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Abstract. In this paper we prove instability of the soliton for the focusing,

mass-critical generalized KdV equation. We prove that the solution to the
generalized KdV equation for any initial data with mass smaller than the mass

of the soliton and close to the soliton in L2 norm must eventually move away

from the soliton.

1. Introduction. In this paper we prove L2 instability of the soliton for the fo-
cusing, mass-critical, generalized KdV equation

ut = −(uxx + u5)x, u(0, x) = u0 ∈ L2(R). (1)

This equation is called mass-critical because the scaling leaving (1) invariant, i.e.

u(t, x) 7→ λ
1
2u
(
λ3t, λx

)
leaves the L2 norm, or mass, invariant. The mass of a solution, defined by

M(u(t)) :=

∫
R
|u(t, x)|2dx

is conserved.
Recently, [7] proved that the defocusing, mass-critical generalized KdV equation

ut = −(uxx − u5)x, u(0, x) = u0 ∈ L2(R), (2)

is globally well-posed and scattering for any u0 ∈ L2(R). The proof of the defo-
cusing result used the concentration compactness method. Namely, a result of [12]
combined with a scattering result of [5] for the defocusing nonlinear Schrödinger
equation,

iut + uxx = |u|4u, u(0, x) = u0 ∈ L2(R), (3)

implies that for scattering to fail for (2), there must exist a nonzero, almost periodic
solution to (2).

E-mail address: bdodson4@jhu.edu, cgavrus1@jhu.edu.

2020 Mathematics Subject Classification. 35Q53.
The first author acknowledges the support of NSF grant DMS-1764358.

1
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Definition 1.1 (Almost periodic solution). Suppose u is a strong solution to (1) on
the maximal interval of existence I. Such a solution u is said to be almost periodic
(modulo symmetries) if there exist continuous functions N(t) : I → (0,∞) and
x(t) : I → R, such that

{v(t, x) = N(t)−1/2u(t,N(t)−1x+ x(t)) : t ∈ I} (4)

is contained in a compact subset of L2(R). See also section 2.4 for an equivalent
condition.

Then [5] proved that in the defocusing case, there does not exist a nonzero,
almost periodic solution to (2), which implies scattering for the defocusing equation
(2). The proof used an interaction Morawetz estimate based upon the argument
in [23], which proved there does not exist a soliton for the defocusing, generalized
KdV equation.

For the focusing generalized KdV equation, there exists the soliton u(t, x) =
Q(x− t), where

Q(x) =
31/4

cosh1/2(2x)
> 0. (5)

The function Q(x) solves the elliptic equation

Qxx +Q5 = Q, (6)

so therefore, Q(x− t) solves (1). Note that Q(x− t) is an almost periodic solution
to (1). Meanwhile, for the focusing, mass-critical nonlinear Schrödinger equation,

iut + uxx = −|u|4u, u(0, x) = u0 ∈ L2(R), (7)

u(t, x) = eitQ(x) gives a soliton solution.

The paper [6] proved that the focusing nonlinear Schrödinger equation (7) is
scattering for initial data below the ground state, ‖u0‖L2 < ‖Q‖L2 . It is conjectured
that the same is also true for the focusing, generalized KdV equation.

Conjecture 1. If ‖u0‖L2 < ‖Q‖L2 , then the solution to (1) is globally well-posed
and scattering.

It can be verified that if Conjecture 1 is true, then this implies that there does
not exist an almost periodic solution to (1) below the ground state.

Conjecture 2. There does not exist a nonzero, almost periodic solution u to (1)
satisfying 0 < ‖u‖L2 < ‖Q‖L2 .

However, unlike in the defocusing case, Conjecture 2 does not imply Conjecture
1. This is because [12] states that if (7) is globally well-posed and scattering when

‖u‖L2 < ‖Q‖L2 , Conjecture 2 implies Conjecture 1 when 0 < ‖u‖L2 <
√

5
6‖Q‖L2 .

In the defocusing case, the presence of the constant
√

5
6 is unimportant, because

scattering for the defocusing nonlinear Schrödinger equation holds for any finite

mass. However, in the focusing case, the constant
√

5
6 becomes quite important,

since it is conjectured that (1) scatters for any ‖u0‖L2 < ‖Q‖L2 .

Conjecture 1 would also imply instability of the soliton in an L2-sense. For any
initial data u0 ∈ L2, ‖u0‖L2 < ‖Q‖L2 , the solution to (1) would scatter to a free
solution, and thus the solution would approach distance

(‖Q‖2L2 + ‖u0‖2L2)1/2
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from any translation or rescaling of the soliton as t→ ±∞.

In a remarkable series of works, [20], [13], [14], [15], [19], [16] proved, among
many nice results, the instability of the soliton in an H1 sense, for initial data with
mass greater than or equal to the soliton. In fact, they proved something more, that
there initial data arbitrarily close to the soliton in H1-norm, which eventually move
away from the soliton in an L2-sense. See [17] and [18] for results in a weighted L2

space.

In this paper we show that there are no almost periodic solutions to (1) which
are uniformly close to Q(x) in L2

x modulo symmetries.

Definition 1.2. If a maximal-lifespan strong solution u to (1) on I satisfies

sup
t∈I

inf
λ0,x0

‖u(t, x)− 1

λ
1/2
0

Q(
x− x0
λ0

)‖L2(R) ≤ δ (8)

then we say u is δ-close to Q. It is readily seen that the infimum is attained and
the values λ0(t), x0(t) which attain the minimum can be chosen to be continuous.

The main result is

Theorem 1.3. There exists δ > 0 sufficiently small such that there does not exist
a maximal-lifespan solution to (1) with ‖u0‖L2 < ‖Q‖L2 satisfying (8).

In other words, Theorem 1.3 states that there no solutions δ-close to Q. A
consequence of this fact is that for any initial data satisfying ‖u0‖L2 < ‖Q‖L2 , the
solution to (1) with such initial data must eventually move a distance δ > 0 away
from the soliton, modulo translations and rescalings, where δ > 0 is a small, fixed
constant.

We split Theorem 1.3 into two statements. The first part reduces the study to
the existence of almost-periodic solutions.

Theorem 1.4. Suppose u : I × R → R is a maximal-lifespan strong solution with
‖u0‖L2 < ‖Q‖L2 to the mass-critical focusing gKdV equation (1) which is δ-close to
Q. Then, if δ is small enough, there exists an almost periodic modulo symmetries
maximal-lifespan (strong) solution v which is δ-close to Q with mass less than Q.

The proof is given in Section 3 and it relies essentially on a Palais-Smale result
based on the Airy linear profile decomposition, decoupling and an approximation of
gKdV solutions by NLS solutions, which are tools developed in [22], [23], [12] and
reviewed in Section 2. See [9] for a similar argument in the case of the mass-critical
nonlinear Schrödinger equation.

Once we have this reduction, we prove that such solutions cannot exist.

Theorem 1.5. There are no almost periodic solutions to (1) with mass less than
Q which are δ-close to Q, if δ is small enough.

The proof of Theorem 1.5 combines the ideas of [7] and in [20], [13], [14], [15], [19],
[16], [17], and [18]. The proof of scattering in [7] reduced an almost periodic solution
to three scenarios: a self-similar solution, a double rapid cascade solution, and a
quasisoliton solution. The arguments used in excluding the self-similar and double
rapid cascade solutions can also be used to exclude an almost periodic solution to
(1) with mass less than the soliton, regardless of whether it is close to the soliton or
not. However, in the defocusing case, the interaction Morawetz estimate developed
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in [7] used [23], and there is no analog to [23], even for a solution with mass below
the mass of the soliton. Instead, we rely on the Morawetz arguments in [20], [13],
[14], [15], [19], [16], [17], and [18]. These Morawetz estimates depend very much on
the fact that the solution is close to the soliton in an L2-sense, and can be used
to show that a solution cannot stay close to the soliton for the entire time of its
existence.

2. Preliminaries.

2.1. Notation and linear estimates. We will write x . y to denote x ≤ Cy for
a uniform constant C > 0. We denote 〈x〉 = (1 + x2)1/2. The one-dimensional
Fourier transform is defined by

f̂(ξ) :=
1

(2π)1/2

∫
R
e−ixξf(x) dx, ξ ∈ R

which is used to define the linear propagator and fractional differentiation operators
by

ê−t∂
3
xf(ξ) = e−itξ

3

f̂(ξ), |̂∂x|s f(ξ) := |ξ|sf̂(ξ).

For an interval I one considers the mixed norms on I × R

‖F‖LptLqx(I×R) =
(∫

I

( ∫
R
|F (t, x)|q dx

)p/q
dt
)1/p

,

‖F‖LpxLqt (I×R) =
(∫

R

( ∫
I

|F (t, x)|q dt
)p/q

dx
)1/p

,

with the standard modification when p = ∞ or q = ∞. We recall the dispersive
estimate ∥∥∥e−t∂3

xu0

∥∥∥
Lpx(R)

. t−
2
3 ( 1

2−
1
p ) ‖u0‖Lp′x (R) , 2 ≤ p ≤ ∞.

We will consider weakly convergent sequences in L2
x(R), i.e. fn ⇀ f if

〈fn, g〉 =

∫
R
fn(x)ḡ(x) dx→

∫
R
f(x)ḡ(x) dx ∀ g ∈ L2

x(R).

By approximation arguments, it sufficies to check this condition for all g ∈ Cc(R).
A basic fact which we will be using tacitly is that if fn ⇀ f then

‖f‖L2
x(R) ≤ lim inf

n→∞
‖fn‖L2

x(R).

2.2. Solutions to gKdV. Throughout this paper we will consider strong solutions,
defined as follows.

Definition 2.1.

1. A function u : I × R → R on a non-empty interval 0 ∈ I ⊂ R is a (strong)
solution to (1) if it lies in the class C0

t L
2
x(J × R) ∩ L5

xL
10
t (J × R) for any

compact J ⊂ I and obeys the Duhamel formula

u(t) = e−t∂
3
xu0 −

∫ t

0

e−(t−τ)∂
3
x∂x

(
u5(τ)

)
dτ.

We say that u is a maximal-lifespan solution if the solution cannot be extended
to any strictly larger interval. We say that u is a global solution if I = R.

2. The scattering size is defined to be

SI(u) =

∫
R

(∫
I

|u(t, x)|10dt
)1/2

dx = ‖u‖5L5
xL

10
t (I×R).
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3. We say that a solution u to (1) blows up forward in time if there exists t1 ∈ I
such that S[t1,sup(I))(u) = ∞ and that u blows up backward in time if there
exists a time t1 ∈ I such that S(inf(I),t1](u) =∞.

4. We say that u scatters forward/backwards in time if there exists a unique
u± ∈ L2

x(R) such that

lim
t→±∞

∥∥∥u(t)− e−t∂
3
xu±

∥∥∥
L2
x(R)

= 0. (9)

5. The symmetry group G is defined as the set of unitary transformations

G = {gx0,λ : L2
x(R)→ L2

x(R)| (x0, λ) ∈ R×(0,∞), gx0,λf(x) := λ−
1
2 f
(
λ−1 (x− x0)

)
}.

