

A variation on this setup considers the situation when the underlying graph G is taken
to be the star graph, sometimes called “local gradient descent” (see Stich (2019)). The
advantage of using the star graph is that one can design simple protocols involving rounds
of interaction between the center and the leaf nodes which are not available in the setting
where G is an arbitrary graph. However, a disadvantage of using the star graph is that, as
the number of nodes gets large, the number of bits that need to be transmitted to the center
increases as well. One way to avoid this problem is to consider optimization over arbitrary
graphs G instead, as we do in this paper. Changing topology to an arbitrary graph or even
to a time-varying sequence of graphs G has been empirically shown to speed up distributed
training (Assran et al. (2019)).

This problem formulation is now classical; it first analyzed in Nedic and Ozdaglar (2009),
where a distributed subgradient method was proposed for the unconstrained case when
Ω = Rn. The case with the constraint Ω was first analyzed in Nedic et al. (2010). Both
papers proposed methods inspired by the “average consensus” literature, where nodes mix
subgradient steps on their local functions with linear combinations of their neighbors iter-
ates.

Distributed optimization methods have attracted considerable attention since the pub-
lication of Nedic and Ozdaglar (2009) for several reasons. First, it is hoped that distributed
empirical loss minimization in machine learning could result in faster training. Second,
many problems in control and signal processing among network of nodes involve nodes act-
ing to maximize a global objective from local information, and Eq. (1) is thought to be
among the simplest problems of this type. Over the past decade, thousands of papers have
been written on different variations of this problem, and it would be impossible to survey
all this related work; instead, we refer the reader to the recent survey Nedić et al. (2018).

We next launch into a discussion of the main motivating concern of this paper, namely
how the performance of distributed optimization methods compares to their centralized
counterparts. We begin by discussing the available guarantees for the (centralized) sub-
gradient method, so that we can can contrast those guarantees to the available distributed
bounds in our survey of previous work, which will follow.

1.1 The subgradient method

The projected subgradient method run on the function F (x) takes the form

y(t+ 1) = PΩ [y(t)− α(t)gF (t)] ,

where gF (t) is a subgradient of the function F (·) at y(t), and PΩ is the projection onto Ω.

The standard reference for an analysis of this method is the set of lecture notes Boyd
et al. (2003). It is usually assumed that ||gF (t)||2 ≤ L for all t, i.e., all subgradients are
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bounded; and Ω is assumed to have diameter at most D. The function F (x) may have more
than one minimizer over Ω; we select one minimizer arbitrarily and call it x∗.

The step-size α(t) needs to be properly chosen. There are two choices that are typically
analyzed in this setting. One is to set α(t) = 1/

√
t, which turns out to be the optimal decay

rate. The other is to choose α(t) to be “square summable but not summable” as in the
following assumption.

Assumption 1 The sequence α(t) satisfies

+∞∑
t=1

α2(t) < ∞

+∞∑
t=1

α(t) = +∞

We now briefly summarize the standard analysis of the method from Boyd et al. (2003),
which the reader can consult for details. The analysis is based on the following recurrence
relation, to the effect that, up to second order terms, the method gets closer to the set of
minimizers at every step:

||y(k + 1)− x∗||22 ≤ ||y(k)− x∗||22 − 2α(k)(F (y(k))− F ∗) + L2α2(k),

It is standard to re-arrange this into a telescoping sum as

2α(k)(F (y(k))− F ∗) ≤||y(k)− x∗||22 − ||y(k + 1)− x∗||22 + L2α2(k), (2)

and then sum it up over k = 1, . . . , t. Indeed, defining

yα(t) :=

∑t
k=1 α(k)y(k)∑t
k=1 α(k)

,

and summing up Eq. (2) and then appealing to the convexity of F (x) we can obtain that

F (yα(t))− F ∗ ≤
D2 + L2

∑t
k=1 α

2(k)

2
∑t

k=1 α(k)
, (3)

where ||y(0) − x∗||22 ≤ D2 as Ω was assumed to have diameter D. Finally, by Assumption
1, the right-hand side goes to zero, and so we obtain that the subgradient method works.

A variation on this argument can get rid of the dependence on L in Eq. (3). This
requires the following assumption.

Assumption 2 There is a constant Cα such that for all positive integers t,

t∑
k=1

α(k) ≤ Cα
t∑

k=dt/2e

α(k).
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This assumption can be motivated by observing that it is satisfied by step-sizes that decay
polynomially as α(t) = 1/tβ when β > 0.

With this assumption in place, one can set t′ = dt/2e and instead sum Eq. (2) from t′

to t. Defining the running average from time t′ to t as

y′α(t) :=

∑t
k=t′ α(k)y(k)∑t
k=t′ α(k)

this immediately yields the following proposition.

Proposition 1 Suppose Assumptions 1 and 2 on the step-size are satisfied, F (x) is a convex
functions whose subgradients are upper bounded by L in the Euclidean norm, and t is large
enough so that we have the upper bound

+∞∑
k=bt/2c

α2(k) ≤ D2

L2
. (4)

Then

F (y′α(t))− F ∗ ≤ D2Cα∑t
k=1 α(k)

.

This result has no dependence on L, but at the expense of multiplying the dependence on
D by the constant Cα. For example, if α(t) = 1/t3/4, it is an exercise to verify that one
can take Cα = 6. We note that since the step-size α2(t) is square summable, Eq. (4) is
guaranteed to hold for large enough t.

The bound of this proposition suggests to take α(t) decaying as slowly as possible (so
that

∑t
k=1 α(k) grows as fast as possible) while still keeping α(t) square summable but not

summable. There is no optimal choice, but in general one wants to pick α(t) = 1/tβ where
β is close to 1/2, but not 1/2 since α(t) = 1/

√
t is not square summable. The result will be

a decay rate of F (y′α(t))− F ∗ = O(1/t1−β).
One can redo the above argument with the rate of decay of α(t) = 1/

√
t to obtain an

optimal rate of decay. In that case, because this is not a square summable step-size, the
dependence on L cannot be avoided. However, since

∑t
k=t′ 1/t = O(1), we can simply

repeat all the steps above to give the bound

F (yα(t))− F ∗ ≤ O
(
D2 + L2

√
t

)
, (5)

An advantage to optimizing over a closed convex set Ω is that in the case where it has
finite diameter, the stndard analysis sketched here allows us to avoid extraneous logarithmic
factors without fixing the number of steps ahead of time. One can also choose α(t) depending
on the constants D and L to obtain better scaling with respect to those constants; however,
in this paper, for simplicity we restrict our attention to unoptimized step-sizes of the form
α(t) = 1/tβ .

We next compare these results for the centralized subgradient to available convergence
times in the distributed case.

4



Asymptotic Network Independence and Step-Size

1.2 Convergence times of distributed subgradient methods

A number of distributed subgradient methods have been proposed in the literature, with
the simplest being

x(t+ 1) = Wx(t)− α(t)g(t), (6)

which was analyzed in Nedic and Ozdaglar (2009). Here x(t) is an n × d matrix, with the
i’th row of x(t) being controlled by agent i; we will use xi(t) to denote the same i’th row.
The matrix g(t) is also n×d and it’s i’th row, which we will denote by gi(t), is a subgradient
of the function fi(x) at x = xi(t). The matrix W is doubly stochastic and needs to satisfy
some connectivity and non-aperiodicity conditions; it suffices to assume that W has positive
diagonal and that the directed graph corresponding to the positive entries of W is strongly
connected. The underlying assumption in Eq. (6) is that the time it takes to compute a
subgradient and the time it takes to broadcast x(t) to neighbors are comparable, as both
are being done between iteration t and iteration t+ 1.

It was shown in Nedic and Ozdaglar (2009) that, for small enough constant stepsize
α(t) = α, this method results in a final error that scales linearly in α. The projected
version

x(t+ 1) = PΩ

[
Wx(t)− α(t)g′(t)

]
, (7)

was studied in Nedic et al. (2010); here the projection operator PΩ acts on each row of the
matrix and g′(t) is composed of subgradients evaluated at Wx(t). It was shown that, under
an appropriately decaying step-size, this scheme results convergence to an optimal solution.

