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Abstract. Let G be a real semisimple algebraic Lie group and H a real reductive algebraic
subgroup. We describe the pairs (G,H) for which the representation of G in L2(G/H) is tempered.
The proof gives the complete list of pairs (G,H) for which L2(G/H) is not tempered.
When G and H are complex Lie groups, the temperedness condition is characterized by the fact
that the stabilizer in H of a generic point on G/H is virtually abelian.
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1. Introduction

1.1. Main results
This paper is the third in a series of papers that also include [2], [3] and [4]. In this
series we study homogeneous spaces G/H where G is a real semisimple Lie group
and H is an algebraic subgroup. More precisely, we study the natural unitary
representation of the group G on the Hilbert space L2(G/H) of square integrable
functions on G/H . In the present paper, as in [2], we focus on the case where H is
reductive.
We will give a characterization of those homogeneous spaces G/H for which this
representation is tempered. We refer to the introduction of both [2] and [3] for
motivations and perspectives on this question. In [2] we discussed the analytic and
dynamical part of our method. In this paper we focus on the algebraic part of our
method. Our main result is the following.

Theorem 1.1. Let G be a real semisimple algebraic group and H a real reductive
algebraic subgroup. One has the implications:
(1) If L2(G/H) is tempered, then the set of points in G/H with amenable stabilizer

in H is dense.
(2) If the set of points in G/H with virtually abelian stabilizer in H is dense then

L2(G/H) is tempered.

The proof will also give a complete list of pairs (G,H) of real
reductive algebraic groups for which L2(G/H) is not tempered.
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This list reduces to the case where G is simple and H is semisimple thanks to
Proposition 2.16 and Lemma 2.15. When G is simple and H is semisimple, this list
is given in Tables 1 and 2 for the complex case, and in Theorem 1.4 for the general
case.
We recall some terminologies in Theorem 1.1. A unitary representation of a locally
compact group G is said to be tempered if it is weakly contained in the regular
representation in L2(G) , see e.g., [1, Appendix F]. An algebraic real Lie group is
said to be amenable if it is a compact extension of a solvable group. A group is said
to be virtually abelian if it contains a 昀椀nite-index abelian subgroup.
We will see in Section 8.5 that in general neither of the converse of these implications
in Theorem 1.1 holds. However, when G and H are complex Lie groups, our
implications become an equivalence, since a reductive amenable complex algebraic
Lie group is always virtually abelian.

Theorem 1.2. Let G be a complex semisimple algebraic group and H a complex
reductive subgroup. Then the unitary representation of G in L2(G/H) is tempered
if and only if the set of points in G/H with virtually abelian stabilizer in H is dense.

We recall that a semisimple Lie group is said to be quasisplit if its minimal parabolic
subgroups are solvable. Then the following result is a particular case of Theorem
1.2.

Example 1.3. Let G1 be a connected real semisimple algebraic Lie group, K1 a
maximal compact subgroup, and G1,C and K1,C their complexi昀椀cations. Then the
regular representation of G1,C in L2(G1,C/K1,C) is tempered if and only if G1 is
quasisplit.

Theorem 1.2 will allow us to give not only a complete description of the pairs (G,H)
of complex reductive algebraic Lie groups for which L2(G/H) is tempered, but also
a complete description of the pairs (G,H) of real reductive algebraic Lie groups for
which L2(G/H) is tempered. The description is as follows.
Thanks to Propositions 8.3 and 8.4, we can assume that G is a real simple Lie
group and H is a real semisimple Lie subgroup of G . The following Theorem 1.4
tells us then that Theorem 1.2 is still true for real Lie groups except for one list of
classical homogeneous spaces and three exceptional homogeneous spaces. We will
use Cartan’s notation, see [11, p.518], for real simple Lie algebras.

Theorem 1.4. Let G be a real simple Lie group and H ⊂ G a real semisimple
Lie subgroup without compact factor, g and h their Lie algebras. Then the regular
representation of G in L2(G/H) is tempered if and only if one of the following
holds:
(i) the set of points in G/H with virtually abelian stabilizer in H is dense;
(ii) g = sl(2m−1,H) and h = sl(m,H)⊕ h2 with m ≥ 1 and h2 ⊂ sl(m−1,H);
(iii) g = e6(−26) and h = so(9, 1) or its subalgebra h = so(8, 1);
(iv) g = e6(−14) and h = so(8, 1).

In other words, the regular representation of G in L2(G/H) is tempered if and
only if either the representation of the complexi昀椀ed Lie group GC in L2(GC/HC) is
tempered or the pair (g, h) is one of the examples (ii), (iii) or (iv).
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We point out that, in examples (ii), (iii) and (iv), the Lie algebra h is included in
a reductive subalgebra h̃ such that (g, h̃) is a symmetric pair. We also point out
that, in examples (iii) and (iv), the real rank of G is 2 and the real rank of H is 1 .

1.2. What has already been proven in [2]
We need some notations. Let G be a real semisimple algebraic group, H a reductive
algebraic subgroup, g and h their Lie algebras and q := g/h . Let a ≡ ah be
a maximal split abelian real Lie subalgebra in h . Let V be a 昀椀nite-dimensional
representation of h : for instance V = h or V = q via the adjoint representation.
Let Y be an element in a , we denote by VY,+ the sum of eigenspaces in V of Y
having positive eigenvalues, and set

ρV (Y ) := TraceVY,+
(Y ).

According to the temperedness criterion given in [2, Thm. 4.1], one has the equiva-
lence

L2(G/H) is tempered ⇐⇒ ρh ≤ ρq. (1)
Here the inequality ρh ≤ ρq means ρh(Y ) ≤ ρq(Y ) , for all Y in a .
The generic stabilizers of G/H will be related to those of q = g/h in Section 8.1.
Thus Theorem 1.1 is a consequence of the following Theorem 1.5.

Theorem 1.5. Let h ⊂ g be a pair of real semisimple Lie algebras and q = g/h.
One has the implications:
(1) ρh ≤ ρq =⇒ the set of points in q with amenable stabilizer in H is dense;
(2) the set of points in q with abelian stabilizer in h is dense =⇒ ρh ≤ ρq .

The 昀椀rst implication of Theorem 1.5 is proven in Proposition 2.8 by a short argument
based on a slice theorem near a generic orbit. The proof of the converse implication is
much longer. We will reduce it in Lemma 2.12 to the case where g and h are complex
and semisimple Lie algebras, i.e. we will have to prove the following Theorem 1.6
which is a special case of Theorem 1.5.

Theorem 1.6. Let h ⊂ g be two complex semisimple Lie algebras and q = g/h.
One has the equivalence:
ρh ≤ ρq ⇐⇒ the set of points in q with abelian stabilizer in h is dense.

Similarly, we can deduce Theorem 1.4 from the following Theorem 1.7 by the
criterion (1).

Theorem 1.7. Let g be a real simple Lie algebra and h a semisimple Lie
subalgebra such that the adjoint group of h has no compact factor. Then ρh ≤ ρq if
and only if one of the following holds:
(i) the set of points in q with abelian stabilizer in h is dense;
(ii) g = sl(2m−1,H) and h = sl(m,H)⊕ h2 with m ≥ 1 and h2 ⊂ sl(m−1,H);
(iii) g = e6(−26) and h = so(9, 1) or its subalgebra h = so(8, 1);
(iv) g = e6(−14) and h = so(8, 1).

1.3. Strategy of proof of Theorem 1.6 for complex g

As we have already mentioned, we give a short proof for the implication ⇒ of
Theorem 1.6 in Chapter 2, and only the converse implication remains to be proven.
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We reduce our analysis in Proposition 2.16 to the case where g is simple. When g is
simple we give a complete classi昀椀cation of the semisimple Lie subalgebras h ⊂ g for
which ρh 6≤ ρq in Tables 1 and 2 and we compute in each case the generic stabilizer.
The proof lasts from Chapter 3 to Chapter 6.
When g is simple and classical, i.e. g = sl(n,C) , g = so(n,C) or g = sp(n,C) ,
the list of such pairs (g, h) is given in Table 1 in Chapter 2. In order to check this
list, we 昀椀rst deal with the case when the standard representation of g (i.e. Cn for
sl(n,C) and so(n,C) , and C2n for sp(n,C)) remains irreducible as a representation
of the subalgebra h in Section 3.3, then we deal with the case where it is reducible
in Section 3.4.
When g is exceptional, the list of such pairs (g, h) is given in Table 2 in Chapter 3.
In order to check this list, we use Dynkin’s list (Tables 3 and 4) in [10] of maximal
semisimple Lie subalgebras h in g (up to conjugacy). We extract, in Section 4.4,
from Dynkin’s classi昀椀cation those h for which ρh 6≤ ρq . Then using this 昀椀rst list,
we give, in Section 4.5, the list of the semisimple Lie algebras h with ρh 6≤ ρq which
are maximal in one of the Lie algebras of the 昀椀rst list. We prove then that there are
no other possibilities for h (Lemma 4.9).
All this analysis relies on explicit upper bounds for an invariant pV associated to
any 昀椀nite-dimensional representation V of h (see Equation (6)). The proof of these
upper bounds are given in Chapter 5 when h is simple and in Chapter 6 when h is
not simple.

1.4. Strategy of the proof of Theorem 1.7 for real g

The proof occupies Chapter 7. The implication (i) ⇒ ρh ≤ ρq reduces to the
complex case (Theorem 1.6) by Proposition 2.2 and Lemma 2.12, whereas the
implication (ii), (iii) or (iv) ⇒ ρh ≤ ρq is straightforward. To see the converse
implication, let g be a real simple Lie algebra and h ( g be a real semisimple Lie
subalgebra for which the group Aut(h) of automorphisms has no compact factor.
We assume that this pair (g, h) does not satisfy (i) , or equivalently, ρhC 6≤ ρqC by
Theorem 1.7, and we want to check that, except for cases (ii), (iii) and (iv), one has
also ρh 6≤ ρq .
When the complexi昀椀ed Lie algebra gC is not simple, equivalently when the Lie
algebra g has a complex structure, we prove in Proposition 7.1 that h contains a
complex semisimple Lie subalgebra h0 such that the pair (g0, h0) already satis昀椀es
ρh0 6≤ ρg/h0 .
When gC is simple, we know that the pair (gC, hC) is in Tables 1 or 2. For each
pair in these tables, we know that there exists a witness vector X in the Cartan
subalgebra jC of hC , i.e. an element X such that ρhC(X) > ρqC(X) (De昀椀nition 7.2).
The main point is to 昀椀nd this witness X in a maximal split abelian subalgebra ah
of h . Using the Satake diagram of h which describes the embedding ah ⊂ jC ∩ h ,
we will check, based on Tables 9 and 10, that it is always possible to 昀椀nd a witness
vector X in ah , except in cases (ii), (iii) and (iv).

1.5. Comments on the proof
This text was written more than 昀椀ve years ago. Indeed we believe that there should
exist a shorter proof for the implication ⇐ in Theorem 1.6 which does not rely on
a case-by-case analysis. This is why we delayed its publication trying to 昀椀nd such a
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simpler proof. This is also why we present in this text only the main structure and
ideas of our long proof leaving the lengthy calculations to the reader.
Relying on Theorem 1.2, we found recently in [4] various temperedness criteria for
L2(G/H) valid for complex algebraic subgroups H of complex semisimple Lie groups
G .
Acknowledgments. The authors are grateful to the IHES and to The University
of Tokyo for their support. The second author was partially supported by JSPS
Kakenhi Grant Number JP18H03669.

2. Notations and preliminary reductions
In this chapter, we prove the 昀椀rst assertion of Theorem 1.5, and explain how the
second assertion of Theorem 1.5 can be deduced from Theorem 1.6. Then the proof
of Theorem 1.6 is reduced to the case where g is simple, for which we shall discuss
in Chapters 3–6.
2.1. Reductive generic stabilizer
Let h be a real semisimple Lie algebra, and V a 昀椀nite-dimensional representation
of h over R . For v in V , we denote by hv ≡ Stabh(v) the stabilizer of v in h .
We recall that hv is said to be reductive if the adjoint representation of hv on h is
semisimple, or equivalently, if the action of hv on V is semisimple.

De昀椀nition 2.1. We say that V has RGS in h if the set {v∈V | hv is reductive}
is dense in V .

Here, “dense” means dense for the locally compact topology. We can equivalently
replace in this de昀椀nitions dense by Zariski dense.
We say that the representation of h in V is self-dual if it is equivalent to the
contragredient representation in the dual space V ∗ . We say that the representation
of h in V is orthogonal (resp. symplectic) if it preserves a nondegenerate symmetric
(resp. skew-symmetric) bilinear form on V .
For instance, when h is a semisimple Lie subalgebra of a semisimple Lie algebra g ,
then the representation of h in g/h is orthogonal. Indeed since the restriction to h

of the Killing form of g is nondegenerate, one can identify g/h with the orthogonal
complementary subspace of h in g . On this space the action of h preserves the
restriction of the Killing form.

Proposition 2.2. Let h be a real semisimple Lie algebra, and V an orthogonal
昀椀nite-dimensional representation of h. Then V has RGS in h.

This will follow from the general lemmas below.
We denote by hC the complexi昀椀ed Lie algebra of h , and by VC the complexi昀椀ed
representation of hC . We say that the representation of hC in VC is orthogonal
(resp. symplectic) if it preserves a nondegenerate symmetric (resp. skew-symmetric)
complex bilinear form.

Lemma 2.3. Let g be a complex semisimple Lie subalgebra of so(n,C). Then
there exists a real Lie subalgebra h of so(n,R) such that its complexi昀椀cation hC is
SO(n,C)-conjugate to g.
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Proof. Let G be the connected algebraic subgroup of SO(n,C) with Lie algebra
g , K a maximal compact subgroup of G and k its Lie algebra. Then we can 昀椀nd
g ∈ SO(n,C) such that H := gKg−1 is contained in the maximal compact subgroup
SO(n,R) of SO(n,C) . Since g = kC , we are done.

