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ABSTRACT. In this paper we prove instability of the soliton for the focusing,
mass-critical generalized KdV equation. We prove that the solution to the
generalized KdV equation for any initial data with mass smaller than the mass
of the soliton and close to the soliton in L2 norm must eventually move away
from the soliton.

1. Introduction. In this paper we prove L? instability of the soliton for the fo-
cusing, mass-critical, generalized KdV equation

Uy = —(Ugy + u°)s, u(0,z) = ug € L*(R). (1)
This equation is called mass-critical because the scaling leaving invariant, i.e.
u(t, z) — A2y (A°t, Az)

leaves the L2 norm, or mass, invariant. The mass of a solution, defined by

M (u(t)) ::/R|u(t,x)\2d:z:

is conserved.
Recently, [7] proved that the defocusing, mass-critical generalized KdV equation

Uy = —(Ugy — u°)g, u(0,2) = ug € L*(R), (2)

is globally well-posed and scattering for any ug € L?(R). The proof of the defo-
cusing result used the concentration compactness method. Namely, a result of [12]
combined with a scattering result of [5] for the defocusing nonlinear Schrodinger
equation,

iy + Uge = |u)tu, u(0, ) = ug € L*(R), (3)
implies that for scattering to fail for , there must exist a nonzero, almost periodic
solution to .
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Definition 1.1 (Almost periodic solution). Suppose u is a strong solution to (/1)) on
the maximal interval of existence I. Such a solution u is said to be almost periodic
(modulo symmetries) if there exist continuous functions N(¢) : I — (0,00) and
x(t) : I = R, such that

{o(t,z) = Nt) "V 2u(t, Nt) "tz +z(t)) : t € I} (4)

is contained in a compact subset of L?(R). See also section for an equivalent
condition.

Then [5] proved that in the defocusing case, there does not exist a nonzero,
almost periodic solution to , which implies scattering for the defocusing equation
(2). The proof used an interaction Morawetz estimate based upon the argument
in [23], which proved there does not exist a soliton for the defocusing, generalized
KdV equation.

For the focusing generalized KdV equation, there exists the soliton u(t,z) =
Q(x —t), where

31/4
)= ——75— > 0. 5
) cosh!/?(2x) )
The function Q(x) solves the elliptic equation

so therefore, Q(x — t) solves (). Note that Q(z — ¢t) is an almost periodic solution
to . Meanwhile, for the focusing, mass-critical nonlinear Schrédinger equation,
iy + Upy = —|ultu, u(0,2) = ug € L*(R), (7)
u(t,z) = e Q(z) gives a soliton solution.
The paper [6] proved that the focusing nonlinear Schrédinger equation @ is

scattering for initial data below the ground state, ||ug||z2 < ||Q]| 2. It is conjectured
that the same is also true for the focusing, generalized KdV equation.

Conjecture 1. If |lug|lr2 < ||@Q]|L2, then the solution to is globally well-posed
and scattering.

It can be verified that if Conjecture [I] is true, then this implies that there does
not exist an almost periodic solution to below the ground state.

Conjecture 2. There does not exist a nonzero, almost periodic solution u to (|1)
satisfying 0 < |[ull > < Q12

However, unlike in the defocusing case, Conjecture [2[ does not imply Conjecture
This is because [12] states that if @ is globally well-posed and scattering when
lullzz < |Q|l L2, Conjectureimplies Conjecturewhen 0 < Jlullz2 < \/§HQ||L2.

In the defocusing case, the presence of the constant % is unimportant, because

scattering for the defocusing nonlinear Schrodinger equation holds for any finite
mass. However, in the focusing case, the constant \/g becomes quite important,
since it is conjectured that scatters for any ||ug|lr2 < ||Q|lL2-

Conjecture [1] would also imply instability of the soliton in an L?-sense. For any

initial data ug € L?, |luollz2 < ||@||2, the solution to would scatter to a free
solution, and thus the solution would approach distance

(IQUZ: + lluol|72)"2
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from any translation or rescaling of the soliton as t — 4o0.

In a remarkable series of works, [20], [13], [14], [15], [19], [16] proved, among
many nice results, the instability of the soliton in an H' sense, for initial data with
mass greater than or equal to the soliton. In fact, they proved something more, that
there initial data arbitrarily close to the soliton in H'-norm, which eventually move
away from the soliton in an L?-sense. See [17] and [I8] for results in a weighted L?
space.

In this paper we show that there are no almost periodic solutions to which
are uniformly close to Q(z) in L2 modulo symmetries.

Definition 1.2. If a maximal-lifespan strong solution u to on [ satisfies

1 T — To
Mezm <0 (8)

sup inf ||u(t,z) — —=Q(———
p it ultr) — 1@

then we say u is d-close to Q. It is readily seen that the infimum is attained and
the values Ag(t), xo(t) which attain the minimum can be chosen to be continuous.

The main result is

Theorem 1.3. There ezists 6 > 0 sufficiently small such that there does not exist
a mazimal-lifespan solution to with ||uo|z2 < ||Qlr2 satisfying (8).

In other words, Theorem states that there no solutions d-close to Q. A
consequence of this fact is that for any initial data satisfying |luo||r2 < [|Q||L2, the
solution to with such initial data must eventually move a distance § > 0 away
from the soliton, modulo translations and rescalings, where > 0 is a small, fixed
constant.

We split Theorem [I.3] into two statements. The first part reduces the study to
the existence of almost-periodic solutions.

Theorem 1.4. Suppose u : I x R — R is a mazimal-lifespan strong solution with
[luollrz < [|@l|L2 to the mass-critical focusing gKdV equation which is d-close to
Q. Then, if § is small enough, there exists an almost periodic modulo symmetries
mazimal-lifespan (strong) solution v which is d-close to Q with mass less than Q.

The proof is given in Section [3] and it relies essentially on a Palais-Smale result
based on the Airy linear profile decomposition, decoupling and an approximation of
gKdV solutions by NLS solutions, which are tools developed in [22], [23], [I2] and
reviewed in Section [2] See [J] for a similar argument in the case of the mass-critical
nonlinear Schrédinger equation.

Once we have this reduction, we prove that such solutions cannot exist.

Theorem 1.5. There are no almost periodic solutions to with mass less than
Q which are §-close to Q, if § is small enough.

The proof of Theorem [I.5|combines the ideas of [7] and in [20], [13], [14], [15], [19],
[16], [I7], and [18]. The proof of scattering in 7] reduced an almost periodic solution
to three scenarios: a self-similar solution, a double rapid cascade solution, and a
quasisoliton solution. The arguments used in excluding the self-similar and double
rapid cascade solutions can also be used to exclude an almost periodic solution to
with mass less than the soliton, regardless of whether it is close to the soliton or
not. However, in the defocusing case, the interaction Morawetz estimate developed
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in [7] used [23], and there is no analog to [23], even for a solution with mass below
the mass of the soliton. Instead, we rely on the Morawetz arguments in [20], [13],
[14), [15], [19], [16], [T7], and [I8]. These Morawetz estimates depend very much on
the fact that the solution is close to the soliton in an L?-sense, and can be used
to show that a solution cannot stay close to the soliton for the entire time of its
existence.

2. Preliminaries.

2.1. Notation and linear estimates. We will write z < y to denote z < Cy for
a uniform constant C' > 0. We denote (z) = (1 + 2?)'/2. The one-dimensional
Fourier transform is defined by

1 —ix€
= — d R
76 = oy [ @, ge
which is used to define the linear propagator and fractional differentiation operators
by
a3 A — o3
TP = e fE), [0l F(E) = I ().

For an interval I one considers the mixed norms on I x R

1/p
Pz = [ ([ 1P a0 ar) ™,
1/p
1Flszae = ([ ([ 1F¢aaas)”,

with the standard modification when p = oo or ¢ = oco. We recall the dispersive

eSlimale
—td3

_2(1_1
L,,(R)St 3(2 )HUOHLP (R)’ QSPSOO

We will consider weakly convergent sequences in L2(R), i.e. f, — f if

(fns9) /fn dx—>/f z)de Vg€ Li(R).

By approximation arguments, it sufficies to check this condition for all g € C.(R).
A basic fact which we will be using tacitly is that if f,, — f then

I fllz2 @) < lim inf | frllz2 &)-

2.2. Solutions to gKdV. Throughout this paper we will consider strong solutions,
defined as follows.

Definition 2.1.