Our interest is in the convergence rate of these methods; in particular, we want to see
if the parallelization inherent in having n nodes query subgradients at the same time helps
convergence. A useful benchmark is to consider a single node, which knows all the functions
fi(x), i = 1, . . . , n, and can compute the gradient of one of these functions at every time step.
We will call the rate obtained in this setup by performing full-batch subgradient descent
(i.e., by computing the gradient of F (x) by querying the subgradients of f1(x), . . . , fn(x) in n
steps) the single-node rate. The single node rate consists in multiplying all the rates obtained
in the previous section by n, consistent with n steps to compute a single subgradient of F (x).
For example, the bound of Proposition 1 becomes

F (y′α(t))− F ∗ ≤ nD2Cα∑t
k=1 α(k)

.

Ideally, one hopes for a factor n speedup over the single note rate, since the n-node
network can compute n subgradients in parallel at every step. This corresponds to a con-
vergence time that removes the factor of n from the last equation1.

Most of the existing convergence analyses do not attempt to write out all the scalings
for the convergence times of distributed optimization methods; many papers write out the
scaling with t but do not focus on scaling with the number of nodes. Unfortunately, once
those scalings are traced out within the course of the proof, they tend to scale with (1−σ)−1,
where σ is the second-largest singular value associated with the matrix W . The quantity

1. Centralized full-batch subgradient descent is a natural point of comparison for the distributed subgradient
method since both methods work under similar assumptions (e.g., no randomization) and the existing
bounds for it are not worse than any alternatives (such as incremental subgradient).
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(1 − σ)−1 can scale as much as O(n2) in the worst-case over all graphs (see Nedić et al.
(2018)), so the underlying scaling could actually be worse than the single-node rate.

A concrete example of this comes from the survey paper Nedić et al. (2018), where a
worse case rate is explicitly written out. The unconstrained case is studied, with step-size
α = 1/

√
T and the algorithm is run for T steps. It is shown in Nedić et al. (2018) that

F (yα(t))− F ∗ ≤ O

(∣∣∣∣ 1
n

∑n
i=1 xi(t)− x∗

∣∣∣∣2
2

+ L2(1− σ)−1

√
T

)
(8)

Comparing this with Eq. (5), we see that, in the worst case when (1 − σ)−1 ≈ Θ(n2), this
is a factor of n slower than the single node rate – in spite of the fact that the network can
compute n gradients in parallel. Similar issues affect all the upper bounds in this setting
that have been derived in the previous literature, in particular the bounds derived in Duchi
et al. (2011) for dual subgradient, in Scaman et al. (2018) (for the standard setting of
distributed optimization where a single message exchange in neighbors is possible per step;
Scaman et al. (2018) also explored methods where potentially (1 − σ)−1/2 steps of gossip
are possible per step, in which case the dependence on 1−σ for the number of subgradients
computed can be removed), and those implicit in Nedic et al. (2010) for square-summable-
but-not-summable step-sizes.

In the paper Olshevsky (2017), it was shown how, for a particular way to choose the
matrix W in a distributed way, it is possible to replace the (1 − σ)−1 with an O(n) factor,
matching the single-node rate. The idea was to use Nesterov acceleration, which allows us
replace (1 − σ)−1 with (1 − σ)−1/2, and argue that for a certain particularly chosen set of
weights the latter quantity is O(n). However, this required slightly stronger assumptions
(namely, knowing either the total number of nodes or a reasonably accurate upper bound
on it). A similar idea was explored in Scaman et al. (2018). While this does not offer a
speedup over the single-node rate, at least it matches it.

To attain a linear speedup over the single node rate, we would need to remove (1−σ)−1

from the numerator in the scaling above. In this paper, we explore when this can be done
and when it cannot.

2. Related work

Among methods that converge to the optimal solution, the first examples of distributed
algorithms that obtained a linear speedup were Lian et al. (2017) and Morral et al. (2017).
In Lian et al. (2017), the case of stochastic non-convex gradient descent was considered, and
it was shown that when the number of iterations is large enough, the distributed method
achieves a linear speedup over the centralized. A similar result was shown in Morral et al.
(2017) for the case of strongly convex distributed stochastic gradient descent; specifically,
using tools from stochastic approximation, Morral et al. (2017) derived an expression for
the limiting variance of the decentralized method which matches the performance of the
centralized method. These papers have spawned a number of follow-up works (e.g., Spiri-
donoff et al. (2020); Koloskova et al. (2019); Assran et al. (2019); Wang et al. (2019); Lian
et al. (2018); Tang et al. (2018); Jiang and Agrawal (2018); Nazari et al. (2019), among
others), making a number of further refinements in terms of the communication topology,
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communication requirements, transient times, and testing on real world benchmarks. In the
earlier paper Towfic et al. (2016), a linear speedup was shown under the assumptions that
all the functions fi(·) have the same minimum. The corresponding result in the constant
step-size case, where the system converges to a neighborhood of the optimal solution, was
shown even earlier in Chen and Sayed (2015b,a), where it was proved that the limiting
mean-squared error corresponding to any graph is the same as that of the complete graph.
More recently, it was shown in Richards et al. (2020) that distributed SGD can attain opti-
mal statistical rates for generalization if all functions fi(·) are sums of the quadratic sampled
from the same distribution and the number of total samples per agent is sufficiently large.
In Hendrikx et al. (2019) the case when every node knows a finite sum of functions from
which it can sample was considered, and a linear speedup was shown in the case when the
network was not too large.

In contrast to our work, all of these papers studied the case of stochastic gradients,
and also made stronger assumptions such as Lipschitz continuity of the gradient or strong
convexity. By contrast, we study the usual (i.e., non-stochastic) subgradient method under
only the assumption that the function is convex.

This setup has been analyzed in a number of settings in the control literature, as we
already discussed, and without showing any linear speedup. Additional works to be men-
tioned are a primal-dual approach was explored in Zhu and Mart́ınez (2011), using the dual
subgradient method instead of the ordinary subgradient method was studied in Duchi et al.
(2011). An analysis that elaborates on scaling with the network was given in Ram et al.
(2010). Finally, we mention that our paper is close in spirit to the recent works Neglia et al.
(2019, 2020), which are also concerned with similar questions. A number of expressions
for scaling with topology are derived in Neglia et al. (2019) which also considers variability
in the time it takes to compute subgradients. The paper Neglia et al. (2020) gives a con-
vergence rate that does not depend on the underlying network when the variability of the
gradients is zero or close to zero.

2.1 Our contributions

We will analyze a minor variation of Eq. (6) and Eq. (7):

x(t+ 1) = WPΩ [x(t)− α(t)g(t)] , (9)

This is slightly more natural than Eq. (7), since g(t) here is the subgradient evaluated at
x(t), and not at Wx(t) as in Eq. (7). This makes analysis somewhat neater.

Our main result will be to show that a linear speedup is achieved by this iteration on
a class of square-summable-but-not-summable stepsizes which include α(t) = 1/tβ with
β ∈ (1/2, 1). This is done by showing that, provided t is large enough, we can give a
performance bound that does not depend on (1 − σ)−1, i.e., is network independent. We
will also show that the same assertions fail for the optimally decaying step-size α(t) = 1/

√
t.

We next give a formal statement of our main results. First, let us state our assumptions
formally as follows.

Assumption 3 Each function fi(x) : Rd → R is a convex with all of its subgradients
bounded by L in the Euclidean norm. Moreover, the set Ω is a closed convex set. Each node
begins with an identical initial condition xi(0) ∈ Ω.
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Assumption 4 The matrix W is nonnegative, doubly stochastic, and with positive diago-
nal. The directed graph corresponding to the positive entries of W is strongly connected.

Secondly, we will be making an additional assumption on step-size.

Assumption 5 The sequence α(t) is nonincreasing and there is a constant Cα′ such that
for all t,

α(bt/2c) ≤ C ′αα(t).

This assumption essentially bounds how fast α(t) can decrease over the period of t/2, . . . , t.
It is motivated by observing that it holds for step-sizes of the form α(t) = 1/tβ .

Finally, let us introduce the notation

x(t) =
1

n

n∑
i=1

xi(t),

for the average of the iterates at time t. We adopt a general convention that, for a vector
or a matrix, putting an overline will mean referring to the average of the rows.