Lemma 2.4. Let g be a complex semisimple Lie algebra and W a 昀椀nite-
dimensional representation of g. Assume that W has RGS in g. Then there exists
a reductive Lie subalgebra m of g such that the set of w in W whose stabilizer gw
is conjugate to m contains a non-empty Zariski open subset of W .

“Conjugate” means a “conjugate by the adjoint group G of g”. We say that the Lie
algebra m in Lemma 2.4 is the generic stabilizer of V . It is well de昀椀ned only up to
conjugacy.

Proof of Lemma 2.4. For w in W , we denote by uw the unipotent radical of
its stabilizer gw in g , that is uw is the largest nilpotent ideal of gw all of whose
elements are nilpotent. Let d := min

w∈W
dim gw . We introduce the Zariski open subsets,

W ′ := {w ∈W | dim gw = d} and W ′′ := {w ∈W ′ | dim uw = 0} . By assumption
the set W ′′ is a non-empty Zariski open set. In particular it is connected. Since the
set of conjugacy classes of reductive algebraic Lie subalgebras of g is countable, the
map w 7→ gw must be constant modulo conjugation on W ′′ .

Lemma 2.5. Let h be a real semisimple Lie algebra, and V a 昀椀nite-dimensional
representation of h over R. One has the equivalences:
(1) V is orthogonal ⇐⇒ VC is orthogonal.
(2) V has RGS in h ⇐⇒ VC has RGS in hC .

Proof. (1) The implication ⇒ is obvious. Conversely, suppose that the represen-
tation of hC in VC is orthogonal. Then one has two h-invariant symmetric bilinear
forms A,B : V × V → R such that A +

√
−1B is nondegenerate. In turn, one can

昀椀nd t ∈ R such that A + tB is nondegenerate, showing that the representation of
h in V is orthogonal.
(2) As in the proof of Lemma 2.4, for v in VC , we denote by uC,v the unipotent
radical of its stabilizer hC,v in hC .
Let d := min

v∈VC

dim hC,v and V ′
C := {v∈VC | dim hC,v = d} . Since V ′

C is Zariski open,
it meets V and one has d = min

v∈V
dim hv . One then introduces δ := min

v∈V ′

C

dim uC,v and

V ′′
C := {v ∈ V ′

C | dim uC,v = δ} . Since V ′′
C is Zariski open, it meets V and one has

the equivalences:
V has RGS in h ⇐⇒ δ = 0 ⇐⇒ VC has RGS in hC .

In Lemma 2.5 (2), there exist 昀椀nitely many reductive Lie subalgebras m1, . . . ,mr of
h such that the set of w in V whose stabilizer hw is conjugate to one of the mi

contains a non-empty Zariski open subset of V .
“Conjugate” means a “conjugate by the adjoint group H of h”. We say that the Lie
algebras mi which cannot be removed from this list in Lemma 2.5 are the generic
stabilizers of V . They are well-de昀椀ned only up to conjugacy and permutation.
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Proof of Proposition 2.2. We extend the quadratic form on V to a complex qua-
dratic form on VC . Applying Lemma 2.3 to the complexi昀椀ed representation of hC in
VC , one 昀椀nds a real form k of the Lie algebra hC and a k-invariant real form V0 of
VC such that the restriction of the quadratic form to V0 is positive. Since all the Lie
subalgebras of so(n,R) are reductive, V0 has RGS in k . Applying twice Lemma 2.5
(2), we deduce successively that VC has RGS in hC and that V has RGS in h .

2.2. Function ρV and invariant pV

Let h be a real Lie algebra, and V a 昀椀nite-dimensional representation of h over R .
For an element Y in h , we consider eigenvalues of Y in the complexi昀椀cation VC ,
and write VC = V+⊕V0⊕V− for the direct sum decomposition into the largest vector
subspaces of VC on which the real part of all the (generalized) eigenvalues of Y are
positive, zero, and negative, respectively. We de昀椀ne the non-negative functions ρ+V
and ρV on h by

ρ+V (Y ) :=the real part of Trace(Y |V+
),

ρV (Y ) :=
1

2
(ρ+V (Y ) + ρ+V (−Y )),

where Trace denotes the trace of an endomorphism of a vector space.
By de昀椀nition, one always has the equality ρV (−Y ) = ρV (Y ) . Moreover, when the
action of h on V is trace-free, one has the equality

ρV (Y ) = ρ+V (Y ) for all Y ∈ h .

The function denoted by ρV in [2, Sect. 3.1] is what we call now ρ+V .
Suppose h is a real reductive Lie algebra and V is a semisimple representation. Let
a ≡ ah be a maximal split abelian real Lie subalgebra in h . This subalgebra is a
real vector space whose dimension ` is the real rank of h , to be denoted by rankR h .
Then ρV is determined completely by its restriction to a , and actual computations
of ρV in Chapters 5–7 will be carried out by using the weight decomposition of V
with respect to a , which we explain now. Let P (V, a) be the set of weights of a in
V , i.e. the set of linear forms α ∈ a∗ for which the weight space

Vα := {v ∈ V | Y v = α(Y )v , ∀Y ∈ a}
is nonzero. For such a weight α we set mα := dimVα and |α| := max(α,−α) .
By de昀椀nition the restriction of ρV to the subspace a is given by the formula

ρV = 1
2

∑
mα|α| , (2)

where the sum is taken over all the weights α ∈ P (V, a) .
Since this function ρV : a → R≥0 is very important in our analysis, we begin with
a few elementary but useful comments. This function ρV is invariant under the
Weyl group W of the (restricted) root system Σ(h, a) . Moreover the function ρV is
convex, continuous and is piecewise linear in the sense that there exist 昀椀nitely many
convex polyhedral cones which cover a and on which ρV is linear.
For two real semisimple representations V ′ , V ′′ of h , one has

ρV ′⊕V ′′ = ρV ′ + ρV ′′ . (3)
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We denote by V ∗ the contragredient representation of V . Then one has

ρV ∗ = ρV , (4)
ρV⊕V ∗ = 2ρV . (5)

When V is self-dual, i.e., when V ∗ is isomorphic to V as an h-module, each nonzero
weight α occurs in pair with its opposite −α and ρV is equal to

ρ+V =
∑

α∈P (V,a)

mαα+

where α+ := max(α, 0) . When V = h is the adjoint representation, this function
ρh coincides with twice the “usual ρ” on a positive Weyl chamber a+ with respect
to the positive system Σ+(h, a) . For other representations V , the maximal convex
polyhedral cones on which ρV is linear are most often much smaller than the Weyl
chambers.
We introduce the invariant of an h-module V by

pV := inf{t > 0 | ρh ≤ t ρV }. (6)

By de昀椀nition, pV = ∞ if V has nonzero 昀椀xed vectors of h . In general, for a 昀椀nite-
dimensional representation of h on a real vector space V , one has the equivalences:

ρh ≤ ρV ⇐⇒ pV ≤ 1 , (7)

ρh ≤ ρV⊕V ∗ ⇐⇒ pV ≤ 2 . (8)

Let us explain why this invariant pV is relevant. Indeed, the main results of [2] may
be reformulated as follows. We recall that a unitary representation π of a locally
compact group G on a Hilbert space H is called almost Lp (p ≥ 2) if there exists a
dense subset D ⊂ H for which the matrix coe昀케cients g 7→ (π(g)u, v) are in Lp+ε(G)
for all ε > 0 and all u, v in D . If G is a semisimple Lie group, π is almost L2 if
and only if π is tempered [9]. Suppose H is a real reductive algebraic Lie group
with Lie algebra h . For a positive even integer p and for an algebraic representation
H → SL(V ) , one has the following equivalences ([2, Thm. 3.2])

L2(V ) is H-tempered ⇐⇒ pV ≤ 2,

L2(V ) is H-almost Lp ⇐⇒ pV ≤ p.

Moreover, for a real semisimple algebraic group G and a real reductive algebraic
subgroup H , one has the following equivalences ([2, Thm. 4.1]):

L2(G/H) is G-tempered ⇐⇒ pg/h ≤ 1, (9)

L2(G/H) is G-almost Lp ⇐⇒ pg/h ≤ p− 1.

The inequality ρg/h ≤ 1 in (9) is nothing but the criterion (1) by (7).
Hence, we would like to describe all the orthogonal representations V such that
pV ≤ 1 , i.e., ρh ≤ ρV . In particular, we would like to describe all the representations
V such that pV ≤ 2 , or equivalently, ρh ≤ ρV⊕V ∗ .
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We end this section by a useful remark. We note that, when V is a direct sum of
two subrepresentations V = V ′ ⊕ V ′′ , then one has the inequality

p−1
V ≥ p−1

V ′ + p−1
V ′′ (10)

as one sees from (3) and from the following equivalent de昀椀nition of pV :

p−1
V = min

Y ∈a\{0}

ρV (Y )

ρh(Y )
. (11)

In general, the equality in (10) may not hold, but if V is of the form

V = V ′ ⊕ · · · ⊕ V ′

︸ ︷︷ ︸
m

⊕ (V ′)∗ ⊕ · · · ⊕ (V ′)∗︸ ︷︷ ︸
n

,

then one has pV =
1

m+ n
pV ′ . (12)

2.3. Abelian and amenable generic stabilizer
Let h be a real reductive Lie algebra. We say that a subalgebra l is amenable
reductive if it is reductive and if the restriction of the Killing form of h to [l, l] is
negative. Let V be a 昀椀nite-dimensional representation of h and de昀椀ne for every
v ∈ V : hv := {X ∈ h | X · v = 0} .

De昀椀nition 2.6 (AGS and AmGS). We say that
(1) V has AGS in h if the set {v ∈ V | hv is abelian reductive} is dense in V .
(2) V has AmGS in h if the set {v∈V | hv is amenable reductive} is dense in V .

Remark 2.7. In the 昀椀rst de昀椀nition, it is equivalent to say Zariski dense instead
of dense. However in the second de昀椀nition, it is not equivalent to say Zariski dense
instead of dense. Indeed, in the natural representation R4 of so(3, 1) , the set of
points v with reductive amenable stabilizer is Zariski dense but is not dense.

The statement (1) in Theorem 1.5 is a special case of the following proposition.

Proposition 2.8. Let h be a real semisimple Lie algebra and V an orthogonal
representation of h. One has the implication:

ρh ≤ ρV =⇒ V has AmGS in h. (13)
Moreover, if one of the generic stabilizers m of V has the same real rank as h, then
the converse is true.
Proof. By Proposition 2.2, m is reductive. Then Proposition 2.8 follows from
Lemma 2.9 below and from the following equivalence for a reductive Lie algebra m :
ρm = 0 ⇐⇒ m is amenable.

Lemma 2.9. Let h be a real semisimple Lie algebra, V an orthogonal represen-
tation of h, and m one among the 昀椀nitely many generic stabilizers mi of V . Let
t ≥ 1. One has the implication:

ρh ≤ tρV =⇒ ρm ≤ (t− 1)ρh/m. (14)
Moreover, if m and h have the same real rank, the converse is true.
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Let am ⊂ ah be Cartan subspaces of m and h . We recall that ρh and ρV are
functions on ah while ρm and ρh/m are functions on am .
Proof. We can assume the representation of h to be faithful. Let H be an
algebraic subgroup of GL(V ) with Lie algebra h . Since V has RGS in h , we can
昀椀nd a slice Σ of points v of V whose stabilizer M in H has Lie algebra m and an
open neighborhood of v foliated by H -orbits. The tangent space at v to the orbit
Hv is isomorphic as a representation of M to h/m . Since M preserves the leaves
of the foliation the quotient V/(h/m) is a trivial representation of m . Hence, for X
in am , one has the equivalences :

ρh(X) ≤ t ρV (X) ⇐⇒ ρh(X) ≤ t ρh/m(X)

⇐⇒ ρm(X) ≤ (t− 1) ρh/m(X).

Our claims follow since, if h and m have the same real rank, one has am = ah .
The converse to Proposition 2.8 is not true, but we conjecture that a kind of converse
is true:

Conjecture 2.10. Let h be a real semisimple Lie algebra and V an orthogonal
representation of h . One has the implications:

V has AGS in h =⇒ ρh ≤ ρV . (15)

Remark 2.11. We shall see that Conjecture 2.10 holds in the following settings:
(1) h is simple (Corollary 4.4);
(2) there is a semisimple Lie algebra g containing h as a subalgebra such that
V = g/h (Theorem 1.7).

2.4. Real and complex Lie algebras
We see from Lemma 2.12 below that the second statement of Theorem 1.5 follows
from Theorem 1.6. We recall that a real semisimple Lie algebra is split if its real
rank and complex rank coincide.

Lemma 2.12. Let h be a real semisimple Lie algebra, V a 昀椀nite-dimensional
representation of h, and VC the complexi昀椀cation of V .
(1) Assume that V has RGS in h (De昀椀nition 2.1). Then one has the equivalence:

V has AGS in h ⇐⇒ VC has AGS in hC.
(2) One has the implication: ρhC ≤ ρVC

=⇒ ρh ≤ ρV . (16)
Moreover, the converse is true when h is a split real semisimple Lie algebra.

The proof of Lemm3 2.12 is straightforward and is left to the reader.
According to Proposition 2.8, and to Lemma 2.12, the following Conjecture 2.13 is
equivalent to Conjecture 2.10.