1. A function v : I Xx R — R on a non-empty interval 0 € I C R is a (strong)
solution to if it lies in the class CPL2(J x R) N L3L{%(J x R) for any
compact J C I and obeys the Duhamel formula

¢ 3
u(t) = ey — / e~ =M%, (u’(7)) dr.
0

We say that u is a maximal-lifespan solution if the solution cannot be extended
to any strictly larger interval. We say that u is a global solution if I = R.
2. The scattering size is defined to be

1/2
0= [ ([ utea®a) = Julg 0
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3. We say that a solution u to blows up forward in time if there exists t; €
such that Sjy, sup(r))(v) = oo and that u blows up backward in time if there
exists a time ¢y € I such that S(ine(r),,](u) = 00.

4. We say that u scatters forward/backwards in time if there exists a unique
ug € L2(R) such that

: _—td3 _
tkg}mHu(t) ¢ ui‘Lg(R) 0 ©)

5. The symmetry group G is defined as the set of unitary transformations
G ={geor : L2 (R) = L2(R)| (20, ) € RX(0,00), gopnf(x) := A2 f (A7 (w — 20)) }.

For u: I x R — R, one defines T, ,u:A3] x R — R by

0,

T, su(t,z) = A2y (A (@ —20))

Gz,

T,u solves with initial data gug if u is a solution. Moreover, scattering sizes
are invariant

SA:S](TQU):S](U), gEG

We note that G is a Lie group and the map g — T}, is a homomorphism. Giving
the operators in G the strong operator topology, then the identification (xg, A) —
Jzo,x is a homeomorphism between R x (0,00) and G. Thus we say g, r, — 00
if [xn] + Ay + A, 1 — 0o, Moreover, in that case g,,, », converges to 0 in the weak
operator topology.

The L? local well-posedness theory of was established by Kenig, Ponce, Vega
in [I0].

Theorem 2.2 (Local well-posedness [10]). For any ug € L2(R) and to € R, there
exists a unique solution u to with u (tg) = wo which has mazimal lifespan. Let
I denote the lifespan of u. Then:

1. I is an open neighborhood of ty.

2. If sup(I)/inf(I) is finite then u blows up forward / backward in time.

3. If sup (I) = 400 and u does not blow up forward in time, then u scatters
forward in time. Conversely, given uy € L2(R) there is a unique solution
to in a neighborhood of oo so that @ holds. One can define scattering
backward in time in a completely analogous manner.

4. If M (ug) is sufficiently small then u is a global solution which does not blow
up either forward or backward in time and Sg(u) < M (u)>/?.

5. Uniformly continuous dependence on initial data holds, see Corollary[d]

2.3. Stability and corollaries. The stability theory of the generalized KdV equa-
tion is discussed in detail in [12].

Lemma 2.3 (Short time stability [12](Lemma 3.3)). Let I be an interval with 0 € I.
Suppose 4 : I x R — R is a solution to

(0 + 02t + 0,(7°) = e, (10)
(0, x) = (),
for some function e such that

il g L2 (rxr) < M,
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for some M > 0. Let ug be such that
Juo — diol|rz < M,
for some M' > 0. Assume the smallness conditions

%/l Ls 1o (1xr) < €0, (11)
— 3 ~
lle™"% (ug — o) || 3 1o 1wy < &, (12)
1
[0z ellLrr2rxry < & 13)

for some small 0 < e < eg = eo(M,M’). Then there exists a solution u: I xR — R
to with initial data uw(0) = ug satisfying

lu = allps o rxry + 16° — @1 p2rxm) S € (14)

= il| e £ (rcmy + 110l (w = W)llzg (1w S M’ +e. (15)

Tterating this lemma over small intervals also a long-time stability result can be
obtained, see [12] Theorem 3.1]. To keep track of the number of small intervals one
uses the following bound.

Lemma 2.4. Let v € L3L1°(J x R) for an interval J. Divide J into N inter-
vals [ty tyy1] such that |[v]lLs 10 (1, 10 1) xr) = €0 for every 1 <k < N —1 and
[Vl 2s L10(ftn tnsa]xR) S €0, for a fived eg > 0. Then the number of intervals N is
finite and N < (1 + ||l s 110 (s xr) /€0) -

Proof. See [12, Thm 3.1 -first part] O
As a consequence, one has

Corollary 1 (Uniformly continuous dependence on initial data). Consider solutions

v e L3L{°(JxR) to (). Foreverye > 0 there exists § = 6(z, [|v(0)| 22, 1]l 15 10 (s xr))
such that if ||ug —v(0)| 2 < 0, then there exists a solution to defined on J, with
initial data u(0) = ug such that

lu—vllreerznrsLiorxr) < &

Finally, we can use stability to prove a compactness property for the the trans-
formations associated to solutions that are d-close to Q.

Lemma 2.5. There exists § > 0 such that the following statement holds. Let
u: I xR — R be a strong solution to such that

lg@)u®) - QllLz <6,  Viel, (16)

with g(0) = go1 (the identity), 0 € I, g(t) € G. Then for any t € I there exists a
compact set Ky depending only on [t|, ||lul[zs p1o(j0,qxr) and M(u) such that g(t) €
K,.

Proof. Without loss of generality suppose ¢ > 0 is fixed. We split [0,¢] into N
intervals as in Lemma [2.4] where ¢ is the constant in Lemma [2.3] Then N depends
on M(u) and ||ul|Ls 10([0.4)xR)-

We do an induction argument. We prove that if the statement holds for ¢; then
it also holds for s € [tg, tx+1]. At t = 0 we have Ky = {go.1}-

From |lu(ty) — g(tx) "' Qllp2 < 0 using Lemmawe deduce

() = g(t) '@~ 55

Mz> <90,
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From this and at s we find
1Q = 9(s)9(t) " 9(s—t) /23 1@l L2 S 6.

For ¢ small enough, g(s)g(tk)_lg(s_tk)”%’l will lie in a small compact neighborhood
of the identity parametrized by (z,A) € [—n,n] x [r, R] for some n > 0 and 0 <
r < 1 < R. Therefore g(s) has to be in a compact set. Moreover, denoting
9(tk) = guy.n,, One checks inductively that

k—1

, - _ R
Ak € [rk lka 1]7 |xk| < (1 +R)k 277+ mtl«

which implies the stated dependence. O

2.4. Almost periodicity. As a consequence of the Arzela-Ascoli theorem we know
that precompactness of a family of functions in L2(R) is equivalent to it being
bounded in L2(R) and the existence of a function C(n) so that

[ e[ jj@rasy vaso
l2|>C (n) 1€]1>C(n)

holds for all the functions. Therefore, the almost periodicity condition is equiv-
alent to

lut,z)[? dz + / ()P <y ¥ >0

/Er(t)>0(n)/N(t) [€1=C(m N (¢)

2.5. The embedding of NLS into gKdV. We now review the approximation
of solutions to gKdV by certain modulated, rescaled versions of solutions to NLS
discussed in [23], [3], [12].

We cite the following theorem from [I2, Thm. 4.1], which was initially conditional
on the global well-posedness and scattering of the focusing NLS below the ground
state, which was subsequently proved in [4]. We will only need this theorem for
small data (in which case the existence part is automatic), and specifically we will
use the approximations , . Here

Re [eménknﬁt(fnhfvn (3¢nAnt, T + 3(5,@@%)] . when |f] < L

3EnAn
~T . T ~ T T
Uu,, (t,l') = exXp 4 — t— 3, ({93 Unp 3&717)\74) 5 when ¢ > 3,
expq—(t+ 7353)\” 2 b iy, _73&?)\”) , when t < _7363%
(17)

is defined in terms of certain frequency-localized solutions V;, and V to NLS such
that

[V = Vlzse L2 Rxr) = 0. (18)

Theorem 2.6 (Oscillatory profiles [12]). Let ¢ € L2 with M(¢) < 2\/§M(Q). Let

(AM)n>1, (En)n>1 C (0,00), with A, — 00 and let (tn)n>1 C R such that 3, Antn
converges to some Ty € [—00, 00]. Then, for n sufficiently large there exists a global
solution v, to with initial data at time t = t,, given by

B (tn, @) = =% Rele' ™S ()]
The solution obeys the global spacetime bounds

1/6 ~ ~
1102 "® Bl e _zxmy + 19l 15 130 iy So 1
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and for every € > 0 there exist n. € N and ). € C°(R x R) so that, for allm > n.
one has

~ ix it(Enn)?
[5n(t, 7) — Re[e™erAntiHEnAn) 0 (3¢, Xty 2 + 3(€nAn) )] 13 p20(Rxmy < & (19)
Moreover, defining uX by m, one has the approzimation

lim lim |3, —@ =0 (20)

T— 00 n—00

We note that is obtained in the proof of [12, Thm. 4.1].

ZLWHL;”LT;Z(]RX]R)

2.6. The Airy profile decomposition and decoupling.

Definition 2.7. 1. We bay that two sequences (I'}),>1 = (AL zh, th),>1 and

n? 7l’ n»’n
(I2)>1 = (A2,&2,22,t2),>1 in (0,00) x R? are asymptotically orthogonal if

/\wlL An / 2 Leiye ek | 0%t — (A2)*t2

+ WA ey, — a4 3 [(A1)3t1 APEIE)* + (€)% —

— OQ.