Similarly to what was done in the previous subsection, we define

x′α(t) =

∑t
k=t′ α(k)x(k)∑t
k=t′ α(k)

Our first main result is the following theorem.

Theorem 2 (Asymptotic Network Independence with Square Summable Step-Sizes)
Suppose Assumptions 1, 2, and 5 on the step-size, Assumption 3 on the functions, and As-
sumption 4 on the mixing matrix W all hold.

Then if t is large enough so that the tail sum satisfies the upper bound

+∞∑
k=bt/2c

α2(t) ≤ D2(1− σ)

10C ′αL
2

(10)

and also

t ≥ Ω

(
1

1− σ
log
[
(1− σ)tαmax/(C

′
αα(t))

])
(11)

then we have the network-independent bound

F (x′α(t))− F ∗ ≤ D2Cα∑t
k=0 α(k)

(12)

In particular, if α(t) = 1/tβ where β lies in the range (1/2, 1), then when t additionally
satisfies

t2β−1 ≥ Ωβ

(
L2

D2(1− σ)

)
(13)
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we have the network-independent bound

F (x′α(t))− F ∗ ≤ Oβ
(
D2

t1−β

)
, (14)

where the subscript of β denotes that the constants in the O(·) and Ω(·) notation depend on
β.

At the risk of being repetitive, we note that the performance guaranteed by this theorem
is asymptotically network independent, as the only dependence on the spectral gap 1 − σ
is in the transient. The point of this theorem is to contrast Eq. (12) with Proposition (1).
The two guarantees are identical, which implies that the distributed optimization method
analyzed in Theorem 2 gives us a linear time speedup over the single-node rate using the
same-step size. Likewise, Eq. (14) gives a network-independent bound (though, again, the
size of the transient until it holds depends on the network), and can be thought of as a
linear-time speedup over the corresponding single-node rate.

Such linear speedups are significant in that they provide a strong motivation for dis-
tributed optimization: one can claim that, over a network with n nodes, the distributed
optimization is n times faster than a centralized one, at least provided t is large enough.
Without such speed-ups, it is much more challenging to motivate the study of distributed
optimization in the first place.

Note that the lower bound of Eq. (11) on the transient is not fully explicit, as t actually
appears on both sides. However, for large enough t the inequality always holds. Informally,
this is because t on the right-hand side is inside the logarithm. Slightly more formally, it is
immediate that, if the bound of Eq. (11) fails to hold, then α(t) ≤ C1te

−C2t for all t where
C1, C2 depend on 1 − σ,αmax, and Cα; and this would contradict the non-summability of
α(t) in Assumption 1.

Finally, note that this theorem contains bounds on the performance achieved by x′α(t),
which a particular kind of running average across the iterates of all the nodes in he network.
This can be tracked in a distributed way by the nodes if the number of iterations T to be
performed is known ahead of time: each node can take a running average of its own iterates
and, after T iterations have been performed, the nodes do a run of average consensus to
compute the average of these running averages. The algorithm from Olshevsky (2017) takes
O(n log(1/ε)) iterations to come ε-close to the average on any undirected n-node graph, so
this incurs an extra cost which does not depend on T (moreover, that consensus method
along with the method from Rebeschini and Tatikonda (2017) takes O(Dlog 1

ε ) steps on
many common graphs of diameter D, e.g., grids). It is also possible to modify this idea to
handle the case when the number of iterations to be done is not known ahead of time (e.g.,
each node can restart computation of the running average when the number of iterations is
a power of 2) at the cost of losing of a constant multiplicative factor in the error F (·)−F ∗.

Finally, we remark that linear speedup theorems such as this one validate the idea of
distributed optimization over an arbitrary graph G. One might also consider a hierarchical
structure where nodes forward information along a spanning tree to a central coordinator
which forwards back an average of the gradients. However, no variation on such a scheme
is currently known to achieve network independence in this setting.
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n Graph Lower bound on iterations to network independence with t−3/4 step-size

10 Line 940

50 Line 577,842

100 Line 9,240,904

16 2DGrid 58

49 2Dgrid 558

100 2Dgrid 2373

16 MGG Expander 8

49 MGG Expander 16

100 MGG Expander 18

8 3Dgrid 4

64 3Dgrid 103

125 3Dgrid 259

8 Binomial Tree 343

64 Binomial Tree 50,540

128 Binomial Tree 224,529

Table 1: This table shows what the lower bound of Eq. (13) looks like for a variety of
scenarios. MGG expander refers to the Margulis-Gabber-Galil expander, and all other
graph names are standard. All graphs were generated using the NetworkX package:
http://networkx.org. We used L = 1, D = 1 for simplicity. In each case, we used the
so-called Metropolis matrix which puts max{deg(i) + 1, deg(j) + 1}−1 as Wij , and sets the
diagonal entries of W to make W stochastic. The results show a very strong dependence
on the graph with quite reasonable scaling for the 3D grid. Unlike expanders which
will have “long range” connections, the 3Dgrid can be implemented directly with only
neighbor-to-neighbor communications in a cluster where the processors are stacked on top
of each other. The code which produced the bounds in this table may be found on GitHub:
https://github.com/alexolshevsky/NetworkIndependenceSubgradient/blob/main/

Network_Independence_Bounds.ipynb
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Unfortunately, the previous theorem does not apply to β = 1/2 which, as discussed
earlier, is the best rate of decay for the subgradient method. In fact, our next theorem will
show something quite different occurs when β = 1/2: we will construct a counterexample
where the distributed method has network-dependent performance regardless of how large
t is.

We next give a formal statement of this result. Our first step is to describe how we
will choose the matrix W depending on the underlying graph. Let us adopt the convention
that, given an undirected graph G = (V,E) without self-loops, we will define the symmetric
stochastic matrix WG,ε as

[WG,ε]ij =

{
ε (i, j) ∈ E
0 else

,

and we set diagonal entries [WG]ii to whatever values result in a stochastic matrix. Clearly,
ε should be strictly smaller than the largest degree in G.

We next define G′n to be a graph on 2n nodes obtained as follows: two complete graphs
on nodes u1, . . . , un and v1, . . . , vn are joined by connecting each ui to vi (i.e., u1 is connected
to v1, u2 to v2, and so forth). We note that because the largest degree in this graph is n,
any ε used to construct a stochastic WG,ε should be upper bounded by 1/n.

Our second main result shows that when we run Eq. (9) on this graph G′n, then with
an appropriate choice of functions we will never obtain a performance independent ε−1; and
since, as we just, ε−1 grows as Ω(n), the performance will always scale with n no matter
how long we wait.

Theorem 3 (Lack of Asymptotic Network Independence with 1/
√
t Step-Size) Consider

the distributed optimization method of Eq. (9) with

• The functions
fi(x) = γ|x|,

when i ∈ {u1, . . . , un} and

fi(x) =
1

2
|x− 1|,

for i ∈ {v1, . . . , vn}

• Step-size α(t) = 1/
√
t.

• Constraint set Ω = [−a, a].

• Initial conditions xi(0) = 0.

Then, there exists a choice of the constants γ > 1 and a (appearing in the above defini-
tions), both independent of n or ε, such that, on the graph G′n with n ≥ 4 and any choice of
ε ≤ 1/n, there exists an infinite sequence gi(t) such that the quantity x(t) defined through
Eq. (9) satisfies:

• For i ∈ {v1, . . . , vn}, xi(t) − x∗ is a nonnegative sequence that does not depend on i
and satisfies

xi − x∗ = Ω

(
ε−1

√
t

)
, for all i ∈ {v1, . . . , vn}, (15)

for all large enough t.

11
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• xi(t) = x∗ for all i ∈ {u1, . . . , un} and all t.

To parse the statement of this theorem, note that there is some freedom to choose the
subgradient of functions like |x| at |x− 1| at zero and one, respectively. Consequently, the
theorem has to assert that there is a choice of subgradients such that the solution of Eq.
(9) has the desired behavior.