For u : I × R→ R, one defines Tgx0,λu : λ3I × R→ R by

Tgx0,λu(t, x) := λ−
1
2u
(
λ−3t, λ−1 (x− x0)

)
.

Tgu solves (1) with initial data gu0 if u is a solution. Moreover, scattering sizes
are invariant

Sλ3I(Tgu) = SI(u), g ∈ G.
We note that G is a Lie group and the map g 7→ Tg is a homomorphism. Giving

the operators in G the strong operator topology, then the identification (x0, λ) 7→
gx0,λ is a homeomorphism between R × (0,∞) and G. Thus we say gxn,λn → ∞
if |xn|+ λn + λ−1n → ∞. Moreover, in that case gxn,λn converges to 0 in the weak
operator topology.

The L2 local well-posedness theory of (1) was established by Kenig, Ponce, Vega
in [10].

Theorem 2.2 (Local well-posedness [10]). For any u0 ∈ L2
x(R) and t0 ∈ R, there

exists a unique solution u to (1) with u (t0) = u0 which has maximal lifespan. Let
I denote the lifespan of u. Then:

1. I is an open neighborhood of t0.
2. If sup(I)/ inf(I) is finite then u blows up forward / backward in time.
3. If sup (I) = +∞ and u does not blow up forward in time, then u scatters

forward in time. Conversely, given u+ ∈ L2
x(R) there is a unique solution

to (1) in a neighborhood of ∞ so that (9) holds. One can define scattering
backward in time in a completely analogous manner.

4. If M (u0) is sufficiently small then u is a global solution which does not blow
up either forward or backward in time and SR(u) .M(u)5/2.

5. Uniformly continuous dependence on initial data holds, see Corollary 1.

2.3. Stability and corollaries. The stability theory of the generalized KdV equa-
tion (1) is discussed in detail in [12].

Lemma 2.3 (Short time stability [12](Lemma 3.3)). Let I be an interval with 0 ∈ I.
Suppose ũ : I × R→ R is a solution to

(∂t + ∂3x)ũ+ ∂x(ũ5) = e, (10)

ũ(0, x) = ũ0(x),

for some function e such that

‖ũ‖L∞t L2
x(I×R) ≤M,
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for some M > 0. Let u0 be such that

‖u0 − ũ0‖L2
x
≤M ′,

for some M ′ ≥ 0. Assume the smallness conditions

‖ũ‖L5
xL

10
t (I×R) ≤ ε0, (11)

‖e−t∂
3
x(u0 − ũ0)‖L5

xL
10
t (I×R) ≤ ε, (12)

‖ |∂x|−1 e‖L1
xL

2
t (I×R) ≤ ε, (13)

for some small 0 < ε < ε0 = ε0(M,M ′). Then there exists a solution u : I×R→ R
to (1) with initial data u(0) = u0 satisfying

‖u− ũ‖L5
xL

10
t (I×R) + ‖u5 − ũ5‖L1

xL
2
t (I×R) . ε, (14)

‖u− ũ‖L∞t L2
x(I×R) + ‖ |∂x|1/6 (u− ũ)‖L6

t,x(I×R) .M
′ + ε. (15)

Iterating this lemma over small intervals also a long-time stability result can be
obtained, see [12, Theorem 3.1]. To keep track of the number of small intervals one
uses the following bound.

Lemma 2.4. Let v ∈ L5
xL

10
t (J × R) for an interval J . Divide J into N inter-

vals [tk, tk+1] such that ‖v‖L5
xL

10
t ([tk,tk+1]×R) ' ε0 for every 1 ≤ k ≤ N − 1 and

‖v‖L5
xL

10
t ([tN ,tN+1]×R) . ε0, for a fixed ε0 > 0. Then the number of intervals N is

finite and N . (1 + ‖v‖L5
xL

10
t (J×R)/ε0)10.

Proof. See [12, Thm 3.1 -first part]

As a consequence, one has

Corollary 1 (Uniformly continuous dependence on initial data). Consider solutions
v ∈ L5

xL
10
t (J×R) to (1). For every ε > 0 there exists δ = δ(ε, ‖v(0)‖L2

x
, ‖v‖L5

xL
10
t (J×R))

such that if ‖u0−v(0)‖L2
x
≤ δ, then there exists a solution to (1) defined on J , with

initial data u(0) = u0 such that

‖u− v‖L∞t L2
x∩L5

xL
10
t (J×R) ≤ ε.

Finally, we can use stability to prove a compactness property for the the trans-
formations associated to solutions that are δ-close to Q.

Lemma 2.5. There exists δ > 0 such that the following statement holds. Let
u : I × R→ R be a strong solution to (1) such that

‖g(t)u(t)−Q‖L2
x
≤ δ, ∀ t ∈ I, (16)

with g(0) = g0,1 (the identity), 0 ∈ I, g(t) ∈ G. Then for any t ∈ I there exists a
compact set Kt depending only on |t| , ‖u‖L5

xL
10
t ([0,t]×R) and M(u) such that g(t) ∈

Kt.

Proof. Without loss of generality suppose t > 0 is fixed. We split [0, t] into N
intervals as in Lemma 2.4 where ε0 is the constant in Lemma 2.3. Then N depends
on M(u) and ‖u‖L5

xL
10
t ([0,t]×R).

We do an induction argument. We prove that if the statement holds for tk then
it also holds for s ∈ [tk, tk+1]. At t = 0 we have K0 = {g0,1}.

From ‖u(tk)− g(tk)−1Q‖L2
x
≤ δ using Lemma 2.3 we deduce

‖u(s)− g(tk)−1Q(· − s− tk
λ3k

)‖L2 . δ,
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From this and (16) at s we find

‖Q− g(s)g(tk)−1g(s−tk)/λ3
k,1
Q‖L2 . δ.

For δ small enough, g(s)g(tk)−1g(s−tk)/λ3
k,1

will lie in a small compact neighborhood

of the identity parametrized by (x, λ) ∈ [−η, η] × [r,R] for some η > 0 and 0 <
r < 1 < R. Therefore g(s) has to be in a compact set. Moreover, denoting
g(tk) = gxk,λk , one checks inductively that

λk ∈ [rk−1, Rk−1], |xk| ≤ (1 +R)k−2η +
Rk−1

r3(k−2)
tk.

which implies the stated dependence.

2.4. Almost periodicity. As a consequence of the Arzela-Ascoli theorem we know
that precompactness of a family of functions in L2

x(R) is equivalent to it being
bounded in L2

x(R) and the existence of a function C(η) so that∫
|x|≥C(η)

|f(x)|2 dx+

∫
|ξ|≥C(η)

|f̂(ξ)|2 dξ ≤ η ∀ η > 0,

holds for all the functions. Therefore, the almost periodicity condition (4) is equiv-
alent to∫

|x−x(t)|≥C(η)/N(t)

|u(t, x)|2 dx+

∫
|ξ|≥C(η)N(t)

|û(t, ξ)|2 dξ ≤ η ∀ η > 0.

2.5. The embedding of NLS into gKdV. We now review the approximation
of solutions to gKdV by certain modulated, rescaled versions of solutions to NLS
discussed in [23], [3], [12].

We cite the following theorem from [12, Thm. 4.1], which was initially conditional
on the global well-posedness and scattering of the focusing NLS below the ground
state, which was subsequently proved in [4]. We will only need this theorem for
small data (in which case the existence part is automatic), and specifically we will
use the approximations (19), (20). Here

ũTn (t, x) :=


Re
[
eixξnλn+it(ξnλn)

3

Vn
(
3ξnλnt, x+ 3(ξnλn)2t

)]
, when |t| ≤ T

3ξnλn

exp
{
−
(
t− T

3ξnλn

)
∂3x

}
ũn

(
T

3ξnλn

)
, when t > T

3ξnλn

exp
{
−
(
t+ T

3ξnλn

)
∂3x

}
ũn

(
− T

3ξnλn

)
, when t < − T

3ξnλn

(17)
is defined in terms of certain frequency-localized solutions Vn and V to NLS such
that

‖Vn − V ‖L∞t L2
x(R×R) → 0. (18)

Theorem 2.6 (Oscillatory profiles [12]). Let φ ∈ L2
x with M(φ) < 2

√
6
5M(Q). Let

(λn)n≥1, (ξn)n≥1 ⊂ (0,∞), with ξnλn →∞ and let (tn)n≥1 ⊂ R such that 3ξnλntn
converges to some T0 ∈ [−∞,∞]. Then, for n sufficiently large there exists a global
solution ṽn to (1) with initial data at time t = tn given by

ṽn (tn, x) = e−tn∂
3
x Re[eixξnλnφ(x)]

The solution obeys the global spacetime bounds

‖ |∂x|1/6 ṽn‖L6
t,x(R×R) + ‖ṽn‖L5

xL
10
t (R×R) .φ 1
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and for every ε > 0 there exist nε ∈ N and ψε ∈ C∞c (R×R) so that, for all n ≥ nε
one has

‖ṽn(t, x)− Re[eixξnλn+it(ξnλn)
3

ψε
(
3ξnλnt, x+ 3(ξnλn)2t

)
]‖L5

xL
10
t (R×R) ≤ ε. (19)

Moreover, defining ũTn by (17), one has the approximation

lim
T→∞

lim
n→∞

∥∥ṽn − ũTn∥∥L∞t L2
x(R×R)

= 0 (20)

We note that (20) is obtained in the proof of [12, Thm. 4.1].

2.6. The Airy profile decomposition and decoupling.

Definition 2.7. 1. We say that two sequences (Γ1
n)n≥1 = (λ1n, ξ

1
n, x

1
n, t

1
n)n≥1 and

(Γ2
n)n≥1 = (λ2n, ξ

2
n, x

2
n, t

2
n)n≥1 in (0,∞)× R3 are asymptotically orthogonal if

λ1n
λ2n

+
λ2n
λ1n

+
√
λ1nλ

2
n

∣∣ξ1n − ξ2n∣∣+
〈
λ1nξ

1
nλ

2
nξ

2
n

〉 1
2

∣∣∣∣ (λ1n)3t1n − (λ2n)3t2n
(λ1nλ

2
n)3/2

∣∣∣∣
+ (λ1nλ

2
n)−

1
2

∣∣∣∣x1n − x2n +
3

2
[(λ1n)3t1n − (λ2n)3t2n][(ξ1n)2 + (ξ2n)2]

∣∣∣∣ n−→∞.

2. We say that

(Γn)n≥1 = (λn, ξn, xn, tn)n≥1
n−→∞,

if (Γn)n≥1 and (1, 0, 0, 0)n≥1 are asymptotically orthogonal , i.e.

λn +
1

λn
+ |ξn|+ |tn|+ |xn|

n−→∞.