2. We say that
(Fn)nzl = ()‘nagnyxna tn)nzl l> o0,
if (T';,)n>1 and (1,0,0,0),>1 are asymptotically orthogonal , i.e

1
An +A + &n| + [tn] + |Zn] — 0.

Thus one can think of oo as an element in the one-point compactification of
(0,00) x R3.

IFTE = (AL &l 2l tl) and T2 = (A2,£2,22,42) are asymptotically orthogonal
then
t2

l 2
i (gay ay e~ [ Mng), gpa yae Mgl =0, g, p € L2 (21)

n—oo n’ “n

where either &) = 0 for all n > 1 or |M.£J| — co. See [22, Lemma 5.2, 5.1 Cor. 3.7].
This implies, in particular, the following statement.

Lemma 2.8. Let '), = (A, &, 20y 8n) — 00 and 0, € R. Then, weakly in L? one
has
. 3 .
gy e O] ), (22)

for any h € L2.

We are ready to state the profile decomposition for the Airy propagator obtained
by Shao in [22].

Lemma 2.9. (Airy linear profile decomposition [22]) Let v, : R — R be a sequence
of functions bounded in L2(R). Then, after passing to a subsequence, there exist
functions ¢7 : R — C in L2(R), group elements gJ, := 9ui xi € G, frequency
parameters &) € [0,00) and times t), € R such that for all J > 1 one can write

= 3 gl BRG] + ], (23)
1<5<J
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for some real-valued sequence w;) in L2(R) with

. . 193
Tim timsup [|0.]"/%¢ ™% w]|| g mry = lim Limsup [l w;] | 1 1o sy = 0.
! T—00

—00 n—oo
(24)
For each 1 < j < J, the frequency parameters & satisfy: either &, =0 for alln > 1
or EJM, — 00 asn — oo (If &) = 0 we assume ¢’ is real). For any J > 1 one has

J \J ;
lonllZz = Y Refe™ X ¢||72 — [w][|72 — 0. (25)
1<5<7

The family of sequences T'J, = (M, &1, xd 1) € (0,00) x R? are pair-wise asymptot-

n»’n

ically orthogonal in the sense of Deﬁmtzon@ and for any 1 < j < J

lim (g e =% Re[e™™6n ], w)) = 0. (26)

n—oo

For more discussion of the properties stated above we refer to Lemma 2.4, Remark
2.5. in [12] and Corollary 3.7, Lemma 5.2 in [22].

Corollary 2. Under the assumptions and notations of Lemmal2.9, if v, — 0 weakly
in L2, then also w;] — 0 weakly in L? for all J > 1 after passing to a subsequence.
For any 1 < j < J one has ¢/ = 0 or T, = (N, &, 2 1)) — oo in the sense of
Definition and therefore

ghe ' Rele' SN ¢f] = 0. (27)

Proof. After passing to a subsequence, we can arrange so that for each j € 1,J,
either '/, converges to a finite I} in (0, 00) x R? or I}, — oco. By pair-wise asymptotic
orthogonality we have and therefore at most one of the sequences {(I',),,>1 | 1 <
j < J, ¢ # 0} can converge to a finite value. Assume this happens for j = 1 and
then &} = 0 for all n > 1 and ¢! is assumed real. Since v,, — 0 we obtain

gle—t3m¢ +w 40

Taking inner product with gle =% ¢! and using we obtain [|gde 0% ¢! 2.=0
and then ¢! = 0, which is a contradiction. O

Finally, we recall the decoupling property of nonlinear profiles proved in [12]
Lemma 2.6]. When &, A, — oo the decoupling will follow from this lemma together
with the approximation from Theorem

Lemma 2.10 ([12]). Let ¢',v* € C(R x R) and sequences

(Crnz>1 = A& tr)nzt, (CR)az1 = (N3, &0, 20, 80 )n>1,
in (0,00) x R® assumed asymptotically orthogonal in the sense of Definition .

Then one has:

nh_{go ||ng;y,xgm¢l(t + trll) ng%,xgl ¢2(t + ti)HLé L3 =0,

. 2
in the case £, =&, =0, and

Jim [Ty, o [P GAEGE+ 1), 2+ 3006 (4 )] Ty (801 5 =0,



10 BENJAMIN DODSON AND CRISTIAN GAVRUS
when ELNL — 0o and &2 = 0, while
Tim ([T, [ BALEL(E+Eh). 2 + BOLED (4 £1))]

T, [W2(BAZE2(t +2), 2 + 3(NZE2)2(t + £2)] ||

2 2
gzn AR

5 )
L2L?

when EENL — 0o and 202 — oco.

3. Reduction to an almost periodic solution - Proof of Theorem [1.4} This
section is devoted to the proof of Theorem [1.4] Therefore we will assume at least
one d-close solution exists. Then we define the set

S(0) := {u | u=solution § — close to @ with M (u) < Mg}
and the minimal mass:
mo(0) == inf{M(u) |u € S(9)}.
By the triangle inequality, if u € S(8) # 0 and ¢y € I we have the basic bounds

1 1 1 1 1
Mg —6 < |u(to)llz < M3, and M3 —3§<mg <M. (28)

The crux of the proof is the following Palais-Smale -type proposition which is
used to extract subsequences convergent in L2.

Proposition 1. There exists an § > 0 small enough such that the following holds.
Let uy, : In X R = R be mazimal-lifespan (strong) solutions to the mass-critical
focusing gKdV equation which are §-close to Q, i.e. for some continuous gy :
I, — G one has

llgn(Oun(t) — Q2 <8  Vitel,, n>1. (29)

Suppose M (uy,) \y mg = mgo(d) and let t, € I, be a sequence of times. Then the
sequence gn (tn)un(tn) has a subsequence which converges in L? to a function ¢ with

M(¢) = mq.
Assuming Proposition [I] we can now construct almost periodic solutions.

Proof of Theorem [1.4l We first show that if M(u) > mq then there exists a
maximal-lifespan solution v : J x R — R with minimal mass M (v) = mg which
is d-close to Q. In that case there exists a sequence of maximal-lifespan solutions
Up ¢ I x R — R with M(u,) N\, mo such that holds for some continuous
gn : I, = G. Then we apply Prop. [1| with some t,, € I,, and obtain a ¢ € L? with
ol = m(l)/Q. By translating time we may assume all ¢, = 0 and by applying
transformations T}, ()-1 we may assume without loss of generality that all g, (0)
are the identity. Let v be the strong solution to with initial data v(0) = ¢,
defined on a maximal interval .J, which then satisfies

0 (0) = 0(0)]| 2 = 0.

Then for any ¢ € J, by continuous dependence on initial data, see Corollary
applied on [0,¢], one has t € I, for n large enough and

[un(t) — o)Lz + llun — vl L5 £10([0,xr) = O- (30)
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By Lemma we have g, (t) € K; for a compact set K;. Then we can extract
a subsequence such that g,(t) converges to some g(t) € G in the strong operator

topology. Therefore and imply
lgt)o(t) = Q|2 <6  Vitel,

which gives the desired d-closeness to Q). Note that g(t) is continuous.

We now show that v is almost periodic modulo symmetries. This follows by
considering a new arbitrary sequence of times ¢, € J and applying Prop. [I] with
gn = ¢, up, = v and t, € I, = J to conclude that g(¢,)v(t,) has a limit point in
L2 O

It remains to prove the key convergence result.

Proof of Proposition [1} By translating time we may assume all ¢,, = 0 and by
applying transformations T} (g)-1 we may assume without loss of generality that
all g,,(0) are the identity.

We divide the proof into several steps and for the first steps we largely follow the
outline of [T2, Prop. 5.1 -Case II], with the mention that here one needs to insure
that the bulk of mg, except for O(d) mass, has to fall onto the first profile.

