Practical Nearly-Linear-Time Approximation Algorithms
for Hybrid and Overlapping Graph Clustering

Konstantinos Ameranis' Lorenzo Orecchia

Abstract

In many graph-clustering applications, over-
whelming empirical evidence suggests that com-
munities and clusters are naturally overlapping,
calling for novel overlapping graph-partitioning
algorithms (OGP). In this work, we intro-
duce a framework based on two novel cluster-
ing objectives, which naturally extend the well-
studied notion of conductance to overlapping
clusters and to clusters with hybrid vertex- and
edge-boundary structure. Our main algorith-
mic contributions are nearly-linear-time algo-
rithms O(log n)-approximation algorithms for
both these objectives. To this end, we show that
the cut-matching framework of Khandekar et al.
(2014) can be extended to overlapping partitions
and give novel cut-improvement primitives that
perform a small number of s-t maximum flow
computations over the instance graph to detect
sparse overlapping partitions near an input parti-
tion. Crucially, we implement our approximation
algorithm to produce both overlapping and hybrid
partitions for large graphs, easily scaling to tens
of millions of edges, and test our implementation
on real-world datasets against other competitive
baselines.

1. Introduction

Detecting communities in real-world networks and cluster-
ing similarity graphs are major data mining tasks with a
wide range of applications in graph mining, collaborative fil-
tering, and bioinformatics. Ratio-cut objectives (also known
as quotient-cut objectives) constitute a well-studied and

"Department of Computer Science, University of Chicago,
Chicago, USA 2Apple Inc *Department of Computer Science,
Boston University, Boston, USA. Correspondence to: Konstanti-
nos Ameranis <kameranis@uchicago.edu>, Lorenzo Orecchia
<orecchia@uchicago.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2

Kunal Talwar? Charalampos Tsourakakis 3

commonly used family of graph partitioning problems (Ha-
gen & Kahng, 1992; Abrahao et al., 2012). A ratio-cut
objective measures the quality of a graph cut by the ra-
tio of the weight of the edge cutset to the volume of the
smaller side of the partition. Specifically, given a graph
G=(V,E,ue€ RLVO‘w €]RLEO‘) with non-negative edge
weights w and a measure W over vertices, the ratio-cut ob-
jective ¥ over partitions (S, S) of V is defined as:

o w(B(S.9))
Yo(S,5) = s mOT M

The ratio-cut minimization problem asks us to minimize
this objective over all partitions (S, S), i.e., determine
U (G) = ming U(S, S). Ratio-cut objectives play a major
role in graph clustering, as they include the widely used
expansion (Vi € V, u; = 1) and conductance (Vi € V, u; =
> j~i Wiz), which is often taken to be the “gestalt” notion
of graph clustering (Leskovec et al., 2009; Zahn, 1971).

In many real-world applications, it is desirable to allow
entities to belong to more than one cluster. For instance,
in biology a protein may belong to multiple protein com-
plexes (Nepusz et al., 2012), in social networks an agent
may be part of multiple communities (Ahn et al., 2010), and
a political blog may reflect more than one party affiliation
(Latouche et al., 2011). The seminal work of Leskovec et al.
(2008) has shown, in numerous large-scale information and
social networks, the existence of a core that spans most ver-
tices and lacks community structure (aka “expander-like”),
and the existence of numerous small communities with up
to few hundreds of nodes that overlap with the core. As a
result, standard graph clustering approaches (Abrahao et al.,
2012), based on non-overlapping objectives such as ratio
cuts, fail to recover the community structure in these ubiqui-
tous datasets. We focus on the following fundamental open
question:

Question 1. Can we design a framework for over-
lapping graph partitioning (OGP) that allows for (i)
a principled and intuitive mathematical formulation,
together with (ii) solid worst-case approximation algo-
rithms that (iii) scale gracefully to large networks?

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Despite a recent a flurry of works on OGP (Ahn et al., 2010;
Andersen et al., 2012; Arora et al., 2012; Bonchi et al., 2013;
Khandekar et al., 2014; Mishra et al., 2007; Airoldi et al.,
2008; Yang & Leskovec, 2013; Gopalan & Blei, 2013; Li
et al., 2017; Palla et al., 2012; Tsourakakis, 2015; Whang
et al., 2016), all prior works forgo at least one of these de-
sired properties. By contrast, these properties are already
satisfied by well-developed theory and software implementa-
tions for the non-overlapping ratio-cut objectives (Leighton
& Rao, 1999; Arora et al., 2009; Leskovec et al., 2009; Shi
& Malik, 2000; Orecchia et al., 2008), of which conduc-
tance is a special case. In this work, we provide problem
formulations, algorithms and implementations that satisfy
all parts of question 1.

Novel overlapping objectives We formulate natural gener-
alizations of ratio-cut objectives for partitioning the graph
into two overlapping partitions. As with other ratio-cut ob-
jectives, the balanced and k-way versions of overlapping
problems can be reduced to the 2-way problem in standard
ways (Kannan et al., 2004). The key idea behind our general-
izations is to redefine the notion of the boundary of a cluster
to contain both edges that leave the cluster and vertices that
are shared with other clusters.

Definition 1. An overlapping partition' [S, T] of the vertex
set V consists of two subsets S, T C V such that SUT = V.
The corresponding edge-cutset g[S, T| and vertex-cutset
dv[S,T) are:
5p[S, TV = E(S\T,T\S) and ©&v[S,T|=SNT,
Aslong as S, T # SN T, the edge-cutset g[S, T'] and the
vertex-cutset dy [S, T'] can be thought of as a generalized
notion of boundary in V, as their removal disconnects the
graph into at least two components associated to S \ 7" and
T\ S. We can now associate two ratio-cut-like measures to
an overlapping partition:

w_ w(0p[S,T)

B Y (7 S
w_n(ovIS.T)

v Sy @

In Section 3, for a parameter ¢ € [0, 1), we define the e-
overlapping ratio-cut (e-ORC) problem to be the minimiza-
tion of the edge ratio-cut g[S, T under the condition that
the vertex ratio-cut gy [S, T] < e, i.e., the overlap between
S and T contains at most an e-fraction of the measure of
the smaller side of [S, T]. We also define a version of the
problem with softer overlap constraints: for a parameter
A > 0, the A\-hybrid ratio-cut problem (A\-HCUT) is the min-
imization of g[S, T] + A - qv[S, T}, i.e., the cost of cutting

'We denote an overlapping partition by [S, T to clearly differ-
entiate it from non-overlapping partitions (.5, S).

one unit of vertex boundary is A times that of a unit of edge
boundary.

Algorithm design Both \-HCUT and €-ORC are easily seen
to be NP-hard. Existing metric relaxations and rounding
algorithms (Leighton & Rao, 1999; Arora et al., 2004) for
graph partitioning problems can be applied to obtain poly-
logarithmic approximations. However, solving such relax-
ations requires the computation of dense multicommodity
flows on an edge- and vertex-capacitated version of the in-
put graph, which needs quadratic time in the size of the
input (Arora et al., 2010). To scale our computations to
networks with tens of millions of edges on a single-machine,
we rely on the cur-matching game of Khandekar, Rao and
Vazirani (Khandekar et al., 2009), which computes approxi-
mate solutions to the formulation of Arora et al. (2004) by
assuming oracle access to a cut-improvement algorithm (An-
dersen & Lang, 2008) for the desired ratio-cut problem. We
provide two main technical contributions:

« the first cut-improvement algorithm for OGP problems,
generalizing the graph version of Andersen & Lang
(2008), while only requiring a polylogarithmic num-
ber of s-t maximum flow computations over a vertex-
capacitated version of the input graph.

* the first extension of the cut-matching game framework
to OGP problems, showing that the expander flow of
paradigm of Arora et al. (2009) seamlessly ports over
to the OGP setting.

Combining these contributions with recent advances in the
fast solution of maximum flow problems (Chen et al., 2022),
we obtain the first almost-linear-time O(logn) approxima-
tion to A-HCUT and e-ORC.

Empirical Evaluation We evaluate the performance of our
proposed method cm+improve on graphs sampled from
the Overlapping Stochastic Block Model (Abbe & Sandon,
2015) and on large real-world networks from the SNAP
collection (Leskovec & Krevl, 2014). Our results show
that cm+improve is competitive or outperforms baselines
while scaling to graphs with over 107 edges.

2. Related work

Overlapping graph clustering. Overlapping community
detection has been studied from a statistical viewpoint
through the overlapping stochastic block model (Latouche
etal., 2011; Abbe & Sandon, 2015). The problem remains
largely open for general graphs that do not conform to such
simple probabilistic models. Due to the importance of over-
lapping graph clustering, a variety of rigorous methods have
been proposed based on different models of overlapping par-
titions. Arora et al. (2012) present an average-case analysis
approach based on certain random graph models. Balcan

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

et al. (2012) consider a set-based latent structure, and extend
the notion of («,)-communities originally proposed by
Mishra et al. (2007). Other machine-learning methods also
assume that nodes have latent features according to which
they decide how to connect. Such methods can be seen as
matrix factorization methods, and include notably mixed
membership models (Airoldi et al., 2008), BIGCLAM (Yang
& Leskovec, 2013), and several others (Andersen et al.,
2012; Bonchi et al., 2013; Gopalan & Blei, 2013; Li et al.,
2017, Palla et al., 2012; Tsourakakis, 2015; Whang et al.,
2016).

Much less is known about algorithms with worst-case guar-
antees for overlapping clustering. Khandekar et al. (2014)
consider the problem of minimizing the sum and the max-
imum of conductances for a set of communities under the
constraint that each node belongs to at least one commu-
nity. Their approach is based on the tree decomposition of
Ricke (Récke, 2008), with the authors themselves pointing
out that their methods do not scale to large graphs.