Conjecture 2.13. Let h be a complex semisimple Lie algebra and V an orthog-
onal representation of h over C . One has the equivalence:

ρh ≤ ρV ⇐⇒ V has AGS in h. (17)

Since the direct implication =⇒ follows from Proposition 2.8, one only has to
understand the converse implication ⇐= .
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2.5. Representations of nonsimple Lie algebras
The following Lemma 2.14 gives useful upper bounds for the invariant pV when the
semisimple Lie algebra h is not simple. We collect some basic properties of the
function ρV (2) and the invariant pV (6) for representation V of h .

Lemma 2.14. Let h = h1 ⊕ h2 be a real semisimple Lie algebra, which is the
direct sum of two ideals h1 , h2 and V a 昀椀nite-dimensional representation of h.
(1) For all X1 in h1 and X2 in h2 , one has

ρV (X1) ≤ ρV (X1 +X2). (18)
(2) Assume that V = V1 ⊗ V2 where, for i = 1, 2, Vi are representations of hi of

dimension di . Then one has
pV ≤ pV1

d2
+

pV2
d1

. (19)
(3) Assume now that V = V1 ⊕ V2 where, for i = 1, 2, Vi are representations of h

such that ρhi ≤ ρVi
. Then one has ρh ≤ ρV .

Proof. (1) Let a be an eigenvalue of X1 in V , and b1 , . . . , br eigenvalues of
X2 in Ker(X1 − a idV ) counted with multiplicities. Since h2 is semisimple, one has∑r

j=1 bj = 0 . In turn, ra =
∑r

j=1(a+ bj) , yielding

dimKer(X1 − a idV )|Re a| ≤
r∑

j=1

|Re(a+ bj)|.

Hence ρV (X1) ≤ ρV (X1 +X2) .
(2) Take any X = X1 +X2 ∈ h = h1 ⊕ h2 . By the 昀椀rst statement, one has

ρh(X) = ρh1(X1) + ρh2(X2) ≤ pV1
ρV1

(X1) + pV2
ρV2

(X2)

≤ pV1
d2

ρV (X1) +
pV2
d1

ρV (X2) ≤
(

pV1
d2

+
pV2
d1

)
ρV (X).

Hence the second statement follows.
(3) Take any X = X1 +X2 ∈ h = h1 ⊕ h2 . By the 昀椀rst statement, one has

ρV (X1 +X2) = ρV1
(X1 +X2) + ρV2

(X1 +X2) ≥ ρV1
(X1) + ρV2

(X2),

whereas ρh(X1 +X2) = ρh1(X1) + ρh2(X2) . Hence the third statement follows.

2.6. Reduction to simple Lie algebra
A real semisimple Lie algebra h is said to be Ad-compact if the group of automor-
phisms Aut(h) is compact. We denote by hnc the sum of the ideals of h which are
not Ad-compact.
The following Lemma 2.15 allows us to assume the reductive Lie subalgebra to be
semisimple without Ad-compact ideals.

Lemma 2.15. Let g be a real semisimple Lie algebra, h a reductive Lie subalgebra
of g, and s the semisimple Lie algebra s := [h, h]nc . One has the equivalences :

ρh ≤ ρg/h ⇐⇒ ρs ≤ ρg/s,

g/h has AGS in h ⇐⇒ g/s has AGS in s ,

g/h has AmGS in h ⇐⇒ g/s has AmGS in s .

The proof of Lemma 2.15 is left to the reader.
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The following Proposition 2.16 tells us that, in order to prove Theorem 1.6, we can
assume g to be simple.

Proposition 2.16. Let g be a real semisimple Lie algebra, h a semisimple Lie
subalgebra of g, q := g/h, g = g1 ⊕ · · · ⊕ gr a decomposition into ideals gj , and,
for 1 ≤ i ≤ r , hi := h ∩ gi and qi := gi/hi . One has the equivalences :

(1) ρh ≤ ρq on h ⇐⇒ ρhi ≤ ρqi on hi for all 1 ≤ i ≤ r;

(2) q has AGS in h ⇐⇒ qi has AGS in hi, for all 1 ≤ i ≤ r;

(3) q has AmGS in h ⇐⇒ qi has AmGS in hi, for all 1 ≤ i ≤ r.

Before giving a proof of Proposition 2.16, we set up some notation. We write
πi : g → gi for the i-th projection (1 ≤ i ≤ r). Given a subspace V in g1⊕· · ·⊕gr ,
we de昀椀ne the “hull of V ” by Ṽ := π1(V )⊕ · · · ⊕ πr(V ) .
For each σ ∈ Map({1, 2, . . . , r}, {+,−}) , we de昀椀ne a vector space V σ by

V σ := {(σ(1)v1, . . . , σ(r)vr) | (v1, . . . , vr) ∈ V }.

Then Ṽ =
∑

σ V
σ where the sum is taken over all σ . We note that V ( Ṽ if and

only if V ∩ gi ( πi(V ) for some 1 ≤ i ≤ r , or equivalently, V 6= V σ for some σ .
If V is a semisimple Lie algebra, then so is Ṽ because πi(V )s are semisimple ideals.
If [V ′, V ′′] = {0} , then [Ṽ ′, Ṽ ′′] = {0} . In particular, if the Lie algebra V is a direct
sum of two semisimple ideals V ′ and V ′′ , then its hull Ṽ is also a direct sum of
semisimple ideals Ṽ ′ and Ṽ ′′ ,

Ṽ = Ṽ ′ ⊕ Ṽ ′′. (20)

Proof of Proposition 2.16. For a nonempty set I ⊂ {1, . . . , r} , we de昀椀ne an
ideal hI of h inductively on the cardinality #I of I by

hI := hi = h ∩ gi when I = {i} (1 ≤ i ≤ r)

and by the following characterization:

h ∩ (
⊕

i∈I

gi) = hI ⊕ (
⊕

J(I

hJ) when #I ≥ 2 .

Then one sees readily from the de昀椀nition of hI :

h =
⊕

I

hI (direct sum of semisimple ideals), (21)

hI ∩ (
⊕

j∈J

gj) = {0} if I 6⊂ J . (22)

In particular, hI ∩ (hI)
σ = {0} for any σ with σ|I 6= ±1I . (23)

Here σ|I 6= ±1I means that σ(i) 6= σ(j) for some i, j ∈ I .
We choose an hI -submodule qI in h̃I with a direct sum decomposition

h̃I = hI ⊕ qI .
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We note that qI = {0} when #I = 1 . By (23), if #I ≥ 2 , then we may and do take
qI to contain the hI -submodule (hI)

σ for some σ . Since (hI)
σ ' hI as hI -modules,

this implies that if #I ≥ 2 ,
• ρhI ≤ ρqI on hI , (24)
• qI has AGS in hI . (25)

Moreover, if i ∈ I , one has πi(hI) =

{
hi when #I = 1,
πi(qI) when #I ≥ 2.

.

By (20) and (21), one has

h̃ =
⊕

I

h̃I (direct sum of semisimple ideals).

Taking the projection to the i-th component, one obtains πi(h) = ⊕Iπi(hI) , hence

πi(h) = hi ⊕ πi(
⊕

#I≥2

qI). (26)

For each i (1 ≤ i ≤ r), we write gi = πi(h)⊕si by taking a πi(h)-invariant subspace
si in gi , and set

s := s1 ⊕ · · · ⊕ sr, and q := s⊕ (
⊕

#I≥2

qI). (27)

Then q ' g/h as an h-module because one has the following direct sum decompo-
sitions:

g = h̃⊕ s = (
⊕

I

h̃I)⊕ s =
⊕

I

hI ⊕
⊕

I

qI ⊕ s = h⊕ q.

Moreover, (26) tells

gi = πi(h)⊕ si = hi ⊕ si ⊕ πi(
⊕

#I≥2

qI) = hi ⊕ πi(q). (28)

In particular, qi = gi/hi is expressed as an hi -module:

qi ' si ⊕ (trivial hi -module). (29)

(1) Suppose ρh ≤ ρq . Then for any H ∈ hi ,

ρhi(H) ≤ ρh(H) ≤ ρq(H) = ρs(H) +
∑

#I≥2

ρqI (H) = ρsi(H)

because hi acts trivially on all sj with j 6= i and qI with #I ≥ 2 .
Conversely, suppose ρhi ≤ ρqi holds for all 1 ≤ i ≤ r . Take any H ∈ h , and write

H =
∑

I

HI =
r∑

i=1

Hi +
∑

#I≥2

HI ∈ h =
r⊕

i=1

hi ⊕
⊕

#I≥2

hI .

Then ρh(H) =
∑

I

ρhI (H) =
∑

I

ρhI (HI) =
r∑

i=1

ρhi(Hi) +
∑

#I≥2

ρhI (HI).
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By the assumption ρhi(Hi) ≤ ρqi(Hi) and by (29) and (24), one obtains

ρh(H) ≤
r∑

i=1

ρsi(Hi) +
∑

#I≥2

ρqI (HI) = ρs(
r∑

i=1

Hi) +
∑

#I≥2

ρqI (H).

By Lemma 2.14 (1), one has ρs(
∑r

i=1 Hi) ≤ ρs(H) , hence ρh(H) ≤ ρq(H) .
(2) Suppose q has AGS in h . Let U be a dense subset of q such that Stabh(x) ≡ hx
is abelian and reductive for all x ∈ U . Then for all 1 ≤ i ≤ r , Stabhi(πi(x)) =
Stabhi(x) is abelian and reductive. Since πi(U) is dense in qi = gi/hi ' πi(q) by
(28), qi has AGS in hi .
Conversely, suppose qi has AGS in hi for all 1 ≤ i ≤ r . By (29), si has also AGS

in hi . By (25), one can 昀椀nd a dense subset W of q =
r⊕

i=1

si ⊕
⊕

#I≥2

qI , see (27), such

that if x =
∑r

i=1 yi +
∑

#I≥2 zI ∈ W then Stabhi(yi) (1 ≤ i ≤ r) and StabhI (zI)
(#I ≥ 2) are all abelian and reductive. We now observe

Stabh(x) =
r⋂

i=1

Stabh(yi) ∩
⋂

#I≥2

Stabh(zI)

=
r⋂

i=1

Stabh(yi) ∩ (
r⊕

i=1

hi ⊕
⊕

#I≥2

StabhI (zI)).

Therefore the (splitting) exact sequence 0 → ⊕r
i=1hi → h → ⊕#I≥2hI → 0 induces

an exact sequence of Lie algebras:

0 →
r⊕

i=1

Stabhi(yi) → Stabh(x) →
⊕

#I≥2

StabhI (zI).

By Proposition 2.2, the Lie algebra Stabh(x) is reductive for x in an open dense
subset of q . The above exact sequence tells us that it is also abelian.
(3) The proof parallels to that of (2).

3. Classical simple Lie algebras
In this chapter we give a classi昀椀cation of the pairs (g, h) of complex semisimple
Lie algebras satisfying ρh 6≤ ρg/h in the case where g is classical simple, and in
particular, prove Theorems 1.6 and 1.2 for g classical simple.
Throughout this chapter, g is a complex classical simple Lie algebra, h is a complex
semisimple Lie subalgebra {0} 6= h ( g , q := g/h , h̃ is the normalizer of h in g ,
m is the generic stabilizer of q in h , and ms := [m,m] . “Classical” means that
g = sl(Cn) , so(Cn) or sp(C2n) . We will denote by V the standard representation
of g in Cn , Cn or C2n respectively.

3.1. Main list for classical Lie algebras
We will use the notations sln , son and spn for sl(Cn) , so(Cn) and sp(C2n) and
also aℓ , bℓ , cℓ , dℓ for slℓ+1 , so2ℓ+1 , spℓ , so2ℓ , and g2 , f4 , e6 , e7 , e8 for the 昀椀ve
exceptional simple Lie algebras.
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Theorem 3.1. Let g = sln , son or spn be a complex classical simple Lie algebra.
The complex semisimple Lie subalgebras h ( g satisfying ρh 6≤ ρq form the list in
Table 1. In this list, q does not have AGS in h.

Case g max. h m non max.h m parameters
p ≥ q ≥ 1

A1 slp+q slp⊕slq slp−q⊕Cq−1 slp⊕h2 ⊃ slp−q p≥q+2 h2⊂slq

A2 sl2p spp (sl2)
p p ≥ 2

BD1 sop+q sop⊕soq sop−q sop⊕h2 sop−q
p≥q+3
q 6= 2

h2⊂soq

sop+2 sop sop−2 p≥5

D4 so7+1 g2 sl2 g2
irr
↪→ so7

B4 so8+1 so7 sl3 so7
irr
↪→ so8

D5 so8+2 so7 sl2 so7
irr
↪→ so8

D2 so2p slp ⊃ (sl2)
[p/2] p ≥ 3

B3 so7 g2 sl3 g2
irr
↪→ so7

C1 spp+q spp⊕spq spp−q⊕(sp1)
p spp⊕h2 ⊃ spp−q p≥q+1 h2⊂spq

C2 sp2p spp⊕spp (sp1)
p p ≥ 1

Figure 1:Table 1: Pairs (g, h) with ρh 6≤ ρq for g classical simple

The left-hand side of Table 1 lists the semisimple Lie subalgebras h ( g which are
maximal (among the semisimple Lie subalgebras of g), while the right-hand side
lists non-maximal ones. Note that when a maximal h does not contain a proper
semisimple subalgebra h′ with ρh′ 6≤ ρq′ , one has a blank in the right-hand side (A2,
D2, B3, C2). The blanks on the left-hand side (the second case of BD1, D4, B4, D5)
means that the non-maximal h is a subalgebra of a maximal semisimple subalgebra
h′ which already occurred in another row (BD1 with q = 1).
Note that in Table 1, the pair (so7, g2) is the only one for which h is maximal and
(g, h̃) is not a symmetric pair.
In case D2 , the morphisms slp ↪→ so2p are those for which h̃ are the stabilizers of
a pair of transversal isotropic p-planes in C2p .
In the Cases B3 and D4 , the morphisms g2 ↪→ son (n = 7, 8) are given by the
7-dimensional irreducible representation g2

irr
↪→ so7 , plus n−7 copies of the trivial

one-dimensional representation.
In the Cases B4 and D5 , the morphisms so7 ↪→ son (n = 9, 10) are given by the
8-dimensional irreducible representation so7

irr
↪→ so8 , called the spin representation,

plus n−8 copies of the trivial one-dimensional representation. Note that the pair
so7

irr
↪→ so8 itself is not included in the left-hand side of Table 1, because it is

isomorphic to the standard pair so7 ⊂ so8 by an outer automorphism of so8 .
The strategy of the proof of Theorem 3.1 is to deal 昀椀rst with natural examples of pairs
(g, h) where h is maximal in g : for symmetric pairs in Section 3.2, for irreducible
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representations in Section 3.3, and for reducible representations in Section 3.4. The
proof of Theorem 3.1 is given in Section 3.5, except that most of the technical
estimates are postponed to Chapter 6.