Step 1. (Decomposing the sequence)

By passing to a subsequence, using the Banach-Alaoglu theorem, we obtain a
function ¢* € L? such that u, (0) — ¢' weakly in L?. Note that ||¢']|2. < mg and
since u,(0) — Q — ¢! — @ we obtain

o' = QllL2 < 6. (31)
Moreover,
[un(0) = ¢'[1Z2 = lun(0)ll72 + 6" 122 — 2(un(0), ") == mo — [l9" 7. (32)

If |¢*||3. = mo this implies the desired convergence. Now assume [|¢'|. < mg
and we will obtain a contradiction. We use the profile decomposition in Lemma
and its Corollary [2 applied to v, = u,,(0) — ¢! — 0 to write for any J > 2

un(0) — ¢! = > ghe "% Rele N ¢) 4wy,

2<j<]
By (32), the limit becomes
mo— 613 = 30 IRee MG~ B 0. (39
2<j<]

By re-denoting some indices, we may assume that all the ¢’’s are nonzero. Defin-
ing TL = (1,0,0,0) corresponding to ¢!, from Corollary [2| we obtain that I'/ =
(M, &, t1) — oo for j > 2, and thus all (I'});>1 are pair-wise asymptotically
orthogonal and

w! — 0. (34)
From and [|¢*||2. < mg we obtain the smallness condition
ST IRele™ M g]||2, + [lw] |32 < 26M3, YV n>y L (35)
2<5<J

Step 2. (Construct nonlinear profiles)
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Let v! : T x R — R be the maximal-lifespan solution to with initial data
v1(0) = ¢. We continue with defining solutions associated to the profiles for j > 2.
For each J > 2 we reorder the indices such that:

A) For j € 2,Jy one has &) = 0. Then one can refine the sequence for each j
and by a diagonal argument one can assume that each sequence (#/,),>1 has a limit
T7, possibly +oo. If T7 is finite one may assume that ¢, = T7 = 0 by replacing ¢’
by €7’ ¢J and by absorbing e~ (2 ~T)% Re¢/ — Reg into the remainder term w/.
One defines:

e When tJ =0, let v/ be the the maximal-lifespan solution to with v7(0) =
Reg’.
e If tJ — Fo0, let v7 be the the maximal-lifespan solution to (1]) which scatters
forward/backward in time to et Reg’.
Due to the smallness property (35)), each v7 is global and Sg(v?) S M[Re¢’].
The nonlinear profiles are defined by

vp(t) =T, [0 (- +E)I1),  j€2,Jo, n>1,

so that vJ : R x R — R with v/ (0) = g/ v?(t,).
B) For j € Jo + 1, J the reordering satisfies 4 \J, — oo. For n sufficiently large,
the solution to with data

T () = e Rele N ]
is global and small. Moreover, by applying the Riemann-Lebesgue lemma to
2[Re[e™*S 2 67]|[7 = M(¢7) + / Re[e/"$ 2% ¢ (2)?] da
R

to obtain a bound on M(¢’), one has the approximation given by Theorem
(since one can insure, using a diagonal argument, that (t¢2 A\]),>1 has a limit).
Again, one transforms these solutions to obtain v}, : R x R = R by

v () =Ty [0 (- +t)](t),  jelo+1,J, n>1.

For both cases A) and B) Lemma and Theorem give the decoupling
property

lim |[oloF] s =0 V1<j<k (36)
n—00 L2 LY(IXR)

where for j = 1 we denote v} = v!.

Moreover, due to the smallness and the invariance of the scattering norm one has

Se(v]) < [IRele™ ]2, 52 n>; L (37)

Step 3. (Construct approximate solutions and bound the difference)
For any J > 2 construct the approximate solution, defined on I for n > ; 1 by

J
al(t) == vt(t) + Z vl (t) + e_tagwi.
j=2

and define the remainders r/ on I NI, by

un(t) =ty (1) + 771 ().
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From the way the v were constructed we obtain
72 (0)l| 22 = [ (0) = @ (0)[ 2 == 0, VJ > 2. (38)

Next we bound the scattering size on any interval I, using , and using the
decoupling after having raised the sum to the power 5:

J
lim sup S7(@)) < limsup Si(z v?) 4+ lim sup S (e 102 w;)

J .
< Sq(vt) + limsupz Sr(v)) +0
J
< Sq(vt) + limsupz HRe[e”éi’\igbj]H%% +6 < St +46. (39)

In the remainder of this step we prove

rcly N (40)

N>1n>N
and that for any t € I one has
lim limsup || (t)|| > = 0. (41)
J—=0 pooo

Suppose ¢t > 0. Divide [0, ¢] into intervals [tg, tx41], & € 1, N, t1 = 0 such that
||Ul||sz’L%0([tk,tk+1]><]R) ~€g Vkel,N-1 (42)

where g9 = €9(Mg, 1) > 0 is the universal constant given by Lemma Then
Lemma [2.4] gives a bound on the number of intervals V.

We begin with and do an inductive argument to show that if ¢, € I, for
n >, 1 and holds at t = tg, then tx41 € I, holds for n >,11 1 and

. | )
i T sup 175 | 2o 22 (bt xR) = 0-

These facts follow from the short-time stability Lemma applied with u,, and @,
provided we check:

T Sup (|52 5 219 (10 01wy < %0 VJ>2 ke LN  (43)
n—o0 zt "
Jim timsup 10171 [0+ )5 — 0@ N2 oy = 0 (4)

The first bound follows from by appropriately choosing the implicit con-
stant in and choosing § small enough. The asymptotic solution bound is
proved in Lemma below. This completes the proof of and . Moreover,
by summing over intervals and recalling that ¢ is fixed, this argument and Lemma
give the uniform bound

[unllLsioqos S Neo < C(I0tllsLioqo)s 7> 1. (45)

Step 4. (Show that v (¢) converges weakly to 0)
Fix t € R and j > 2. Recall that T}, = (\,,&,29,t)) — oo in the sense of
Definition
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A) We first assume &, = 0. Then

. . . t
J — gl |+
vn(t) - gnv (tn + ()\%)3>

By passing to a subsequence, we may assume

; t
t) + —— = T € [—00,00].
()\%)3 J [ }
If T} is finite, in either case tJ, = 0 or tJ, — oo we have g/ — oo and the claim
reduces to gfv7(T;) — 0, which follows from ([22).

_ 3
If T; — oo we use scattering to replace v (t) by gJe “v4. Then we

can approximate by bump functions and apply the dispersive estimate.

B) It remains to consider the case &4 \J, — oo. This implies in particular that
&4+ N, o0 FixteR e>0,7>Jy+1and ¢ € CF(R). We will use the
approximation involving NLS solutions from Theorem to show

(Wi (8), )] <e

J t
Bt e )

for n large enough. Since

oh(t) = ghoh (t +

t
()%)3)

we can use the approximation (20)) to reduce to

) ; t €
Il (¢ h
(6 + ) 9| < 3
for a fixed large T, where the 7. are defined by (17) in terms of NLS solutions V;,.
By passing to a subsequence we may assume that all the ¢ + are in
T T
Ik e
have a limit

t
()
] or in [ﬁ,oo) or in (—oo, —35%] and that in the first case we

t
(M3
In the other two cases we define T7 := +T. Using 7 and V € C,L? we
approximate

Ty = lim 36\, (tz; n ) e [-T,T].
n—oo

- ; t
TACES (Aj)g) Tl < m> 1

where we denote
fu(Th) == e_S”aiRe[emf")‘"eic"V(Tl, T —Yn)]

for some values $,,, ¢, yn. Therefore, denoting W to be either V or V, we reduce
to showing

E0ng 0 i Gyne” O [ETE AW (Ty)] = 0,
for some 6,,’s. This follows from Lemma because 9ui 2 Yyl = 9. 3 for some
zn and we have & + A, — oo.

From A) and B) we conclude

vl (t) =0, VteR, j>2. (46)

Step 5. (Prove that v! is d-close to Q)
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Fix an arbitrary ¢ € I, where we recall that I is the maximal lifespan of v!.
Then, by we have t € [, for n large enough. We expand

02 2 [[un(t) = ga(t) ' QIIZ2 = 01 (1) — gn(t) ' QII7 + A0 () + B;i (1) (47)

with the terms

J
A = 1D wae) + e ]+ (1)1
B]l(1) =20 (1) ~ ga(t)'Q, Zvﬂ P+ 77 (1))

Due to the uniform bound .7 Lemma - 2.5 provides the existence of a compact
set K; such that g,(t) € K for n large enough. We extract a subsequence such
that g,(t) converges to some g(t) € G in the strong operator topology. Then also

gn(t)™' = g(t)7*, so we may replace g,,(t)7'Q by g(t)~'Q when we use (46),
and to obtain

lim limsup B (t) = 0.

J—=00 n—oco

We use this together with A7 (¢) > 0 to pass to the limit in and conclude

lgt)w' () = Qllz2 <6 Vtel
This means v! € S(§) with M (v') < m(§), a contradiction. O

It remains to verify the asymptotic solution bound .

Lemma 3.1. Suppose w;] € L2(R), J > 1, n > 1 and that v, € L3LI°(I x R) are
solutions to such that for any 1 < j <k

. 03, J S
nlgg(}” ) ”HL2L5(1xR) =0, ILH;OII?SUP\|€ wnHLngO(IxR) =0.