To put the guarantees of this theorem into context, observe that, as a consequence of
Eq. (15), not only does the average (1/n)

∑n
i=1 xi(t) − x∗ scale as O(ε−1/

√
t) but so does

any convex combination of this quantity over the various t’s (in particular, the quantities
xα(t) or x′α(t) discussed earlier). It immediately follows that F (·) − F ∗ for all of these
quantities also scales linearly with ε−1, i.e.,

F (xα(t))− F ∗ ≥ Ω

(
ε−1

√
t

)
(16)

F (x′α(t))− F ∗ ≥ Ω

(
ε−1

√
t

)
(17)

Moreover, since ε ≤ 1/n, the performance of Eq. (9) with 1/
√
t step-size does not attain

a speedup over the corresponding single-node rate. This is to be contrasted with Eq. (12)
and Eq. (14) which, provided one waits long enough, attain a linear speedup over the
single-node rate.

In fact, it is easy to see that, for the matrix WG′
n
, the inverse spectral gap will grow

with ε−1, so that the presence of ε−1 in Eq. (16) and Eq. (17) is equivalent to scaling
with (1 − σ)−1. For completeness, we give a proof of this assertion later in this paper as
Proposition 8.

The main result of this paper is the contrast between Theorems 2 and Theorem 3. In
the former case, we have asymptotic network independence and a linear speedup whenever
the step-size is 1/tβ when β > 1/2. Unfortunately, the latter theorem shows that setting
β = 1/2 can ruin this.

We remark that the last theorem has some similarities with Eq. (75) of Neglia et al.
(2020). That work considers a distributed optimization problem where the functions are
linear, so the optimal solution is either plus or minus infinity. It then considers choosing
these linear functions so that the gradient is exactly an eigenvector of the matrix W , and
observes that the speed at which the resulting method will move towards plus or minus
infinity will then depend on the spectrum of W . By contrast, this theorem consider a case
when x∗ exists and the distributed method converges to it.

Finally, we remark that a visual illustration of this is given in Section 5, and the in-
terested reader can skip ahead to see what the difference in performance looks like in a
simulation of this example between 1/

√
t step-size and 1/tβ step-size where β ∈ (1/2, 1).

2.2 Organization of this paper

We give a proof of Theorem 2 in Section 3 and a proof of Theorem 3 in Section 4. A
simulation of our counterexample to network independence with 1/

√
t step-size is given

in Section 5, which shows what the contrast between the presence of absence of network
independence looks like numerically.

12
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Our results raise the possibility that while a more slowly decaying step-size might be
better for the centralized subgradient method, the opposite might be true in the distributed
case (note that the transient bound of Theorem 2 improves with higher β). We show
that this kind of “step size inversion” does indeed occur on a class of randomly generated
problems in Section 6. Finally, our concluding Section 7 mentions several open problems
and future directions.

3. Proof of Theorem 2

In this section, we provide a proof of Theorem 2. Our first step is to rewrite Eq. (9) in a
way that will be easier to analyze. We set s(t) to be the “gradient mapping” defined as

s(t) :=
x(t)− PΩ [x(t)− α(t)g(t)]

α(t)

so that Eq. (9) can be written as

x(t+ 1) = W [x(t)− α(t)s(t)] (18)

Consistent with our previous notation, we will use si(t) to denote the i’th row of the matix
s(t).

In this formulation, we no longer have to explicitly deal with the projection, which is
incorporated into the definition of s(t). It is well known that the quantity s(t), which is
typically known as the “gradient mapping” in the case where the functions are smooth,
has some properties similar to the properties of the a subgradient. We have been unable
to find a reference for the facts below; to our knowledge, in the current literature, various
properties of s(t) are only listed in the case where the functions fi(·) are smooth, which
is assumption we do not make here. The next lemma is our first statement to this effect,
showing that si(t) inherits any upper bound on gi(t); it is an immediate consequence of
the non-expansiveness of the projection operator (Lemma 3.2.1 in Bertsekas (2015)), as the
proof makes clear.

Lemma 4 If ||gi(t)||2 ≤ L then ||si(t)||2 ≤ L.

Proof We first observe that for all i, t we have that xi(t) ∈ Ω. Indeed, xi(t) is obtained as
a convex combination of vectors projected onto Ω and so itself belongs to Ω by convexity.
We then use this, along with the fact that projection onto convex sets is nonexansive, to
argue that

||si(t)||2 =
||xi(t)− PΩ [xi(t)− α(t)gi(t)] ||2

|α(t)|

=
||PΩ [xi(t)]− PΩ [xi(t)− α(t)gi(t)] ||2

|α(t)|

≤ ||α(t)gi(t)||2
|α(t)|

≤ ||gi(t)||2
≤ L.

13
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Next, we note that it is standard that the subgradient gi(t) of the convex function fi(x)
at xi(t) satisfies the relation

gi(t)(xi(t)− x∗)T ≥ f(xi(t))− fi(x∗). (19)

Our next lemma shows that si(t) satisfies a similar inequality up to a “higher order” term.
It is similar to Proposition 3.2.2 in Bertsekas (2015).

Lemma 5 Under Assumption 3, we have that for all i = 1, . . . , n,

α(t)si(t)(xi(t)− x∗)T ≥ α(t)(f(xi(t))− fi(x∗))−
α2(t)

2
L2.

Note that whereas Eq. (19) does not contain the step-size α(t), Lemma 5 does. This is
because the definition of the quantity si(t) contained the step-size α(t) (unlike the subgra-
dient gi(t) which is obviously defined independently of step-size).

Proof We start from the relation

xi(t)− α(t)si(t) = PΩ [xi(t)− α(t)gi(t)] ,

which is just a rearrangement of the definition of s(t). Our next step is to subtract x∗ and
take the squared Euclidean norm of both sides. On the left-hand side, we have

||xi(t)− x∗||2 − 2α(t)si(t)(xi(t)− x∗)T + α2(t)||si(t)||22.

On the right-hand side, we use the fact that projecting onto Ω cannot increase Euclidean
distance from x∗ to obtain an upper bound of

||xi(t)− x∗||22 − 2α(t)gi(t)(xi(t)− x∗)T + α2(t)||gi(t)||22

Putting these two facts together, we obtain the inequality

−2α(t)si(t)(xi(t)− x∗)T ≤− 2α(t)gi(t)(xi(t)− x∗)T + α2(t)||gi(t)||22

or

2α(t)si(t)(xi(t)− x∗)T ≥2α(t)gi(t)(xi(t)− x∗)T − α2(t)||gi(t)||22

Now using Assumption 3 and Eq. (19), we obtain

2α(t)si(t)
T (xi(t)− x∗) ≥ 2α(t)(fi(xi(t))− fi(x∗))− α2(t)L2,

which proves the lemma.

14
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The final lemma we need bounds the distance between each xi(t) and the network-wide
average x(t) as O(α(t)) (where the constant inside this O(·)-notation will depend on the
matrix W ). Such bounds are standard in the distributed optimization literature.

We introduce some new notation which we will find convenient to use. We will use 1
to denote the all-ones vector in Rn, so that 1x(t)T has the same dimensions as x(t). We
adopt the notation σ to denote the second-largest singular value of the matrix W ; under
Assumption 4, we have that σ < 1 while the largest singular value is 1 corresponding to the
all-ones vector2. In the sequel, for a vector y we will use the inequality

||W (y − y)||22 ≤ σ2||y − y||22 ≤ σ2||y||22. (20)

With these preliminaries in place, we have the following lemma, which uses a standard
analysis distributed optimization updates (for a similar estimate see Theorem 8 of Nedić
et al. (2018)).

Lemma 6 Suppose Assumptions 1, 2, and 5 on the step-size, Assumption 3 on the func-
tions, and Assumption 4 on the mixing matrix W all hold. When

t ≥ Ω

(
1

1− σ
log

(1− σ)tαmax

C ′αα(t)

)

we have that

||x(t)− 1x(t)T ||F ≤
2C ′αα(t)L

√
n

1− σ
.

Proof Recall that, by assumption, the initial conditions are identical; let us denote them
all by x1. Thus starting from Eq. (18) we have that

x(t) = W t−1x1 − α(1)W t−1s(1)− · · · − α(t− 1)Ws(t− 1)

we can use the fact that multiplication by a doubly stochastic matrix doesn’t affect the
mean of a vector to obtain that

x(t) = x1 − α(1)s(1)− · · · − α(t− 1)s(t− 1).