A long line of work has focused on developing polynomial-
time approximation algorithms for ratio-cut minimization,
including spectral algorithm based on Cheeger’s inequality
(Alon & Milman, 1985), the multicommodity-flow-based
Leighton-Rao O(log n) approximation algorithm (Leighton
& Rao, 1999), and finally the current state-of-the-art ap-
proximation due to Arora, Rao and Vazirani (Arora et al.,
2009), which combines spectral and flow techniques. In
parallel, practitioners have developed many scalable graph-
partitioning heuristics, including the Kernighan-Lin heuris-
tic (Kernighan & Lin, 1970b) that is frequently used as a
sub-routine for refining partitions (e.g., (Hendrickson & Le-
land, 1995)), the widely used METIS software (Karypis &
Kumar, 1996; 1998; 1995), Graclus (Dhillon et al., 2007),
and KaHIP that imposes balance constraints on the clusters
(Sanders & Schulz, 2013).

3. Novel Overlapping Clustering Objectives

We model the input to our OGP formulation as consisting of a
weighted undirected graph G = (V, E, w,) with arbitrary
non-negative edge weights’{w, € Z>o}ccr and arbitrary
non-negative vertex weights® {1, € Z>0}vev. Our main
OGP problem is the the e-overlapping ratio-cut (e-ORC),
which takes a parameter ¢ € [0, 1] controlling the maximum

>We assume integral weights for the rest of the paper. Prob-
lems with rational weights can be reduced to the integral case by
an appropriate scaling. Our complexity guarantees will depend
(logarithmically) on the magnitude of the largest weight.

size of the overlap oy [S, T :

L w(0s[S.T])
sUPZy min{a(S), u(1)}

pOVIST)
min{u(S), (1)} =

In words, we are attempting to minimize the ratio between
weight of the edges between S\ T and T'\ S, and the weight
of the smaller of S and T, while constraining the weight of
the overlap S N 7" to be at most an e-fraction of both S and
T'. The logic behind the choice of the e-ORC objective is the
realization that overlapping partitions fail to be detected by
existing algorithms because they do not correspond to either
sparse edge cuts or sparse vertex cuts.

— ORC : mi T =
€ Jmin gg[S,T)]

qV[S, T} =

Consider the emblematic Zachary’s Karate Club social net-
work (Zachary, 1977) in Figure 1 in which two karate clubs
S and T overlap on a subset S N T'. This intersection con-
tains a small number of nodes that are well-connected to
both communities. At the same time, there also exists a
small number of edges directly between S\ T and 7"\ S,
possibly because of second-order interactions between the
nodes. In this setting, neither an edge-based graph partition-
ing algorithm nor a vertex-based one succeeds in detecting
the overlapping partition S and 7. The former suffers a
large penalty if it separates either S or T from S N 7T, as
a large number of edges is cut. The latter cannot identify
S N T because it is not a vertex separator, i.e., S and T’
are not disconnected by the removal of S N 7. Our objec-
tive e-ORC enables us to interpolate between the edge- and
vertex-based cuts to optimize over hybrid cuts, as shown in
Subfigure (b).

3.1. Hybrid Graph Partitioning

The A\-HCUT problem provides an unconstrained, computa-
tionally easier, version of the the e-ORC problem, where the
overlap fraction ¢y/[S, T is controlled via a penalty term
A-qy[S, T directly in the objective. For a parameter A > 0,
we define the A\-HCUT objective gg,» as:

def

qa NS, T = qelS,T]+ X - qv[S,T]

w(6p[S,T]) + A - p(v[S, T1)
min{pu(S), (1)}

The A — HCUT problem consists of the minimization of
ga.A[S, T) over all overlapping partition [S,T] of V/, i.e.,
determining ¢(G, A\) = mins 1) qg,A[S, T]. To minimize
the objective gg,», we are looking to separate the graph
into two disconnected components S \ 7" and 7"\ S by re-
moving a small set of edges 0[S, 7] and a small set of
vertices 0y [S, T]. The parameter A regulates the relative
cost of cutting one unit of edge-weight compared to one unit
of vertex-weight. By varying A, the A-HCUT problem in-
terpolates between edge-based (A > max;ecy (i~ Wii/u;))

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

(a) e = 0. Edge-based partition.

(b) e = .11. Overlapping partition.

(c) € = .22. Vertex-based partition.

Figure 1: Visualizations of overlapping solutions to e-ORC for different values of € € [0, 1] on the Karate graph (Zachary,
1977), with p set to the degree measure. Partition sides are yellow and blue. Overlap is red. Cut edges are also red. Solutions

were computed using our algorithm cm+improve.

and vertex-based (A < min;ey (Zi~; wis/p,)) partitions via
hybrid partitions cutting both edges and vertices.

Interpreting the parameter A\ as a Lagrangian multiplier
yields a simple relation between A-HCUT and e-ORC: op-
timal solutions to A-HCUT yield optimal solutions to the
€-ORC problem.

Lemma 1. For any A > 0, let [S,T] be an a-approximate
optimal solution for the A\-HCUT problem. Define ¢ =
1#(8v [S,T]) /min{(S),u(T)}. Then, [S,T] is an optimal solu-
tion to the e-ORC problem.

This lemma can be easily generalized to a-approximate
optimal solution, as long as we allow for a bi-criterion ap-
proximation for the e-ORC problem, where the output over-
lapping partition is only required to have dy [S, T] < «e.
While it may be tempting to use this approach to reduce the
optimization of e-ORC to that of A-HCUT, by performing a
search over the Lagrangian multiplier), this is not possible
in general, as approximately optimal solutions for e-ORC
for some values of € may not be approximately optimal for
any A. Fortunately, our algorithmic approach, described in
the next section, still allows us to solve both problems, es-
sentially by carrying out an analogue of the the proposed
reduction for localized, convex versions of the two prob-
lems. For this reason, we first describe an algorithm for the
A-HCUT problem in the next section.

4. Efficient Approximation Algorithms

The A\-HCUT problem is NP-hard, as it generalizes edge-
based and vertex-based graph partitioning problems, cap-
turing the minimum-conductance problem as a special case.
Spectral methods yield provable non-trivial approximation
guarantees only for the minimum-conductance problem,
as Cheeger’s Inequality does not extend to generic vertex
measures other than the degree measure. For this reason,
we consider approximation algorithms based on metric re-

laxations of graph partitioning problems (Leighton & Rao,
1999; Arora et al., 2004). Such relaxations yield polynomial-
time poly-logarithmic approximations for both edge- and
vertex-based ratio-cut problems (Feige et al., 2005), includ-
ing ¥. Indeed, these methods can be adapted to yield the
same approximation for the A-HCUT problem. However, the
convex programs arising from these relaxations have a cubic
number of constraints and generally require the solution of
dense multi-commodity flow problems (Arora et al., 2010)
over G, drastically limiting the scalability of this approach.

Due to the practical importance of graph partitioning, a
number of works have focused on designing scalable al-
gorithms that match the poly-logarithmic approximation
ratios afforded by the metric relaxations while only us-
ing s-t maximum flow computations, rather than the more
time-consuming multi-commodity flows. A particularly
simple framework for this reduction is the cut-matching
game of khandekar2009graph,thesis, which computes ap-
proximate solutions to the (Arora et al., 2004) formula-
tion by assuming oracle access to a cut-improvement algo-
rithm, which is implemented via the solution of a small
number of s-t maximum-flow computations over the in-
stance graph. We follow this approach and design a novel
cut-improvement algorithm, HybridImprove, for the -
HCUT problem, and a closely related cut-improvement pro-
cedure , OverlapImprove, for the e-ORC problem.

For an instance of the A-HCUT problem G, let
the parameter W denote the maximum weight
max{maxecp{w.}, max;ev{Ap;}}. Let Ty(m,n,C)
be the time complexity of solving a s-t maximum flow
problem over an edge- and vertex-capacitated graph with
m arcs, n vertices and integral arc capacities bounded by
C. The following is our main result, yielding a logarithmic
approximation to the A-HCUT problem.

Theorem 2. For an input graph = (V,E,w,u),
the cut-matching framework applied to HybridImprove

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

yields a O(log|V|)-approximation algorithm for the
A-HCUT problem. The running time is [O(|E|) +
Ty (O(E]), O(IV]), O(We))] - poly(log [V - log W).

By the same method, we also obtain a similar result for the
€-ORC problem, with a bi-criterion approximation, which is
standard for constrained graph-partitioning problems, e.g.,
balanced graph partitioning (Leighton & Rao, 1999).

Theorem 3. For an input graph = (V, E,w,), let R =
max; j #i/u;. The cut-matching framework applied to
OverlapImprove outputs an overlapping partition [S, T)
such that qy[S,T] < (R + 1) - € and for all overlapping
partitions [A, B] with qv[A, B] < €

e[S, T] < O(log V) - qu[A, B].

The running time is [O(|E|) +
Ty (O(|E]), O(|V]), O(We))] - poly(log |[V'] - log W)

If we choose the algorithm of Goldberg & Rao (1998) as
our s-t maxflow solver, the total running time for both al-
gorithms becomes O(|V||E|'/2 - poly(log [V - log Wg).
To obtain the advertised almost-linear running times, there
are two approaches based on approximate maximum-flow
computations:

* Following Khandekar et al. (2009) , we can approxi-
mately compute the maximum flow by running block-
ing flows of length up to O (IVl/q(G,)) to obtain a run-
ning time of O (I1El/g(c,») - poly(log [V| - log Wg)) .

* By the recent work of Chen et al. (2022), the edge-
and vertex-capacitated flow can be computed in
O(|E|**°M) time.

In our implementation, we use the HIPR implementa-
tion (Cherkassky et al., 1994) of the push-relabel method,
which has proved to be very efficient in practice.