Then, assuming the @; are uniformly bounded in LiL}O(I x R), defined by

J
= Z vl (t) + e 1ok w;!
j=1

one has

Tim Timsup | (0] 7" (9 + 03), — 00(5)° 1 127y = O-

n—oo

Proof. This is proved in [I2, Lemma 5.3]. We review the argument for the sake of
completeness. One writes

@c+03) iy = > 0n

1<5<J

Thus it suffices to estimate (@;)% — >, - <j<s 71 as follows:

~ —+83 5 ~J\9 _ 193 3
[ (ui—e tamw%{) —(ui) ||L;Lg(fo) < (e e ) ||L1L2(I><]R +(l(e” |U | HLachg(fo)a

then one uses Holder’s inequality and pass to the limit. Secondly,

J
1O o)™~ > ) pziem S . Do b ool b) ] 2 em)

1<j<J 1<5<J i1,i0,is=1 1<jAk<J
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and one uses Holder’s inequality again to pass to the limit. This completes the
proof. O

4. Reductions of an almost periodic solution. Having proved Theorem[1.4] we
have reduced the main result, Theorem to the case of almost periodic solutions.
The remainder of the paper is devoted to this case, i.e. proving Theorem We
begin with studying N (¢) from Definition In this section we prove

Theorem 4.1. If there exists an almost periodic solution to with |lugllrz <
IQIlL2, then there exists an almost periodic solution to satisfying on a max-
imal interval I with N(t) > 1 on I, and

/N(t)zdt = o0. (48)

Moreover, if the initial solution is 6-close to Q, then the solution we obtain is also
d-close to Q.

Proof of Theorem [4.1l Using elementary reductions (see [12]) it suffices to con-
sider an almost periodic solution to that satisfies N(t) <1 for ¢ € [0, 00). Such
a solution will satisfy one of two properties:

lim inf N(¢) >0, (49)
T—00 t€[0,T)

or
li inf N(t) =0. 50
Gl N o

1) Begin with scenario (49)), N(t) ~ 1 for any ¢ € [0,00). Thus, there exists a
function z(¢) : [0,00) — R such that

{u(t,x — x(t)) : t € [0,00)} (51)

lies in a precompact subset of L?(R). Therefore, taking t, — +o0o and possibly
after passing to a subsequence,

w(tn,x — x(tn)) = o in L*(R), (52)
and moreover, ug is the initial data for a solution to satisfying
{u(t,z —x(t)) : t € R} (53)

lies in a precompact subset of L?(R).
2) Now consider scenario . Split this scenario into two separate cases:

SUPyeto(r), 1) V(1)

lim su < 00, 54
T—)sup(I;) N(tO(T)) ( )
or
. SUPyeto(m), 1) V(1)
lim su = 00. 55
T—)sup(I;) N(tO(T)) ( )
where

to(T) =inf {t € [0,T] : N(t) = tei[%,fT] N(t)}

Following [7], for any k € Z, let
ty = inf{t € [0,7] : N(t) = 27F}. (56)

Since N(t) is a continuous function of time and holds, ;. is well-defined.
2A) When holds, there exists C' < oo such that N (t) < C27F for any t > t.
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Lemma 4.2. Suppose (50) and hold. Then the sequence (tx 1 — t3,) - 273% is
unbounded as k — +o0.

Proof: Suppose that there exists a constant Cj such that

(tryr —t) - 273K < Q. (57)
Then for any k € Z,
tr < Cp2%k. (58)
Meanwhile, as in the scaling symmetry implies
ty, > 23k, (59)
Therefore, for any k,
N(t) ~ 6. (60)

Asin [7], implies that after passing to another subsequence, we have a solution
u to satisfying N(t) ~ t~'/3 for any t > 0. Moreover, following the exact
arguments in Section five of [7] shows that the self similar solution u(t,x) satisfies
the estimate

E(u) < 1. (61)

However, by the Gagliardo-Nirenberg inequality, this contradicts N(t) ,* 400 as
t N\ 0. O

Now take a sequence t; — oo such that
(the1 —tr) - 27%F — fo0. (62)

In this case, guarantees that N(t) ~ 27F for any t < t < t;41. Choose the

tettrt1
2

sequence of times ¢} = . After passing to a subsequence,

k20t 2% (x — x(t}))) = uo,  in  L3(R), (63)
and furthermore, ug is the initial data of a solution to satisfying
{u(t,z —x(t)) : t € R} (64)
lies in a precompact subset of L?(R).

2B) Finally, consider the case when and hold. In this case, possibly
after passing to a subsequence,

2K 2u(ty, 28 (x — z(tr))) = uo,  in  L*(R), (65)
where ug is the initial data of a solution to on an interval I such that
{N(@)"Y2u(t, N(t) 'z + x(t)) : t € I} (66)
lies in a precompact subset of L?(R), and moreover, N(t) > 1 for all t € I.

Proposition 2. If u is an almost periodic solution to with ||lul|g2 < |Q|lL2 on
a mazimal interval I C R that satisfies N(t) > 1 for allt € I, and N(0) =1, then

/N(t)th = 0. (67)
I
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Proof: Again following [7], suppose

/N(t)zdt = Ry < oo. (68)
Translating in space so that :r(OI) = 0, define the Morawetz potential
— [wlFutt.0rds, (69)
where
- /O " (), (70)

where ¢ is a smooth, even function, ¢(z) =1 for —1 < z < 1, and ¢ is supported
on |z| <2.

Since N(t) > 1 and [, N 7 t)2dt < oo, I is necessarily a finite interval. Therefore,
N(t) /S 400 ast — sup(I) ort — mf([). Combining this with the fact that

|2(t)] S N (),
sup [M(#)| < Ro, (71)

with implicit constant independent of R. Moreover, by direct computation,

——3/¢(%)ux(ta: dsr:—|——/¢" u(t,z)?de + = /d) u(t, z)%dz.
(72)
Therefore, by the fundamental theorem of calculus,

/I/éﬁ(%)ux(t,x)Qda:dt S Ro+ .|Ri2| +/I/U(t,x)6dxdt. (73)

We have already demonstrated that the first two terms on the right hand side are
uniformly bounded for any R > 1. So it remains to control the third term.

Partition I into consecutive intervals
I = Ui Jy, (74)

/J k / w(t, 2)Sdadt ~ 1. (75)

Using standard perturbation arguments, for any fixed Jj, with 1,1 € Ji

where

N(tl) ~ N(tz), and |t1 — t2| ,S N(tl)_S. (76)
Therefore, by Holder’s inequality,
2/3 16/3
/Jk /u(t,x)ﬁdxdt S |Jk|1/3‘\u||L{,oL2|| ||L8{m(kaR) < |V < . N(t)?dt. (77)
Therefore,
1]
//¢ Vg (t, z) da:dt<Ro+R2 (78)
Taking R — oo,
/ / wa (£, 2)2dzdt < Ro. (79)
I

Therefore, by the Gagliardo-Nirenberg inequality, when ||u||z2 < ||Q|| L2, by conser-
vation of energy,

| Byt = nEw) < o (30)
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However, when |Jug||r2 < ||@Q]| L2, conservation of energy combined with contra-
dicts the fact that N(¢) is unbounded on I, which completes the proof of Proposition

2O

Since the subsequence in the above analysis always converges strongly in L? to
ug, if we begin with an J-close to @) solution, then the solution that we obtain is
also d-close to . This completes the proof of Theorem O

5. Decomposition of the solution near a soliton. Since after rescaling and
translation, u is close to @), we can use a decomposition lemma of [16]. This lemma
was proved when u was close to @ in H' norm, however, it is possible to prove a
slightly weaker result when u is merely close in L? norm.