2. Formally, this is implied from Lemma 4 of Nedic et al. (2009). That lemma implies that ||Wx||2 ≤ ||x||2
and, under Assumption 4, equality holds if and only if x is a multiple of 1.
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Next, using the “MATLAB notation” [A]:,i for the i’th column of a matrix A, we can apply
Eq. (20) in the following sequence of equations:

||x(t)− 1x(t)T ||F ≤
t−1∑
k=1

α(k)||W t−k(s(k)− 1s(k))T ||F

=

t−1∑
k=1

α(k)

√√√√ n∑
i=1

||W t−k[s(k)− 1s(k)T ]:,i||22

≤
t−1∑
k=1

α(k)

√√√√ n∑
i=1

σ2(t−k)||[s(k)]:,i||22

≤
t−1∑
k=1

α(k)σt−k||s(k)||F .

Let us break the last sum at t′ = t−dt/2e and bound each of the two pieces separately. The
first piece, over the range t = 1, . . . , t′ is bounded simply using the fact that all subgradients
are upper bounded by L in the Euclidean norm (and consequently ||s(t − k)||F ≤ L

√
n);

whereas the second piece, over the last t/2 steps, is upper bounded as a geometric sum.
The result is

||x(t)− 1x(t)T ||F ≤
t

2
αmaxL

√
nσdt/2e +

L
√
n

1− σ
α(bt/2c).

We next use that x1/(1−x) ≤ e−1 when x ∈ [0, 1] as well as Assumption 5 to obtain that

||x(t)− 1x(t)T ||F ≤ tαmaxL
√
ne−t(1−σ)/2 +

L
√
nC ′αα(t)

1− σ
.

When t ≥ Ω((1− σ)−1 log [(1− σ)(tαmax/(C
′
αα(t))], the first term is upper bounded by the

second and the lemma is proved.

With all these lemmas in place, we are now ready to give a proof of our first main result.

Proof [Proof of Theorem 2] Starting from Eq. (18) we obtain

x(t+ 1)− x∗ = x(t)− α(t)s(t)− x∗

16
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so that

||x(t+ 1)− x∗||22 =||x(t)− x∗||22 + α2(t)||s(t)||2 − 2α(t)s(t)(x(t)− x∗)T

=||x(t)− x∗||22 + α2(t)||s(t)‖|22 − 2α(t)

(
1

n

n∑
i=1

si(t)(x(t)− x∗)T
)

=||x(t)− x∗||22 + α2(t)||s(t)||22 − 2α(t)

(
1

n

n∑
i=1

si(t)(xi(t)− x∗)T
)

+ 2α(t)

(
1

n

n∑
i=1

si(t)(xi(t)− x(t))T

)

≤||x(t)− x∗||22 + α2(t)L2 − 2α(t)
1

n

n∑
i=1

fi(xi(t))− fi(x∗)

+ L2α2(t) + 2α(t)
1

n

n∑
i=1

L||xi(t)− x(t)||2,

where, in the above sequence of inequalities, we used Lemma 4 to bound the norm of ||s(t)||22,
Lemma 5 to bound si(t)

T (xi(t)−x∗), and Cauchy-Schwarz in the very last step. Now using
the fact that each fi(·) is L-Lipschitz, which follows from Assumption 3, we have

||x(t+ 1)− x∗||22 ≤ ||x(t)− x∗||22 + 2α2(t)L2 − 2α(t)
1

n

n∑
i=1

fi(x(t))− fi(x∗)

+ 4α(t)L
1

n

n∑
i=1

||xi(t)− x(t)||2. (21)

We next bound the very last term in the sequence of inequalities above. Our starting
point is the observation that

n∑
i=1

||xi(t)− x(t)||2 ≤
√
n||x(t)− x(t)||F ,

which follows by an application of Cauchy-Schwarz. We then use Lemma 6 to bound the
right-hand side. This yields that, for t large enough to satisfy the assumptions of that
lemma,

||x(t+ 1)− x∗||22 ≤||x(t)− x∗||22 + 2α2(t)L2 − 2α(t)
1

n

n∑
i=1

fi(x(t))− fi(x∗) + 4α(t)L
2C ′αα(t)L

1− σ
,

implying that

2α(t) [F (x(t))− F ∗] ≤||x(t)− x∗||22 − ||x(t+ 1)− x∗||22 + 2α2(t)L2 + 8α2(t)
C ′αL

2

1− σ
,

As before, let t′ = bt/2c. We sum the last inequality up frome time t′ to time t to obtain

2
t∑

k=t′

α(k) [F (x(k))− F ∗] ≤ ||x(t′)− x∗||22 +
10C ′αL

2

1− σ

t∑
k=t′

α2(k),
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where we used that C ′α ≥ 1 (because α(t) is nonincreasing) and that σ < 1 to combine the
terms involving α2(t).

Dividing both sides by 2
∑t

k=t′ α(t) and using convexity of F (x), we obtain

F (xα(t))− F ∗ ≤ ||x(t′)− x∗||22
2
∑t

k=t′ α(k)
+

10C ′αL
2

1− σ

∑t
k=t′ α

2(k)

2
∑t

k=t′ α(k)
(22)

Now because α(t) is square summable, we have that

lim
t→∞

t∑
k=t′

α2(k) ≤ lim
t→∞

+∞∑
k=bt/2c

α2(k) = 0.

In particular, Eq. (10) will eventually be satisfied, and when that happens, the second term
of Eq. (22) will be upper bounded by the first. We will then have

F (xα(t))− F ∗ ≤ D2∑t
k=t′ α(k)

The first part of the theorem, namely Eq. (12), now follows immediately.
Next, we suppose that α(k) = 1/kβ where β ∈ (1/2, 1). This step-size satisfies all the

assumptions we have made; however, starting from Eq. (22), we can write down some more
effective bounds. Indeed, by the usual method of upper/bounding sums by the correspond-
ing integrals, we have that

t∑
k=t′

1

kβ
≥Ω

((
1− 1

2−β+1

)
t−β+1

−β + 1

)
= Ωβ

(
t−β+1

)
t∑

k=t′

(
1

kβ

)2

≤O
((

1− 1

2−2β+1

)
t−2β+1

−2β + 1

)
= Oβ

(
t−2β+1

)
,

where the subscript of β denotes that the constant could depend on β. Plugging this into
Eq. (22), we have

F (xα(t))− F ∗ ≤ Oβ
(
D2

t1−β
+

L2t−2β+1

(1− σ)t−β+1

)
≤ Oβ

(
D2

t1−β
+

L2

(1− σ)tβ

)
(23)

Therefore when

t2β−1 ≥ Ωβ

(
L2

D2(1− σ)

)
we have that the first term of Eq. (23) dominates and

F (xα(t))− F ∗ ≤ Oβ
(
D2

t1−β

)
This proves Eq. (14) and the proof of the theorem is now complete.
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4. Proof of Theorem 3

The proof below will analyze an explicit example of a graph where the dependence on
spectral gap never disappears, no matter how large t is. The graph is G′n, which is a graph
on 2n vertices {u1, . . . , un} ∪ {v1, . . . , vn} defined shortly before the statement of Theorem
3, and the underlying matrix W is W = WG′

n,ε, defined in the same place.

We begin with a brief description of the intuition underlying the counter-example. The
high-level idea is that the performance of distributed subgradient descent can be thought of
in terms of a recursion that moves towards the optimal solution, perturbed by some error
due to network disagreement. Indeed, this is the form taken by the proof of Theorem 2:
we wrote down a recursion satisfied by F (x(t)) − F ∗, and the updates of that recursion
featured terms that depended on the network-wide disagreement

∑n
i=1 ||xi(t)− 1x(t)|| (see

Eq. (21) above).