4.1. Cut Improvement for \-HCUT

A cut-improvement algorithm (Kernighan & Lin, 1970a;
Fiduccia & Mattheyses, 1982; Andersen & Lang, 2008)
for a ratio-cut problem takes as input a candidate parti-
tion (Sp, Sp) and outputs a nearby partition (.9,.S) with
an improved objective U (S, S) < U (Sy, Sp). A practi-
cal approach to solving HGP is to use a generic partition-
ing algorithm to find a non-overlapping cut (S, T"), where
T = S, together with a cut improvement procedure that
includes vertices in the overlap S N 71" as to minimize gg. .
A natural cut-improvement heuristic, which we refer to as
GreedyImprove, is to repeatedly loop over all vertices u
on the boundary of S and T" and greedily include u € SNT
if the inclusion decreases the value of the A-HCUT objective.
This heuristic will serve as a competitor to our algorithm
in the empirical evaluation of Section 5. Unfortunately,

GreedyImprove does not yield any global approxima-
tion guarantees.

Our first significant algorithmic contribution is the design
and analysis of a novel cut-improvement method for the
A-HCUT problem. Our algorithm HybridImprove gen-
eralizes previous flow-based improvement algorithms (An-
dersen & Lang, 2008; Lang & Rao, 2004) to the hybrid
cut setting. However, our approximation guarantees for
HybridImprove are much sharper, as previous results
cannot be directly deployed in the cut-matching game. Our
guarantees are more easily stated if we first extend the def-
inition of the non-overlapping ratio-cut objective V¢ to
overlapping partitions [A, B] in the following natural way:

e w(E(S, 5'))
sca,scp min{u(A), u(B)}

Va([A, B]) = “4)

Here the numerator in the ratio-cut U ([A, B]) for an over-
lapping partition [A, B] is the worst (maximum) edge-cutset
weight over all ways of splitting the overlap A N B between
SCAand S C B.

Given an input non-overlapping partition (Sy,So),
HybridImprove outputs an improved overlapping parti-
tion [S, 7', together with a certificate that lower-bounds the
ratio-cut of partitions near [S, T']. This dual certificate takes
the form of a bipartite y-regular graph H between (Sp, Sp).
Indeed, the dual problem solved by HybridImprove is
exactly that of routing the largest possible multiple of a
bipartite y-regular graph across the input partition (S, Sp)
into an edge- and vertex-capacitated version of G. The exe-
cution of HybridImprove only requires a small number
of s-t maxflow computations over a directed version on G.
Theorem 4. Let G = (V,E,w € RE u € RY,) be
an undirected weighted graph and (Sy,So) be a non-
overlapping partition of G. Assume without loss of general-
ity that 11(So) < p(So) and define k. = 1(S0)/(30) € (0,1].
On input (G, (So,So), A > 0), the HybridImprove al-
gorithm outputs:

* aweighted graph H = (V, Ey,u € Rff{,), with the
same vertex weights as G, such that
- H is bipartite across (So, So),

— the weighted degree of a vertex i in H is p; if
i€ Spand k- u; ifi € Sy.

* an overlapping partition [S, T such that for all over-

lapping partitions [A, B,

qe.A([A, B])
i TR

The running time of HybridImprove s
(Tr(O(IE]), O(IV]), 0(Wg)) + | E]) - O(log(We - [V]).

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

A crucial property of HybridImprove is the approxima-
tion result of Equation 5 for the output overlapping parti-
tion [S, 7. In particular, it guarantees that for all overlap-
ping partitions [A4, B], including ones potentially far from
(S0, o), the objective of the output partition [, 7' is within
a factor Uy ([A4, B]) of o A ([A4, B]) , i.e., the more edges
of H cross [A, B, the better approximation to g x([A4, B])
we have. Applying this reasoning to the optimal cut for the
A-HCUT objective yields the following corollary:

Corollary 5. Let [A*, B*| be the overlapping partition mini-
mizing g x. On input (Sy, Sp), HybridImprove outputs
an overlapping partition [S, T| which is a 1/, ([A*,B*]) ap-
proximation to the optimum qg »([A*, B*]).

Hence, we can obtain a good approximation ratio for the
A-HCUT problem, if we use HybridImprove to query a
cut (Sp, So) that forces H to have many edges cross the
optimal overlapping partition [A*, B*]. The details of the
HybridImprove algorithm and a full proof of Theorem 4
can be found in the Appendix.

4.2. Cut Improvement for ¢-ORC

Recall that it is not generally possible to reduce the e-ORC
problem to a sequence of calls to an oracle for the HCUT
problem with different A values. Fortunately, the same
reduction strategy works instead when applied at the cut
improvement level: we can obtain a cut improvement algo-
rithm OverlapImprove for the e-ORC algorithm simply
via performing binary search on A in the HybridImprove
algorithm. The full details of OverlapImprove and the
proof of the following analogue of Theorem 4 are described
in the Appendix. An exact analogue of Corollary 5 also
holds.

Theorem 6. Under the same assumptions of Theorem 4,
let R be the largest ratio between vertex weights, i.e., R =
max; j #i/u;. The algorithm OverlapImprove on input
(G, (S0, So), € € (0,1) outputs:

* aweighted graph H = (V,Eg,u € RES’, (), with the
same properties as in Theorem 4, B

* an overlapping partition [S,T], qv[S,T] < (R + 1)e,
such that for all overlapping partitions [A, B with
qv [Aa B] <e

a5([4, B))
48UL 2D S g (1A, B). ©6)
a((s,7]) = A

4.3. Reduction to the Cut-Matching Game

The cut-matching game is an interactive game between a
cut player C and a matching player M over a vertex set
V' with vertex measure . Starting with an empty graph
over V, at each iteration ¢, C plays a partition (S;, Sy) of V

with 11(S;) < u(S;). The matching player M responds by
placing a bipartite p-regular graph H; across (Sy, S;), i.e.,
a bipartite graph such that every vertex v € S; has degree
i, and every vertex u € Sy has degree #(St)/u(S,) - pi,,. Let
Hy = L -], H, be the average of the graphs added
by M up to time 7. As T goes to infinity, the goal of the
cut player is to maximize the minimum ratio-cut quotient
U (Hr, j1), while the matching player aims to minimize the
same quantity. In words, the cut player aims to select sparse
cuts to force the matching player to make H; more expander-
like. Conversely, the matching player will try to add edges
to H, while preserving some sparse cuts. The following
theorem (Orecchia et al., 2008; Orecchia, 2011) gives an
efficient strategy for the cut player, which is based on Matrix
Multiplicative Weight Updates (Tsuda et al., 2005).

Theorem 7. (Orecchia et al., 2008; Orecchia, 2011) There
exists a strategy for the cut player C such that, for any play of
the matching player M, we have W(Hr, j1) > Q(1/10g V)
for T = O(log? |V|). At time t, the cut (S, Sy) played by
this strategy can be computed as a function of Hy in time

O(|E(Hy)| - polylog(p(V))).

With this strategy in hand, we are ready to sketch the proof
of our main results on the approximation of A-HCUT (The-
orem 2) and ¢-ORC (Theorem 3). Pseudocode for result-
ing generic algorithm is given as Algorithm 1. A learning
interpretation of these results is that the cut player strat-
egy is using Matrix Multiplicative Weight Updates to boost
the local approximation guarantees of HybridImprove
and OverlapImprove to a global guarantee by carefully
choosing which cut-improvement problems are solved. The
complete proof can be found in the Appendix.

Proof Sketch for Theorem 2 and Theorem 3. The cut-
improvement algorithm (HybridImprove or
OverlapImprove) takes the role of the matching
player in the cut-matching game, i.e., at every iteration ¢,
the matching player’s response to (S, S;) is the y-regular
bipartite certificate H; output by HybridImprove on
input (S;,S;). By choosing input cuts (S;,S;) using
the strategy of Theorem 7, we can guarantee that after
T = O(log?|V|), we have that for any overlapping
partition [A, B]

max Wy, ([4, B]) > ;;\PHA[A,BD >

1<t<T
U, (A4, B) =0 —
Ht) - 10g|v|]

where the second inequality is a consequence of the def-
inition in Equation 5. Applying this statement to the op-
timal overlapping partition [A*, B*], it must be the case
for some t* that Uy, ([A*, B*]) > Q(Yog|v|). Hence,
by Corollary 5, the overlapping partition output by the

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

cut-improvement algorithm at iteration t* is a O(log |V])-
approximation to the optimum. O

Algorithm 1 Generic cut-matching game algorithm

Input: graph instance G = (V, E, w, 1)
Output: overlapping cut[S, T
Hy+ G {Certificate initialization}
fort « 1,---, T = O(log?(n)) do
(Si,St) + C(Hy—1) {Cut player’s move}
My, [Ay, By] < Improve(G, S;, Sy)
H;, = H;_1+ M; {Certificate update}
end for
return best partition in {(A¢, By) }re[7y

5. Empirical Evaluation

The main challenge in comparing cm+improve with ex-
isting algorithms is the lack of closely related methods for
OGP problems, as statistical methods are highly tuned to the
structure and parameters of the model. BIGCLAM (Yang
& Leskovec, 2014), a popular method for detecting over-
lapping communities performs very poorly in our testbed,
likely because it optimizes a very different notion of ob-
jective, more akin to detecting smaller obvious clusters,
rather than partitioning the whole graph. This challenge
is compounded by the lack of other well-defined objective
functions for the task of overlapping clustering, which is
actually our motivation in defining e-ORC and A\-HCUT. In
order to make a meaningful comparison to other algorithms,
we post-process the partitions generated by our competitors
via one of two HCUT-based cut improvement procedures:
the GreedyImprove heuristic described in Section 4.1
or our HybridImprove algorithm. Thanks to this post-
processing, we can now expand our set of competitors to
include popular algorithms for non-overlapping clustering,
such as spectral clustering methods (Von Luxburg, 2007)
and METIS, and use our OGP objectives without arbitrarily
skewing the playing field.