Lemma 5.1. There exists 6 > 0 such that if
zo(1)

— o) 20 26 1
HU 0( ) Q( /\O(t) )”L2 < ) (8 )
then there exist x(t) and A(t) such that
et,y) == A0 2ult, Aty + (1)) — Q(y) (82)
satisfies
4209 = (2 +3Q,). ) = 0. (33)
Moreover,
Ao(t) zo(t) — x(t)
-1 _— <. 4
o = U+ P o felse 5 6 (34)
Remark 1. Observe that by , almost periodicity (according to Deﬁnition
is maintained with the new z(¢) and N(t) = ﬁ

Proof: Use the implicit function theorem. For § > 0, let

Us={ue L?:|ju—QlL < 26}, (85)
and for u € L*(R), A\; > 0, z; € R, define
nns (1) = A Pu(hy + 1) - Q. (86)

Define the functionals

pih:m (u) = /6/\1,931 (yQy)dya p?\1,m1 (u) = /e)\hwl (y(% +yQU))dy (87)

Then by direct computation,

86)\ T 1/2
o = Oy + ), (85)
and
O€x, o 1. _
ST -\ 1/2u()\1y + ) + )\i/Qyuz()\ly + x1). (89)
o\ 2
Integrating by parts,
opl. _
= [P 0@y = = [ AT uluyo1) 0@y Q) )y,

(90)
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8[)2 T
% :/)\}/2um()\1y+IE1)(QQ+y2Qy)(y)dy
it 2

= [ uu + 0§ + 2@y + Q) W)

apy. . 1._
2 — AT a0y + 00) 4 M yua Oy + 20))(0Q,) () dy

:/%)‘ 1/ ()‘19+$1)9Qy< ) /Afl/zu(Aly+xl)y2ny<y)dy

) / A a0y + 21)yQ, (y)dy,

and

O\ 2

1

= 5/A;”Qu(/\lxJrazfl)(%QJryQQy)(y)dy

7
= [Ny + )@ + 5@y + @) 0y
This implies that (p}, ,,, 3, »,) are C" functions of (A1, z1).
Also,

ap}\l ]

‘)\1 1,2,=0,u= Q*/Qy ydey*O

P, 2,
Al, |)\1 1,z1=0,u=Q — /Qy +yQy) /(%+yQy)2dy>07

ap}\h

apl’tl
815; |n=1,21=0,u= Q—/(QJFyQy) (QJFyQy)dy—O

Therefore, by the implicit function theorem, if
llu(z) — Q)| L2 < 26,
then there exist A\,  such that

A=A+ [z + [lel[2 S [lu — Q|2 < 26,

satisfying
(€yQy) = (e, y(% +yQy)) =
Now take a general Ao(t) and xo(t) such that
_ -z
lufy) = A5 *QE ) s < 25

Then after translation and rescaling,

1A *u(Xoy + 20) — Q(y)| 12 < 26.

993, . 1
#:/[*A V2u(Ay + 21) + A yuz(m/+w1)](%Q+y2Qy)(y)dy

o\ = |/\1 1,21=0,u=Q — /(% + yQy)yQy = /(% + yQy)zdy > 0,

(91)

(92)

(93)
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Then there exist |Z| 4 |A| < |lu — Q|12 such that
2(1 = N Y2u(Xo(1 = Ny + Ao + 20), 2Qq) = 0,

(& 20,0 =0

Since [A| < 6, |%ﬁj‘)| < 6. Also, [AoZ| < Aod, so ‘xé’/\%o‘ < 4. This completes the
proof of Lemma (I

Vs i ~ (100)
(A (1 =X) / u(Ao(1 = ANy + AoZ + x0), x

Introduce the Variable

at’ d 1
Ok equivalently d—j = (101)

s =

Lemma 5.2 (Propertles of the decomposition). (1) The function €(s,y) satisfies
the equation

Q

Ls

= +ye,) + (5 = Dey — (R(0)y,

—1@Q, + 5% :
(102)

= (Le)y + (3

where
Le = —€,0 + € — 5Q%, and R(e) = 10Q%* 4+ 10Q%® 4+ 5Q€* + €. (103)

(2) X and x are C* functions of s and
([ G+ v@ura - [@0Q,+ Q) — (5 -1 @+ Q)edy
— [ L@y + @)y~ [ By,

(104)
and
As 3
Y e(y Q+ Qy"’y Qyy)dy
s Q Q | Sy
0[G4+ 20+ Q) (105)
Q Sy Q 5y
— [+ e+ 2Qu) - [+, + Q)R
Proof: See [16]. O
This lemma has an important corollary.
Corollary 3. For all s € R,
As Ts
IS5 = S el + lell 2 l€]| s (106)
Proof. First observe that by Holder’s inequality and the boundedness of @,
[ 2@+ @) ey~ [ ROGRY < el + el it (107

and

5 5
JEE 2 a2 v [ (G +2Qy+Qu)R(dy S N+ el el
(108)



22 BENJAMIN DODSON AND CRISTIAN GAVRUS
Since [($ +yQy)2%dy > 0,

As T
151+ O(llell =) + If —1O(llellz2) < Nlellzz + llell 2 llell zs,

X - (109)
5 10Mellz2) + 155 = 11+ OClellz2)) < Nlellz2 + llellz2llel| 2,
so after doing some algebra,
15214122 11 5 lellzs + el el (110)
O
Next, by Strichartz estimates, rescaling, and perturbation theory, for any k € Z,
lu(s, y)llzs , (karrrxr) S lluolle < (1@ ze- (111)

Therefore, by the triangle inequality,

s <L (112)

s,z N

llellzs , (rpr1yxr) S Qs + [|ul

Also, by perturbative arguments, for ||e| 2 sufficiently small, if A(k) = 1 and
z(k) =0,
lu(t, 2) = Q@ — t)ll o L2 (kk+11xR) S lleolze- (113)
Thus using scaling and translation symmetries, along with Strichartz estimates,

€l ooz (k,k+1)xm) + l€llLs | (rpr11xr) S (k)| Lz (114)

Combining (111J), (114), Lemma and the fact that ||Q|rs is uniformly

bounded, along with choosing ||eg||z2z to be the infimum of ||e|| 2 on the interval
(k, k+ 1],
k+1

k+1 k+1
' 224 2o 120 ' lellF2ds + [lell lell7sd
\ \ ~ L2 L5 L2 ([k,k+1]xR) €l s 0S8
k k k

k+1
< / lel2.ds.
k
(115)

6. Exponential decay estimates of u. Having obtained a decomposition of u
close to the soliton, the next step is to prove exponential decay of a solution that
stays close to @ in the case when N(t) > 1 and [, N(t)*dt = oo. The proof follows
a similar argument in [20] and utilizes the fact that u is close to a soliton, and the
soliton moves to the right while a dispersive solution moves to the left.

Recall that

1 x —x(t)
su )| r2ry = sup ||u(t, z) — 2r) SO 116
teII) ||€( )”L (R) tEIID || ( ) )\(t)l/Z Q( )\(t) )”L (]R) ( )

Observe that N(t) > 1 implies A(t) < 1, where A(t) is given by Lemma It
is convenient to rescale so that A(t) < 1 for all ¢ € I. Note that after rescaling
N(t) > 1. See Remark

Lemma 6.1 (Exponential decay to the left of the soliton). There exists some ag
such that for xg > 10ag, if u satisfies Theorem [L.1] and ||uo|lrz < ||Q||L2, then

u(t, = + ()72 (2 —p) < 10cie” 5. (117)
Remark: It is important to note that ag does not depend on the § > 0 in (116).
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Proof. Suppose there exists some tg € R and zg > 10aq such that

/ u(to, z + z(tg))2dz > 10c e . (118)
x<—xo
Let K = 3\/5, and let
o) = Q7). (119)
where
. L (120)
N Kffooo Q(z)dx’
Define
vla) = [ oy, (121)
Then,
lim ¢(z) =0, lim ¢(z) =1L (122)

Next, define a modification of x(s), Z(s), such that x(k) = Z(k) for all k € Z, and
for any s € R, and for any k£ < s < k+ 1, Z(s) is the linear interpolation between

Z(k) and &(k +1). Then by (115)),

k41
Zk+1)—z(k)=xk+1)—z(k) = /k xs(s)ds

k+1 k+1 k+1
:/ A(s) + ( sup M@»d“|wm@w4/ A(s)ds) - (1+ 0(6)).
k k k

k<s<k+1
(123)
The last estimate follows from the fact that A(s) ~ A(k) for any £k < s < k+1. It
also follows from that for any k < s<k+1,

k+1
|Z(s) = x(s)] < |2(s) = 2(K)[ + |2(s) —2(R)| S (/k A(s)ds).  (124)

For technical reasons, it is useful to consider two cases separately. First, suppose
that

sup(l) 0
/ N(t)%dt = N(t)2dt = +o0. (125)
0 inf(I)

In this case, suppose without loss of generality that ty = 0, where ty is given by

(T8). Then,
/ w(0, x 4 2(0))2dz > 10c1e” 6 . (126)
x<—xg

Define the function
I(t) = /u(t,w)Qw(x —Z2(0) + 29 — i(fé(t) — 2(0)))dz. (127)
Then by (TI8), since Z(0) = =(0),
1
2

1(0) < /u(O,z)zdz — / u(0,z)%dx < /u((),x)2dx — Bere” ®. (128)
<—wo+3(0)
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Integrating by parts,

10 = =3 [ w,lt.0)°0(@ - 5(0) + 20 — 3(a(t) - 5(0)))do

+/u(t7x)2¢”(a; —2(0) + @ — i(:ﬁ(t) — 2(0)))dx

(129)
+§ /u(t,x)6¢(x —2(0) + o — i(i(t) — 2(0)))dx
—@ /u(t, z)?p(x — £(0) 4+ 2o — i(ﬁ:(t) — 2(0)))dz.
Following [20], observe that
ity @ 113, 1
v T 1wy = (106, (130)
Also observe that
I c z c x 1 1
¢"(z) = ﬁ@wx(?) < ﬁ@(}) = ﬁqﬁ(x) = Eﬁb(ﬂﬁ) (131)
Since A(t) <1,
Z(t) 1 1
~ e ¢@) + 55 () < -0 (132)
Therefore,
I < -3 / e (£, )26 (2 — #(0) + w0 — i(i;(t) — 5(0)))da
+§ / u(t, 2)86(z — 5(0) + 20 — i(i(t) _E0))dz  (133)
*%8 u(t, z)?¢(x — #(0) + zo — i(i(t) —2(0)))dz.