3.2. Classical symmetric pairs
We 昀椀rst deal with the seven families of pairs (g, h) such that (g, h̃) is a classical
symmetric pair, where h̃ is the normalizer of h in g . We give a necessary and
su昀케cient condition for ρh 6≤ ρq . We also list the generic stabilizer m , which is
readily computed by using the Satake diagram of the structure theory of symmetric
pairs (g, h̃) , see [11, Chap. 10] for instance.

Proposition 3.2. Let p ≥ q ≥ 1.
• If g = slp+q ⊃ h = slp ⊕ slq , then m ' slp−q ⊕ Cq and ρh 6≤ ρq ⇔ |p− q| ≥ 2.
• If g = sop+q ⊃ h = sop ⊕ soq , then m ' sop−q and ρh 6≤ ρq ⇔ |p− q| ≥ 3.
• If g = spp+q ⊃ h = spp ⊕ spq , then m ' spp−q ⊕ (sp1)

q and ρh 6≤ ρq .

Proof. This follows from Proposition 6.6 because in these examples, one has
respectively q = C ⊕ (V ⊕ V ∗) , q = V and q = V where V = Cp ⊗ Cq or
C2p ⊗ C2q .

Proposition 3.3. Let p ≥ 1 and set ` := [p
2
], ε := p− 2` ∈ {0, 1}.

• If g = slp ⊃ h = sop , then m = {0} and ρh ≤ ρq .
• If g = sl2p ⊃ h = spp , then m ' (sl2)

p and ρh 6≤ ρq .
• If g = so2p ⊃ h = slp , then m ' (sl2)

ℓ ⊕ Cε and ρh 6≤ ρq .
• If g = spp ⊃ h = slp , then m = {0} and ρh ≤ ρq .

Proof. This follows from Propositions 5.1, 5.2, 5.3 and 5.4 because in these
examples, one has respectively q = S2

0C
p ' S2Cp/C , q = Λ2

0C
2p ' Λ2C2p/C ,

q = C⊕ (Λ2Cp ⊕ dual) , and q = C⊕ (S2Cp ⊕ dual) .

3.3. Irreducible representations
In this section we deal with semisimple Lie subalgebras h of g = sln , son or spn
whose action on V = Cn , Cn or C2n is irreducible.
The 昀椀rst proposition deals with the case when h is not simple, i.e. h is the sum of
two non-zero ideals h1 and h2 , i.e., h = h1⊕h2 . Then h is realized as a subalgebra
of g via the outer tensor product of the natural representations of h1 and h2 .

Proposition 3.4. Suppose p > 1 and q > 1.
• If g = slpq ⊃ h = slp ⊕ slq , then m = {0} and ρh ≤ ρq .
• If g = sopq ⊃ h = sop ⊕ soq , then m = {0} and ρh ≤ ρq .
Suppose p ≥ 1 and q > 1.
• If g = so4pq ⊃ h = spp ⊕ spq , then m = {0} and ρh ≤ ρq .
• If g = sppq ⊃ h = spp ⊕ soq , then m = {0} and ρh ≤ ρq .

The computation of the generic stabilizers m is straightforward, and the inequality
ρh ≤ ρq in Proposition 3.4 follows from Proposition 6.7.
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Proposition 3.5. Let g = sln , son or spn and h ( g a simple Lie subalgebra
which is irreducible on V and satis昀椀es ρh 6≤ ρq .
• If g = sln , then n = 2p, h = spp and m ' (sl2)

p .
• If g = son , then n = 7, h = g2 , m ' sl3 or n = 8, h = so7 , m ' so6 .
• If g = spn then such an h does not exist.

The proof of Proposition 3.5 relies on explicit computations of ρh and ρq .

3.4. Example of reducible representations
In this section, we deal with semisimple Lie subalgebras h of g = sln , son or spn
whose action on V = Cn , Cn or C2n is reducible. We have already discussed those
subalgebras h which are maximal in g in Propositions 3.2 and 3.3. We focus on the
most important examples for which h is not maximal.
The 昀椀rst proposition deals mainly with the case where the vector space V has more
than two irreducible components.
Proposition 3.6. Let r ≥ 1, n ≥ n1 + · · ·+ nr with n1 ≥ · · · ≥ nr ≥ 1.
• If g = sln ⊃ h = sln1

⊕ · · · ⊕ slnr
, then

ρh 6≤ ρq ⇔ 2n1 ≥ n+ 2. In this case, one has ms ' sl2n1−n .
• If g = son ⊃ h = son1

⊕ · · · ⊕ sonr
, then

ρh 6≤ ρq ⇔ 2n1 ≥ n+ 3. In this case, one has m ' so2n1−n .
• If g = spn ⊃ h = spn1

⊕ · · · ⊕ spnr
, then

ρh 6≤ ρq ⇔ 2n1 ≥ n+ 1 or n = 2n1 = 2n2 .
In this case, one has m ⊃ sp2n1−n or m ' (sp1)

n1 respectively.

When r = 2 , Proposition 3.6 is Proposition 3.2.
When r = 3 , Proposition 3.6 follows from Proposition 6.10.
When r ≥ 4 , the proof for the implication ⇒ is by induction on r replacing the
last two integers nr−1 and nr by their sum nr−1+nr and reordering.
The opposite implication ⇐ is easier. To see this, let h1 be the 昀椀rst factor of h , and
we set c = 2, 3 , and 1 for g = sln , son , and spn , respectively. Then one computes

pg/h1 = (n1 + 1− c) / (n− n1),

by using (12) and Propositions 5.1, 5.2, 5.4, and 5.3, respectively. Hence
ρh1 6≤ ρg/h1 if 2n1 ≥ n+ c , (30)

and thus the su昀케ciency of the inequality in Proposition 3.6 is shown.
The second proposition deals mainly with the case where the vector space V has
two irreducible components.
Proposition 3.7. Let p ≥ 1, q ≥ 1.
• If g = sl2p+q ⊃ h = spp ⊕ slq , then ρh 6≤ ρq ⇔ q ≥ 2p+ 2.

In this case, one has ms ' slq−2p .
• If g = so2p+q ⊃ h = slp ⊕ soq , then ρh 6≤ ρq ⇔ q ≥ 2p+ 3.

In this case, one has m ' soq−2p .
• If g = spp+q ⊃ h = slp ⊕ spq , then ρh 6≤ ρq ⇔ q ≥ p+ 1.

In this case, one has ms ' spq−p .
• If g = so4p ⊃ h′ = sl2p ⊃ h = spp and p ≥ 2, then one has ρh ≤ ρq .
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Proposition 3.7 follows from Proposition 6.8. Alternatively, the implication ⇐ in
Proposition 3.7 follows readily from (30).
The second proposition deals mainly with the case where the vector space V has
two irreducible components.

Proposition 3.8. Let q ≥ 1.
• If g = so7+q ⊃ h = g2 ⊕ soq , then ρh 6≤ ρq ⇔ q = 1 or q ≥ 10.

In this case, one has m ' sl2 or m ' soq−7 .
• If g = so8+q ⊃ h = so7 ⊕ soq , then ρh 6≤ ρq ⇔ q = 1, q = 2, or q ≥ 11.

In this case, one has m ' sl3 , m ' sl2 or m ' soq−8 .

Proposition 3.8 follows from Proposition 6.9.

3.5. Checking Theorem 3.1
In this section, we check Theorem 3.1. Let V be Cn or C2n when g = sln and son
or g = spn , respectively. We have to deal now with pairs (g, h) for which the action
of h on V is reducible.

Proposition 3.9. Let p ≥ q ≥ 1

• Let g = slp+q , and h ⊂ g a semisimple Lie subalgebra included in slp ⊕ slq
irreducible on Cp . One has the equivalence :

ρh 6≤ ρq ⇐⇒ p ≥ q + 2 and h = slp ⊕ h′ with h′ ⊂ slq . (31)

• Let g = sop+q , and h ⊂ g a semisimple Lie subalgebra included in sop ⊕ soq ,
irreducible on Cp . One has the equivalence :

ρh 6≤ ρq ⇐⇒





either p ≥ q+3 and h = sop⊕h′ with h′ ⊂ soq ;
or p = 7, q = 1 and h = g2

irr
↪→ so7 ;

or p = 8, q ≤ 2 and h = so7
irr
↪→ so8 .

(32)

• Let g = spp+q , and h ⊂ g a semisimple Lie subalgebra included in spp ⊕ spq ,
irreducible on C2p . One has the equivalence :

ρh 6≤ ρq ⇐⇒
{

either p ≥ q + 1 and h = spp ⊕ h′ with h′ ⊂ spq ;
or p = q and h = spp ⊕ spp . (33)

The implication ⇐ is straightforward. To see the nontrivial implication ⇒ , we
observe that ρk2 ≤ ρg/k on k2 as in (30), where k = k1⊕k2 and (g, k) = (slp+q, slp⊕slq) ,
(sop+q, sop ⊕ soq) , or (spp+q, spp ⊕ spq) with p ≥ q . Then the implication ⇒
in Proposition 3.9 follows from Lemma 3.10 below and from the three previous
Propositions 3.5, 3.7 and 3.8.

Lemma 3.10. Let g be a semisimple Lie algebra, k ⊂ g a semisimple Lie
subalgebra which is a direct sum k = k1⊕ k2 of two ideals of k, h1 ⊂ k1 a semisimple
Lie subalgebra and h := h1 ⊕ k2 . Assume that ρh1 ≤ ρk1/h1 and ρk2 ≤ ρg/k , then one
has ρh ≤ ρq .

Lemma 3.10 is a special case of Lemma 2.14 (3).
Theorem 3.1 follows from Dynkin’s classi昀椀cation of maximal semisimple Lie algebras
in the classical Lie algebras by using the eight previous propositions.
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4. Exceptional simple Lie algebras

In this chapter we give a classi昀椀cation of the pairs (g, h) of complex semisimple
Lie algebras satisfying ρh 6≤ ρg/h in the case where g is exceptional simple, and in
particular, prove Theorems 1.6 and 1.2 for g exceptional simple.
Throughout this chapter, g is a complex exceptional simple Lie algebra, h is a
complex semisimple Lie subalgebra {0} 6= h 6= g , q := g/h , h̃ the normalizer of h

in g , m is the generic stabilizer of q in h , and ms := [m,m] .

4.1. Main list for exceptional Lie algebras

Theorem 4.1. Let g = g2 , f4 , e6 , e7 or e8 be a complex exceptional simple Lie
algebra. The complex semisimple Lie subalgebras h ( g satisfying ρh 6≤ ρq form the
list in Table 2. In this list q does not have AGS in h.

Case g maximal h m non maximal h m

G2 g2 a2 a1⊕C

F4 f4 b4 b3 d4 a2

E6.1 e6 d5 d3⊕C b4 a1

E6.2 e6 f4 d4 b4 a1

E7.1 e7 d6⊕a1 a1⊕a1⊕a1 d6 ⊃ a1
E7.2 e7 e6 d4

E8 e8 e7⊕a1 d4 e7 d4

Figure 2:Table 2: Pairs (g, h) with ρh 6≤ ρq for g exceptional simple

Here are some comments on the pairs (g, h) in this list with h maximal.
The pair (g2, a2) is the only one for which (g, h̃) is not a symmetric pair.
The pair (e6, f4) is the only one with rank h̃ < rank g .
The pairs (f4, b4) , (e7, a1⊕d6) and (e8, a1⊕e7) are equal rank symmetric pairs.
The pairs (e6, d̃5) and (e7, ẽ6) , are equal rank Hermitian symmetric pairs.
Once we 昀椀nd the list of the pairs (g, h) in Table 2, it is straightforward to verify
ρh 6≤ ρq for such (g, h) by 昀椀nding a witness (De昀椀nition 7.2), or alternatively, by
using Proposition 2.8 and checking that the generic stabilizer m is nonabelian as
indicated in Table 2. Thus the nontrivial part of Theorem 4.1 is to prove that Table
2 exhausts all the pairs (g, h) satisfying ρh 6≤ ρq .
The strategy of this proof is to deal 昀椀rst with pairs (g, h) where h is maximal in g .
Dynkin’s list of all these pairs is given in Section 4.2. These pairs are studied one
by one in Section 4.4 using upper bounds for the invariants pV which are stated in
Section 4.3 and explained in Chapter 5. We 昀椀nd that there are exactly 7 pairs (g, h)
with g simple exceptional and h semisimple maximal for which ρh 6≤ ρq : they form
the left-hand side of Table 2.
Then for each of these 7 pairs (g, h′) we describe in Section 4.5, the semisimple Lie
subalgebras h ⊂ h′ for which one still has ρh 6≤ ρq . This uses also the bounds for
the pV s proven in Chapter 5.
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4.2. Dynkin classi昀椀cation
For all complex simple Lie algebras g , Dynkin [10] has classi昀椀ed maximal semisimple
Lie subalgebras h .

g h q i dg = dh + dq AGS

g2 a1⊕a1 S3C2 ⊗ C2
2 14 = 6 + 8 Y

a2 C3 ⊕ dual 3 14 = 8 + 6 N
f4 b4 C16

2 52 = 36 + 16 N
a1⊕c3 C2 ⊗ Λ3

0C
6

2 52 = 24 + 28 Y
a2⊕a2 S2C3 ⊗ C3 ⊕ dual 3 52 = 16 + 36 Y

e6 d5 C⊕ (C16 ⊕ dual) 1 78 = 45 + 33 N
a1⊕a5 C2 ⊗ Λ3C6

2 78 = 38 + 40 Y
a2⊕a2⊕a2 C3⊗C3⊗C3⊕ dual 3 78 = 24 + 54 Y

e7 e6 C⊕ (C27 ⊕ dual) 1 133 = 78 + 55 N
a7 Λ4C8

2 133 = 63 + 70 Y
a1⊕d6 C2 ⊗ C32

2 133 = 69 + 64 N
a2⊕a5 C3 ⊗ Λ2C6 ⊕ dual 3 133 = 43 + 90 Y

e8 d8 C128
2 248 = 120 + 128 Y

a1⊕e7 C2 ⊗ C56
2 248 = 136 + 112 N

a8 Λ3C9 ⊕ dual 3 248 = 80 + 168 Y
a2⊕e6 C3 ⊗ C27 ⊕ dual 3 248 = 86 + 162 Y
a4⊕a4 (Λ2C5⊗C5⊕ C5⊗Λ2C5)⊕ dual 5 248 = 48 + 200 Y

Figure 3:Table 3: R-subalgebras of exceptional simple Lie algebras

De昀椀nition 4.2. A maximal semisimple Lie subalgebra h of g is called an
R-subalgebra if rank h̃ = rank g and called an S -subalgebra if rank h̃ < rank g .