In the absence of any disagreement – i.e., if we could magically set
∑n

i=1 ||xi(t)−1x(t)|| =
0 at every step – the recursion of Eq. (21) will converge to the optimal solution at a rate
F (·) − F ∗ = O(1/

√
t). Now if the disagreement decays faster than O(1/

√
t), it is intuitive

that it has no effect on the ultimate convergence rate. On the other hand, if the disagreement
decays as ∼ 1/

√
t, then it may well dominate. Furthermore, it should also be intuitive that

the term
∑n

i=1 ||xi(t) − 1x(t)|| can only be bounded in terms of the spectral gap (since,
in effect, this term measures how successful repeated multiplication by the matrix W is in
driving all the nodes closer together), and this way the spectral gap will appear in the final
performance of the method.

In short, we need to argue that the recursion of Eq. (21) is, in some sense, “tight” when
the step-size is 1/

√
t. Unfortunately, we know of no pleasant way to make this argument.

The only way we are able to do this is to come up with an example where we can write
down an explicit formula for the solution of Eq. (6) at any time t, and this is in effect what
we do below on the graph G′n. The graph G′n is particularly well-suited for the purpose
because it is symmetric: we can write down a solution where all xui(t) have the same value,
and all xvi(t) have the same value. Unfortunately, even in this simple case, the argument
turns out to be somewhat involved.

We next turn to the proof itself. The key ingredient will be the following technical
lemma.

Lemma 7 Consider the update rule determined by y(1) = 0 and

y(t+ 1) = (1− ε) y(t)− (1/2)(1− ε)sign(y(t)− 1) + ε∆(t)√
t

, (24)

where

∆(t) =
ε
√
ty(t)− (ε/2)sign(y(t)− 1)

1− ε
.

Here sign(x) is the function which returns 1 when x ≥ 0 and −1 otherwise.

Then when ε ∈ (0, 1/4], we have that y(t) ∈ [0, 2] for all t; and furthermore,

y(t) ≤ 2ε−1

√
t
, (25)
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for all t. Finally, for all t larger than some t1, we also have

y(t) ≥ ε−1

16
√
t
. (26)

We postpone the proof of this lemma for now, as we think the reader will be more
interested in it once it is seen how the recursion of Eq. (24) naturally appears in the
analysis of distributed subgradient descent on the graph G′n. Thus, we will first give a proof
of Theorem 3 which relies on this lemma, and then we will go back and supply a proof of
the lemma.

Proof [Proof of Theorem 3] We argue that{
xi(t) = 0 i ∈ {u1, . . . , un}
xi(t) = y(t) i ∈ {v1, . . . , vn}

(27)

is a valid trajectory of Eq. (6) with W = WG′
n,ε where, recall, WG′

n,ε is defined shortly
before the statement of Theorem 3. Here y(t) is defined in the statement of Lemma 7 and
by “valid trajectory” we mean that there exists a sequence of vectors gi(t), with gi(t) being
a valid subgradient of fi(x) at xi(t), resulting in our main update of Eq. (6) taking the
values specified in Eq. (27) for all t.

Our proof of this, given next, will depend on a particular choice of the constants γ > 1
and a from the statement of Theorem 3; these constants will be defined in the course of
the proof. Once the validity of Eq. (27) is proved, Theorem 3 is immediate, conditional on
Lemma 7. Indeed, it is easy to see that because γ > 1 > 1/2, we have that x∗ = 0; and Eq.
(26) then provides the lower bound claimed in statement of Theorem 3.

Our proof of the validity of Eq. (27) is by induction. At time t = 1, we just have
xi(t) = 0, so there is nothing to prove. Suppose Eq. (27) is a valid trajectory over times
1, . . . , t, and let us consider time t+ 1. Our first step is to argue that, for an appropriately
large choice of the constant a, we can simply omit the projection step in Eq. (6).

Indeed, observe that by definition of the functions fi(·) (see statement of Theorem 3),
we have that the subgradients are in [−γ, γ] for i ∈ {u1, . . . , un}, and in [−1/2, 1/2] for
i ∈ {v1, . . . , vn}; and recall that later we will specify γ > 1. Using Lemma 7, which asserts
that y(t) ∈ [0, 2] for all t, we have that xi(t) ∈ [0, 2] for all i, t; and what follows from all
this that xi(t)− α(t)gi(t) ∈ [−γ, 2 + γ] for all i, t.

To be able to omit the projection step from Eq. (9), it suffices to have all xi(t)−α(t)gi(t)
be in the interior of [−a, a]. But since we have just argued that xi(t)−α(t)gi(t) ∈ [−γ, 2+γ]
for all i, t, we see that it suffices to choose e.g., a = 3 + γ.

The update of Eq. (6) then becomes

x(t+ 1) = WG′
n,ε [x(t)− α(t)g(t)] .

Our next step is to work out what this gives for nodes i ∈ {u1, . . . , un} given the particular
form of WG′

n,ε. Since all gui(t), i = 1, . . . , n are subgradients of the same function evaluated
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at zero, we will be considering the case when they are the same. In that case, we have that

xui
(t+ 1) = (1− nε)xui

(t) + (n− 1)εui(t) + εxvi(t)− α(t)[WG′
n,εg(t)]ui

= xui
(t) + ε (xvi(t)− xui

(t))− (1− ε)gui(t) + εgvi(t)√
t

.

Multiplying both sides by
√
t and using that xvi(t) = y(t), xui(t) = 0 by the inductive

hypothesis, we obtain

√
txui(t+ 1) = ε

√
ty(t)− (1− ε)gui(t)− εgvi(t).

In order to show that Eq. (27) holds at time t + 1 for the node ui, we need to have
xui(t + 1) = 0. The last equation allows us to see what is needed for this to be the case;
setting the left-hand side to zero, we obtain

gui(t) = (1− ε)−1
(
ε
√
ty(t)− εgvi(t)

)
. (28)

Our argument shows that as long we “select” this number as the local subgradient chosen
by all the nodes ui at time t, then Eq. (27) holds at time t+ 1 for the nodes ui. But is this
number a valid choice of subgradient for all the functions fi(·) at the point 0?

Observe that, by Lemma 7, we have that y(t) ≤ 2ε−1/
√
t for all t. Consequently,

ε
√
ty(t) ∈ [0, 2]. Since gvi(t) ∈ [−1/2, 1/2] and ε ≤ 1/4 (because we assumed n ≥ 4 and

ε ≤ 1/n), we have that the expression in parenthesis on right-hand side of Eq. (28) lies
between −1/2 and 17/8. Using ε ≤ 1/4 again, we see that the right-hand side of Eq. (28)
is at most 17/6 in absolute value. Thus, as long as we choose γ sufficiently big, e.g., γ = 3,
the choice of gui(t) in Eq. (28) is a valid subgradient.

To recap, we have just shown that Eq. (27) holds at time t+ 1 for at least for the nodes
ui by specifying what the local subgradients at nodes ui should be at time t. For this choice
of subgradient to be valid, we had to choose γ = 3 and also a = 3 + γ = 6. We next argue
that, with these choices of γ, a and gui(t), we can also choose a number to return as the
local subgradient of all the nodes vi such that Eq. (27) holds at time t+ 1 for the nodes vi
as well.

Indeed, by induction we have that for i ∈ {v1, . . . , vn},

xvi(t+ 1) = xvi(t) + ε(0− xvi(t))−
(1− ε)gvi(t) + εgui(t)√

t
, (29)

where we used that xui(t) = 0 by the inductive hypothesis, and xvi(t) = xvj (t) for all i, j,
also by the inductive hypothesis. We want to show that there is a choice of gvi(t) that
turns the left-hand side into y(t + 1). But the choice gvi(t) = (1/2)sign(y(t) − 1) is valid
and turns the pair of Eq. (29 and Eq. (28) into exactly Eq. (24), so it certainly results in
xvi(t+ 1) = y(t+ 1).

To summarize, we have shown how to choose valid subgradients at each step so that
Eq. (9) turns into the recursion relation satisfied by Eq. (27). The proof is now complete.

It remains to prove Lemma 7.
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Proof [Proof of Lemma 7] We first argue that y(t) ∈ [0, 2] for all t. This will follow from
the following three assertions.

First: that y(t) decreases whenever it is above one. Indeed, from Eq. (24), we have that
whenever y(t) ≥ 1,

y(t+ 1) ≤ (1− ε)y(t) +
ε2/2

1− ε
= y(t)− ε

(
y(t)− ε/2

1− ε

)
.