Next, using Lemma 6 from [20] and Holder’s inequality,

/ ot 9)%( — #(0) + m — i(i(t) — (0)))da
lz—Z(t)|>ao

< PG o oty > a0 (/ u(t, z)?dx)

|lz—Z(t)|>ao

2502 2 - 1 -
S (‘/|9€—56(t)|>a0 u(t, z)*dx) (/ ug(t, ) d(x — Z(0) + 2o — Z(gc(ﬁ) — £(0)))dx

+ /u(t,x)2¢(x —z(0) + 2o — i(;ﬁ(t) —2(0)))dx).
(134)
Since A(t) <1 and |z — Z(t)| < 1,

x —x(t)

M) Q) dr < e 20, 135
/meo QU e < (135)

and by ([16),

/xi(t)>a0 M elt A(t) )dw < 6. (136)
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Therefore, for ag sufficiently large, plugging (136)) into (133)),

1
ros | ult, 2)°9(r — 0) + w0 - 7 (3(1) = HO))dz.  (137)
lo—2(t)|<ao
By direct computation,
o) < ce~ #T=80) 20— (EF(H)=F(O0)| _ o= wlz—T(t)+](E(t)=2(0))+wol (138)
Since Z(t) > 2(0) and |z — Z(¢)| < ao,
— ce— 7+ @2 +3(@E1)—2(0))+x0) (139)
Therefore, since from 1' :Ic(t) > ﬁ, SO
I'(t) < Ce®" e~ ar FO=20) 34 / A(t)2u(t, z)0dz. (140)

Making a change of variables, for any 7" > 0,

T L k1 o
/ I'(tydt <> Cex / a4 (s)e™ 3k (F(5)=7(0)) / A(s)2u(t(s), z)0dxds. (141)
0 k>0 k
Then by (111)), conservation of mass, and a change of variables,
(141) S CKe =", (142)

However, by the fundamental theorem of calculus, (128]), the fact that by concen-
tration compactness,

I(t) / /u((),ac)zd:c, as t /sup(l), (143)

and K = 3v/2 > 6 gives a contradiction for ag sufficiently large.

Proving (143)) is the only place where (125 is used. (Since [0, %] is a compact
set for any tg € I, and N(¢) is a continuous function, (125 would also hold when 0
is replaced by any to € I.) Then by (130)), for any 7' > 0, T € I,

HT) — #(0) = /OTﬁc(t)dt > /OT ﬁdt ~ /OT N()2dt — 4o, (144)
as T' /' sup(I). This proves (143). O
Now prove exponential decay to the right.
Lemma 6.2 (Exponential decay to the right of the soliton). For zy > 10ay,
[tz + ()32 0500y < 10c1e™ 7. (145)

Proof. In this case, observe that if u(, x) solves (), then so does v(t, z) = u(—t, —z).
Once again assume without loss of generality that (145) fails at ¢t = 0. Define the
function

I(t) = /v(t, )% (2 4+ 2(0) + 20 + i(i(—t) — 2(0)))dz. (146)

If (145]) fails at to = 0 for some xq, then

1(0) < /u(t,x)de — Bere” T (147)
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Again by direct calculation,

I'(t) = 73/11,@(15,:0)%5(:1: +7(0) 4+ z0 + i(j(ft) — %(0)))dx
+ / v(t, x)%¢" (x + #(0) + xo + i(;z(ft) — #(0)))dx

(148)
+g /v(t, 2)%p(z + £(0) 4+ 2o + i(;ﬁ(—t) — #(0)))dx

D oot +0) + 0+ $(0(-0) — 0)d.

Making the same argument as in Lemma [6.1] and making a change of variables

I'(t) < / e u(—t, —x)%¢(x + £(0) + o + 1(:Jz(—t) — 2(0))dx

4
, (149)
:/ w(—t,2)5¢(—z + #(0) + o + ~ (#(—t) — #(0))da.
lo—i(t)|<ao 4
Then
$(z) < Ce™ & (CoHEDHFEO)—E(=))t20) < Co=ar EO)-F(-)-F (150)
Therefore, as in Lemma we can show that
T
/ I'(t)ydt < CKe % (151)
0
This proves (|145]). O]

Remark: Once again K = 3v/2.
It only remains to prove

Theorem 6.3. There does not exist an almost periodic solution to that satisfies
N(@t)>1 fordlltel,

sup(I)
/ N(t)*dt = 0, (152)
0
and
0
N(t)%dt < oo. (153)
inf(I)

Proof. By (144)) and (152), exponential decay to the left must hold for such a
solution. That is,

||’U,(t7l’ + ‘T(t))”L2(LE§—x0) < 100167%- (154)

Now let x be a smooth function such that x(z) = 0 for # < 1 and x(x) = 1 when
xz > 2. Then define the functional

M(t) = /X(xﬂo)u(t,ﬁx(()))?dx. (155)

The fact that N(¢) > 1 combined with (153)) implies inf(I) > —oo. This fact implies
that N(t) /oo ast N\ inf(I), so (123]) combined with almost periodicity imply that

lim M(t) = 0. 156
ol M(2) (156)



INSTABILITY OF THE SOLITON FOR GKDV 27

Then integrating by parts,

d 3 ;T 5
I =2 [0z +200)
b [t +20) e+ o5 [ (it + 2(0)ds
3z Zo ’ z3 2o ’
< 2 [yt + 2(0)0dz + ~ /X'”(ﬁ)u(t 2+ 2(0))2dz.
~ 3z Zo ’ z} Zo ’
(157)
Then by (L11)),

/0 Dyrwar< [ Nepd— Lwmty < ([ N@Rar. (s8)
inf(1) dt ™ 320 Jint(1) g ~ 20 Jint(n) '

This implies that for any ¢ € (inf(7), 0],
T 9 1 0 9
x(—)u(t,z + z(0))*dz S —( N(t)*dt). (159)
Zo Lo Jinf(I)

Since |x'(35)] < X(i—i), plugging (159) back in to (158),

O d < 2z, 2/3 16/3
S M@)dt S ||X(;o)u||m [u)| s " dt

nt(r) At
S Tg( N(t)2dt)1/3 e N(t)zdt) _ ﬂ( N(t)2dt)4/3_
Zq inf(I) o Jinf(I) T inf(I)

Therefore, since fiif([) N(t)%dt = R < o0,
/ u(t,z + 2(0))*zdr < oo, (161)
x>0
which combined with ((155)) implies
/ |z|u(t,z + 2(0))*dr < oco. (162)

Then following the proof of Proposition

0
/ /uz(t,x)2dxdt < 0. (163)
inf (1)

By the Sobolev embedding theorem, E(u) < co. Then by conservation of energy
and the Gagliardo-Nirenberg inequality, the solution to cannot blow up in finite
time, which gives a contradiction. O

The proof that there does not exist a solution satisfying
sup(I) 0
/ N(t)%dt < oo, N(t)%dt = oo, (164)
0 inf(I)

is identical.
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7. Virial identities. Next, use the virial identity from [I4] to show that, on aver-
age, the inner product (e, Q) is bounded by [|e[|2,.