The classi昀椀cation of R-subalgebras goes back to Borel–Siebenthal. Later, Dynkin
has given a nice interpretation of this list using the so called extended Dynkin
diagram. This list is given in Table 3.
The classi昀椀cation of S -subalgebras is due to Dynkin (except for a1⊕g2⊕g2 in e8
which is forgotten there, see [14]). The list is given in Table 4.
Here are a few comments on Tables 3 and 4. To each R-subalgebra, Dynkin
associates an integer i = 1 , 2 , 3 or 5 . When i = 1 , h̃ has a one-dimensional
center and (g, h̃) is the complexi昀椀cation of a Hermitian symmetric pair. When
i ≥ 2 , one has h̃ = h and h is the set of 昀椀xed points of an automorphism of g of
order i .
In the Tables 3 and 4, the third column describes q as a representation of h .
For Table 3, it is obtained thanks to Dynkin’s construction of the R-subalgebras
using the extended Dynkin diagrams. For Table 4, it is based on the Tables 10.1 in
[14, p. 214–215].
In this third column, the notation Cn means “one of irreducible representation of
dimension n”. The slight ambiguity does not a昀昀ect our consequence. For instance
C27 is one of the two 27-dimensional irreducible representations of e6 , which are
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dual to each other. Similarly C16 is one of the two dual 16-dimensional irreducible
representations of d5 called the half-spin representation. As a representation of b4 ,
C16 is still irreducible and is orthogonal. The subscript 0 in notations like Λ3

0C
6

means the irreducible subrepresentation spanned by the highest weight vector e.g.,
Λ3

0C
6 ' Λ3C6/C6 .

g h q dg = dh + dq AGS

g2 a1 ∗ 14 = 3 + 11 Y
f4 a1 ∗ 52 = 3 + 49 Y

a1⊕g2 ∗ 52 = 17 + 35 Y
e6 a2 ∗ 78 = 8 + 70 Y

g2 ∗ 78 = 14 + 64 Y
c4 Λ4

0C
8 78 = 36 + 42 Y

f4 C26 78 = 52 + 26 N
a2⊕g2 C8 ⊗ C7 78 = 22 + 56 Y

e7 a1 (twice) ∗ 133 = 3 + 130 Y
a2 ∗ 133 = 8 + 125 Y

a1⊕a1 ∗ 133 = 6 + 127 Y
a1⊕g2 ∗ 133 = 17 + 116 Y
a1⊕f4 C3 ⊗ C26 133 = 55 + 78 Y
g2⊕c3 C7 ⊗ Λ2

0C
6 133 = 35 + 98 Y

e8 a1 (3 times) ∗ 248 = 3 + 245 Y
b2 ∗ 248 = 10 + 238 Y

a1⊕a2 ∗ 248 = 11 + 237 Y
a1⊕g2⊕g2 C3⊗C7⊗C7⊕ C5⊗(C7⊗C⊕ C⊗C7) 248 = 31 + 217 Y
g2⊕f4 C7 ⊗ C26 248 = 66 + 182 Y

Figure 4:Table 4: S -subalgebras of exceptional simple Lie algebras

In Tables 3 and 4, the last column tells us (Yes or No) according to whether h has
AGS in q or not. The answers No are deduced from the fact that those pairs (g, h)
are equal to the complexi昀椀cation (g1,C, k1,C) of a Riemannian symmetric pair (g1, k1)
for which the real semisimple Lie algebra g1 is not quasisplit (except for the pair
(g2, a2) for which one computes directly that the generic stabilizer is m = a1 ). The
answers Yes will be deduced from Proposition 2.8, once we will have checked the
inequality ρh ≤ ρq .

4.3. Irreducible representations of simple Lie algebras
In order to prove Theorem 4.1, we will need to compute accurately the real number
pV de昀椀ned in (6) for many irreducible representations V of simple Lie algebras h .
Most of the results that we will need are contained in Tables 5, 6, and 7 below.

Theorem 4.3. Let h be a complex simple Lie algebra and V be an irreducible
faithful representation of h.
If V is self-dual and ρh 6≤ ρV , then (h, V ) is in Table 5.
If V is not self-dual and ρh 6≤ 2 ρV , then (h, V ) or (h, V ∗) is in Table 6.
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Theorem 4.3 will be explained in Chapter 5. The following corollary tells us that
Conjecture 2.10 is true when h is simple.

h V pV parameter duality name
a1 C2 2 sympl. standard
a3 Λ2C4 4 orth. Vω2

a5 Λ3C6 2 sympl. Vω3

bℓ C2ℓ+1 2 `−1 ` ≥ 2 orth. standard
b2 C4 4 sympl. spin
b3 C8 4 orth. spin
b4 C16 3 orth. spin
b5 C32 2 sympl. spin
b6 C64 4/3 sympl. spin
cℓ C2 ℓ 2 ` ` ≥ 3 sympl. standard

Λ2
0C

2 ℓ ℓ+1
ℓ−1

` ≥ 3 orth. Vω2

c3 Λ3
0C

6 5/3 sympl. Vω3

dℓ C2 ℓ 2 `−2 ` ≥ 4 orth. standard
d4 C8 6 orth. half-spin
d6 C32 5/2 sympl. half-spin
e7 C56 17/6 sympl. Vω7

f4 C26 8/3 orth. Vω4

g2 C7 3 orth. Vω1

Figure 5:Table 5: Self-dual irreducible faithful representations V of simple Lie algebra
h with pV >1

h V pV parameter name
aℓ Cℓ+1 2` ` ≥ 2 standard
aℓ Λ2Cℓ+1 2 ℓ+2

ℓ
` ≥ 4, even Vω2

2 ℓ+1
ℓ−1

` ≥ 5, odd Vω2

d5 C16 7/2 half-spin
e6 C27 7/2 Vω1

Figure 6:Table 6: Non-self-dual irreducible representations for h simple with pV >2

Corollary 4.4. Let h be a complex simple Lie algebra and V a complex orthogonal
representation of h. One has the equivalence:

V has AGS in h ⇐⇒ ρh ≤ ρV . (34)

We already know from Proposition 2.8 the implication ⇐ in Corollary 4.4 holds. The
opposite implication of Corollary 4.4 is proven by decomposing V into irreducible
components and by checking, using Tables 5 and 6, that when ρh 6≤ ρV then the
generic stabilizer is not abelian.
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4.4. Checking Theorem 4.1 for h maximal
We just have to check that all pairs (g, h) occurring in Dynkin’s classi昀椀cation (Tables
3 and 4) with “Y ” in the last column satisfy ρh ≤ ρq .
For the 12 cases with h simple of rank 1 or 2 , this follows from Corollary 5.8. We
just notice that when h is an S -subalgebra, the centralizer of h is trivial.
For the 5 cases with h product of a1 by a simple Lie algebra h2 of rank 1 or 2 ,
this follows from Corollary 6.5. We just notice that when h′ is a non-zero ideal of
an S -subalgebra, the centralizer of h′ is included in h .
For the 4 cases with h simple of rank ≥ 3 , this follows from Table 7 which is part
of Theorem 4.3.

h V pV duality name
a7 Λ4C8 pV ≤ 1 orth. Vω4

a8 Λ3C9 pV ≤ 2 non-auto. Vω3

c4 Λ4
0C

8 pV ≤ 1 orth. Vω4

d8 C128 pV ≤ 1 orth. half-spin

Figure 7:Table 7: “Useful” representations which are not in Tables 5 and 6

For the 7 remaining cases in Table 3, we conclude with Lemma 4.5.
For the 5 remaining cases in Table 4, we conclude with Lemma 4.6.

Lemma 4.5. (1) Let h = a1⊕c3 and V = C2 ⊗ Λ3
0C

6 . Then one has ρh ≤ ρV .
(2) Let h = a2⊕a2 and V = S2C3 ⊗ C3 . Then one has ρh ≤ 2ρV .
(3) Let h = a2⊕a2⊕a2 and V = C3 ⊗ C3 ⊗ C3 . Then one has ρh ≤ 2ρV .
(4) Let h = a1⊕a5 and V = C2 ⊗ Λ3C6 . Then one has ρh ≤ ρV .
(5) Let h = a2⊕a5 and V = C3 ⊗ Λ2C6 . Then one has ρh ≤ 2ρV .
(6) Let h = a2⊕e6 and V = C3 ⊗ C27 . Then one has ρh ≤ 2ρV .
(7) Let h = a4⊕a4 and V = C5 ⊗ Λ2C5 . Then one has ρh ≤ 4ρV .

Lemma 4.6. (1) Let h = a2⊕g2 and V = C8 ⊗ C7 . Then one has ρh ≤ ρV .
(2) Let h = a1⊕f4 and V = S2C2 ⊗ C26 . Then one has ρh ≤ ρV .
(3) Let h = g2⊕c3 and V = C7 ⊗ Λ2

0C
6 . Then one has ρh ≤ ρV .

(4) Let h = a1⊕g2⊕g2 and V = C3 ⊗ C7 ⊗ C7 . Then one has ρh ≤ ρV .
(5) Let h = g2⊕f4 and V = C7 ⊗ C26 . Then one has ρh ≤ ρV .

Checking Lemma 4.5. We will write h = h1 ⊕ h2 with h1 simple and V =
V1 ⊗ V2 . For i = 1 , 2 , we will write pi = pVi

, di = dimVi and apply the bound
pV ≤ p1

d2
+ p2

d1
from Lemma 2.14, and the values of pi given in Tables 5 and 6.

(1) One has d1 = 2 , p1 = 2 , d2 = 14 , p2 = 5
3
, hence pV ≤ 2

14
+ 5

6
≤ 1 .

(2) One has d1 = 6 , p1 = 4
3
, d2 = 3 , p2 = 4 , hence pV ≤ 4

9
+ 4

6
≤ 2 .

(3) One has d1 = 3 , p1 = 4 , d2 = 9 , p2 ≤ 8
3
, hence pV ≤ 4

9
+ 8

9
≤ 2 .

(4) One has d1 = 2 , p1 = 2 , d2 = 20 , p2 = 2 . This is not enough to conclude.
But a direct computation shows ρh ≤ ρV .
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(5) One has d1 = 3 , p1 = 4 , d2 = 15 , p2 = 3 , hence pV ≤ 4
15

+ 3
3
≤ 2 .

(6) One has d1 = 3 , p1 = 4 , d2 = 27 , p2 = 7
2
, hence pV ≤ 4

27
+ 7

6
≤ 2 .

(7) One has d1 = 5 , p1 = 8 , d2 = 10 , p2 = 3 , hence pV ≤ 8
10

+ 3
5
≤ 4 .

Checking Lemma 4.6. We use the same notations.
(1) One has d1 = 8 , p1 = 1 , d2 = 7 , p2 = 3 , hence pV ≤ 1

7
+ 3

8
≤ 1 .

(2) One has d1 = 3 , p1 = 1 , d2 = 26 , p2 = 8
3
, hence pV ≤ 1

26
+ 8

9
≤ 1 .

(3) One has d1 = 7 , p1 = 3 , d2 = 14 , p2 = 2 , hence pV ≤ 3
14

+ 2
7
≤ 1 .

(4) One has d1 = 3 , p1 = 1 , d2 = 49 , p2 ≤ 6
7
, hence pV ≤ 1

49
+ 6

21
≤ 1 .

(5) One has d1 = 7 , p1 = 3 , d2 = 26 , p2 = 8
3
, hence pV ≤ 3

26
+ 8

21
≤ 1 .