Thus one can think of ∞ as an element in the one-point compactification of
(0,∞)× R3.

If Γ1
n = (λ1n, ξ

1
n, x

1
n, t

1
n) and Γ2

n = (λ2n, ξ
2
n, x

2
n, t

2
n) are asymptotically orthogonal

then

lim
n→∞

〈gx1
n,λ

1
n
e−t

1
n∂

3
x [eixξ

1
nλ

1
nφ], gx2

n,λ
2
n
e−t

2
n∂

3
x [eixξ

2
nλ

2
nϕ]〉 = 0, φ, ϕ ∈ L2. (21)

where either ξjn = 0 for all n ≥ 1 or |λjnξjn| → ∞. See [22, Lemma 5.2, 5.1 Cor. 3.7].
This implies, in particular, the following statement.

Lemma 2.8. Let Γn = (λn, ξn, zn, sn) → ∞ and θn ∈ R. Then, weakly in L2 one
has

eiθngzn,λne
−sn∂3

x [e±ixξnλnh] ⇀ 0, (22)

for any h ∈ L2.

We are ready to state the profile decomposition for the Airy propagator obtained
by Shao in [22].

Lemma 2.9. (Airy linear profile decomposition [22]) Let vn : R→ R be a sequence
of functions bounded in L2

x(R). Then, after passing to a subsequence, there exist
functions φj : R → C in L2

x(R), group elements gjn := gxjn,λjn ∈ G, frequency

parameters ξjn ∈ [0,∞) and times tjn ∈ R such that for all J ≥ 1 one can write

vn =
∑

1≤j≤J

gjne
−tjn∂

3
xRe[eixξ

j
nλ

j
nφj ] + wJn , (23)
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for some real-valued sequence wJn in L2
x(R) with

lim
J→∞

lim sup
n→∞

‖|∂x|1/6e−t∂
3
xwJn‖L6

t,x(R×R) = lim
J→∞

lim sup
n→∞

‖e−t∂
3
xwJn‖L5

xL
10
t (R×R) = 0.

(24)
For each 1 ≤ j ≤ J , the frequency parameters ξjn satisfy: either ξjn = 0 for all n ≥ 1
or ξjnλ

j
n →∞ as n→∞ (If ξjn = 0 we assume φj is real). For any J ≥ 1 one has

‖vn‖2L2 −
∑

1≤j≤J

‖Re[eixξ
j
nλ

j
nφj ]‖2L2 − ‖wJn‖2L2

n−→ 0. (25)

The family of sequences Γjn = (λjn, ξ
j
n, x

j
n, t

j
n) ∈ (0,∞)×R3 are pair-wise asymptot-

ically orthogonal in the sense of Definition 2.7 and for any 1 ≤ j ≤ J

lim
n→∞

〈gjne−t
j
n∂

3
xRe[eixξ

j
nλ

j
nφj ], wJn〉 = 0. (26)

For more discussion of the properties stated above we refer to Lemma 2.4, Remark
2.5. in [12] and Corollary 3.7, Lemma 5.2 in [22].

Corollary 2. Under the assumptions and notations of Lemma 2.9, if vn ⇀ 0 weakly
in L2, then also wJn ⇀ 0 weakly in L2 for all J ≥ 1 after passing to a subsequence.
For any 1 ≤ j ≤ J one has φj = 0 or Γjn = (λjn, ξ

j
n, x

j
n, t

j
n) → ∞ in the sense of

Definition 2.7 and therefore

gjne
−tjn∂

3
xRe[eixξ

j
nλ

j
nφj ] ⇀ 0. (27)

Proof. After passing to a subsequence, we can arrange so that for each j ∈ 1, J ,
either Γjn converges to a finite Γj0 in (0,∞)×R3 or Γjn →∞. By pair-wise asymptotic
orthogonality we have (21) and therefore at most one of the sequences {(Γjn)n≥1 | 1 ≤
j ≤ J, φj 6= 0} can converge to a finite value. Assume this happens for j = 1 and
then ξ1n = 0 for all n ≥ 1 and φ1 is assumed real. Since vn ⇀ 0 we obtain

g10e
−t10∂

3
xφ1 + wJn ⇀ 0.

Taking inner product with g1ne
−t1n∂

3
xφ1 and using (26) we obtain ‖g10e−t

1
0∂

3
xφ1‖2L2 = 0

and then φ1 = 0, which is a contradiction.

Finally, we recall the decoupling property of nonlinear profiles proved in [12,
Lemma 2.6]. When ξnλn →∞ the decoupling will follow from this lemma together
with the approximation (19) from Theorem 2.6

Lemma 2.10 ([12]). Let ψ1, ψ2 ∈ C∞c (R× R) and sequences

(Γ1
n)n≥1 = (λ1n, ξ

1
n, x

1
n, t

1
n)n≥1, (Γ2

n)n≥1 = (λ2n, ξ
2
n, x

2
n, t

2
n)n≥1,

in (0,∞) × R3 assumed asymptotically orthogonal in the sense of Definition 2.7.
Then one has:

lim
n→∞

‖Tgx1n,λ2nψ
1(t+ t1n) Tgx2n,λ2n

ψ2(t+ t2n)‖
L

5
2
x L

5
t

= 0,

in the case ξ1n ≡ ξ2n ≡ 0, and

lim
n→∞

‖Tgx1n,λ1n
[
ψ1(3λ1nξ

1
n(t+ t1n), x+ 3(λ1nξ

1
n)2(t+ t1n))

]
Tgx2n,λ2n

ψ2(t+t2n)‖
L

5
2
x L

5
t

= 0,
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when ξ1nλ
1
n →∞ and ξ2n ≡ 0, while

lim
n→∞

‖Tgx1n,λ2n
[
ψ1(3λ1nξ

1
n(t+ t1n), x+ 3(λ1nξ

1
n)2(t+ t1n))

]
Tgx2n,λ2n

[
ψ2(3λ2nξ

2
n(t+ t2n), x+ 3(λ2nξ

2
n)2(t+ t2n))

]
‖
L

5
2
x L

5
t

= 0,

when ξ1nλ
1
n →∞ and ξ2nλ

2
n →∞.

3. Reduction to an almost periodic solution - Proof of Theorem 1.4. This
section is devoted to the proof of Theorem 1.4. Therefore we will assume at least
one δ-close solution exists. Then we define the set

S(δ) := {u | u = solution δ − close to Q with M(u) < MQ}

and the minimal mass:

m0(δ) := inf{M(u) |u ∈ S(δ)}.

By the triangle inequality, if u ∈ S(δ) 6= ∅ and t0 ∈ I we have the basic bounds

M
1
2

Q − δ ≤ ‖u(t0)‖L2
x
< M

1
2

Q , and M
1
2

Q − δ ≤ m
1
2
0 ≤M

1
2

Q . (28)

The crux of the proof is the following Palais-Smale -type proposition which is
used to extract subsequences convergent in L2.

Proposition 1. There exists an δ > 0 small enough such that the following holds.
Let un : In × R → R be maximal-lifespan (strong) solutions to the mass-critical
focusing gKdV equation (1) which are δ-close to Q, i.e. for some continuous gn :
In → G one has

‖gn(t)un(t)−Q‖L2 ≤ δ ∀ t ∈ In, n ≥ 1. (29)

Suppose M(un) ↘ m0 = m0(δ) and let tn ∈ In be a sequence of times. Then the
sequence gn(tn)un(tn) has a subsequence which converges in L2 to a function φ with
M(φ) = m0.

Assuming Proposition 1 we can now construct almost periodic solutions.

Proof of Theorem 1.4. We first show that if M(u) > m0 then there exists a
maximal-lifespan solution v : J × R → R with minimal mass M(v) = m0 which
is δ-close to Q. In that case there exists a sequence of maximal-lifespan solutions
un : In × R → R with M(un) ↘ m0 such that (29) holds for some continuous
gn : In → G. Then we apply Prop. 1 with some tn ∈ In and obtain a φ ∈ L2 with

‖φ‖L2 = m
1/2
0 . By translating time we may assume all tn = 0 and by applying

transformations Tgn(0)−1 we may assume without loss of generality that all gn(0)
are the identity. Let v be the strong solution to (1) with initial data v(0) = φ,
defined on a maximal interval J , which then satisfies

‖un(0)− v(0)‖L2
x
→ 0.

Then for any t ∈ J , by continuous dependence on initial data, see Corollary 1
applied on [0, t], one has t ∈ In for n large enough and

‖un(t)− v(t)‖L2
x

+ ‖un − v‖L5
xL

10
t ([0,t]×R) → 0. (30)
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By Lemma 2.5 we have gn(t) ∈ Kt for a compact set Kt. Then we can extract
a subsequence such that gn(t) converges to some g(t) ∈ G in the strong operator
topology. Therefore (30) and (29) imply

‖g(t)v(t)−Q‖L2 ≤ δ ∀ t ∈ J,

which gives the desired δ-closeness to Q. Note that g(t) is continuous.
We now show that v is almost periodic modulo symmetries. This follows by

considering a new arbitrary sequence of times tn ∈ J and applying Prop. 1 with
gn = g, un = v and tn ∈ In = J to conclude that g(tn)v(tn) has a limit point in
L2.

It remains to prove the key convergence result.

Proof of Proposition 1. By translating time we may assume all tn = 0 and by
applying transformations Tgn(0)−1 we may assume without loss of generality that
all gn(0) are the identity.

We divide the proof into several steps and for the first steps we largely follow the
outline of [12, Prop. 5.1 -Case II], with the mention that here one needs to insure
that the bulk of m0, except for O(δ) mass, has to fall onto the first profile.

Step 1. (Decomposing the sequence)
By passing to a subsequence, using the Banach-Alaoglu theorem, we obtain a

function φ1 ∈ L2 such that un(0) ⇀ φ1 weakly in L2. Note that ‖φ1‖2L2 ≤ m0 and
since un(0)−Q ⇀ φ1 −Q we obtain

‖φ1 −Q‖L2 ≤ δ. (31)

Moreover,

‖un(0)− φ1‖2L2 = ‖un(0)‖2L2 + ‖φ1‖2L2 − 2〈un(0), φ1〉 n−→ m0 − ‖φ1‖2L2 (32)

If ‖φ1‖2L2 = m0 this implies the desired convergence. Now assume ‖φ1‖2L2 < m0

and we will obtain a contradiction. We use the profile decomposition in Lemma 2.9
and its Corollary 2 applied to vn = un(0)− φ1 ⇀ 0 to write for any J ≥ 2

un(0)− φ1 =
∑

2≤j≤J

gjne
−tjn∂

3
xRe[eixξ

j
nλ

j
nφj ] + wJn .