Our Implementation of cm+improve: The cut-matching
strategy of Theorem 7 is implemented in MATLAB,
while the cut-improvement algorithm HybridImprove is
single-threaded C++, using Goldberg’s s-t-maxflow solver
HIPR, which implements the push-relabel algorithm (Gold-
berg; Cherkassky & Goldberg, 1997). Our implementation
performs some numerical approximations to minimize the
number of calls to HIPR and, as a result, departs slightly
from the theoretical description of the HybridImprove
algorithm. These optimizations are described in the Ap-
pendix. Throughout our evaluation, we set p to be the
degree measure of the graph, as other methods are al-
ready tuned to minimize conductance. For experiments

requiring the output to be a balanced overlapping parti-
tion, we implemented a simple heuristic modification of
HybridImprove, by only routing a fraction of the max-
imum flow in HybridImprove, as suggested by Khan-
dekar et al. (2009). All assets are currently accessible (sup,
2021) and will become publicly available under the BSD
license after publication. All experiments were conducted
on an institutional cluster on machines with 24 Cores (2x 24
core Intel Xeon Silver 4116 CPU @ 2.10GHz), 48 threads
and 128GB RAM.

Competitors: The SweepCut algorithm is the classic spec-
tral approach to graph partitioning: it performs a sweep of
the second eigenvector of the normalized Laplacian (Chung,
1997) and outputs the threshold cut with minimum conduc-
tance. This is then fed into our overlapping post-processor.
METIS (Karypis & Kumar, 1995) is a software suite for
solving edge-based graph-partitioning and producing fill
reducing orderings for sparse matrices. Its high-quality re-
sults, speed and over 25 years of support make it one of the
most widely used packages for these tasks. The multi-scale
graph-coarsening approach championed by METIS yields
an extremely fast algorithm, whose accuracy varies with
the choice of randomness used in the coarsening step. For
a fair comparison, we run METIS on many random seeds,
for a total time comparable to that of our cm+improve
on the same instance. The more sophisticated overlap-
specific algorithm BIGCLAM (Yang & Leskovec, 2013)
solves the ERM problem, where each edge between two
nodes comes from a shared community and nodes with
no shared communities have a very small chance of con-
necting. In essentially all cases, we found that BIGCLAM
fails to partition the whole graph, often leaving > 50%
nodes in no community. BIGCLAM also tends to output
small clusters, even when better, more balanced overlapping
partitions clearly exist. This probability reflects a radical
difference between BIGCLAM'’s objective function and stan-
dard isoperimetry-based definitions of graph partitioning.
We postpone the quantitative results on the comparison of
BIGCLAM to cm+improve to the Appendix.

5.1. Overlapping Stochastic Block Model

The first goal of our evaluation is to assess whether our
OGP objectives reflect meaningful overlapping clustering
structure on datasets where the ground-truth overlapping
clusters are known. To address this question, we study the
statistical performance of cm+improve in recovering over-
lapping partitions on graphs generated by the Overlapping
Stochastic Block Model (0SBM) of Abbe and Sandon (Abbe
& Sandon, 2015), the most generic statistical model of an
overlapping clustering. This is an instance of the general
stochastic block model in which the ground-truth partition
is a tripartition (L, C, R) corresponding to an overlapping
partition (S, T) where L = S\T,R=T\ S5,C=5SNT.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

-4 0.08

A\ 40.07
g 0.8 \
b2 \
= Close to perfect N $0.06 —
B reconstruction - \T 1 :
= 0.6} Toos = -
g :\ 0.05 ¢
Q — 4 —_—
g Nprrgd S
= T 1004 =
S &}
‘04 S
3 10.03
&
A~

—40.02
0.2 —4—— Precision 0-0
Elbow Recall
pOiI‘It —<4— F1-Score —40.01
=—F— ORC Objective
0+ 0
10° 10!
1/A
(@)

SweepCut + GreedyImprove
SweepCut + OverlapImprove
cm + improve

8
0.1F SweepCut + GreedyImprove
SweepCut + OverlapImprove|
cm + improve
O 1 1 T T
1 2 3 4 5 6 7 8
1/
©

Figure 2: (a) Statistical performance of cm+improve in the recovery of the ground-truth overlap C' on 5 samples
on balanced 0SBM with parameters (|C|,p,e) = (100,4,0.05). (b) Comparison on balanced OSBM with parameters
(IC],p,q,€) = (10,4, 4, e = 0.05). (c) Comparison on balanced 0SBM with parameters (|C|, p, ¢, €) = (10,4, 4, e = 0.05).

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Each pair of vertices {4, j} is added to the edge set inde-
pendently with probability p - log n/» if both vertices belong
to either S or T'. If neither S nor T contains both i and j,
they are connected with the smaller probability € - logn/n.
The logn/n scaling is standard and ensures connectedness
of the resulting graph. Besides the values of p and ¢, our
experiments varied the balance of the communities in the
generated graphs and the size of the overlap. We also at-
tempted to vary the probability assigned to pairs in the
overlap S N T, but could not detect significant differences
in the behavior of the algorithm, A full description of all
settings is found in the Appendix.

Results The results were remarkably consistent across the
size of the graph. We display here highlights of the results
for the smallest graphs with n = 10*. Figure 2(a) shows
how the recovery performance of cm+improve changes
as 1/x increases and the size of the overlap grows. On
the same y-axis, we also show how the contribution of the
edge cutset to g, A ([S,T)], i.e., the corresponding e-ORC
value. The overlap starts empty for small 1/x on the left. As
1/x increases, cm+improve starts including in the overlap
S'NT vertices from the true C, boosting precision. Once the
overlap is large enough, the recall follows so that we obtain
essentially perfect recovery at A = 3. At the same time, the
edge cutset has significantly shrunk, as we have switched
from cutting edges incident to C' to cutting vertices in C'.

If we continue increasing the overlap after this point,
cm+improve will start adding vertices incident to edges
in E(S\T, T\ S) to the overlap, until we reach a vertex cut.
In this last phase, the edge cutsets decreases slowly, as the
vertices added to the overlap do not belong to the C, but are
endpoints of the more rare edges in E(L, R). Indeed, the
sharp elbow in the e-ORC objective coincides with perfect
recovery of the overlap, demonstrating that our method does
not require prior knowledge of the overlap size. By contrast,
all other algorithms in our test bed generally achieve poor re-
covery. We focus here on the comparison with SweepCut
as the spectral approach comes with strong guarantees in
stochastic block models. METIS performs entirely analo-
gously. The example of Figure 2(b) is typical of its behavior
when the overlap becomes large enough (%2 \/n)). It shows
that cm+improve outperforms both post-processings of
SweepCut by an order of magnitude on the A-HCUT ob-
jective. We do not show statistical information here because
the precision and recall of SweepCut are both 0 for all
values of), i.e., even after postprocessing SweepCut fails
to find any vertex in the true overlap C. This phenomenon
can be explained as follows: because of the sparsity of
the ground-truth L and R and the relative density higher
density of C', SweepCut finds outputs smaller cuts en-
tirely contained within L or R. As the overlap is large,
these cuts cannot be rounded to C' by GreedyImprove
or HybridImprove.

Figure 2(c) shows the same setup for a smaller ground-
truth overlap |C| = ©(logn). In this case, the output of
SweepCut is not too far from the optimal overlapping
partition. Indeed, the HybridImprove post-processing
matches the performance of cm+improve and achieves
the same statistical performance. On the other hand, the
heuristic GreedyImprove post-processing still fails to
recover any vertices of C.

Our results support the overall superiority of global algo-
rithms targeting overlapping measures of graph partitioning,
such as cm+improve, over algorithms based on local im-
provement of edge-based cuts. Such standard approaches ap-
pear to fail in detecting overlapping clusters, even in the sim-
ple case of OSBM and even when given access to a very pow-
erful overlapping cut-improvement in HybridImprove.
We believe that this makes a powerful case for the adoption
of OGP objective functions and algorithms in practice.

5.2. Information and Social Networks

In the next set of experiments, we evaluate the performance
and efficiency of different methods on the A-cut objective
on a number of social and information networks from the
SNAP database (Yang & Leskovec, 2015; Leskovec &
Krevl, 2014). We now focus on finding balanced over-
lapping partitions for two reasons: i) our best competitor
METIS is biased towards outputting balanced cuts, and ii)
such partitions plausibly contain more interesting structural
information and could be used to recursively decompose
network. We find that cm+improve performs comparably
to METIS+HybridImprove, showing that overlapping
cuts in real networks tend to be somewhat correlated with
sparse edge-based cuts. Unfortunately, the running time
of cm+improve quickly becomes infeasible for networks
with over 107 edges. We are confident that an optimized
implementation taking greater advantage of parallelism and
randomness will allow cm+improve to scale to even larger
graphs. Due to space limitations, full quantitative results
appear in the Appendix.

Recursive Bisection: In Section E.4 of the Appendix, we
also highlight how recursive application of cm+improve
to the DBLP co-authorship graph yields multi-way partitions
that recover different areas of Computer Science and detect
overlap between different interest communities.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

References

Supplementary material, 2021. URL https:
//drive.google.com/drive/folders/
1RK-Q_8_S6LFxmWC90Rh1ZA1icNWb—gcax?
usp=sharing.

Abbe, E. and Sandon, C. Community detection in gen-
eral stochastic block models: Fundamental limits and
efficient algorithms for recovery. In 2015 IEEE 56th An-
nual Symposium on Foundations of Computer Science,
pp. 670-688, 2015. doi: 10.1109/FOCS.2015.47.