4.5. Checking Theorem 4.1 for h non-maximal
We 昀椀rst consider the case where h is maximal in a maximal semisimple Lie algebra
h′ of g . Taking an h′ -invariant subspace q′ in g and an h-invariant subspace q′′ in
h′ , we write

g = h′ ⊕ q′ , h′ = h⊕ q′′ and q = q′ ⊕ q′′

According to Section 4.4, the pair (g, h′) is among the 7 pairs in the left side of
Table 2. Moreover the Lie algebra h is also a maximal semisimple Lie subalgebra
of h′ satisfying ρh 6≤ ρq′′ . One can 昀椀nd the list of such subalgebras h from Theorem
3.1 and Table 2. Hence the triple (g, h′, h) has to be in the following Table 8.

g h′ h q′ ' g/h′ q′′ ' h′/h dimension AGS
g=h+q

f4 b4 d4 C8 ⊕ C8 C8
52=28+24 N

b1d3 (C2⊗ C4)⊕ dual C3 ⊗ C6
52=18+34 Y

e6 d5 b4 C⊕ (C16 ⊕ C16) C9
78=36+42 N

b1b3 C⊕ (C2⊗ C8 ⊕ dual) C3 ⊗ C7
78=24+54 Y

a4 C⊕((C⊕C5⊕Λ2C5)⊕dual) C⊕(Λ2C5⊕dual) 78=24+54 Y
f4 b4 C⊕ C9 ⊕ C16 C16

78=36+42 N
e7 e6 f4 C⊕C⊕C⊕C26⊕C26 C26

133=45+88 Y
d5 C⊕((C⊕C10⊕C16)⊕dual) C⊕(C16⊕dual) 133=52+81 Y

a1d6 d6 C32 ⊕ C32 C⊕C⊕C 133=66+67 N
a1b5 C2 ⊗ C32 C⊗ C11

133=58+75 Y
a1b1b4 C2 ⊗ C2 ⊗ C16 C⊗C3⊗C9

133=42+91 Y
a1d2d4 C2⊗(C2⊗C8⊕C2⊗C8) C⊗C4⊗C8

133=37+96 Y
a1a5 C2⊗((C⊕Λ2C6)⊕dual) C⊕((C⊗Λ2C6)⊕dual) 133=38+95 Y
a1a5 C2⊗(C6⊕C6⊕Λ3C6) C⊕((C⊗Λ2C6)⊕dual) 133=38+95 Y

e8 a1e7 e7 C56 ⊕ C56 C⊕C⊕C 248=133+115 N
a1e6 C2⊗((C⊕C27)⊕dual) C⊕(C27⊕dual) 248=81+167 Y
a1a1d6 C2⊗(C⊗C32⊕C2⊗C12) C⊗ C2 ⊗ C32

248=72+176 Y

Figure 8:Table 8: Triples (g, h′, h) to be studied

Note that triples (g, h′, h) like (f4, b4, b3) or (e6, d5, d4) do not occur in Table 8
because in these examples h is not maximal in h′ . Such examples will be taken care
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of in Lemma 4.9. Similarly, the triple (g2, a2, a1) does not occur in Table 8 because
in this example ρh ≤ ρq′′ .
In Table 8 we describe q′ and q′′ as a representation of h , using Tables 3 and 4,
which describes q′ as a representation of h′ and decomposing this representation
as a sum of irreducible representations of h , i.e., the branching law for h′ ↓ h .
There are two realizations of a5 = sl6 in d6 = so12 , which is conjugate by an outer
automorphism of d6 , but this automorphism does not extend to g = e7 . Accordingly,
we have needed to list two di昀昀erent structures of q′ = g/h′ as h-modules for the
triple (g, h′, h) = (e7, a1d6, a1a5) . The Lie algebra d4 = so8 has three 8-dimensional
irreducible representations Vω1

, Vω3
, Vω4

, we have noted all of them as C8 since we
will not need to know which is which.
We already know that for all triples (g, h′, h) occurring in this Table 8 with “N” in
the last column where q does not have AGS in h , hence, by Proposition 2.8, they
satisfy ρh 6≤ ρq .
It remains to check that all triples (g, h′, h) occurring in this Table 8 with “Y ” in
the last column satisfy ρh ≤ ρq .
For the 3 cases where h is simple, this follows directly from inequality (10) and
Lemma 4.7.
For the 9 cases where h is not simple, this follows directly from inequality (10) and
Lemma 4.8.

Lemma 4.7. (1) Let h = a4 and V = Λ2C5 . Then one has pV ≤ 3.
(2) Let h = f4 and V = C26 . Then one has pV ≤ 3.
(3) Let h = d5 and V = C16 . Then one has pV ≤ 4.

Checking Lemma 4.7. These values are obtained from Tables 5 and 6.

Lemma 4.8. (1) Let h = b1⊕d3 , V ′ = C2 ⊗ C4 , and V ′′ = C3 ⊗ C6 .
Then one has pV ′ ≤ 4 and pV ′′ ≤ 2.

(2) Let h = b1⊕b3 , V ′ = C2 ⊗ C8 and V ′′ = C3 ⊗ C7 .
Then one has pV ′ ≤ 4 and pV ′′ ≤ 2.

(3) Let h = a1⊕b5 and V = C2 ⊗ C32 ⊕ C⊗ C11 . Then one has pV ≤ 1.
(4) Let h = a1⊕b1⊕b4 and V = C2 ⊗ C2 ⊗ C16 . Then one has pV ≤ 1.
(5) Let h=a1⊕d2⊕d4 and V =C2⊗C2⊗C8 ⊕ C⊗C4⊗C8 . Then one has pV ≤ 1.
(6) Let h = a1⊕a5 and V = C2 ⊗ Λ2C6 . Then one has pV ≤ 2.
(7) Let h = a1⊕a5 and V = C2 ⊗ (C6 ⊕ Λ3C6 ⊕ C6). Then one has pV ≤ 1.
(8) Let h = a1⊕e6 and V = C2 ⊗ C27 . Then one has pV ≤ 2.
(9) Let h = a1⊕a1⊕d6 and V =(C2 ⊗ C⊕ C⊗ C2)⊗ C32 . Then one has pV ≤ 1.

Checking Lemma 4.8. In all proofs, we will write h = h1 ⊕ h2 with h1 simple
and V = V1 ⊗ V2 . For i = 1 , 2 , we will write pi = pVi

, di = dimVi and apply the
bound pV ≤ p1

d2
+ p2

d1
from Lemma 2.14 (2), and the values of pi given in Tables 5

and 6. And similarly with primes and double primes.
(1) One has d′1 = 2 , p′1 = 2 , d′2 = 4 , p′2 = 6 . Hence pV ′ ≤ 2

4
+ 6

2
≤ 4 . One has

d′′1 = 3 , p′′1 = 1 , d′′2 = 6 , p′′2 = 4 . Hence pV ′′ ≤ 1
6
+ 4

3
≤ 2 .
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(2) One has d′1 = 2 , p′1 = 2 , d′2 = 8 , p′2 = 4 . Hence pV ′ ≤ 2
8
+ 4

2
≤ 4 . One has

d′′1 = 3 , p′′1 = 1 , d′′2 = 7 , p′′2 = 5 . Hence pV ′′ ≤ 1
7
+ 5

3
≤ 2 .

(3) We write V = V ′ ⊕ V ′′ . One has d′1 = 2 , p′1 = 2 , d′2 = 32 , p′2 = 2 . This is
not enough to conclude. But a direct computation shows pV ′ = 1 for the irreducible
h-module V ′ = C2 ⊗ C36 .
(4) One has d1 = 4 , p1 = 2 , d2 = 16 , p2 = 3 and hence pV ≤ 2

16
+ 3

4
≤ 1 .

(5) We 昀椀rst check as above that if h0 = a1⊕a1⊕d4 and W = C2 ⊗ C2 ⊗ C8 ,
then ρh0 ≤ 2ρW . Now, one has h = h1⊕h2⊕h3⊕h4 with h1 = h2 = h3 = a1 and
h4 = d4 and V is the sum of three irreducible components V ′ ⊕ V ′′ ⊕ V ′′′ with
kernel, respectively h1 , h2 and h3 . Hence one has the bound ρh2⊕h3⊕h4 ≤ 2ρV ′ , and
similarly for V ′′ and V ′′′ . Adding these three inequalities gives ρh ≤ ρV .
(6) One has d1 = 2 , p1 = 2 , d2 = 15 , p2 = 3 . Hence pV ≤ 2

15
+ 3

2
≤ 2 .

(7) We write V = V ′ ⊕ V ′′ ⊕ V ′′′ . One has d′1 = 2 , p′1 = 2 , d′2 = 6 , p′2 = 10 ,
hence pV ′ ≤ 2

6
+ 10

2
= 16

3
. One has d′′1 = 2 , p′′1 = 2 , d′′2 = 20 , p′′2 = 2 , hence

pV ′′ ≤ 2
20

+ 2
2
= 11

10
. Thus p−1

V ≥ p−1
V ′ + p−1

V ′′ + p−1
V ′′′ = 3

16
+ 10

11
+ 3

16
≥ 1 .

(8) One has d1 = 2 , p1 = 2 , d2 = 27 , p2 = 7
2
. Hence pV ≤ 2

27
+ 7

4
≤ 2 .

(9) One has d1 = 4 , p1 = 2 , d2 = 32 , p2 = 5
2
. Hence pV ≤ 2

32
+ 5

8
≤ 1 .

Ending the proof of Theorem 4.1. The following Lemma 4.9 tells us that we
have already encountered all possible cases.

Lemma 4.9. Let g be a simple exceptional complex Lie algebra and h ( g a
semisimple Lie subalgebra such that ρh 6≤ ρq . Then either h is maximal in g, or h

is maximal in a maximal semisimple Lie algebra h′ of g.

Checking Lemma 4.9. If this were not the case, one could 昀椀nd a sequence
of semisimple Lie algebras h ( h′′ ( h′ ( g , each one being maximal in the
next one, such that ρh 6≤ ρq . According to the previous discussion, the triple
(g, h′, h′′) has to be among the 5 cases in Table 8 with “N” in the last column,
i.e. (f4, b4, d4) , (e6, d5, b4) , (e6, f4, b4) , (e7, a1d6, d6) , or (e8, a1e7, e7) . Since, one also
has ρh 6≤ ρh′/h , there are very few possibilities for such an h . Here is the list of
quadruples (g, h′, h′′, h) :
Case 1: (f4, b4, d4, b3) , Case 2: (e6, d5, b4, d4) , Case 3: (e6, f4, b4, d4) ,
Case 4: (e7, a1⊕d6, d6, h) , or Case 5: (e8, a1⊕e7, e7, h) .
In Case 1 , for all the possible embeddings b3 ↪→ d4 the representation q of h are
isomorphic, hence we can assume that this embedding is the standard embedding.
But since h = b3 and q = C ⊕ V1 ⊕ V1 ⊕ V2 ⊕ V2 with V1 = C7 and V2 = C8

the spin representation, a direct computation gives pV1⊕V2
≤ 2 , and hence pq ≤ 1 .

Contradiction.
In Cases 2 and 3 , q contains the sum of six 8-dimensional irreducible represen-
tations C8 of d4 . Since these representations V satisfy pV = 6 , one has pq ≤ 1 .
Contradiction.
Cases 4 and 5 are excluded because h is included in h′′′ = a1⊕h which is already
excluded in Table 8.
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5. Bounding pV for simple Lie algebras

The aim of this chapter is to check Theorem 4.3 that we used in the proof of Theorem
4.1. This theorem 4.3 follows from the concatenation of Propositions 5.1 to 5.7.
We will use freely the notations of Bourbaki [7, 8], when describing the root sys-
tem, simple roots αj , fundamental weights ωj , and irreducible representations of a
complex simple Lie algebra h .
When h is a complex semisimple Lie algebra and V a representation of h , the
function ρV , as in Section 2.2, takes the form ρV = 1

2

∑
mα|α| on a maximally split

abelian real subalgebra a of h . From now on, we will choose mα to be the complex
dimension of V instead of the real dimension. This modi昀椀cation of both ρV and ρh
by a factor 1

2
is harmless since it does not a昀昀ect the inequality ρh ≤ ρV or the value

of pV .
The checking of the following seventeen propositions from 5.1 to 5.7 and from 6.1
to 6.10 relies on explicit and about thirty-pages-long calculations that we do not
reproduce here.

5.1. Bounding pV for aℓ

In this section h is the complex simple Lie algebra h = aℓ = slℓ+1 with ` ≥ 2 . The
case ` = 1 will be treated in Corollary 5.8 when V is not necessarily irreducible.

Proposition 5.1. Let h = aℓ with ` ≥ 2, and V be an irreducible faithful
representation of h such that pV > 1, equivalently, ρh 6≤ ρV , then V or V ∗ is either
Vω1

= Cℓ+1 and pV = 2`, or
V2ω1

= S2Cℓ+1 and pV = 2 ℓ
ℓ+1

< 2, or
Vω2

= Λ2Cℓ+1 and pV = 2 ℓ+2
ℓ

for ` even and pV = 2 ℓ+1
ℓ−1

for ` odd, or
Vω3

= Λ3Cℓ+1 when ` = 3, 4, 5, 6, 7, and pV = 6, 3, 2, 10
7

, 10
9

, respectively.

5.2. Bounding pV for bℓ

In this section h is the complex simple Lie algebra h = bℓ = so2 ℓ+1 .

Proposition 5.2. Let h = bℓ with ` ≥ 2, and V be an irreducible faithful
representation of h such that ρh 6≤ ρV , then V is either
Vω1

= C2 ℓ+1 and pV = 2 `−1, or
Vωℓ

= C2ℓ when ` = 2, 3, 4, 5, 6 and pV = 4, 4, 3, 2, 4
3

respectively.

5.3. Bounding pV for cℓ

In this section h is the complex simple Lie algebra h = cℓ = spℓ .

Proposition 5.3. Let h = cℓ with ` ≥ 3, and V be an irreducible faithful
representation of h such that ρh 6≤ ρV , then V is either
Vω1

= C2 ℓ and pV = 2 `, or
Vω2

= Λ2
0C

2 ℓ and pV = ℓ+1
ℓ−1

, or
Vωℓ

= Λ3
0C

2ℓ when ` = 3 and pV = 5
3
.