By (32), the limit (25) becomes

m0 − ‖φ1‖2L2 −
∑

2≤j≤J

‖Re[eixξ
j
nλ

j
nφj ]‖2L2 − ‖wJn‖2L2

n−→ 0. (33)

By re-denoting some indices, we may assume that all the φj ’s are nonzero. Defin-
ing Γ1

n = (1, 0, 0, 0) corresponding to φ1, from Corollary 2 we obtain that Γjn =
(λjn, ξ

j
n, x

j
n, t

j
n) → ∞ for j ≥ 2, and thus all (Γjn)j≥1 are pair-wise asymptotically

orthogonal and

wJn ⇀ 0. (34)

From (28) and ‖φ1‖2L2 ≤ m0 we obtain the smallness condition∑
2≤j≤J

‖Re[eixξ
j
nλ

j
nφj ]‖2L2 + ‖wJn‖2L2 < 2δM

1
2

Q , ∀ n�J 1. (35)

Step 2. (Construct nonlinear profiles)
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Let v1 : I × R → R be the maximal-lifespan solution to (1) with initial data
v1(0) = φ. We continue with defining solutions associated to the profiles for j ≥ 2.
For each J ≥ 2 we reorder the indices such that:

A) For j ∈ 2, J0 one has ξjn ≡ 0. Then one can refine the sequence for each j
and by a diagonal argument one can assume that each sequence (tjn)n≥1 has a limit
T j , possibly ±∞. If T j is finite one may assume that tjn ≡ T j = 0 by replacing φj

by eT
j∂3
xφj and by absorbing e−(t

j
n−T

j)∂3
xReφj −Reφj into the remainder term wJn .

One defines:

• When tjn ≡ 0, let vj be the the maximal-lifespan solution to (1) with vj(0) =
Reφj .
• If tjn → ±∞, let vj be the the maximal-lifespan solution to (1) which scatters

forward/backward in time to e−t∂
3
xReφj .

Due to the smallness property (35), each vj is global and SR(vj) .M [Reφj ].
The nonlinear profiles are defined by

vjn(t) := Tgjn [vj(·+ tjn)](t), j ∈ 2, J0, n ≥ 1,

so that vjn : R× R→ R with vjn(0) = gjnv
j(tn).

B) For j ∈ J0 + 1, J the reordering satisfies ξjnλ
j
n →∞. For n sufficiently large,

the solution to (1) with data

ṽjn(tjn) = e−t
j
n∂

3
xRe[eixξ

j
nλ

j
nφj ]

is global and small. Moreover, by applying the Riemann-Lebesgue lemma to

2‖Re[eixξ
j
nλ

j
nφj ]‖2L2 = M(φj) +

∫
R

Re[ei2xξ
j
nλ

j
nφj(x)2] dx

to obtain a bound on M(φj), one has the approximation given by Theorem 2.6
(since one can insure, using a diagonal argument, that (tjnξ

j
nλ

j
n)n≥1 has a limit).

Again, one transforms these solutions to obtain vjn : R× R→ R by

vjn(t) := Tgjn [ṽjn(·+ tjn)](t), j ∈ J0 + 1, J, n� 1.

For both cases A) and B) Lemma 2.10 and Theorem 2.6 give the decoupling
property

lim
n→∞

‖vjnvkn‖
L

5
2
x L

5
t (I×R)

= 0 ∀ 1 ≤ j < k (36)

where for j = 1 we denote v1n = v1.
Moreover, due to the smallness and the invariance of the scattering norm one has

SR(vjn) . ‖Re[eixξ
j
nλ

j
nφj ]‖2L2

x
, j ≥ 2, n�j 1. (37)

Step 3. (Construct approximate solutions and bound the difference)
For any J ≥ 2 construct the approximate solution, defined on I for n�J 1 by

ũJn(t) := v1(t) +

J∑
j=2

vjn(t) + e−t∂
3
xwJn .

and define the remainders rJn on I ∩ In by

un(t) = ũJn(t) + rJn(t).
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From the way the vjn were constructed we obtain

‖rJn(0)‖L2 = ‖un(0)− ũJn(0)‖L2
n−→ 0, ∀J ≥ 2. (38)

Next we bound the scattering size on any interval Ĩ, using (35),(37) and using the
decoupling (36) after having raised the sum to the power 5:

lim sup
n→∞

SĨ(ũ
J
n) . lim sup

n→∞
SĨ(

J∑
j=1

vjn) + lim sup
n→∞

SR(e−t∂
3
xwJn)

. SĨ(v
1) + lim sup

n→∞

J∑
j=2

SR(vjn) + δ

. SĨ(v
1) + lim sup

n→∞

J∑
j=2

‖Re[eixξ
j
nλ

j
nφj ]‖2L2

x
+ δ . SĨ(v

1) + δ. (39)

In the remainder of this step we prove

I ⊆
⋃
N≥1

⋂
n≥N

In (40)

and that for any t ∈ I one has

lim
J→∞

lim sup
n→∞

‖rJn(t)‖L2 = 0. (41)

Suppose t > 0. Divide [0, t] into intervals [tk, tk+1], k ∈ 1, N , t1 = 0 such that

‖v1‖L5
xL

10
t ([tk,tk+1]×R) ' ε0 ∀ k ∈ 1, N − 1 (42)

where ε0 = ε0(MQ, 1) > 0 is the universal constant given by Lemma 2.3. Then
Lemma 2.4 gives a bound on the number of intervals N .

We begin with (38) and do an inductive argument to show that if tk ∈ In for
n�k 1 and (41) holds at t = tk, then tk+1 ∈ In holds for n�k+1 1 and

lim
J→∞

lim sup
n→∞

‖rJn‖L∞t L2
x([tk,tk+1]×R) = 0.

These facts follow from the short-time stability Lemma 2.3 applied with un and ũJn,
provided we check:

lim sup
n→∞

‖ũJn‖L5
xL

10
t ([tk,tk+1]×R) ≤

ε0
2

∀ J ≥ 2, k ∈ 1, N (43)

lim
J→∞

lim sup
n→∞

‖ |∂x|−1 [(∂t + ∂3x)ũJn − ∂x(ũJn)5]‖L1
xL

2
t ([tk,tk+1]×R) = 0. (44)

The first bound (43) follows from (39) by appropriately choosing the implicit con-
stant in (42) and choosing δ small enough. The asymptotic solution bound (44) is
proved in Lemma 3.1 below. This completes the proof of (40) and (41). Moreover,
by summing over intervals and recalling that ε0 is fixed, this argument and Lemma
2.3 give the uniform bound

‖un‖L5
xL

10
t ([0,t]) . Nε0 ≤ C

(
‖v1‖L5

xL
10
t ([0,t])

)
, n�t 1. (45)

Step 4. (Show that vjn(t) converges weakly to 0)
Fix t ∈ R and j ≥ 2. Recall that Γjn = (λjn, ξ

j
n, x

j
n, t

j
n) → ∞ in the sense of

Definition 2.7.
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A) We first assume ξjn ≡ 0. Then

vjn(t) = gjnv
j
(
tjn +

t

(λjn)3

)
.

By passing to a subsequence, we may assume

tjn +
t

(λjn)3
→ Tj ∈ [−∞,∞].

If Tj is finite, in either case tjn ≡ 0 or tjn → ∞ we have gjn → ∞ and the claim
reduces to gjnv

j(Tj) ⇀ 0, which follows from (22).

If Tj → ±∞ we use scattering to replace vjn(t) by gjne
−
(
tjn+

t

(λ
j
n)3

)
∂3
x
v±. Then we

can approximate by bump functions and apply the dispersive estimate.
B) It remains to consider the case ξjnλ

j
n → ∞. This implies in particular that

ξjn + λjn → ∞. Fix t ∈ R, ε > 0, j ≥ J0 + 1 and ϕ ∈ C∞c (R). We will use the
approximation involving NLS solutions from Theorem 2.6 to show∣∣〈vjn(t), ϕ〉

∣∣ < ε

for n large enough. Since

vjn(t) = gjnṽ
j
n

(
tjn +

t

(λjn)3

)
we can use the approximation (20) to reduce to∣∣∣∣∣〈gjnũTn(tjn +

t

(λjn)3

)
, ϕ〉

∣∣∣∣∣ < ε

2

for a fixed large T , where the ũTn are defined by (17) in terms of NLS solutions Vn.
By passing to a subsequence we may assume that all the tjn + t

(λjn)3
are in

[− T
3ξnλn

, T
3ξnλn

] or in [ T
3ξnλn

,∞) or in (−∞,− T
3ξnλn

] and that in the first case we

have a limit

T1 := lim
n→∞

3ξnλn

(
tjn +

t

(λjn)3

)
∈ [−T, T ].

In the other two cases we define T1 := ±T . Using (18), (17) and V ∈ CtL
2
x we

approximate

‖ũTn
(
tjn +

t

(λjn)3

)
− fn(T1)‖L2 < ε2, n� 1

where we denote

fn(T1) := e−sn∂
3
xRe[eixξnλneicnV (T1, x− yn)]

for some values sn, cn, yn. Therefore, denoting W to be either V or V̄ , we reduce
to showing

e±iθngxjn,λjngyn,1e
−sn∂3

x [e±ixξnλnW (T1)] ⇀ 0,

for some θn’s. This follows from Lemma 2.8 because gxjn,λjngyn,1 = gzn,λjn for some

zn and we have ξjn + λjn →∞.

From A) and B) we conclude

vjn(t) ⇀ 0, ∀ t ∈ R, j ≥ 2. (46)

Step 5. (Prove that v1 is δ-close to Q)
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Fix an arbitrary t ∈ I, where we recall that I is the maximal lifespan of v1.
Then, by (40) we have t ∈ In for n large enough. We expand

δ2 ≥ ‖un(t)− gn(t)−1Q‖2L2 = ‖v1(t)− gn(t)−1Q‖2L2 +AJn(t) +BJn(t) (47)

with the terms

AJn(t) := ‖
J∑
j=2

vjn(t) + e−t∂
3
xwJn + rJn(t)‖2L2

BJn(t) := 2〈v1(t)− gn(t)−1Q ,

J∑
j=2

vjn(t) + e−t∂
3
xwJn + rJn(t)〉.

Due to the uniform bound (45), Lemma 2.5 provides the existence of a compact
set Kt such that gn(t) ∈ K for n large enough. We extract a subsequence such
that gn(t) converges to some g(t) ∈ G in the strong operator topology. Then also
gn(t)−1 → g(t)−1, so we may replace gn(t)−1Q by g(t)−1Q when we use (46), (34)
and (41) to obtain

lim
J→∞

lim sup
n→∞

BJn(t) = 0.

We use this together with AJn(t) ≥ 0 to pass to the limit in (47) and conclude

‖g(t)v1(t)−Q‖L2 ≤ δ ∀t ∈ I.
This means v1 ∈ S(δ) with M(v1) < m0(δ), a contradiction.

It remains to verify the asymptotic solution bound (44).