Abrahao, B., Soundarajan, S., Hopcroft, J., and Kleinberg, R.
On the separability of structural classes of communities.
In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.
624-632, 2012.

Ahn, Y.-Y., Bagrow, J. P,, and Lehmann, S. Link commu-
nities reveal multiscale complexity in networks. nature,
466(7307):761-764, 2010.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network
Flows: Theory, Algorithms, and Applications. Prentice
hall, 1993.

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P.
Mixed membership stochastic blockmodels. Journal of
machine learning research, 9(Sep):1981-2014, 2008.

Alon, N. and Milman, V. D.)y, isoperimetric inequalities
for graphs, and superconcentrators. Journal of Combina-
torial Theory, Series B, 38(1):73-88, 1985.

Andersen, R. and Lang, K. An algorithm for improving
graph partitions. In SODA ’08 Proc. 19th ACM-SIAM
Symp. Discret. algorithms, pp. 651-660, 2008.

Andersen, R., Gleich, D. F., and Mirrokni, V. Overlapping
clusters for distributed computation. In Proceedings of
the fifth ACM international conference on Web search
and data mining, pp. 273-282. ACM, 2012.

Arora, S., Rao, S., and Vazirani, U. Expander flows, ge-
ometric embeddings and graph partitioning. In STOC
"04 Proc. thirty-sixth Annu. ACM Symp. Theory Comput.,
pp- 222-231, New York, NY, USA, 2004. ACM. ISBN
1-58113-852-0. doi: http://doi.acm.org/10.1145/1007352.
1007355.

Arora, S., Rao, S., and Vazirani, U. Expander flows, geo-
metric embeddings and graph partitioning. Journal of the
ACM (JACM), 56(2):5, 2009.

Arora, S., Hazan, E., and Kale, S. O(/log(n)) approxi-

mation to sparsest cut in O(n?). SIAM J. Comput., 39:
1748-1771, 01 2010.

Arora, S., Ge, R., Sachdeva, S., and Schoenebeck, G. Find-
ing overlapping communities in social networks: toward
a rigorous approach. In Proceedings of the 13th ACM
Conference on Electronic Commerce, pp. 37-54. ACM,
2012.

Balcan, M.-F., Borgs, C., Braverman, M., Chayes, J., and
Teng, S.-H. I like her more than you: Self-determined
communities. Technical report, 01 2012.

Bonchi, F., Gionis, A., and Ukkonen, A. Overlapping cor-
relation clustering. Knowledge and information systems,

35(1):1-32, 2013.

Chen, L., Kyng, R., Liu, Y. P, Peng, R., Gutenberg,
M. P., and Sachdeva, S. Maximum Flow and Minimum-
Cost Flow in Almost-Linear Time. Technical Report
arXiv:2203.00671, arXiv, April 2022. URL http://
arxiv.org/abs/2203.00671. arXiv:2203.00671
[cs] type: article.

Cherkassky, B. and Goldberg, A. On implementing the
push—relabel method for the maximum flow problem.
Algorithmica, 19:390-410, 1997.

Cherkassky, B. V., Goldberg, A. V., and Radzik, T. Short-
est paths algorithms: theory and experimental evalua-
tion. In SODA 94, pp. 516-525, Philadelphia, PA, USA,
1994. Society for Industrial and Applied Mathematics.
ISBN 0-89871-329-3. URL http://dl.acm.org/
citation.cfm?id=314464.314638.

Chung, F. R. K. Spectral Graph Theory. American Mathe-
matical Society, 1997.

Dhillon, I. S., Guan, Y., and Kulis, B. Weighted graph
cuts without eigenvectors a multilevel approach. IEEE
transactions on pattern analysis and machine intelligence,

29(11):1944-1957, 2007.

Feige, U., Hajiaghayi, M., and Lee, J. R. Improved approx-
imation algorithms for minimum-weight vertex separa-
tors. In Proc. thirty-seventh Annu. ACM Symp. Theory
Comput. - STOC °05, 2005. ISBN 1581139608. doi:
10.1145/1060590.1060674.

Fiduccia, C. M. and Mattheyses, R. M. A linear-time heuris-
tic for improving network partitions. In DAC ’82, pp.
175-181, 1982.

Goldberg, A. Hipr version 3.7. /http://www.avglab.
com/andrew/soft .html. Last retrieved December
2019. License: Attribution.

Goldberg, A. V. and Rao, S. Beyond the flow decomposition
barrier. J. ACM, 45(5):783-797, September 1998. ISSN
0004-5411. doi: 10.1145/290179.290181. URL https:
//doi.org/10.1145/290179.290181.

https://drive.google.com/drive/folders/1RK-Q_8_S6LFxmWC9oRhlZAicNWb-gcax?usp=sharing
https://drive.google.com/drive/folders/1RK-Q_8_S6LFxmWC9oRhlZAicNWb-gcax?usp=sharing
https://drive.google.com/drive/folders/1RK-Q_8_S6LFxmWC9oRhlZAicNWb-gcax?usp=sharing
https://drive.google.com/drive/folders/1RK-Q_8_S6LFxmWC9oRhlZAicNWb-gcax?usp=sharing
http://arxiv.org/abs/2203.00671
http://arxiv.org/abs/2203.00671
http://dl.acm.org/citation.cfm?id=314464.314638
http://dl.acm.org/citation.cfm?id=314464.314638
/http://www.avglab.com/andrew/soft.html
/http://www.avglab.com/andrew/soft.html
https://doi.org/10.1145/290179.290181
https://doi.org/10.1145/290179.290181

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Gopalan, P. K. and Blei, D. M. Efficient discovery of over-
lapping communities in massive networks. Proceedings
of the National Academy of Sciences, 110(36):14534—
14539, 2013.

Hagen, L. and Kahng, A. New spectral methods for ratio
cut partitioning and clustering. /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 11(9):1074-1085, 1992. doi: 10.1109/43.159993.

Hendrickson, B. and Leland, R. W. A multi-level algorithm
for partitioning graphs. SC, 95(28):1-14, 1995.

Kannan, R., Vempala, S., and Vetta, A. On clusterings:
Good, bad and spectral. Journal of the ACM (JACM), 51
(3):497-515, 2004.

Karypis, G. and Kumar, V. Metis-unstructured graph par-
titioning and sparse matrix ordering system, version 2.0.
1995.

Karypis, G. and Kumar, V. Parallel multilevel graph parti-
tioning. In IPPS, pp. 314-319, 1996.

Karypis, G. and Kumar, V. A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359-392, De-
cember 1998. ISSN 1064-8275. doi: 10.1137/
S1064827595287997. URL http://dx.doi.org/
10.1137/S1064827595287997.

Kernighan, B. W. and Lin, S. An efficient heuristic proce-
dure for partitioning graphs. Bell Syst. Tech. J., 49(2):
291-307, February 1970a.

Kernighan, B. W. and Lin, S. An efficient heuristic proce-
dure for partitioning graphs. The Bell system technical
Jjournal, 49(2):291-307, 1970b.

Khandekar, R., Rao, S., and Vazirani, U. Graph partition-
ing using single commodity flows. Journal of the ACM
(JACM), 56(4):19, 2009.

Khandekar, R., Kortsarz, G., and Mirrokni, V. On the advan-
tage of overlapping clusters for minimizing conductance.
Algorithmica, 69(4):844-863, 2014.

Lang, K. and Rao, S. A flow-based method for improving
the expansion or conductance of graph cuts. In Bien-
stock, D. and Nemhauser, G. (eds.), Integer Programming
and Combinatorial Optimization, pp. 325-337, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. ISBN
978-3-540-25960-2.

Latouche, P., Birmelé, E., and Ambroise, C. Overlapping
stochastic block models with application to the French po-
litical blogosphere. Annals of Applied Statistics, 5(1):309—
336,2011. ISSN 19326157. doi: 10.1214/10-AOAS382.

Leighton, T. and Rao, S. Multicommodity max-flow min-
cut theorems and their use in designing approximation
algorithms. Journal of the ACM (JACM), 46(6):787-832,
1999.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014.

Leskovec, J., Lang, K., Dasgupta, A., and Mahoney, M. W.
Statistical properties of community structure in large so-
cial and information networks. In Proceeding of the 17th
international conference on World Wide Web, pp. 695—
704. ACM, 2008.

Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W.
Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. In-
ternet Mathematics, 6(1):29-123, 2009.

Li, P, Dau, H., Puleo, G., and Milenkovic, O. Motif cluster-
ing and overlapping clustering for social network analysis.
In IEEE INFOCOM 2017-1EEE Conference on Computer
Communications, pp. 1-9. IEEE, 2017.

Mishra, N., Schreiber, R., Stanton, I., and Tarjan, R. E.
Clustering social networks. In International Workshop
on Algorithms and Models for the Web-Graph, pp. 56—67.
Springer, 2007.

Nepusz, T., Yu, H., and Paccanaro, A. Detecting overlapping
protein complexes in protein-protein interaction networks.
Nature methods, 9(5):471, 2012.

Orecchia, L. Fast Approximation Algorithms for
Graph Fartitioning using Spectral and Semidefinite-
Programming Techniques. PhD thesis, EECS Depart-
ment, University of California, Berkeley, May 2011.
URL http://www.eecs.berkeley.edu/Pubs/
TechRpts/2011/EECS-2011-56.html.

Orecchia, L., Schulman, L. J., Vazirani, U. V., and Vish-
noi, N. K. On partitioning graphs via single com-
modity flows. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, STOC 08,
pp- 461-470, New York, NY, USA, 2008. Associa-
tion for Computing Machinery. ISBN 9781605580470.
doi: 10.1145/1374376.1374442. URL https://doi.
org/10.1145/1374376.1374442.