860 Benoist and Kobayashi

5.4. Bounding pV for dℓ
In this section h is the complex simple Lie algebra h = dℓ = so2 ℓ .

Proposition 5.4. Let h = dℓ with ` ≥ 4, and V be an irreducible faithful
representation of h such that ρh 6≤ ρV , then V is either
Vω1

= C2 ℓ and pV = 2 `−2, or
Vωℓ−1

or Vωℓ
= C2ℓ−1 when ` = 4, 5, 6, 7 and pV = 6, 7

2
, 5

2
, 3

2
respectively.

5.5. Bounding pV for eℓ
In this section h is the complex simple Lie algebra h = eℓ .

Proposition 5.5. Let h = eℓ with ` = 6, 7 or 8 and V be an irreducible faithful
representation of h such that ρh 6≤ ρV , then V is either
Vω1

or Vω6
= C27 when ` = 6 and pV = 7

2
, or

Vω7
= C56 when ` = 7 and pV = 17

6
.

5.6. Bounding pV for f4
In this section h is the complex simple Lie algebra h = f4 .

Proposition 5.6. Let h = f4 and V be an irreducible faithful representation of
h such that ρh 6≤ ρV , then V = Vω4

= C26 and pV = 8
3
.

5.7. Bounding pV for g2
In this section h is the complex simple Lie algebra h = g2 .

Proposition 5.7. Let h = g2 and V be an irreducible faithful representation of
h such that ρh 6≤ ρV , then V = Vω1

= C7 and pV = 3.

5.8. Bounding pV for a1 , a2 , b2 , g2
From the discussion in this chapter, we get from (10) the following bound for pV
when V is not assumed to be irreducible.

Corollary 5.8. Let h be a simple Lie algebra and V a representation of h without
nonzero h-invariant vector. Assume that either h = a1 and dimV ≥ 3, or h = a2
and dimV ≥ 11, or h = b2 and dimV ≥ 15, or h = g2 and dimV ≥ 21, then one
has ρh ≤ ρV .

6. Bounding pV for non-simple Lie algebras

In the previous chapters we used quite a few upper bounds for the invariant pV of
various representations V of semisimple Lie algebras h . The aim of this chapter is
to state precisely these upper bounds.

6.1. Bounding pV for a1 ⊕ h2
In this section h is a semisimple Lie algebra of the form h = h1⊕h2 with h1 = a1
and rank h2 ≤ 2 . We want to bound pV when V is a representation of h such that,
for i = 1 , 2 , the spaces V hi of hi -invariant vectors are 0 .
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Proposition 6.1. Let h = a1⊕a1 and V be an irreducible faithful representation
of h such that ρh 6≤ ρV , then V = C2 ⊗ C2 and pV = 2.

Proposition 6.2. Let h = a1⊕a2 and V be an irreducible faithful representation
of h such that ρh 6≤ ρV , then either
V = C2 ⊗ C3 or C2 ⊗ (C3)∗ and pV = 2, or
V = S2C2 ⊗ C3 or S2C2 ⊗ (C3)∗ and pV = 4

3
.

Proposition 6.3. Let h = a1⊕b2 and V be an irreducible faithful representation
of h such that ρh 6≤ ρV , then either
V = C2 ⊗ C4 and pV = 2, or
V = S2C2 ⊗ C4 and pV = 4

3
, or

V = C2 ⊗ C5 and pV = 3
2
.

Proposition 6.4. Let h = a1⊕g2 and V be an irreducible faithful representation
of h such that ρh 6≤ ρV , then V = C2 ⊗ C7 and pV = 3

2
.

From the discussion in this section, we get the following bound for pV when V is
not assumed to be irreducible.

Corollary 6.5. Let h1 = a1 , h2 be a simple Lie algebra, h = h1⊕h2 and V a
representation of h without h1 -invariant vector or h2 -invariant vector. Assume that
either h = a1⊕a1 and dimV ≥ 6, or h = a1⊕a2 and dimV ≥ 12, or h = a1⊕b2
and dimV ≥ 15, or h = a1⊕g2 and dimV ≥ 21, then one has ρh ≤ ρV .

6.2. Bounding pV for h1 ⊕ h2
The following proposition is a reformulation of Proposition 3.2.

Proposition 6.6. Let p ≥ 1 and q ≥ 1.
• Let h = slp ⊕ slq acts on V = Cp ⊗ Cq . Then ρh 6≤ 2ρV ⇔ |p− q| ≥ 2.
• Let h = sop ⊕ soq acts on V = Cp ⊗ Cq . Then ρh 6≤ ρV ⇔ |p− q| ≥ 3.
• Let h = spp ⊕ spq acts on V = C2p ⊗ C2q . Then one has ρh 6≤ ρV .

6.3. Bounding pV for tensor products
The following proposition is a reformulation of Proposition 3.4.

Proposition 6.7. Suppose p > 1 and q > 1.
• If h = slp ⊕ slq acts on V = End0C

p ⊗ End0C
q , then ρh ≤ ρV .

• If h = sop ⊕ soq acts on V = Λ2Cp ⊗ S2
0C

q ⊕ S2
0C

p ⊗ Λ2Cq , then ρh ≤ ρV .
Suppose p ≥ 1 and q > 1.

• If h = spp ⊕ spq acts on V = S2C2p ⊗ Λ2
0C

2q ⊕ Λ2
0C

2p ⊗ S2C2q , then ρh ≤ ρV .
• If h = spp ⊕ soq acts on V = S2C2p ⊗ S2

0C
q ⊕ Λ2

0C
2p ⊗ Λ2Cq , then ρh ≤ ρV .

The following proposition is a reformulation of Proposition 3.7.

Proposition 6.8. Let p ≥ 1, q ≥ 1.
• Let h = spp⊕slq acts on V = Λ2

0C
2p ⊕ (C2p⊗Cq ⊕ dual).

Then ρh 6≤ ρV ⇔ q ≥ 2p+2.
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• Let h = slp ⊕ soq acts on V = Λ2Cp ⊕ Cp⊗Cq . Then ρh 6≤ 2ρV ⇔ q ≥ 2p+ 3.
• Let h = slp ⊕ spq acts on V = S2Cp ⊕ Cp⊗C2q . Then ρh 6≤ 2ρV ⇔ q ≥ p+ 1.
• Let h = spp acts on V = Λ2

0C
2p and p ≥ 2. Then ρh ≤ 3ρV .

The following proposition is a reformulation of Proposition 3.8.

Proposition 6.9. Let q ≥ 1.
• Let h = g2 ⊕ soq act on V = C7 ⊗ (C⊕ Cq) via g2

irr
↪→ so7 .

Then ρh 6≤ ρV ⇔ q = 1 or q ≥ 10.
• Let h = so7 ⊕ soq act on V = C8 ⊗ (C⊕ Cq) via so7

irr
↪→ so8 .

Then ρh 6≤ ρV ⇔ q = 1, q = 2, or q ≥ 11.

6.4. Bounding pV for h1 ⊕ h2 ⊕ h3
The following proposition was used in the proof of Proposition 3.6.

Proposition 6.10. Let p ≥ q ≥ r ≥ 1.
• Let h = slp ⊕ slq ⊕ slr act on V = Cp⊗(Cq)∗ ⊕ Cq⊗(Cr)∗ ⊕ Cp⊗(Cr)∗ .

Then ρh ≤ 2ρV ⇔ p ≤ q + r + 1.
• Let h = sop ⊕ soq ⊕ sor act on V = Cp⊗Cq ⊕ Cq⊗Cr ⊕ Cp⊗Cr .

Then ρh ≤ ρV ⇔ p ≤ q + r + 2.
• Let h = spp ⊕ spq ⊕ spr act on V = C2p⊗C2q ⊕ C2q⊗C2r ⊕ C2p⊗C2r .

Then ρh ≤ ρV ⇔ p ≤ q + r .

7. Real reductive Lie algebras
The aim of this chapter is to check Theorem 1.7. We note that Theorem 1.7 allows
us to give a complete description of the pairs G ⊃ H of real reductive algebraic Lie
groups for which L2(G/H) is not tempered. In fact, let g be a real reductive Lie
algebra, h a reductive Lie subalgebra of g and q = g/h . By the criterion (1), we
want to classify the pairs (g, h) such that ρh 6≤ ρq . According to Lemma 2.15 and
Proposition 2.16, we can assume that h is semisimple without Ad-compact ideals
and that g is simple.
To prove Theorem 1.7, we recall that either the simple Lie algebra g has a complex
structure or g is absolutely simple i.e. the complexi昀椀ed Lie algebra gC is simple.
We deal the 昀椀rst case in Section 7.1, and the second case in Sections 7.2–7.4.

7.1. When g is a complex Lie algebra
We 昀椀rst deal with the case where g has a complex structure.

Proposition 7.1. Let g be a complex simple Lie algebra with complex structure
J , and h a real semisimple Lie subalgebra of g such that ρh 6≤ ρg/h . Then the
complex Lie subalgebra h0 := h ∩ Jh also satis昀椀es ρh

0
6≤ ρg/h

0
.

Proof. The complex subspace h0 is indeed an ideal of h . Since h is semisimple,
it decompose into the direct sum h = h0 ⊕ h1 of two ideals h0 and h1 , where the
semisimple ideal h1 is totally real in h , i.e., h1 ∩ Jh1 = {0} . We set h̃ := h⊕ Jh1 =

h0 ⊕ h1 ⊕ Jh1 . Then h̃ is a complex subalgebra of g .
Assume there exists X = X0 +X1 ∈ h such that ρh(X) > ρg/h(X) .
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We claim ρh0(X0) > ρg/h0(X0) . Indeed, since [h0, h1] = {0} , one has
ρh0(X0) = ρh(X)− ρh1(X1) > (ρ

g/h̃(X) + ρJh1(X1))− ρh1(X1) = ρ
g/h̃(X).

Using Lemma 2.14 (1), one goes on with ρ
g/h̃(X) ≥ ρ

g/h̃(X0) = ρg/h0(X0) . Therefore,
one gets ρh0 6≤ ρg/h0 .
By Proposition 7.1, Theorem 1.7 in the case where g has a complex structure is
deduced from Theorem 1.6. Moreover, Proposition 7.1 implies that the list of such
pairs (g, h) are given by Tables 1 and 2 with the following two modi昀椀cations: In
Table 1, one allows h2 to be real Lie subalgebras, and, in Table 2, one allows pairs
(e7, d6⊕h2) and (e8, e7⊕h2) with h2 ⊂ sl2 .

7.2. Finding a witness in ah

We assume in this section that g is an absolutely simple Lie algebra, and that h is a
semisimple Lie subalgebra of g . We denote by gC , hC and qC the complexi昀椀cations
of g , h and q . According to Lemma 2.12, one has ρh

C
6≤ ρq

C
if ρh 6≤ ρq . According

to Theorems 3.1 and 4.1, the pair (gC, hC) satisfying ρh
C
6≤ ρq

C
has to be in Tables

1 or 2.
We consider the h-module V := [h, q] and its complexi昀椀cation VC . We note that
ρq = ρV and ρqC = ρVC

, hence ρh ≤ ρq ⇔ ρh ≤ ρV ⇔ 2ρh ≤ ρVC
on h and ρhC ≤ ρqC

⇔ ρhC ≤ ρVC
on hC . For a while, we will forget g and just remember the list of

representations (hC, VC) . For each case in Tables 1 and 2, we look for the minimal
hC and we report the corresponding representation in Tables 9 and 10.
For the representations (hC, VC) with ρhC 6≤ ρVC

in Tables 9 and 10, we want 昀椀rst to
know whether one can 昀椀nd a real form h of hC and an h-invariant real form V of
VC such that ρh ≤ ρV . The answer is most often No but there are a few exceptions.
To see this, we introduce useful notion that helps us to 昀椀nd when ρhC 6≤ ρVC

implies
ρh 6≤ ρV :

De昀椀nition 7.2. [witness] Let V be an h-module. We say a vector X in h is a
witness if ρh(X) > ρV (X) . We denote by Wit(h, V ) the subset of h consisting of
witness vectors.