Lemma 3.1. Suppose wJn ∈ L2
x(R), J ≥ 1, n ≥ 1 and that vjn ∈ L5

xL
10
t (Ĩ × R) are

solutions to (1) such that for any 1 ≤ j < k

lim
n→∞

‖vjnvkn‖
L

5
2
x L

5
t (Ĩ×R)

= 0, lim
J→∞

lim sup
n→∞

‖e−t∂
3
xwJn‖L5

xL
10
t (Ĩ×R) = 0.

Then, assuming the ũJn are uniformly bounded in L5
xL

10
t (Ĩ × R), defined by

ũJn(t) :=

J∑
j=1

vjn(t) + e−t∂
3
xwJn ,

one has

lim
J→∞

lim sup
n→∞

‖ |∂x|−1 [(∂t + ∂3x)ũJn − ∂x(ũJn)5]‖L1
xL

2
t (Ĩ×R)

= 0.

Proof. This is proved in [12, Lemma 5.3]. We review the argument for the sake of
completeness. One writes (

∂t + ∂3x
)
ũJn =

∑
1≤j≤J

∂x
(
vjn
)5
.

Thus it suffices to estimate (ũJn)5 −
∑

1≤j≤J(vjn)5 as follows:

‖
(
ũJn − e−t∂

3
xwJn

)5
−
(
ũJn
)5 ‖L1

xL
2
t (Ĩ×R)

. ‖(e−t∂
3
xwJn)5‖L1

xL
2
t (Ĩ×R)

+‖(e−t∂
3
xwJn)

∣∣ũJn∣∣4 ‖L1
xL

2
t (Ĩ×R)

,

then one uses Holder’s inequality and pass to the limit. Secondly,

‖
( ∑
1≤j≤J

vjn
)5− ∑

1≤j≤J

(
vjn
)5 ‖L1

xL
2
t (Ĩ×R)

.
J∑

i1,i2,i3=1

∑
1≤j 6=k≤J

‖vi1n vi2n vi3n (vjnv
k
n)‖L1

xL
2
t (Ĩ×R)

,
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and one uses Holder’s inequality again to pass to the limit. This completes the
proof.

4. Reductions of an almost periodic solution. Having proved Theorem 1.4, we
have reduced the main result, Theorem 1.3, to the case of almost periodic solutions.
The remainder of the paper is devoted to this case, i.e. proving Theorem 1.5. We
begin with studying N(t) from Definition 1.1. In this section we prove

Theorem 4.1. If there exists an almost periodic solution to (1) with ‖u0‖L2 <
‖Q‖L2 , then there exists an almost periodic solution to (1) satisfying (4) on a max-
imal interval I with N(t) ≥ 1 on I, and∫

I

N(t)2dt =∞. (48)

Moreover, if the initial solution is δ-close to Q, then the solution we obtain is also
δ-close to Q.

Proof of Theorem 4.1. Using elementary reductions (see [12]) it suffices to con-
sider an almost periodic solution to (1) that satisfies N(t) ≤ 1 for t ∈ [0,∞). Such
a solution will satisfy one of two properties:

lim
T→∞

inf
t∈[0,T ]

N(t) > 0, (49)

or
lim
T→∞

inf
t∈[0,T ]

N(t) = 0. (50)

1) Begin with scenario (49), N(t) ∼ 1 for any t ∈ [0,∞). Thus, there exists a
function x(t) : [0,∞)→ R such that

{u(t, x− x(t)) : t ∈ [0,∞)} (51)

lies in a precompact subset of L2(R). Therefore, taking tn → +∞ and possibly
after passing to a subsequence,

u(tn, x− x(tn))→ u0 in L2(R), (52)

and moreover, u0 is the initial data for a solution to (1) satisfying

{u(t, x− x(t)) : t ∈ R} (53)

lies in a precompact subset of L2(R).

2) Now consider scenario (50). Split this scenario into two separate cases:

lim sup
T→sup(I)

supt∈[t0(T ),T ]N(t)

N(t0(T ))
<∞, (54)

or

lim sup
T→sup(I)

supt∈[t0(T ),T ]N(t)

N(t0(T ))
=∞. (55)

where
t0(T ) = inf

{
t ∈ [0, T ] : N(t) = inf

t∈[0,T ]
N(t)

}
Following [7], for any k ∈ Z, let

tk = inf{t ∈ [0, T ] : N(t) = 2−k}. (56)

Since N(t) is a continuous function of time and (50) holds, tk is well-defined.
2A) When (54) holds, there exists C <∞ such that N(t) ≤ C2−k for any t ≥ tk.
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Lemma 4.2. Suppose (50) and (54) hold. Then the sequence (tk+1 − tk) · 2−3k is
unbounded as k → +∞.

Proof: Suppose that there exists a constant C0 such that

(tk+1 − tk) · 2−3k ≤ C0. (57)

Then for any k ∈ Z,

tk . C023k. (58)

Meanwhile, as in the scaling symmetry implies

tk & 23k. (59)

Therefore, for any k,

N(tk) ∼ t−1/3k . (60)

As in [7], (60) implies that after passing to another subsequence, we have a solution
u to (1) satisfying N(t) ∼ t−1/3 for any t ≥ 0. Moreover, following the exact
arguments in Section five of [7] shows that the self similar solution u(t, x) satisfies
the estimate

E(u) . 1. (61)

However, by the Gagliardo-Nirenberg inequality, this contradicts N(t) ↗ +∞ as
t↘ 0. �

Now take a sequence tk →∞ such that

(tk+1 − tk) · 2−3k → +∞. (62)

In this case, (54) guarantees that N(t) ∼ 2−k for any tk < t < tk+1. Choose the

sequence of times t′k = tk+tk+1

2 . After passing to a subsequence,

2k/2u(t′k, 2
k(x− x(t′k)))→ u0, in L2(R), (63)

and furthermore, u0 is the initial data of a solution to (1) satisfying

{u(t, x− x(t)) : t ∈ R} (64)

lies in a precompact subset of L2(R).

2B) Finally, consider the case when (50) and (55) hold. In this case, possibly
after passing to a subsequence,

2k/2u(tk, 2
k(x− x(tk)))→ u0, in L2(R), (65)

where u0 is the initial data of a solution to (1) on an interval I such that

{N(t)−1/2u(t,N(t)−1x+ x(t))) : t ∈ I} (66)

lies in a precompact subset of L2(R), and moreover, N(t) ≥ 1 for all t ∈ I.

Proposition 2. If u is an almost periodic solution to (1) with ‖u‖L2 < ‖Q‖L2 on
a maximal interval I ⊂ R that satisfies N(t) ≥ 1 for all t ∈ I, and N(0) = 1, then∫

I

N(t)2dt =∞. (67)
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Proof: Again following [7], suppose∫
I

N(t)2dt = R0 <∞. (68)

Translating in space so that x(0) = 0, define the Morawetz potential

M(t) =

∫
ψ(
x

R
)u(t, x)2dx, (69)

where

ψ(x) =

∫ x

0

φ(t)dt, (70)

where φ is a smooth, even function, φ(x) = 1 for −1 ≤ x ≤ 1, and φ is supported
on |x| ≤ 2.

Since N(t) ≥ 1 and
∫
I
N(t)2dt <∞, I is necessarily a finite interval. Therefore,

N(t) ↗ +∞ as t → sup(I) or t → inf(I). Combining this with the fact that
|ẋ(t)| . N(t)2,

sup
t∈I
|M(t)| . R0, (71)

with implicit constant independent of R. Moreover, by direct computation,

d

dt
M(t) = −3

∫
φ(
x

R
)ux(t, x)2dx+

1

R2

∫
φ′′(

x

R
)u(t, x)2dx+

5

3

∫
φ(
x

R
)u(t, x)6dx.

(72)
Therefore, by the fundamental theorem of calculus,∫

I

∫
φ(
x

R
)ux(t, x)2dxdt . R0 +

|I|
R2

+

∫
I

∫
u(t, x)6dxdt. (73)

We have already demonstrated that the first two terms on the right hand side are
uniformly bounded for any R ≥ 1. So it remains to control the third term.

Partition I into consecutive intervals

I = ∪kJk, (74)

where ∫
Jk

∫
u(t, x)8dxdt ∼ 1. (75)

Using standard perturbation arguments, for any fixed Jk with t1, t2 ∈ Jk
N(t1) ∼ N(t2), and |t1 − t2| . N(t1)−3. (76)

Therefore, by Hölder’s inequality,∫
Jk

∫
u(t, x)6dxdt . |Jk|1/3‖u‖2/3L∞t L

2
x
‖u‖16/3

L8
t,x(Jk×R)

. |Jk|1/3 .
∫
Jk

N(t)2dt. (77)

Therefore, ∫
I

∫
φ(
x

R
)ux(t, x)2dxdt . R0 +

|I|
R2

. (78)

Taking R→∞, ∫
I

∫
ux(t, x)2dxdt . R0. (79)

Therefore, by the Gagliardo-Nirenberg inequality, when ‖u‖L2 < ‖Q‖L2 , by conser-
vation of energy, ∫

I

E(u(t))dt = |I|E(u0) . R0. (80)
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However, when ‖u0‖L2 < ‖Q‖L2 , conservation of energy combined with (80) contra-
dicts the fact that N(t) is unbounded on I, which completes the proof of Proposition
2. �

Since the subsequence in the above analysis always converges strongly in L2 to
u0, if we begin with an δ-close to Q solution, then the solution that we obtain is
also δ-close to Q. This completes the proof of Theorem 4.1.

5. Decomposition of the solution near a soliton. Since after rescaling and
translation, u is close to Q, we can use a decomposition lemma of [16]. This lemma
was proved when u was close to Q in H1 norm, however, it is possible to prove a
slightly weaker result when u is merely close in L2 norm.

Lemma 5.1. There exists δ > 0 such that if

‖u− λ0(t)−1/2Q(
x− x0(t)

λ0(t)
)‖L2 < 2δ, (81)

then there exist x(t) and λ(t) such that

ε(t, y) := λ(t)1/2u(t, λ(t)y + x(t))−Q(y) (82)

satisfies

(yQy, ε) = (y(
Q

2
+ yQy), ε) = 0. (83)

Moreover,

|λ0(t)

λ(t)
− 1|+ |x0(t)− x(t)

λ(t)
|+ ‖ε‖L2 . δ. (84)

Remark 1. Observe that by (84), almost periodicity (according to Definition 1.1)
is maintained with the new x(t) and N(t) = 1

λ(t) .