Palla, K., Knowles, D., and Ghahramani, Z. An infinite
latent attribute model for network data. arXiv preprint
arXiv:1206.6416, 2012.

Riécke, H. Optimal hierarchical decompositions for con-
gestion minimization in networks. In Proceedings of the
fortieth annual ACM symposium on Theory of computing,
pp- 255-264. ACM, 2008.

http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-56.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-56.html
https://doi.org/10.1145/1374376.1374442
https://doi.org/10.1145/1374376.1374442

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Sanders, P. and Schulz, C. Think Locally, Act Globally:
Highly Balanced Graph Partitioning. In Proceedings
of the 12th International Symposium on Experimental
Algorithms (SEA’13), volume 7933 of LNCS, pp. 164—
175. Springer, 2013.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):888-905, 2000.

Tsourakakis, C. Provably fast inference of latent features
from networks: with applications to learning social cir-
cles and multilabel classification. In Proceedings of the
24th International Conference on World Wide Web, WWW
2015, pp. 1111-1121, 2015.

Tsuda, K., Ritsch, G., and Warmuth, M. K. Matrix ex-
ponentiated gradient updates for on-line learning and
bregman projection. Journal of Machine Learning Re-
search, 6(34):995-1018, 2005. URL http://jmlr.
org/papers/v6/tsudal5a.html.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17(4):395-416, 2007.

Whang, J. J., Gleich, D. F., and Dhillon, I. S. Overlapping
community detection using neighborhood-inflated seed
expansion. IEEE Transactions on Knowledge and Data
Engineering, 28(5):1272-1284, 2016.

Yang, J. and Leskovec, J. Community-affiliation graph
model for overlapping network community detection. In
Proceedings - IEEE International Conference on Data
Mining, ICDM, pp. 1170-1175, 12 2012. ISBN 978-1-
4673-4649-8. doi: 10.1109/1CDM.2012.139.

Yang, J. and Leskovec, J. Overlapping community detection
at scale: a nonnegative matrix factorization approach. In
Proceedings of the sixth ACM international conference
on Web search and data mining, pp. 587-596, 2013.

Yang, J. and Leskovec, J. Overlapping communities explain
core—periphery organization of networks. Proceedings of
the IEEE, 102(12):1892-1902, 2014.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181-213, 2015.

Zachary, W. W. An information flow model for conflict
and fission in small groups. Journal of anthropological
research, 33(4):452-473, 1977.

Zahn, C. T. Graph-theoretical methods for detecting and
describing gestalt clusters. IEEE Transactions on com-
puters, 100(1):68-86, 1971.

http://jmlr.org/papers/v6/tsuda05a.html
http://jmlr.org/papers/v6/tsuda05a.html

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

A. Cut Improvement Algorithms
A.1. The HybridImprove Algorithm
Specification The HybridImprove algorithm takes the following inputs:
1. an undirected graph G = (V, E, w, 1) with non-negative integral edge weights {w, }.c g and non-negative integral
vertex weights {; }icv -
2. anon-overlapping partition (S, Sp) of V.

3. avalue A > 0 for which we seek to minimize gg,).
The HybridImprove algorithm returns the following outputs:

1. an overlapping partition [S, T,

2. a weighted graph H = (V, By, wy € Rfﬁ)

Assume without loss of generality that 12(Sp) < 1(Sp) and define x = #(S0)/u(30) € (0, 1).

The flow network G, The algorithm starts by building an auxiliary flow network G, parametrized by « > 0 from G. To
support vertex capacities, for each vertex v € V, G, contains two vertices labeled vy and voyr, together with a directed
edge (v, vour) With capacity « - A - ;. Every edge {u,v} € E yields two directed arcs (uour, viv) and (vour, tiy) of
capacity « - Wy, in G. Finally, G, contains two auxiliary nodes, a source s and a sink ¢. They are connected to the rest of
graph based on the input partition (Sp, Sp) as follows:

* forall v € Sy, there is an arc (s, v;y) with capacity p;;

« for all v € Sy, there is an arc (voyr, t) with capacity - ;.

The capacity on the Sy-side are scaled down by « to ensure that the total capacity of the trivial source cut equals the total
capacity of the trivial sink cut. As we aim to set « to be large enough such that both these cuts are saturated, these capacities
can also be interpreted as demands we want to concurrently route from Sy to Sy. The construction of G, is illustrated in
Figure 3.

Searching over the o parameter The HybridImprove algorithm aims to find the minimum value o = o™ such that a
single-commodity flow can be routed from s to ¢ while fully saturating the source cut and the sink cut, i.e., while routing
a - 1(Sp) units of flow. To do so, it performs a binary search over « by testing, for each « whether the required flow can
be routed by solving the corresponding s-t maximum-flow. Assuming that the graph G is connected and that the edge-
and vertex-weights, together with the parameter X are integral, « can range between 1/ (V') and w(E) + Au(V'), so that
O(log(|V| - W) rounds suffice to compute o*.

Returning the output Once the algorithm has identified the optimal value a*, it extracts a non-trivial s-¢ mincut (A, B)
in G+. Such a mincut is guaranteed to exist by the variational definition of «*. The output overlapping partition [.S, T'] of
G is formed as following:

1. Avertex i € V is placed in S if vy € A.

2. Avertex ¢ € V is placed in T if voyr € B.

In particularly, vertices for which both conditions hold are placed in the overlap S N T

Finally, the algorithm computes a flow-path decomposition of the flow routed into G, using dynamic trees (Ahuja et al.,
1993; Khandekar et al., 2009), to obtain a list of flow paths routed from Sy to Sy. The demands routed by these paths are
defined to be the graph H returned by HybridImprove.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Legend

Source Edges
—

oAty Sink Edges

vl
Internal Edges
B

™ Original Edges
_

Vout

-
J

e
T

011t(§g}

Figure 3: The flow network G, for a path graph on 6 vertices, for a bisection (.5, Sy) into connected components.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

A.2. The OverlapImprove Algorithm

Specification The OverlapImprove algorithm takes the following inputs:

1. an undirected graph G = (V, E, w, 1) with non-negative integral edge weights {w, }.c g and non-negative integral
vertex weights {p; }icv .

2. anon-overlapping partition (Sg, Sp) of V.

3. avalue € € [0, 1] for which we seek to minimize g¢ .
The OverlapImprove algorithm returns the following outputs:

1. an overlapping partition [S, T,

2. a weighted graph H = (V, Ey,wy € REY).

Assume without loss of generality that 1(Sp) < 1(Sp) and define k£ = #(S0)/u(30) € (0, 1).

Description The OverlapImprove algorithm is obtained by performing a binary search on the input A of the
HybridImprove algorithm, starting at max; > ;~: i/, . If the output overlapping partition [\S, T'] has qv [S, T] > €, then
A is reduced. Otherwise, it is increased. The process eventually stops in polylogarithmic iterations for A* and a* such
that two s-t mincuts exists in G, «, corresponding to overlapping partitions [S1, T1] with gy [S1, T1] < € and [S2, T»] with
qv[S2,T2] > e. The submodularity of the cut function implies that we must necessarily have oy [S1,T1] C dv[S2, T3]
Hence, adding a single vertex from the overlap v [Sa, T»] to the overlap dy/[S1, T}] yields a new overlapping partition that
also corresponds to a s-t mincut in G+. By the bound R on the ratio of weights, we have that the resulting overlapping
partition [S, 7] has qv [S, T] < (R + 1)e.

B. Cut Improvement Analysis: Proof of Theorem 3
B.1. Valid s-¢ cuts and corresponding overlapping partitions

We start by proving some simple lemmata about the HybridImprove construction, which is essentially a reduction from
the overlapping improvement problem to a family of s — ¢ minimum cut problems on bipartite flow networks G,. To do this
end, we define a subset of s-t cuts in G, that can be put in bijection with overlapping partitions of G.

Definition 2. An s-t cut (A’, B') of G, is valid if, for all vertices v, vix € B’ implies vour € B’. Equivalently, for all v,
vour € A implies vy € A'.

The relevance of this definition is shown by the following lemma.

Lemma 8. An s-t mincut (S',T") in G, is valid.

Proof. Suppose there exists v € V such that v,y € B’ and voyr € A’. Including v],, in B’ decreases the capacity of the s-¢
cut as the only arc going into voyr is the arc (viy, Vour), Which has strictly positive capacity. O

The bijection between valid s-t cuts in G, and corresponding overlapping partitions of G is constructed as follows: a valid
s-t cut (A’, B") maps to the overlapping partition [A, B] such that v € A if vy € A’ and v € B if voyr € B’. Notice that
both of these conditions will hold for a vertex in the overlap A N B. By the validity of (A’, B’), we deduce that AU B =V,
so that [A, B] is indeed an overlapping partition of s-t. Similarly, for an overlapping partition [A, B], with u(A4) < u(B)
we can construct a valid s-t cut (A’, B’) as follows: if v € A\ B, let vy, vour € A’;if v € B\ A, let vy, vour € B’; if
veANB,letvy € A’ and voyr € B'.

The following lemma describes the relation between the capacity of a valid s-t cut (S’,7") in G,, and the edge- and
vertex-cutsets of the corresponding overlapping partition [S, T']. For a subset C” of vertices in G, we denote by CJy its IN
vertices and by C{,; its OUT vertices.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

2 Augmented Graph Fiow Graph

Figure 4: A valid s-t mincut (S, T") of G, together with the corresponding overlapping partition.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Lemma 9. Let (S',T") be a valid s-t cut in G, and let [S, T| be the corresponding overlapping partition. Then:

capy, (S, T") = a - w(dg[S,T)) + a - X u(6y[S,T]) + (S N Sp) + ku(T N Sp).