Since we have assumed ε ∈ (0, 1/4] and y(t) ≥ 1, the expression in parenthesis is positive
and y(t+ 1) < y(t).

Second: that y(t) cannot decrease below zero. Indeed, if y(t) ∈ [0, 1), then from Eq.
(24),

y(t+ 1) ≥ (1− ε)y(t) +
(1− ε)/2√

t
− ε2

√
ty(t)√

t(1− ε)
− ε2/2

(1− ε)
√
t

=

(
1− ε− ε2

1− ε

)
y(t) +

(1− ε)/2√
t

− ε2/2

(1− ε)
√
t

≥ 0,

where the last step follows because ε ≤ 1/4 implies that

1− ε− ε2

1− ε
≥ 0

and
1− ε

2
≥ ε2/2

1− ε
.

On the other hand, if y(t) ≥ 1, then

y(t+ 1) ≥ (1− ε)y(t)− (1− ε)/2√
t

− ε2
√
ty(t)√

t(1− ε)

=

(
1− ε− ε2

1− ε

)
y(t)− (1− ε)/2√

t

≥ 1

2
y(t)− 1/2√

t

≥ 1

2
− 1

2
= 0,

where we used that ε ≤ 1/4 again. Thus, regardless of whether y(t) ∈ [0, 1) or y(t) ≥ 1, we
have that y(t+ 1) ≥ 0.

Third: that if y(t) ∈ [0, 1), then the increase to the next step is at most 1/(2
√
t). Indeed,

for y(t) ∈ [0, 1) we have from Eq. (24),

y(t+ 1) ≤
(

1− ε− ε2

1− ε

)
y(t) +

(1− ε)/2√
t

≤ y(t) +
1

2
√
t
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Putting the three assertions above together, we obtain that y(t) ∈ [0, 2] for all t.

We next prove that y(t) decays as O(ε−1/
√
t). Indeed, since |sign(y(t) − 1)| ≤ 1, we

have that,

y(t+ 1) ≤
(

1− ε− ε2

1− ε

)
y(t) +

1

2
√
t
.

Defining z(t) via

z(t+ 1) = (1− ε)z(t) +
1

2
√
t
, (30)

with z(1) = 0, we have that y(t) ≤ z(t). To prove an upper bound on y(t), we simply need
to establish the same upper bound for z(t).

First, we argue that

z(t) ≤
t−1∑
k=1

1

2
√
k

=
1

2
+

t−1∑
k=2

1

2
√
k
≤ 1

2
+

∫ t−1

1

1

2
√
u
du ≤

√
t (31)

Next, we multiply both sides of Eq. (30) by
√
t+ 1 to obtain

√
t+ 1z(t+ 1) = (1− ε)

√
t+ 1z(t) +

1

2

√
t+ 1

t
,

and now using concavity of square root we obtain

√
t+ 1z(t+ 1) ≤ (1− ε)

(√
t+

1

2
√
t

)
z(t) +

1

2

√
t+ 1

t
.

Using Eq. (31), this implies that

√
t+ 1z(t+ 1) ≤ (1− ε)

√
tz(t) + 2,

which gives that
√
tz(t) ≤ 2/ε. This proves that y(t) ≤ 2ε−1/

√
t and concludes the proof of

Eq. (25).
It only remains to prove Eq. (26). Since, from Eq. (25) which we have just established,

we know that y(t) → 0, it follows that, for all t larger than some t0, sign(y(t) − 1) = −1;
and therefore, for such t,

y(t+ 1) =

(
1− ε− ε2

1− ε

)
y(t) +

(1− ε)− ε2/(1− ε)
2
√
t

,

which, because ε ∈ (0, 1/4], implies that

y(t+ 1) ≥ (1− 2ε)y(t) +
1

4
√
t
.

This means that for all t ≥ t0 + 1

y(t) ≥
t−1∑
k=t0

1

4
√
k

(1− 2ε)t−(k+1) ≥ 1

4
√
t

t−1∑
k=t0

(1− 2ε)t−(k+1).
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As t → ∞, the geometric sum in the final term above approaches 1/(2ε). It follows that,
when t is bigger than some t1, it is larger than half of that, so that

y(t) ≥ ε−1

16
√
t
.

This completes the proof.

Finally, we put Theorem 3 into context by arguing that the inverse spectral gap of the
matrix WG′

n,ε is Θ
(
ε−1
)

when ε is small enough. This explains that scaling with ε−1 is the
same scaling with the inverse spectral gap of WG′

n,ε.

Proposition 8 Let 1 = λ1, λ2, . . . , λn be the eigenvalues of the matrix WG′
n,ε arranged in

descending order (because WG′
n,ε is symmetric, its eigenvalues are real). Then

λ2(Gn) = 1− 2ε.

Proof The main idea is that it is quite easy to diagonalize WG′
n,ε explicitly. Indeed, let

LKn be the Laplacian of the complete graph on n vertices and let us adopt the notation In
for the n× n identity matrix. Then it is immediate that

WGn,ε = I2n − ε
(
LKn 0

0 LKn

)
− ε
(

In −In
−In In

)
Now it is well known how to diagonalize the Laplacian of the complete graph: LKn1 =
0, LKnx = nx for any vector x orthogonal to 1. It follows that the eigenvectors of WG′

n,ε

can be written out as follows. Pick n − 1 linearly independent vectors x1, . . . , xn−1 whose
entries sum to zero, and observe that the collection of vectors {[xi, xi]T , [xi,−xi]T | i =
1, . . . , n− 1} ∪ {[1,1]T , [1,−1]T } is an orthogonal basis for R2n.

We next verify that all of these vectors are in fact eigenvectors of WGn,ε. Indeed:

WG′
n,ε

(
1
1

)
=

(
1
1

)
,

WG′
n,ε

(
1
−1

)
= (1− 2ε)

(
1
−1

)
,

and for any x orthogonal to the all-ones vector,

WG′
n,ε

(
x
x

)
= (1− nε)

(
x
x

)
,

while

WG′
n,ε

(
x
−x

)
= (1− nε− 2ε)

(
x
−x

)
.

Thus the set of eigenvalues of WG′
n,ε is {1, 1− 2ε, 1− nε, 1− (n+ 2)ε}. This completes the

proof.
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5. What does network independence look like? Simulating the
counterexample.

We next give a numerical illustration of what network independence looks like. Specifically,
we simulate the example constructed in the proof of Theorem 3. Our main purpose in doing
so is to show how network independence, and its lack, are very stark phenomena that can
be instantly “read off” the simulation results.

First, we found that our choice of γ and a in the course of the proof were somewhat
conservative; numerically, we find that we can choose the slightly smaller values γ = 2 and
a = 5. We simulated the step-size of 1/tβ for two choices of β. Specifically, the step-size
choice of β = 1/2 is shown in Figure 1a while the choice of β = 3/4 is shown in Figure 1b.
Each simulation shows three different values of n.

It is crucial to note that the y-axis of both figures shows t1−β(F (x(t)− F ∗). Intuitively,
choosing a step-size of α(t) = 1/tβ will result in error F (x(t))−F ∗ that decays like 1/t1−β .
What we are interested is whether the constant in front of this depends on the network, so
we rescale the error to make this clear.

Comparing Figure 1a and Figure 1b illustrates our main result. In Figure 1a, we have
argued in Theorem 3 that network independence does not occur. In particular, the un-
derlying network has spectral gap that grows linearly with n (see Proposition 8) and, as a
result, the performance of the method ultimately behaves like ∼ n/

√
t. Thus the effect of

n is never forgotten.

On the other hand, in Figure 1b, we see a peak whose height/length may depend on
the spectral gap, and on n, in some fashion; but eventually, every curve drops below 1. In
other words, we have that, eventually, t1−β(F (x(t)−F ∗) ≤ 1. We see that, after a transient
period, the performance satisfies an O(t−(1−β)) decay bound that does not depend on n or
the spectral gap. Of course, here one must include the usual caveat that the size of the
transient until this happens will depend on the spectral gap, and thus on n in graph families
where the spectral gap depends on n.