Proof: Use the implicit function theorem. For δ > 0, let

Uδ = {u ∈ L2 : ‖u−Q‖L2 < 2δ}, (85)

and for u ∈ L2(R), λ1 > 0, x1 ∈ R, define

ελ1,x1
(y) = λ

1/2
1 u(λ1y + x1)−Q. (86)

Define the functionals

ρ1λ1,x1
(u) =

∫
ελ1,x1(yQy)dy, ρ2λ1,x1

(u) =

∫
ελ1,x1(y(

Q

2
+ yQy))dy. (87)

Then by direct computation,

∂ελ1,x1

∂x1
= λ

1/2
1 ux(λ1y + x1), (88)

and
∂ελ1,x1

∂λ1
=

1

2
λ
−1/2
1 u(λ1y + x1) + λ

1/2
1 yux(λ1y + x1). (89)

Integrating by parts,

∂ρ1λ1,x1

∂x1
=

∫
λ
1/2
1 ux(λ1y+x1)(yQy)(y)dy = −

∫
λ
−1/2
1 u(λ1y+x1)(yQyy+Qy)(y)dy,

(90)



20 BENJAMIN DODSON AND CRISTIAN GAVRUS

∂ρ2λ1,x1

∂x1
=

∫
λ
1/2
1 ux(λ1y + x1)(

y

2
Q+ y2Qy)(y)dy

= −
∫
λ
−1/2
1 u(λ1y + x1)(

Q

2
+

5y

2
Qy + y2Qyy)(y)dy,

(91)

∂ρ1λ1,x1

∂λ1
=

∫
[
1

2
λ
−1/2
1 u(λ1y + x1) + λ

1/2
1 yux(λ1y + x1)](yQy)(y)dy

=

∫
1

2
λ
−1/2
1 u(λ1y + x1)yQy(y)dy −

∫
λ
−1/2
1 u(λ1y + x1)y2Qyy(y)dy

−2

∫
λ
−1/2
1 u(λ1y + x1)yQy(y)dy,

(92)

and

∂ρ2λ1,x1

∂λ1
=

∫
[
1

2
λ
−1/2
1 u(λ1y + x1) + λ

1/2
1 yux(λ1y + x1)](

y

2
Q+ y2Qy)(y)dy

=
1

2

∫
λ
−1/2
1 u(λ1x+ x1)(

y

2
Q+ y2Qy)(y)dy

−
∫
λ
−1/2
1 u(λ1y + x1)(yQ+

7

2
yQy + y3Qy)(y)dy.

(93)

This implies that (ρ1λ1,x1
, ρ2λ1,x1

) are C1 functions of (λ1, x1).

Also,

∂ρ1λ1,x1

∂x1
|λ1=1,x1=0,u=Q =

∫
Qy · yQydy = 0,

∂ρ1λ1,x1

∂λ1
|λ1=1,x1=0,u=Q =

∫
Qy · y(

Q

2
+ yQy) =

∫
(
Q

2
+ yQy)2dy > 0,

∂ρ2λ1,x1

∂λ1
|λ1=1,x1=0,u=Q =

∫
(
Q

2
+ yQy)yQy =

∫
(
Q

2
+ yQy)2dy > 0,

∂ρ2λ1,x1

∂x1
|λ1=1,x1=0,u=Q =

∫
(
Q

2
+ yQy)y(

Q

2
+ yQy)dy = 0.

(94)

Therefore, by the implicit function theorem, if

‖u(x)−Q(x)‖L2 < 2δ, (95)

then there exist λ, x such that

|λ− 1|+ |x|+ ‖ε‖L2 . ‖u−Q‖L2 < 2δ, (96)

satisfying

(ε, yQy) = (ε, y(
Q

2
+ yQy)) = 0. (97)

Now take a general λ0(t) and x0(t) such that

‖u(y)− λ−1/20 Q(
y − x0
λ0

)‖L2 < 2δ. (98)

Then after translation and rescaling,

‖λ1/20 u(λ0y + x0)−Q(y)‖L2 < 2δ. (99)
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Then there exist |x̃|+ |λ̃| . ‖u−Q‖L2 such that

(λ
1/2
0 (1− λ̃)1/2u(λ0(1− λ̃)y + λ0x̃+ x0), xQx) = 0,

(λ
1/2
0 (1− λ̃)1/2u(λ0(1− λ̃)y + λ0x̃+ x0), x(

Q

2
+ xQx)) = 0.

(100)

Since |λ̃| . δ, |λ0(1−λ̃)
λ0

| . δ. Also, |λ0x̃| . λ0δ, so
|x′0−x0|
λ0

. δ. This completes the
proof of Lemma 5.1. �

Introduce the variable

s =

∫ t

0

dt′

λ(t′)3
, equivalently

ds

dt
=

1

λ3
. (101)

Lemma 5.2 (Properties of the decomposition). (1) The function ε(s, y) satisfies
the equation

εs = (Lε)y +
λs
λ

(
Q

2
+ yQy) + (

xs
λ
− 1)Qy +

λs
λ

(
ε

2
+ yεy) + (

xs
λ
− 1)εy − (R(ε))y,

(102)
where

Lε = −εxx + ε− 5Q4ε, and R(ε) = 10Q3ε2 + 10Q2ε3 + 5Qε4 + ε5. (103)

(2) λ and x are C1 functions of s and

λs
λ

(

∫
(
Q

2
+ yQy)2dy −

∫
(2yQy + y2Qyy)εdy)− (

xs
λ
− 1)

∫
(yQyy +Qy)εdy

=

∫
L(yQyy +Qy) · εdy −

∫
R(ε)(yQy)dy,

(104)
and

− λs
λ

∫
ε(yQ+

7y2

2
Qy + y3Qyy)dy

+ (
xs
λ
− 1)(

∫
(
Q

2
+ yQy)2dy −

∫
(
Q

2
+

5y

2
Qy + y2Qyy)εdy)

=

∫
L(
Q

2
+

5y

2
Qy + y2Qyy) · εdy −

∫
(
Q

2
+

5y

2
Qy + y2Qyy)R(ε)dy.

(105)

Proof: See [16]. �

This lemma has an important corollary.

Corollary 3. For all s ∈ R,

|λs
λ
|+ |xs

λ
− 1| . ‖ε‖L2 + ‖ε‖L2‖ε‖4L8 . (106)

Proof. First observe that by Hölder’s inequality and the boundedness of Q,∫
L(yQyy +Qy) · εdy −

∫
R(ε)(yQy)dy . ‖ε‖L2 + ‖ε‖L2‖ε‖4L8 , (107)

and∫
L(
Q

2
+

5y

2
Qy+y2Qyy)·εdy−

∫
(
Q

2
+

5y

2
Qy+y2Qyy)R(ε)dy . ‖ε‖L2 +‖ε‖L2‖ε‖4L8 .

(108)
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Since
∫

(Q2 + yQy)2dy > 0,

|λs
λ
|(1 +O(‖ε‖L2)) + |xs

λ
− 1|O(‖ε‖L2) . ‖ε‖L2 + ‖ε‖L2‖ε‖4L8 ,

|λs
λ
|O(‖ε‖L2) + |xs

λ
− 1|(1 +O(‖ε‖L2)) . ‖ε‖L2 + ‖ε‖L2‖ε‖4L8 ,

(109)

so after doing some algebra,

|λs
λ
|+ |xs

λ
− 1| . ‖ε‖L2 + ‖ε‖L2‖ε‖4L8 . (110)

Next, by Strichartz estimates, rescaling, and perturbation theory, for any k ∈ Z,

‖u(s, y)‖L8
s,x([k,k+1]×R) . ‖u0‖L2 < ‖Q‖L2 . (111)

Therefore, by the triangle inequality,

‖ε‖L8
s,x([k,k+1]×R) . ‖Q‖L8 + ‖u‖L8

s,x
. 1. (112)

Also, by perturbative arguments, for ‖ε0‖L2 sufficiently small, if λ(k) = 1 and
x(k) = 0,

‖u(t, x)−Q(x− t)‖L∞t L2
x([k,k+1]×R) . ‖ε0‖L2 . (113)

Thus using scaling and translation symmetries, along with Strichartz estimates,

‖ε‖L∞s L2
y([k,k+1]×R) + ‖ε‖L8

s,y([k,k+1]×R) . ‖ε(k)‖L2 . (114)

Combining (111), (114), Lemma 5.1, and the fact that ‖Q‖L8 is uniformly
bounded, along with choosing ‖ε0‖L2 to be the infimum of ‖ε‖L2 on the interval
[k, k + 1],∫ k+1

k

|λs
λ
|2 + |xs

λ
− 1|2ds .

∫ k+1

k

‖ε‖2L2ds+ ‖ε‖2L∞t L2
x([k,k+1]×R)

∫ k+1

k

‖ε‖8L8ds

.
∫ k+1

k

‖ε‖2L2ds.

(115)

6. Exponential decay estimates of u. Having obtained a decomposition of u
close to the soliton, the next step is to prove exponential decay of a solution that
stays close to Q in the case when N(t) ≥ 1 and

∫
I
N(t)2dt =∞. The proof follows

a similar argument in [20] and utilizes the fact that u is close to a soliton, and the
soliton moves to the right while a dispersive solution moves to the left.

Recall that

sup
t∈I
‖ε(t)‖L2(R) = sup

t∈I
‖u(t, x)− 1

λ(t)1/2
Q(
x− x(t)

λ(t)
)‖L2(R) . δ (116)

Observe that N(t) ≥ 1 implies λ(t) . 1, where λ(t) is given by Lemma 5.1. It
is convenient to rescale so that λ(t) ≤ 1 for all t ∈ I. Note that after rescaling
N(t) ≥ 1. See Remark 1.

Lemma 6.1 (Exponential decay to the left of the soliton). There exists some a0
such that for x0 ≥ 10a0, if u satisfies Theorem 4.1, (4) and ‖u0‖L2 < ‖Q‖L2 , then

‖u(t, x+ x(t))‖2L2(x≤−x0)
≤ 10c1e

− x06 . (117)

Remark: It is important to note that a0 does not depend on the δ > 0 in (116).
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Proof. Suppose there exists some t0 ∈ R and x0 ≥ 10a0 such that∫
x≤−x0

u(t0, x+ x(t0))2dx > 10c1e
− x06 . (118)

Let K = 3
√

2, and let

φ(x) = cQ(
x

K
), (119)

where

c =
1

K
∫∞
−∞Q(x)dx

. (120)

Define

ψ(x) =

∫ x

−∞
φ(y)dy. (121)

Then,

lim
x→−∞

ψ(x) = 0, lim
x→+∞

ψ(x) = 1. (122)

Next, define a modification of x(s), x̃(s), such that x(k) = x̃(k) for all k ∈ Z, and
for any s ∈ R, and for any k < s < k + 1, x̃(s) is the linear interpolation between
x̃(k) and x̃(k + 1). Then by (115),

x̃(k + 1)− x̃(k) = x(k + 1)− x(k) =

∫ k+1

k

xs(s)ds

=

∫ k+1

k

λ(s) + ( sup
k≤s≤k+1

λ(s)) · (
∫ k+1

k

‖ε‖L2ds) = (

∫ k+1

k

λ(s)ds) · (1 +O(δ)).