Proof. The capacity of (S’, T") can be written in terms of the capacities between different subsets of G.,. By the construction
of G, (see also Figure 4), we obtain the following:

Capst (S/’ T/) = Capst(SI/N’ T(;UT) + Capst (SéUT? ij/N) + Ca‘pst({s}v TI/N) + Capst(S(I)UT’ {t})

Notice now that cap, (Siy, Toyr) = @ - A - u(dv[S, T]), as the only arcs going from the IN-side to the OUT-side are the
internal edges of vertices included in the overlap. Similarly for the second term, cap,,(Siur, Tin) = w(0g[S, T)), as the
only arcs going the opposite way correspond to original edges in dg[.S, T']. Finally, the last two terms arise from vertices
in Sy that were moved directly to the opposite side S and of vertices in Sy that were switched over to 7. An example of
such a vertex is vertex y in Figure 4. By the choice of capacities from s and to ¢, we have cap,, ({s},T/y) = (S N Sp) and
capy,(Shur, {t}) = k(T N Sp), completing the proof. O

B.2. Splits of overlapping partitions
Next, we discuss the notion of a non-overlapping split of an overlapping partition [A, B], formalizing the notion behind the
definition of ¥ ,,.

Definition 3. Let [A, B] be an overlapping partition of vertex set V. A non-overlapping split (C, C) of [A, B] is a non-
overlapping partition of V such that C' C A and C' C B. The non-overlapping split of [A, B] according to a non-overlapping
partition (S, S) is the non-overlapping split that assigns vertices in AN B to C or C based on their location in (S, S), i.e.:

We will need the following fact about the relation between flows across [A, B] and splits of [A, B] in G,.

Lemma 10. Let [A, B] be an overlapping partition of V and (C, C) be a split of [A, B]. Let (A’, B') and (C',C") denote
the corresponding s-t cuts in G,. For an s-t maximum flow in G, the following holds:

netflow(A’, B') > netflow(C”, C").

The same holds with equality if (A’, B') is a non-trivial s-t mincut of G, and (C, C) is the split according to (So, Sp).

Proof. Consider any v € AN B in the overlap of [A4, B]. In the flow network G, we have vy € A’ and voyr € B'.
Because all the flow out of vy and into veyr runs along the internal arc (v, Vour), shifting vy or veyr to the other side of
the s-t can only decrease the netflow. For the second part of the lemma, further assume the same v € Sy. Then equality
holds as long as there is no flow into vy via arcs coming from B’. Similarly, for v € So, equality holds if there is no flow
from voyr to vertices in A’. This is the case if (A", B') is an s-t mincut of G,,. O

B.3. Flow and cuts in G~ and their relation with the demand graph H

Next, we use the demand graph H, which has been routed from Sy to Sy in G, to construct lower bounds on the hybrid
quotient-cut ¢, x ([A, B]) of an overlapping partition [A, B]:

Lemma 11. For any overlapping partition [A, B] of G:

Va,u((A B))

a*

QG,X([A7B]) 2

Equality is achieved for any overlapping partition [S,T| corresponding to a non-trivial s-t mincut in G+, yielding the
stronger bound.:
Uy, (A B
e r(s.1)) = Y14 B))

1
Si
« a*

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Proof. Consider an overlapping partition [A, B] of V and its corresponding s-t mincut (A’, B’) in G-. Take also any

non-overlapping split (C, C') of [A, B] and its corresponding s-t cut (C’,C'). By the s-t maxflow-mincut theorem and
Lemma 10, for an s-t maxflow on G+, we have:

capy, (A, B') > netflows, (A, B') > netflow, (C',C").
Now, we can easily relate netflow,(C’, C’) to the cut (C,C) in H :
netflow(C”, C") = wy (E(C,C)) + p(C N Sp) + ku(C N Sp). (7
Compare this lower bound on cap,,(A’, B') with the result of Lemma 9:

capy (A, B") = a* - w(g[A, B]) + o - X - u(0v[A, B]) + u(AN Sy) + ku(B N Sp). (8)

By the definition of (C, C), we have that A C C and B C C. Hence, the last two terms in Equation 7 dominate the last two
terms of Equation 8. Combining Equation 7 and Equation 8, we then get:

o - w(dp[A, B]) +a” - A p(dv[A, B]) > wy (E(C",C"))

Dividing both sides by min{u(A), u(B)} completes the proof of the first part of the lemma as:
Va4, B])

a*

g ([4, B]) >

For the second part, the s-t mgximum-ﬂow minimum-cut theorem and Lemma 10 ensure that for a non-trivial s-f minimum
cut (S, T") and its split (C, C') according to Sp:

cap,,(S',T") = netflow (S’ T") = netflow (C’,C").

Moreover, we have that C N .Sy = AN Sy and C N Sy = B N Sp, so that the last two terms in Equations 7 and 8 cancel
exactly, yielding: -
o - w(dgp[S,T)) + o™ - A u(dv[S,T]) = wu (E(C,C)).

By construction of a*, we also know that the capacity of any non-trivial s-¢ minimum cut in G equals that of the trivial
s-t cut S, which is 14(Sp). Hence:
wg (C,C) = u(So) — u(AN Sy) — k(BN Sp)
< min{u(ANSy), k(BN Sy}
< min{u(A), u(B)}-
Equivalently, we have that ¥, ([S,T]) < 1. Together with the first part of the lemma, this yields:

ST) 1
(s, = #ED 1
(67 @7

B.4. Proof of Theorem 3

We are now ready to complete the proof of the main theorem:

Proof. By construction, the demand graph H is bipartite between Sy and So. Moreover, H is induced by an s-t maximum
flow on G+, so that each vertex ¢ € Sy routes p; units of flow to Sy and each vertex j € Sy routes sy units of flow to Sp.
Hence, the degree in H of ¢ € Sy is p; and the degree in H of j € Sy is x5, as required.

For any overlapping partition (A, B), combining the two part of Lemma 11 ensures that

dex((4, B) > LA B)

(67

A B 5 gy WA BY) - 4 (S. 7)),

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

which is the required approximation guarantee. The proof for OverlapImprove is entirely analogous.

To bound the running time of HybridImprove, we notice that, for a connected 3. o must lie in the interval
{m, |V|Wg}, or it is not possible to have the trivial s-¢ cut have the same capacity as a non-trivial s-¢ minimum

cut. Hence, performing binary search requires O(log |V| + log W) s-t maxflow computations on graphs G, in which
capacities can be rescaled to be integral and at most | E|W2. This yields the first term in the promised running time. The
second term |E|log(W¢|V'|) accounts for the computation of graph H, which is achieved by a flow-path decomposition of
the s-t maximum flow in G~ via dynamic trees (Goldberg & Rao, 1998).

O

The following simple corollary show that HybridImprove is indeed a cut-improvement algorithm, in that it always
improves the initial input partition.

Corollary 12.)
QA<S7 T) S Q(SCH SO)?

Proof. Because H is bipartite across (S, So) and has degrees proportional to j, we have g7 (So, Sp) = 1. The result then
follows from the quotient cut guarantee of the main theorem. O

C. Other Proofs

Lemma 13 (Lemma 1 in main body). For any A > 0, let (L, C, R) be an optimal solution for the A\-HCUT problem. Let

def def

S=LUCandT = RUC and define € = #(9v(S,T)) /min{u(S),(T)}. Then, (S, T) is an optimal solution to the e-ORC
problem.

Proof. Suppose (S, T) is not optimal. Then, there exists a different overlapping clustering (S’,7”) of smaller objective
value with ;2(S" N T") < min{u(S), u(T)} < e Let LI’ = '\ T', R = T"\ S’ and C = S’ N T". Hence, we have:

w(0p(S",T") + - u(ov(S",17))

min{z(S"), u(T")}
< ORC(S,T") + e < ORC(S,T) + Xe = qx (L, C, R).

CI)\(L/, 0/7 R/) =

This contradicts the optimality of (L, C, R). O

Proof of Theorem 2. It remains to prove the running time result. This is a simple consequence of Theorem 5 in the main
body. The total number of calls to HybridImprove is T' = O(log® [V'|), which yields the polylog bound in the theorem.
The total cost of computing the cut strategy is at most O(log? |V|) - log(|V|W¢) - |E(Hr)|, as | E(H,)| is monotonically
increasing. However, by construction |E(Hr)| < Zthl |E(Hy)| < O(|E(G)] -log(Wg|V])) by the proof of Theorem 3 in
the main body. O

D. Implementation Details
Our implementation is available online (sup, 2021). It departs in a small number of places from the theoretical description of

the HybridImprove algorithm. We highlight them here:

» Following other implementations of cut-improvement algorithms by a subset of co-authors for standard ratio-cut
objectives, rather than performing binary search over «, we initialize « to be the /¢ 1 (S0,5). After each maxflow
operation, we extract the overlapping partition [A, B]c from the s-t mincut in G, and update « to be 1/g¢ 1 (A,B).

* We limit the precision of the value «, a rational number, by approximating it up to a 1.001-factor using Farey sequences.
When running the maximum flow operation, we scale all capacities in G, by the denominator in our representation of
« to ensure all capacities become integral.

3The partitioning problem is trivial if the graph G is disconnected

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

* For the results in this paper, we use a simpler DFS-based algorithm to compute the flow-path decomposition of the flow
routed on G,,. We are currently in the process of implementing dynamic trees to further speed up this operation.