Theorem 7.1. For any T > 0,

T
81/2 € Tas 1/2 2dS.
|/0 A(s) /( £)Q(x)dzds| < Clu /A le(s)]22d (165)

Proof. Define the quantity,

J(s) = A(s)l/Q/e(s,x)/ (% +2Q.)dzdz — M(s)Y2r, (166)
where k = ([ Q)2. By rescaling, Lemmas and [6.2] and the fact that A(s) <1
sup J(s) < oo. (167)

seR

Then compute - J(s) =

” rQ A * Q Al
A(s) /es(s,x) /700( 5 —|—zQZ)dzdx+2>\1/2 /e(s x) /700( 5 +2Q)dzdx— VI
(168)
Then taking the expression of €, given by (102 , and integrating by parts,

/ / Q1 .Q.)dzdy = / R L 0Qy)dy % 13-+ lel el (169)
Next, integrating by parts, by (106} -,

Jié T s Q
0 [ [ Graquasdy = ~G-1) [« Gy S el Il

(170)
Next, integrating by parts and using € L y( +yQy),
As v Q L As /y Q
5 /( +yey)/ (2 +2Q.)dzdy = 5 €(s,y) 700(2 +2Q.)dzdy

Yy
_7/ (s, y)y +yQy)dy— 1A 6(s,y)/ (%JrZQz)dzdy-

2 A oo
(171)
By direct calculation,

y

(%*U/Qy/ %Jerzdzdx:f—fl/Q +yQy) =0.  (172)
Also, since @ is an even function,

As [,Q ) AL (@ 2 As

5 /(5 +yQy) /700 5+ 2Q.dzdx = 75(/ 5 T yQudy)* = N (173)
Finally, since L is a self-adjoint operator,

Y Q _ Q _ Q
(Le)y 9 +2Q.dz = — (Le)(E +yQy)dy = — G'L(E +yQy)dy. (174)

Now, by direct computation,

% + xQx) = _Q;I + % - gQ5 — TQuze — 2Quz — 5$Q4Qac + Q)

= xax(_Qxx - Q5 + Q) - g(Qxag + Q5) + % = —2Q.

L(
(175)
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Plugging this into (174]),
Therefore, we have proved,

s / Q. (176)
d

27 () =2/\(5)1/2/Q(y)6(57y)dy+O(A(S)HEII%Q)+0(/\(8)H6||L2||€H‘is)- (177)

Using (113) to estimate ||¢[|rs ~proves the theorem. O
We are now ready to finish the proof of the main result.

Proof of Theorem [[.5]. Theorem [I.5] may now be proved using a second virial
identity. Let

1
M() = 576) [ e(s,)*dy. (178)
Lemmas and imply that (178]) is uniformly bounded for all s € R.
Now, by the product rule,

d

M) =) [ yelsv)eas. iy + (o) [velsyPdy. (179)

Again use (102)) to compute €s. Integrating by parts,

/ye(Le)ydy = /ye(—eyyy +ey — QOQBde - 5Q4ey)dy

3 1 5 (180)
=3 /ezdy ~3 /e2dy — 1O/Q3ny62dy — §/Q462dy =: H(e,¢).
Next, since € L yQ, and € L y(% +yQy) for all s € R,
As Q Ls
[ v+ v@uay= (3 ) [ve@uay=o. (1s1)
Next, integrating by parts and using (106)),
Ts Ls 11/2 3/2
Ge =1 fvee = =5 =1 [ dy S hellbat+ lellte) S el + el es 35"
(182)
Also,

— / R(e)ye(s,y)ydy = — /ye(10Q362 +10Q%e® + 5Q€* + 65)ydy
20
= g/Q?’eg — 1O/Q2ny€3 —S/Qnye4

15 5
+?/Q2e4+4/Qe5—/nye5+666

3/2, 113/2 5/2 1/2
S el Nl + el S Nell3 Neyllzs” + lleldlley 13-
(183)
Finally, integrating by parts,

Al c N[ e A
S [vels v ve) = =35 [ vt = =5M0o) (184)
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Multiplying ({180 7 1184) by A(s) and plugging in to ,

[ e £ 0+ [ AL A e s
b [ NI AN e lads (155)

T T
W)+ / A(S) [el2ads + 6 / A(S) ey ||22ds.
0 0
The last inequality follows from (|116)).

Now then, take
(,Q)
1QI17-

Since @ L x(% +2Q.), 1 L Q and ¢ x(% + Q). Therefore, from [I3], there
exists some d; > 0 such that

Q=e—aQ. (186)

€] — € —

H(el,el) Z 61”61“?{1. (187)
Also, integrating by parts,
2/\(5)H(61,aQ) + )\( VH (aQ, aQ) < A(s)Y?|a) - AM(8)Y?|ler] 2 + A(s)a®.  (188)

Therefore, and (186) imply
T
[ Ao lalinds

< Cu +5/ 5)lle ||H1ds+/ A(s)a(s)%ls—&-/o Ms)a(s)|erllzds  (189)
T T
+5/ |61||H1d5+/ /\(s)a(s)2d5—|—/ A(s)a(s)||e1]p2ds.

Furthermore, for § < 41, absorbing ¢ fo s)|le1]|%:ds into the left hand side,

//\ MexllZds < Clu //\ ds+/ As)a(s)ller]|p=ds.  (190)

Also, by the Cauchy-Schwarz inequality,

& [T I

O NSl 2nds < Clu) + 7/ A(s)(e, Q)ds. (191)
4 0 51 0

Also, since
lellzr < ez + (e, QN QIF (192)

6 [T ) 1 /T )

— A(s)|ellfnds S Cu) + — A(s)(e, Q)%ds. (193)
4 Jo 61 Jo

Next, by conservation of mass and scaling invariance of the L? norm,
1 1 1 1
Sl = S1Q + el = FIQUE: + (6, Q) + 3 el (194)

and therefore, after doing some algebra,

1 1 1
~ (@) = 51QI3: — 3 lluoll3= + 5 el (195)
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Since 1[|Q[|22 — %[Juo|[2. > 0 is a conserved quantity, it is convenient to label this

quantity
1 1
M = SlIQIIZ: = S lluollZe- (196)

Plugging (195)) into the right hand side of (193 -,

/)\ lelZnds < C(u //\ Jds + — /A et (197)

Since ||€||rz < 4, the second term in the right hand side may be absorbed into the

left hand side, so
%[ v < o+ A [M e (195)

Likewise, by Theorem |7 u and .,

M/ $)%ds < O(u) + /T A(s)Y/2| €] ds. (199)
Letting ’
K= /T A(s)ds, and R= /T A(s)'/2ds, (200)
combmlng and ., "
e <mum@<%f A2 el Bads + Cu) + Clu). (201)

If it were the case that A(s) = 1 for all s € R, (as in [I4]), the proof would
be complete, since in that case, K = R =T and M < |le|]|z < 4, so for 6 > 0
sufficiently small, (201 along with the fact that

lim s)ds = hm / $)2ds = (202)
T oo

would imply that there ex1sts a sequence s,, — 00 such that
le(sn)ll 71 — 0, (203)
as n — oo. However, this would contradict the fact that |Jug||zz < ||Q|lL2-

In the general case, the proof will make use of the fact that A(s) < 1forall s € R
along with the fact that conservation of energy gives a lower bound (depending on

M) on A(s).
Expanding out the energy,
BQro-j [@+ [Qear; [
sf@- @ fae-F [ee-] [ae- [oo -5 [
(204)

/@—f/Q“ﬂ (205)

Next, integrating by parts, by (195] -,

[t [@c=- [d@u+@)=- [cq=m+5 [& (20

First, note that
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Therefore, by Holder’s inequality and the Sobolev embedding theorem,

B@+9 =My [ vy [@-2 [Qiewo(eliRely:+ el el 20
Also, scaling symmetry implies
E(Q + ¢) = A(s)*Ey. (208)
Recalling (186]) and .,
2
/e+‘/ /@%>&mmr~4 QP = dillelfp — 5-(.Q)°

2 01 2 M?
> 0 lellFn — ?M - *ll 22 = 5 llellZ — 0(571)-
(209)
Since M < 6 and ||e||z2 < 9, for § > 0 sufficiently small,
M
A(s)*Eo > *ll I+ = (210)
Since Ey and both of the terms on the right hand side are positive, (210 implies
M < A\(s)?Eq, (211)
and therefore,
M E
=< ‘oh il —-1/2 < (Z0y1/4
By o A(s)?, which implies A(s) < (M) . (212)
Plugging this into (201)),
5 [T M3/AEV K MK
O @) elZnds < 7/ lelZods + TE o) + o). (213)
8 Roy
Since A(s) <1, K < R, so
o (" 2 3/4l/4 ’ 2
5 A(s)|l€ellfnds S MP/2E, A(s)|€l|72ds + C(u). (214)
0

Assuming for a moment that Ey <1, M < § and (202)) imply that (203) must hold
in this case as well, obtaining a contradiction.

The fact that Ey < 1 is a straightforward consequence of Lemmas and
Suppose without loss of generality that

A0) > L = Lapacs). (215)
2 2 seER

Lemmas [6.1] and [6.2] imply that

\6) [ yels. o)y < 1. (216)

with implicit constant independent of u, so long as w satisfies (116]). Then by (193)),
1

[ 6elpas S 14 - [ A@as 1)

Since (110 guarantees that A(s) ~ 1 on [0, 1],

1 1
1
/ lellZds S 1+ */ el 72ds < 1. (218)
0 01 Jo
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The last inequality follows from (116]). Therefore, the proof that Fy < 1 is complete.

O
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