(123)
The last estimate follows from the fact that λ(s) ∼ λ(k) for any k ≤ s ≤ k + 1. It
also follows from (123) that for any k ≤ s ≤ k + 1,

|x̃(s)− x(s)| ≤ |x̃(s)− x̃(k)|+ |x(s)− x(k)| . (

∫ k+1

k

λ(s)ds). (124)

For technical reasons, it is useful to consider two cases separately. First, suppose
that ∫ sup(I)

0

N(t)2dt =

∫ 0

inf(I)

N(t)2dt = +∞. (125)

In this case, suppose without loss of generality that t0 = 0, where t0 is given by
(118). Then, ∫

x≤−x0

u(0, x+ x(0))2dx > 10c1e
− x06 . (126)

Define the function

I(t) =

∫
u(t, x)2ψ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx. (127)

Then by (118), since x̃(0) = x(0),

I(0) ≤
∫
u(0, x)2dx− 1

2

∫
x≤−x0+x̃(0)

u(0, x)2dx ≤
∫
u(0, x)2dx− 5c1e

− x0K . (128)
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Integrating by parts,

I ′(t) = −3

∫
ux(t, x)2φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx

+

∫
u(t, x)2φ′′(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx

+
5

3

∫
u(t, x)6φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx

−
˙̃x(t)

4

∫
u(t, x)2φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx.

(129)

Following [20], observe that

˙̃x(t)

4
=

x̃s
4λ3

=
1

4

1

λ2
x̃s
λ

=
1

4λ2
(1 +O(δ)). (130)

Also observe that

φ′′(x) =
c

K2
Qxx(

x

K
) ≤ c

K2
Q(

x

K
) =

1

K2
φ(x) =

1

18
φ(x). (131)

Since λ(t) ≤ 1,

−
˙̃x(t)

4λ2
φ(x) +

1

K2
φ(x) ≤ − 1

18
. (132)

Therefore,

I ′(t) ≤ −3

∫
ux(t, x)2φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx

+
5

3

∫
u(t, x)6φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx

− 1

18

∫
u(t, x)2φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx.

(133)

Next, using Lemma 6 from [20] and Hölder’s inequality,∫
|x−x̃(t)|>a0

u(t, x)6φ(x− x̃(0) + x0 −
1

4
(x̃(t)− x̃(0)))dx

≤ ‖u2φ1/2‖2L∞(|x−x̃(t)|>a0(

∫
|x−x̃(t)|>a0

u(t, x)2dx)

. (

∫
|x−x̃(t)|>a0

u(t, x)2dx)2(

∫
ux(t, x)2φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx

+

∫
u(t, x)2φ(x− x̃(0) + x0 −

1

4
(x̃(t)− x̃(0)))dx).

(134)
Since λ(t) ≤ 1 and |x− x̃(t)| . 1,∫

|x−x̃(t)|>a0
λ(t)−1Q(

x− x(t)

λ(t)
)2dx . e−2a0 , (135)

and by (116), ∫
|x−x̃(t)|>a0

λ(t)−1ε(t,
x− x(t)

λ(t)
)2dx ≤ δ2. (136)
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Therefore, for a0 sufficiently large, plugging (136) into (133),

I ′(t) ≤
∫
|x−x̃(t)|≤a0

u(t, x)6φ(x− x̃(0) + x0 −
1

4
(x̃(t)− x̃(0)))dx. (137)

By direct computation,

φ(x) ≤ ce− 1
K |x−x̃(0)+x0− 1

4 (x̃(t)−x̃(0))| = ce−
1
K |x−x̃(t)+

3
4 (x̃(t)−x̃(0))+x0|. (138)

Since x̃(t) ≥ x̃(0) and |x− x̃(t)| ≤ a0,

= ce−
1
K (x−x̃(t)+ 3

4 (x̃(t)−x̃(0))+x0). (139)

Therefore, since from (130), ˙̃x(t) ≥ 1
2λ2 , so

I ′(t) ≤ Ce
−x0
K e−

3
4K (x̃(t)−x̃(0)) ˙̃x(t)

∫
λ(t)2u(t, x)6dx. (140)

Making a change of variables, for any T > 0,∫ T

0

I ′(t)dt ≤
∑
k≥0

Ce
−x0
K

∫ k+1

k

xs(s)e
− 3

4K (x̃(s)−x̃(0))
∫
λ(s)2u(t(s), x)6dxds. (141)

Then by (111), conservation of mass, and a change of variables,

(141) . CKe
−x0
K . (142)

However, by the fundamental theorem of calculus, (128), the fact that by concen-
tration compactness,

I(t)↗
∫
u(0, x)2dx, as t↗ sup(I), (143)

and K = 3
√

2 > 6 gives a contradiction for a0 sufficiently large.

Proving (143) is the only place where (125) is used. (Since [0, t0] is a compact
set for any t0 ∈ I, and N(t) is a continuous function, (125) would also hold when 0
is replaced by any t0 ∈ I.) Then by (130), for any T > 0, T ∈ I,

x̃(T )− x̃(0) =

∫ T

0

˙̃x(t)dt ≥
∫ T

0

1

2λ2
dt ∼

∫ T

0

N(t)2dt→ +∞, (144)

as T ↗ sup(I). This proves (143).

Now prove exponential decay to the right.

Lemma 6.2 (Exponential decay to the right of the soliton). For x0 ≥ 10a0,

‖u(t, x+ x(t))‖2L2(x≥x0)
≤ 10c1e

− x06 . (145)

Proof. In this case, observe that if u(t, x) solves (1), then so does v(t, x) = u(−t,−x).
Once again assume without loss of generality that (145) fails at t0 = 0. Define the
function

I(t) =

∫
v(t, x)2ψ(x+ x̃(0) + x0 +

1

4
(x̃(−t)− x̃(0)))dx. (146)

If (145) fails at t0 = 0 for some x0, then

I(0) ≤
∫
u(t, x)2dx− 5c1e

− x06 . (147)
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Again by direct calculation,

I ′(t) = −3

∫
vx(t, x)2φ(x+ x̃(0) + x0 +

1

4
(x̃(−t)− x̃(0)))dx

+

∫
v(t, x)2φ′′(x+ x̃(0) + x0 +

1

4
(x̃(−t)− x̃(0)))dx

+
5

3

∫
v(t, x)6φ(x+ x̃(0) + x0 +

1

4
(x̃(−t)− x̃(0)))dx

−
˙̃x(−t)

4

∫
v(t, x)2φ(x+ x̃(0) + x0 +

1

4
(x̃(−t)− x̃(0)))dx.

(148)

Making the same argument as in Lemma 6.1 and making a change of variables

I ′(t) ≤
∫
|x−x̃(t)|≤a0

u(−t,−x)6φ(x+ x̃(0) + x0 +
1

4
(x̃(−t)− x̃(0))dx

=

∫
|x−x̃(t)|≤a0

u(−t, x)6φ(−x+ x̃(0) + x0 +
1

4
(x̃(−t)− x̃(0))dx.

(149)

Then

φ(x) ≤ Ce− 1
K (−x+x̃(−t)+ 3

4 (x̃(0)−x̃(−t))+x0) ≤ Ce− 3
4K (x̃(0)−x̃(−t))− x0K (150)

Therefore, as in Lemma 6.1, we can show that∫ T

0

I ′(t)dt . CKe−
x0
K . (151)

This proves (145).

Remark: Once again K = 3
√

2.

It only remains to prove

Theorem 6.3. There does not exist an almost periodic solution to (1) that satisfies
N(t) ≥ 1 for all t ∈ I, ∫ sup(I)

0

N(t)2dt =∞, (152)

and ∫ 0

inf(I)

N(t)2dt <∞. (153)

Proof. By (144) and (152), exponential decay to the left must hold for such a
solution. That is,

‖u(t, x+ x(t))‖L2(x≤−x0) ≤ 10c1e
− x0
K(u) . (154)

Now let χ be a smooth function such that χ(x) = 0 for x ≤ 1 and χ(x) = 1 when
x > 2. Then define the functional

M(t) =

∫
χ(

x

x0
)u(t, x+ x(0))2dx. (155)

The fact that N(t) ≥ 1 combined with (153) implies inf(I) > −∞. This fact implies
that N(t)↗∞ as t↘ inf(I), so (123) combined with almost periodicity imply that

lim
t↘inf(I)

M(t) = 0. (156)
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Then integrating by parts,

d

dt
M(t) = − 3

x0

∫
χ′(

x

x0
)ux(t, x+ x(0))2

+
5

3x0

∫
χ′(

x

x0
)u(t, x+ x(0))6dx+

1

x30

∫
χ′′′(

x

x0
)u(t, x+ x(0))2dx

≤ 5

3x0

∫
χ′(

x

x0
)u(t, x+ x(0))6dx+

1

x30

∫
χ′′′(

x

x0
)u(t, x+ x(0))2dx.

(157)
Then by (111),∫ 0

inf(I)

d

dt
M(t)dt .

5

3x0

∫ 0

inf(I)

N(t)2dt− 1

x30
inf(I) .

1

x0
(

∫ 0

inf(I)

N(t)2dt). (158)

This implies that for any t ∈ (inf(I), 0],∫
χ(

x

x0
)u(t, x+ x(0))2dx .

1

x0
(

∫ 0

inf(I)

N(t)2dt). (159)

Since |χ′( xx0
)| ≤ χ( 2x

x0
), plugging (159) back in to (158),∫ 0

inf(I)

d

dt
M(t)dt . ‖χ(

2x

x0
)u‖2/3L2 ‖u(t)‖16/3L8 dt

.
1

x
1/3
0

(

∫ 0

inf(I)

N(t)2dt)1/3 · 1

x0
(

∫ 0

inf(I)

N(t)2dt) =
1

x
4/3
0

(

∫ 0

inf(I)

N(t)2dt)4/3.

(160)

Therefore, since
∫ 0

inf(I)
N(t)2dt = R <∞,∫

x≥0
u(t, x+ x(0))2xdx <∞, (161)

which combined with (155) implies∫
|x|u(t, x+ x(0))2dx <∞. (162)

Then following the proof of Proposition 2,∫ 0

inf(I)

∫
ux(t, x)2dxdt <∞. (163)

By the Sobolev embedding theorem, E(u) < ∞. Then by conservation of energy
and the Gagliardo-Nirenberg inequality, the solution to (1) cannot blow up in finite
time, which gives a contradiction.

The proof that there does not exist a solution satisfying∫ sup(I)

0

N(t)2dt <∞,
∫ 0

inf(I)

N(t)2dt =∞, (164)

is identical.
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7. Virial identities. Next, use the virial identity from [14] to show that, on aver-
age, the inner product (ε,Q) is bounded by ‖ε‖2L2 .