6. Step-size inversion

The contrast between Theorems 2 and 3 raises an interesting question: could it help in
practice to choose a more slowly decaying step-size in distributed optimization?

Asymptotically, the answer is clearly no. Choosing a step-size that decays like 1/tβ , β ∈
[1/2, 1) results in an error F (·) − F ∗ that decays like 1/t1−β , so a lower β is better if we
wait long enough. But this is an asymptotic statement, and it says nothing about what
happens in practice when we count iterations until we are close to the optimal solution.

Informally, we may think of the distributed subgradient method as having two sources
of error: the first kind, which is error that comes from the asymptotic convergence rate;
and the second kind, which is the error that comes purely from the network disagreement
effects. Theorems 2 and Theorem 3 suggest the second source of error decays faster for
larger β (this is why the transient size given in Theorem 2 decreses with larger β). Even
though asymptotically, the first source of error dominates, if we only count iterations until
we get to a certain neighborhood of the optimal solution, it might be that the second kind
of error dominates in such a “non-asymptotic” experiment.
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(a) Step-size α(t) = 1/
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t.
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(b) Step-size α(t) = 1/t3/4

Figure 1: Simulation of the counter-example constructed in the proof of Theorem 3 for two
different choices of step-size. The figure on the right is consistent with asymptotic network
independence, while the figure on the left is consistent with its absence.

We next give evidence that this is sometimes the case. Specifically, we describe a class of
problems with random data, and simulate the centralized subgradient method; as expected,
performance (measured as number of iterations until the gradient mapping s(t) is small)
gets worse as we increase β in step-size 1/tβ . We then simulate the distributed subgradient
method and observe a more complicated relationship between step-size and performance;
in particular, performance could improve as we increase β over some range of values. We
call this phenomenon step-size inversion (since the effect of increasing β could be opposite
for centralized and distributed methods).

Our starting point is that we want to consider a sufficiently simple class of problems
to which it makes sense to apply the subgradient method. Thus, the problem should be
non-smooth. On the other hand, it should not be something so simple as a quadratic with
an || · ||1 regularizer, as that can be solved via proximal methods. A natural choice is to
consider problems with an “elastic net” regularization Zou and Hastie (2005), which a sum
|| · ||1 and || · ||2 regularizers. For our objective, we consider a regression-like problem where
squares are replaces by fourth-powers, so that the ultimate objective is

F (θ) =
1

K

K∑
i=1

λ0||aTi θ − bi||42 + λ1||θ||22 + λ2||θ||1.

The logic of using fourth powers, or any exponent higher than 2, is that the resulting
regression problem is very sensitive to large deviations – at the cost of being less sensitive
to small errors. It also makes the problem more difficult for the subgradient method (and if
the exponents were quadratic, there would actually be no good reason to solve this problem
with a subgradient method in the first place).

We generate the matrix A which stacks up the vectors ai to be Gaussian with unit
variance; each ai belongs to R2. We set bi = aTi 1 + wi, where wi is a Gaussian random
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(a) Centralized subgradient method (b) Distributed subgradient method

Figure 2: The relationship between the step-size 1/tβ and the number of iterations needed
until the gradient mapping s(t) is small. Note that, for the distributed method, the
number of iterations we are plotting the first t in Eq. (6) until the termination condition
||s(t)||1 < 0.03 is met. For the centralized method, each iteration consists of computing the
gradient of the full function F (t). In other words, a single “iteration” of the centralized
method has the same cost in terms of the number of gradient computations as a single
iteration of the distributed “method” (both involve computing all n subgradients of the
functions f1(·), . . . fn(·)). The code which produced this figure can be found on GitHub:
https://github.com/alexolshevsky/NetworkIndependenceSubgradient/blob/main/

Step_size_inversion.ipynb
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variable of variance 4. We chose λ0 = 1/40, λ1 = 1, λ2 = 1/20. We perform the optimization
over the unit square Ω = [0, 1]2.

The results are shown in Figure 2. We use n = 9 agents on the 2D grid graph. The
two figures plot β vs the number of iterations. Each data point is an average over 1,000
runs; we terminate when3 ||s(t)||1 < 0.03. A slight difficulty comes from the fact that we
have considerable freedom to choose the subgradient of || · ||1 at the origin and, somewhat
problematically, round-off error will preclude any component of s(t) from being zero exactly.
Moreover, choosing a subgradient has to be done carefully: it is in principle possible that,
when the algorithm is at the optimal point, it chooses a nonzero subgradient and moves
away from it. Since our termination condition is achieving a sufficiently small subgradient,
a natural approach is to choose s(t) so that ||s(t)||1 to be the smallest possible among all
possible choices of subgradient. Furthermore, to account for round-off error, we treat the
entries of s(t) in a small enough interval around zero as indistinguishable from zero.

Note further that a small subgradient 1-norm means we are close to the optimal solution
due to the compactness of the set Ω. Indeed, suppose we terminate at some point θt with
||∇̃F (θt)||1 ≤ ∆. We then have by convexity for any feasible θ ∈ Ω,

F (θ) ≥ F (θt) + ∇̃F (θt)
T (θ − θt),

so that
F (θ) ≥ F (θt)− ||∇̃F (θt)||1||θ − θt||∞ ≥ F (θt)−∆,

where we used that Ω is the unit square. Thus F (θt) is indeed close to minθ∈Ω F (θ).
Of course, for some functions it may be the case that a small optimality gap is achieved

without a small subgradient. e.g., f(x) = |x| when x is close to zero but nonzero. Never-
theless, since a small subgradient always implies a small optimality gap over a compact set,
it is a natural choice for a stopping criterion.

Finally, note that the minimum norm subgradient here is used only as a stopping crite-
rion: since we are solving an optimization problem whose solution we do not know ahead of
time, to compare the convergence time of two methods (cenralized vs distributed) we com-
pare the time until a minimum norm gradient at a running average is small. The algorithm
update itself does not attempt to minimize the norm of the subgradient.

Glancing at Figure 2a, we see that the performance of the centralized subgradient
method is as expected: higher β leads to slower performance. On the other hand, the
behavior of the distributed method in Figure 2b is more complicated. We do see that it
may be possible for one β to be better than another in the centralized case, only to have this
flip in the distributed case, which is the “step-size” inversion from the title of this section.

We end this discussion with two caveats. First, this behavior is not true for all practical
examples; our point is that step-size inversion can happen in measures of average-case
performance, which is something that is hinted by our results but has not been observed
before to our knowledge. In our simulations, step-size inversion seems to be tied to the
oscillations of the subgradient when the optimal solution occurs at a point of non-smoothness
(i.e., when some component of θ∗ equals zero in the above example). This is how the
parameter values described above were chosen. We wanted to choose values that resulted
in occasional solutions with components close to zero, but we didn’t want this to happen

3. This threshold was chosen to make the simulation converge in a reasonable amount of time.
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too often (as then the simulation would take too long, as these are exactly the cases when
it takes a very long time converge), which is why we chose β = 0.1. Similarly, the choice of
0.03 for the 1-norm of s(t) in the termination condition was picked to achieve a reasonable
running time.

7. Conclusion

Our goal was to understand when one can obtain network independence and a linear speedup
in the distributed subgradient method when compared to its centralized counterpart. We
showed that this is possible when the step-size decays like 1/tβ when β > 1/2, but not when
β = 1/2. The bounds we derived on the transient time until the linear speedup kicks in
increased as β decreased, suggesting that it might be the case that faster-decaying step-sizes
are better in the distributed case, even when the opposite is true in the centralized case.
We simulated one class of problems with random data where this was indeed the case for a
range of step-sizes.

Our results point to a number of open questions. First, we have no theory to explain
the performance we see in Figure 2b. Second, it would be interesting to conduct a large
scale computational study across many problems of interest to see if the step-size inversion
phenomenon holds more broadly than was demonstrated here. Since this is a primarily
theoretical paper, it is out of scope for the present work.

Most importantly, it would be interesting to examine whether a linear speedup can be
obtained for the optimal step-size decay β = 1/2 using a different algorithm (in the standard
model of distributed optimization where a single message exchange and a single subgradient
computation are possible at each node at each step). We are not aware of any lower bounds
ruling this out, nor any algorithms known to achieve this.
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