By de昀椀nition, Wit(h, V ) 6= ∅ if and only if ρh 6≤ ρV . If (hC, VC) is the complexi昀椀ca-
tion of (h, V ) , then one has

Wit(hC, VC) ∩ h = Wit(h, V ). (35)
Back to our setting where ρhC 6≤ ρVC

, we choose a Cartan subalgebra jC of the
complex semisimple Lie algebra hC such that jC∩h contains a maximal split abelian
subalgebra ah of a real form h of hC . We know that there exists a witness X in jC
i.e. an element such that ρh

C
(X) > ρV

C
(X) . We shall see that we can 昀椀nd a witness

X in ah for most of noncompact real forms h of hC . More precisely, one has the
following lemma:

Lemma 7.3. Let h be a real semisimple Lie algebra without Ad-compact ideals,
and V a representation of h over R. Assume that the pair (hC, VC) is in Tables 9
or 10. Then one has ρh 6≤ ρV , except

in Case A1 with p− q = 2, p = 2p′ and h = sl(p′,H) or
in Cases D5, E6.1, E6.2, E7.1 with rankR h = 1.
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Case hC VC parameters witnesses ρh≤ρV

A1 slp (Cp⊕dual)q p = q + 2 (1,0,...,0,−1) h=sl(m,H) p=2m

p ≥ q + 3 (1,0,0,...,0,0,−1) and

(1,1,0,...,0,−1,−1)
No

BD1 sop (Cp)q p = q + 3 (1,0,0,...,0) No

p ≥ q + 4 (1,0,0,...,0) and

(1,1,0,...,0)
No

C1 spp (C2p)q p ≥ q + 1 (1,0,0,...) and (1,1,0,0,...) No
A2 spp Λ2

0C
2p p ≥ 2 any X ̸=0 No

C2 spp⊕spp C2p ⊗ C2p p ≥ 2 (Y,Y ) for any Y ̸=0 No
D2 slp Λ2Cp⊕dual p = 3 any X ̸=0 No

p ≥ 4 (1,0,0,...,0,0,−1) and

(1,1,0,...,0,−1,−1)
No

B3 g2 C7
any X ̸=0 No

B4 g2 C7 ⊕ C7
any X ̸=0 No

D4 so7 C7 ⊕ C8
any X ̸=0 No

D5 so7 C7⊕C8⊕C8
(1,1,0) rankR h = 1

Figure 9:Table 9: Representations VC of hC when gC is classical

Case hC VC witnesses ρh≤ρV

G2 sl3 C3⊕dual any X ̸=0 No
F4 so8 C8⊕C8⊕C8

any X ̸=0 No
E6.1.a so10 C16 ⊕ dual (1,1,0,0,0) rankR h = 1

E6.2.a f4 C26
any X ̸=0 No

E6.1.b
E6.2.b

so9 C9 ⊕ C16 ⊕ C16
(1,1,0,0) rankR h = 1

E7.1 so12 C32 ⊕ C32
(1,1,0,0,0,0) rankR h = 1

E7.2 e6 C27 ⊕ dual (0,0,0,0,1,−1,−1,1) No
E8 e7 C56 ⊕ C56

(0,0,0,0,1,1,−1,1) No

Figure 10:Table 10: Representations VC of hC when gC is exceptional
Here are a few comments on Tables 9 and 10 :
– The name of the cases in the 昀椀rst column are those from Tables 1 and 2.
– In the third column each Cn stands for an irreducible representation of hC .
– In Case F4 the representations C8 are the three distinct 8-dimensional repre-

sentations of so8 .
– In the last column we describe all the real form h of hC without Ad-compact

ideal for which ρh ≤ ρV .
– The answer “No” indicates that such h does not exist.
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– The notation for the witness in the Cartan subspace of hC uses the standard
basis with notation as in [7, Chap. 6].

– For most of the case, we only reported in Tables 9 and 10 the Lie subalgebra hC
which are minimal in the case, since when ρh ≤ ρV fails for h , so does it for any
larger subalgebras.

– We will see that Cases A1 , E6.1.a , E6.1.b and E6.2.b correspond to the Cases
(ii), (iii) and (iv), respectively in Theorem 1.7.

– We will see that Cases D5 and E7.1 cannot occur from a pair (g, h) when
rankRh = 1 .

Checking Lemma 7.3. By a direct case-by-case calculation one sees that the
vectors in the fourth column are witnesses.
According to the classi昀椀cation of real forms of semisimple Lie algebras, for a given
semisimple Lie algebra hC the various Cartan subspaces ah ⊂ jC of real forms h

are described by the Satake diagrams (see [11, pp. 532–534]). For any real form h ,
one can often choose one of the witness in the fourth column to be in ah . The only
exceptions are the ones indicated in the last column or BD1 with p−q = 3 , p = 2p′

and h = so∗(2p′) .
In this latter case BD1 where h = so∗(p) (p :even), one has Wit(h, VC) ∩ h = ∅ .
However, we can exclude this case because the hC -module VC = (Cp)p−3 is not
de昀椀ned over R .
Finally we check that indeed the remaining Cases A1 , D5 , E6.1 , E6.2 and E7.1
satisfy ρh ≤ ρV .

Now we want to detect whether these remaining Cases A1 , D5 , E6.1 , E6.2 and
E7.1 can arise from a pair (g, h) with ρh ≤ ρq .

7.3. Subalgebras de昀椀ned over R

For all pairs (gC, hC) which occur in Tables 1 and 2, the Lie subalgebra hC is
included in a maximal semisimple subalgebra of gC . Moreover, except for Case G2 ,
this maximal Lie subalgebra is the derived algebra of a symmetric Lie subalgebra of
gC . We 昀椀rst need to know that all these Lie subalgebras are de昀椀ned over R . This
will follow from the general lemmas below:

Lemma 7.4. Let g be a real simple Lie algebra and h a maximal real semisimple
Lie subalgebra of g. Then hC is a maximal complex semisimple Lie subalgebra of gC .

Lemma 7.5. Let g be a real simple Lie algebra and l a symmetric Lie subalgebra
of gC . If the semisimple Lie algebra [l, l] is de昀椀ned over R and g 6= sl(2,R),
g 6= sl(2,C) then l is also de昀椀ned over R.

7.4. Checking Theorem 1.7
Two points remain to be checked when g is absolutely simple.
It remains to check that Cases A1 , E6.1.a , E6.1.b and E6.2.b correspond to the
Cases (ii), (iii) and (iv), respectively, in Theorem 1.7. This follows from Lemmas
7.4 and 7.5 and from Berger’s classi昀椀cation of irreducible real symmetric spaces [5].
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It remains also to check that Cases D5 and E7.1 cannot occur from a pair (g, h)
when rankRh = 1 .
In Case D5 , one has gC = so10 and h = so(6, 1) . By repeated applications of Lemma
7.4, the representation of h in q must be a direct sum of irreducible representations
q = R7⊕R8⊕(R⊕R8) . This contradicts the fact that, for h = so(p, q) with n = p+q
odd, the spin representation of hC can be de昀椀ned over R only if p− q = ±1 mod 8 .
In Case E7.1 , one has gC = e7 and h = so(11, 1) . According to Lemma 7.4, the
Lie subalgebra h is included in a subalgebra h′ of g such that h′C = d6 ⊕ a1 But
according to Berger’s classi昀椀cation of real symmetric spaces, the complex symmetric
pair (e7, d6⊕a1) has only four real forms (g, h′) and none of the h′ contains so(11, 1) .

8. Reductive homogeneous spaces
In this chapter, we come back to the point of view of Lie groups and their homoge-
neous spaces G/H .
We 昀椀rst relate in Section 8.1 the generic stabilizers of q and of G/H . This will
allow us to state in Sections 8.2, 8.3 and 8.4, a few direct consequences of what we
have proven so far.
In Section 8.5, we give two delicate examples of real reductive homogeneous spaces
that one shall have in mind when looking for a more precise converse of Theorem
1.1 (1).

8.1. Generic stabilizer in g/h and in G/H

Let G be a semisimple algebraic Lie group, H a reductive subgroup, g , h their Lie
algebras and q = g/h .
For x in G/H , we denote by hx the stabilizer of x in h . As in De昀椀nitions
2.1 and 2.6, we say that G/H has RGS (resp. AGS , AmGS) in h if the set
{x ∈ G/H | hx is reductive (resp. abelian reductive, amenable reductive)} is dense
in G/H .
The following Lemmas 8.1 and 8.2 relate the generic stabilizers of G/H in h and
the generic stabilizers of q in h . The 昀椀rst lemma should be compared with Lemma
2.5.

Lemma 8.1. Let G be a real semisimple algebraic Lie group, and H a reductive
algebraic subgroup. Then G/H has RGS in h. More precisely, there exists 昀椀nitely
many reductive Lie subalgebras m1, . . . ,mr of h such that the set of x in G/H whose
stabilizer hx in h is conjugate by the adjoint group H of h to one of the mi contains
a non-empty Zariski open subset of G/H .

The Lie algebras mi which cannot be removed from this list will be called the generic
stabilizers of G/H . They are well de昀椀ned only up to conjugacy and permutation.

Lemma 8.2. Let G be a real semisimple algebraic Lie group, H be a reductive
algebraic subgroup, and q = g/h. Then G/H and q have the same set of generic
stabilizers in h. In particular, one has the equivalences:
(1) G/H has AGS in h ⇐⇒ q has AGS in h.
(2) G/H has AmGS in h ⇐⇒ q has AmGS in h.
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Proof of Lemmas 8.1 and 8.2. By Chevalley’s theorem, there exists a 昀椀nite-
dimensional representation V of G and a point v in V whose stabilizer in G is H .
The tangent space at v to the G-orbit Gv is isomorphic to g/h as a representation
of H . Since H is reductive, there exists an H -invariant decomposition V =
Tv(G/H) ⊕ W . In particular, there is an H -equivariant projection π : V → g/h ,
which induces an H -equivariant dominant map π : G/H → g/h . In particular, there
exists an open Zariski dense subset U of G/H , such that, for all x in U , x and
π(x) have same stabilizer in h . Note that π(U) contains a neighborhood of 0 , and
that hv = htv , for all v in V , t in R \ {0} . Our claims follow.

8.2. Reductive and semisimple subgroups
The following proposition reduces our classi昀椀cation to the case of a semisimple Lie
subgroup H without compact factor.

Proposition 8.3. Let G be a real semisimple algebraic Lie group, and H1 ⊃ H2

two unimodular subgroups.
(1) If L2(G/H1) is tempered then L2(G/H2) is tempered.
(2) The converse is true when H2 is normal in H1 and H1/H2 is amenable (for

instance, 昀椀nite, or compact, or abelian).

The following proposition follows from Proposition 2.16, and reduces our classi昀椀ca-
tion to the case of a simple Lie group G .

Proposition 8.4. Let G be a real semisimple algebraic Lie group, H a real
reductive algebraic subgroup of G. Let Gi (1 ≤ i ≤ r) be simple factors of G, and
we set Hi := H ∩Gi . The representation of G in L2(G/H) is tempered if and only
if, for all i ≤ r , the representation of Gi in L2(Gi/Hi) is tempered.

The following proposition is an easy corollary of our criterion (1).

Proposition 8.5. Let G be a real semisimple algebraic Lie group, and H a real
reductive algebraic subgroup.
(1) If the representation of GC in L2(GC/HC) is tempered, then the representation

of G in L2(G/H) is tempered.
(2) The converse is true when H is a split group.

8.3. Examples of complex homogeneous spaces
In this section we give a few examples of complex homogeneous spaces G/H where
G and H are complex Lie groups. We recall that Theorem 1.6 together with the
criterion (1) implies the following:

Corollary 8.6. Suppose G is a complex semisimple algebraic group and H a
complex reductive subgroup. Then the representation of G in L2(G/H) is tempered
if and only if the set of points in g/q with abelian stabilizer in h is dense.
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Example 8.7. (1) L2(SL(n,C)/SO(n,C)) is always tempered.
(2) L2(SL(2m,C)/Sp(m,C)) is never tempered.
(3) L2(SO(7,C)/G2) is not tempered.

The 昀椀rst two cases above are symmetric spaces, see also Example 1.3. The next
example is a consequence of Proposition 3.6.

Example 8.8. Let n = n1 + · · ·+ nr with n1 ≥ · · · ≥ nr ≥ 1 , r ≥ 2 .
(1) L2(SL(n,C)/

∏
SL(ni,C)) is tempered i昀昀 2n1 ≤ n+ 1 .

(2) L2(SO(n,C)/
∏

SO(ni,C)) is tempered i昀昀 2n1 ≤ n+ 2 .
(3) L2(Sp(n,C)/

∏
Sp(ni,C)) is tempered i昀昀 r ≥ 3 and 2n1 ≤ n .

8.4. Examples of real homogeneous spaces
Here are a few examples of application of our criterion (1).

Example 8.9. Let G1 be a real semisimple algebraic Lie group and K1 a maximal
compact subgroup.
(1) L2(G1 ×G1/∆(G1)) is always tempered.
(2) L2(G1,C/G1) is always tempered.
The 昀椀rst statement is obvious from the de昀椀nition of temperedness, and alternatively
follows immediately from (1) and Proposition 2.16. The second statement follows
from the 昀椀rst one as a special case of the example below.

Example 8.10. Let G/H be a symmetric space i.e. G is a real semisimple
algebraic Lie group and H is the set of 昀椀xed points of an involution of G . Write
g = h⊕q for the H -invariant decomposition of g . Let Gc be a semisimple algebraic
Lie group with Lie algebra gc = h ⊕

√
−1q , so that the h-modules g/h and gc/h

are isomorphic. Therefore, L2(G/H) is tempered i昀昀 L2(Gc/H) is tempered.

Example 8.11. (1) L2(SL(p+ q,R)/SO(p, q)) is always tempered.
(2) L2(SL(2m,R)/Sp(m,R)) is never tempered.
(3) L2(SL(m+ n,R)/SL(m,R)× SL(n,R)) is tempered i昀昀 |m− n| ≤ 1 .

Example 8.12. Let p1 + · · ·+ pr ≤ p and q1 + · · ·+ qr ≤ q .
L2(SO(p, q)/

∏
SO(pi, qi)) is tempered i昀昀 2 max

piqi ̸=0
(pi + qi) ≤ p+ q + 2 .

The homogeneous spaces in Examples 8.8 and 8.12 are not symmetric spaces when
r ≥ 3 . In most cases, they are not even real spherical ([13]), too.

8.5. About the converse of Theorem 1.1
Even when H has no compact factors and G/H is a reductive symmetric space,
the converses of the implications in Theorem 1.1 are not always true. Here are two
examples that follow from Theorem 1.4.
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(1) Counterexample to the converse of Theorem 1.1(1).
L2(Sp(p1 + p2, q1 + q2)/Sp(p1, q1)× Sp(p2, q2)) is not tempered when p1 ≥ 1 , q1 ≥ 1
and p1 + q1 = p2 + q2 + 1 , even though the set of points in G/H with amenable
stabilizer in H is dense.
(2) Counterexample to the converse of Theorem 1.1 (2).
L2(SL(2m − 1,H)/S(GL(m,H) × GL(m − 1,H))) is tempered when m ≥ 2 even
though the set of points in G/H with abelian stabilizer in h is not dense.
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