E. Empirical Evaluation

E.1. Comparison with BIGCLAM

Communities | Average community size | Nodes absent
2 3591.5 75931
5 1881.4 78334
20 1030.15 69333
100 594.3 46549

Table 1: BIGCLAM node coverage statistics in cExt ractedDblp graph with n = 83114 vertices

In order to evaluate our algorithm’s performance we considered BIGCLAM (Yang & Leskovec, 2013) and its predecessor
AGMFIT (Yang & Leskovec, 2012). The latter was disqualified because it required a quadratic number of iterations, which
is computationally infeasible for larger graphs. The successor BIGCLAM replaces the discrete step in the EM algorithm
with a continuous one, requiring far fewer iterations. While the running time is no longer a problem, the partitions output
by BIGCLAM do not cover the entire graph. A majority of the nodes belongs to no community, even when the algorithm
is allowed to output a large number of communities. This could ameliorated if only a few nodes were absent from the
communities. However, when a majority of the nodes are unclassified, there is no easy way to convert BIGCLAM’s output
into a partitioning scheme without radically changing the algorithm. The problem definition of BIGCLAM is very elegant,
but unfortunately the current implementation cannot be used as a comparison baseline. It is also conceivable that BIGCLAM
may optimize an objective that is inherently different from ratio-cut objectives. Indeed, BIGCLAM has no restriction against
including high degree nodes in the overlap, which is sub par in our problem definition, as the cost for a node to be included
is proportional to its degree. BIGCLAM may serve as a more useful benchmark when considering the problem of detecting
small overlapping communities in the periphery of a large information network . Indicatively, in Table 1, we present the
average community size and the total uncovered nodes for a number of settings of the parameter regulating the number of
communities output.

E.2. 0SBM Experiments

Table 2a describes the coefficients applied to the scaling log »/» to define the probabilities of including edge between different
parts of the ground-truth tripartition in the 0OSBM model. Table 2b displays the different parameters choices for the graph
generation in our OSBM experiments.

L R C Size L-R-C P-q

Lip ¢ p 10,000 | 0.45-0.45-0.10 | 4-2

Rle p p 30,000 | 0.45-0.45-0.01 | 4-4

Clp p g 100,000 0.6-0.3-0.1 4-6

(a) Edge probability coefficients between two vertices in the 0.745-0.245-0.01 | 4-8

OSBM model. (b) Values used for generating OSBM graphs. € = 0.05.

The results of the experiments on 0SBM were remarkably consistent across the size of the graph and the choice of p and q.
Here and in the paper, we display results for the smallest graphs with n = 10*. Further study is required to find interesting
settings of p and ¢ where threshold phenomena may arise. Figure 5 shows the comparison between cm + improve and
SweepCut for the case when the partition is unbalanced, as given by the third and fourth entry of second column in Table 2b.
The main body of the paper includes the same results for the balanced choice (first and second entry of second column in

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

Network n m time
DBLP 83,114 409,541 | 2-4min
Amazon 334,863 925,872 | 15-18min
Youtube 1,134,890 | 2,987,624 | 55-75min
LiveJournal | 3,997,962 | 17,340,594 5-8h

Table 3: Social networks overlook and range of running times on 5 executions.

Table 2b). As in the balanced case, for large overlap size |C|, both versions of the SweepCut algorithm fail to detect the
ground-truth overlap and have much larger A-HCUT values. However, in this case, SweepCut+HybridImprove actually
often achieves the same value of cm + improve when only looking for an edge partition, but is unable to maintain that
performance when looking for overlaps. Once again, this suggests the need for algorithms that explicitly target overlapping
clustering notions, rather than locally improving edge-based notions.

08 SweepCut + GreedyImprove 0.7

SweepCut + OverlapImprove
cm + improve

0.6

0.1+ SweepCut + GreedyImprove
SweepCut + OverlapImprove
cm + improve

0 : 0 I N T T T —
100 10! 1 2 3 4 5 6 7 8
/X /X

(a) Comparison on unbalanced OSBM with parameters (b) Comparison on unbalanced OSBM with parameters
(|C‘7p7 q, E) = (1007 47 47 €= 005) (|C‘|,p7 q, 6) = (10, 4, 4, €= 005)

Figure 5: Performance of SweepCut against cm+improve on graphs from the 0SBM model with n = 10%. Each graph
displays the performance over 5 samples from the model. The shaded area shows the minimum and maximum values over
the samples, while the bold curve represents the average.

E.3. Large Social and Information Networks

We now describe the quantitative results of the comparison between cm+improve and METIS for the task of finding
balanced overlapping partitions on the large networks in the SNAP database (Leskovec & Krevl, 2014). Table 3 displays our
selection of graphs, together with their diverse sizes, and the running time required by cm+improve. Below, we focus on
the performance as measured by the A-HCUT objective g .

We start with the Amazon graph in Figure 6. The left subfigure here includes data for SweepCut+GreedyImprove,
showing a performance that is two orders of magnitude worse than cm+improve or METIS. The right subfigure excludes
SweepCut+GreedyImprove allowing us to have a closer comparison with METIS. It shows that MET IS, with either
post-processing, slightly outperforms cm+improve, especially for large A, i.e., edge-based cuts. This is not surprising,
as METIS is highly optimized to find sparse balanced edge cuts. The fact that this advantage persists when searching for
overlapping clusters may be an indication of the lack of meaningful overlapping structure over balanced cuts for this network.

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

—e——cm + improve
——e—— METIS + OverlapImprove
METIS + GreedyImprove

—e——cm + improve
——e—— METIS + OverlapImprove 0.012 |-
METIS + GreedyImprove

Spectral + GreedyImprove

0.01

— 0.008

= 0.006
<)
S

ge ([S,T1)

0.004

0.002

O L
0 === . 10° 10! 107
10° 10! 10? 1/A
1/ . .
) (b) Balanced A-HCUT on the Amazon co-purchasing graph with-
(a) Balanced A-HCUT on Amazon copurchasing graph. out Spectral + GreedyImprove.
Figure 6

It is also possible that cm+improve may require a larger number of iterations to achieve its optimal performance or that
our balanced heuristic needs to be refined.

The results for the Youtube and DBLP graphs are shown in Figure 7. For these graphs, cm+improve essentially matches
the performance of METIS which is a testament to the power of our algorithm framework, even in the non-overlapping
settings. The fact

0.06 | 0.04
——e——cm + improve T —e—cm + improve
——e—— METIS + OverlapImprove ——e—— METIS + OverlapImprove
METIS + GreedyImprove 0.035 METIS + GreedyImprove
0.05
0.03 |
0.04 |
—_ —~ 0.025 F
&~ &~
= 0.03 - = 0.02}
= =
) &)
= =
0.015
0.02 |
0.01 F
0.01 F
0.005 |-
0 1 1 1 0 1 1
10° 10! 10% 10° 10° 10! 102
1/A /A
(a) Balanced A-HCUT on Youtube social graph. (b) Balanced A-HCUT on DBLP co-authorship graph.
Figure 7

Future work should further address this comparison by relaxing the balanced constraint or using overlapping balanced
clustering recursively to produce overlapping decompositions of the network. Such decompositions may detect meaningful
overlapping structure at smaller sizes and in localized areas of the graph.

Visualization of Overlapping Clusters in DBLP co-authorship network The DBLP dataset for co-authorship in the
academic field of Computer Science gives us the opportunity to visualize the overlapping communities discovered by
cm+improve and compare them with the known clustering based on the venue of the each paper. Specifically, we built the

Practical Nearly-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering

co-authorship network creating for every paper p a weighted clique on the d-coauthors of paper p. The weight of this clique
is equal to é to ensure that each paper carries the same amount of information, i.e., the resulting random walk on the graphs
consists of choosing a paper uniformly at random and sampling a co-author in this paper uniformly. The natural setting for
the measure weight g is then the degree measure of the graph. The results of running the balanced version of cm+improve
as A decreases are displayed below. We verified our results against METIS+HybridImprove, which outputs essentially
the same tripartitions.

THEORY ! DMW [—& THEORY ! DMW [—E& THEORY 1 DMW
C C C

0.67 0.67 0.67

NET vC NET e NET e

IDM ML IDM ML IDM ML

(a) A = 1. Edge-based partition. (b) A = 1/10. Small overlap. (c) A = 1/300. Large overlap.

Figure 8: Spider plots showing the composition of the tripartition (L, C, R) output by cm+improve. For each set
X € {L,C, R} of this partition and each subarea Y of Computer Science represent, we show the total edge volume of X
coming from papers in area Y over the total edge volume of papers in Y.

The overlapping partitions found are very-well correlated with the edge-based partition capturing a clustering of subareas
corresponding to a left cluster {THEORY,NET, IDM} and a right cluster {DMW,IVC,ML}. As we saw above, this
is expected as the real-world networks in our testbed do not appear to exhibit an overlapping balanced clustering that is
different from the non-overlapping ones. As the first subfigure shows, a few papers from DMW and ML contribute to the
left cluster. Indeed, as the overlap grows nodes with large degree in DMW and ML are the first to be included.

E.4. Recursive Overlapping Bisections

Our algorithm cm+improve can be used as a black box to recursively bisection the graph and identify multiple overlapping
communities. When our algorithm is run without a balance constraint the successive cuts identify the “whiskers” around the
core of the graph (Leskovec et al., 2009). For example, running recursive bisectioning on the Amazon dataset requires 52
cuts before a cut of significant volume is returned. All cuts up to that point have hundreds of nodes, meaning less than 1% of
the graph.

Balanced multicuts are of greater interest as they partition the graph in more interpretable parts. For example, in the DBLP
co-authorship graph we can further refine the found communities and relate them more closely to specific areas.

THEORY 1 ML THEORY I ML THEORY L ML

0.67

NET ve NET vC NET ve

IDM DMW IDM DMW IDM DMW

(a) A = 1/2. Edge-based partition. (b) A = 1/10. Small overlap. (c) A = 1/300. Large overlap.

Figure 9: Partitioning the DBLP co-authorship graph in four communities. The edge based partitions sharply correlate to
specific computing areas. As the overlap increases communities become more rounded, losing their clear definition.