Theorem 7.1. For any T > 0,

|
∫ T

0

λ(s)1/2
∫
ε(s, x)Q(x)dxds| . C(u) +

∫ T

0

λ(s)1/2‖ε(s)‖2L2ds. (165)

Proof. Define the quantity,

J(s) = λ(s)1/2
∫
ε(s, x)

∫ x

−∞
(
Q

2
+ zQz)dzdx− λ(s)1/2κ, (166)

where κ = 1
4 (
∫
Q)2. By rescaling, Lemmas 6.1 and 6.2, and the fact that λ(s) ≤ 1,

sup
s∈R

J(s) <∞. (167)

Then compute d
dsJ(s) =

λ(s)1/2
∫
εs(s, x)

∫ x

−∞
(
Q

2
+zQz)dzdx+

λs
2λ1/2

∫
ε(s, x)

∫ x

−∞
(
Q

2
+zQz)dzdx−

λs
2λ1/2

κ.

(168)
Then taking the expression of εs given by (102), and integrating by parts,

−
∫
R(ε)y

∫ y

−∞
(
Q

2
+zQz)dzdy =

∫
R(ε)(

Q

2
+yQy)dy . ‖ε‖2L2 +‖ε‖L2‖ε‖4L8 . (169)

Next, integrating by parts, by (106),

(
xs
λ
−1)

∫
εy

∫ y

−∞

Q

2
+zQzdzdy = −(

xs
λ
−1)

∫
ε(
Q

2
+yQy)dy . ‖ε‖2L2 +‖ε‖2L2‖ε‖4L8 .

(170)

Next, integrating by parts and using ε ⊥ y(Q2 + yQy),

λs
λ

∫
(
ε

2
+ yεy)

∫ y

−∞
(
Q

2
+ zQz)dzdy = −1

2

λs
λ

∫
ε(s, y)

∫ y

−∞
(
Q

2
+ zQz)dzdy

−λs
λ

∫
ε(s, y)y(

Q

2
+ yQy)dy = −1

2

λs
λ

∫
ε(s, y)

∫ y

−∞
(
Q

2
+ zQz)dzdy.

(171)
By direct calculation,

(
xs
λ
− 1)

∫
Qy

∫ y

−∞

Q

2
+ zQzdzdx = −(

xs
λ
− 1)

∫
Q(
Q

2
+ yQy) = 0. (172)

Also, since Q is an even function,

λs
λ

∫
(
Q

2
+ yQy)

∫ y

−∞

Q

2
+ zQzdzdx =

λs
λ

1

2
(

∫
Q

2
+ yQydy)2 =

λs
λ
κ. (173)

Finally, since L is a self-adjoint operator,∫
(Lε)y

∫ y

−∞

Q

2
+ zQzdz = −

∫
(Lε)(

Q

2
+ yQy)dy = −

∫
ε ·L(

Q

2
+ yQy)dy. (174)

Now, by direct computation,

L(
Q

2
+ xQx) = −Qxx

2
+
Q

2
− 5

2
Q5 − xQxxx − 2Qxx − 5xQ4Qx + xQx

= x∂x(−Qxx −Q5 +Q)− 5

2
(Qxx +Q5) +

Q

2
= −2Q.

(175)
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Plugging this into (174),

(174) = 2

∫
Qε. (176)

Therefore, we have proved,

d

ds
J(s) = 2λ(s)1/2

∫
Q(y)ε(s, y)dy +O(λ(s)‖ε‖2L2) +O(λ(s)‖ε‖L2‖ε‖4L8). (177)

Using (113) to estimate ‖ε‖L8
s,y

proves the theorem.

We are now ready to finish the proof of the main result.

Proof of Theorem 1.5 . Theorem 1.5 may now be proved using a second virial
identity. Let

M(s) =
1

2
λ(s)

∫
yε(s, y)2dy. (178)

Lemmas 6.1 and 6.2 imply that (178) is uniformly bounded for all s ∈ R.
Now, by the product rule,

d

ds
M(s) = λ(s)

∫
yε(s, y)εs(s, y)dy +

1

2
λs(s)

∫
yε(s, y)2dy. (179)

Again use (102) to compute εs. Integrating by parts,∫
yε(Lε)ydy =

∫
yε(−εyyy + εy − 20Q3Qyε− 5Q4εy)dy

= −3

2

∫
ε2ydy −

1

2

∫
ε2dy − 10

∫
Q3Qyyε

2dy − 5

2

∫
Q4ε2dy =: H(ε, ε).

(180)

Next, since ε ⊥ yQy and ε ⊥ y(Q2 + yQy) for all s ∈ R,

λs
λ

∫
yε(

Q

2
+ yQy)dy = (

xs
λ
− 1)

∫
yεQydy = 0. (181)

Next, integrating by parts and using (106),

(
xs
λ
− 1)

∫
yεεy = −(

xs
λ
− 1)

∫
ε2dy . ‖ε‖3L2(1 + ‖ε‖4L8) . ‖ε‖3L2 + ‖ε‖11/2L2 ‖εy‖3/2L2 .

(182)
Also,

−
∫
R(ε)yε(s, y)ydy = −

∫
yε(10Q3ε2 + 10Q2ε3 + 5Qε4 + ε5)ydy

=
20

3

∫
Q3ε3 − 10

∫
Q2Qyyε

3 − 5

∫
QQyyε

4

+
15

2

∫
Q2ε4 + 4

∫
Qε5 −

∫
Qyyε

5 +
5

6
ε6

. ‖ε‖3/2L2 ‖ε‖3/2L6 + ‖ε‖6L6 . ‖ε‖5/2L2 ‖εy‖1/2L2 + ‖ε‖4L2‖εy‖2L2 .

(183)
Finally, integrating by parts,

λs
λ

∫
yε(

ε

2
+ yεy) = −λs

2λ

∫
yε2 = −λs

λ
M(s). (184)
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Multiplying (180)–(184) by λ(s) and plugging in to (179),∫ T

0

λ(s)H(ε, ε)ds . C(u) +

∫ T

0

λ(s)‖ε‖3L2 + λ(s)‖ε‖11/2L2 ‖εy‖3/2L2 ds

+

∫ T

0

λ(s)‖ε‖5/2L2 ‖εy‖1/2L2 + λ(s)‖ε‖4L2‖εy‖2L2ds

. C(u) + δ

∫ T

0

λ(s)‖ε‖2L2ds+ δ

∫ T

0

λ(s)‖εy‖2L2ds.

(185)

The last inequality follows from (116).

Now then, take

ε1 = ε− (ε,Q)

‖Q‖2L2

Q = ε− aQ. (186)

Since Q ⊥ x(Q2 + xQx), ε1 ⊥ Q and ε1 ⊥ x(Q2 + xQx). Therefore, from [13], there
exists some δ1 > 0 such that

H(ε1, ε1) ≥ δ1‖ε1‖2H1 . (187)

Also, integrating by parts,

2λ(s)H(ε1, aQ) + λ(s)H(aQ, aQ) . λ(s)1/2|a| · λ(s)1/2‖ε1‖L2 + λ(s)a2. (188)

Therefore, (185) and (186) imply

δ1

∫ T

0

λ(s)‖ε1‖2H1ds

. C(u) + δ

∫ T

0

λ(s)‖ε‖2H1ds+

∫ T

0

λ(s)a(s)2ds+

∫ T

0

λ(s)a(s)‖ε1‖L2ds

. C(u) + δ

∫ T

0

λ(s)‖ε1‖2H1ds+

∫ T

0

λ(s)a(s)2ds+

∫ T

0

λ(s)a(s)‖ε1‖L2ds.

(189)

Furthermore, for δ � δ1, absorbing δ
∫ T
0
λ(s)‖ε1‖2H1ds into the left hand side,

δ1
2

∫ T

0

λ(s)‖ε1‖2H1ds . C(u) +

∫ T

0

λ(s)a(s)2ds+

∫ T

0

λ(s)a(s)‖ε1‖L2ds. (190)

Also, by the Cauchy-Schwarz inequality,

δ1
4

∫ T

0

λ(s)‖ε1‖2H1ds . C(u) +
1

δ1

∫ T

0

λ(s)(ε,Q)2ds. (191)

Also, since

‖ε‖2H1 . ‖ε1‖2H1 + (ε,Q)‖Q‖2H1 , (192)

δ1
4

∫ T

0

λ(s)‖ε‖2H1ds . C(u) +
1

δ1

∫ T

0

λ(s)(ε,Q)2ds. (193)

Next, by conservation of mass and scaling invariance of the L2 norm,

1

2
‖u0‖2L2 =

1

2
‖Q+ ε‖2L2 =

1

2
‖Q‖2L2 + (ε,Q) +

1

2
‖ε‖2L2 , (194)

and therefore, after doing some algebra,

− (ε,Q) =
1

2
‖Q‖2L2 −

1

2
‖u0‖2L2 +

1

2
‖ε‖2L2 . (195)
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Since 1
2‖Q‖

2
L2 − 1

2‖u0‖
2
L2 > 0 is a conserved quantity, it is convenient to label this

quantity

M =
1

2
‖Q‖2L2 −

1

2
‖u0‖2L2 . (196)

Plugging (195) into the right hand side of (193),

δ1
4

∫ T

0

λ(s)‖ε‖2H1ds . C(u) +
M2

δ1

∫ T

0

λ(s)ds+
1

δ1

∫ T

0

λ(s)‖ε‖4L2 . (197)

Since ‖ε‖L2 . δ, the second term in the right hand side may be absorbed into the
left hand side, so

δ1
8

∫ T

0

λ(s)‖ε‖2H1 . C(u) +
M2

δ1

∫ T

0

λ(s)ds. (198)

Likewise, by Theorem 7.1 and (195),

M

∫ T

0

λ(s)1/2ds . C(u) +

∫ T

0

λ(s)1/2‖ε‖2L2ds. (199)

Letting

K =

∫ T

0

λ(s)ds, and R =

∫ T

0

λ(s)1/2ds, (200)

combining (198) and (199),

δ1
8

∫ T

0

λ(s)‖ε‖2H1ds .
MK

Rδ1

∫ T

0

λ(s)1/2‖ε‖2L2ds+ C(u) +
MK

Rδ1
C(u). (201)

If it were the case that λ(s) = 1 for all s ∈ R, (as in [14]), the proof would
be complete, since in that case, K = R = T and M . ‖ε‖L2 ≤ δ, so for δ > 0
sufficiently small, (201) along with the fact that

lim
T↗∞

∫ T

0

λ(s)ds = lim
T↗∞

∫ T

0

λ(s)1/2ds =∞, (202)

would imply that there exists a sequence sn → +∞ such that

‖ε(sn)‖H1 → 0, (203)

as n→∞. However, this would contradict the fact that ‖u0‖L2 < ‖Q‖L2 .

In the general case, the proof will make use of the fact that λ(s) ≤ 1 for all s ∈ R
along with the fact that conservation of energy gives a lower bound (depending on
M) on λ(s).

Expanding out the energy,

E(Q+ ε) =
1

2

∫
Q2
x +

∫
Qxεx +

1

2

∫
ε2x

−1

6

∫
Q2 −

∫
Q5ε− 5

2

∫
Q4ε2 − 10

3

∫
Q3ε3 − 5

2

∫
Q2ε4 −

∫
Qε5 − 1

6

∫
ε6.

(204)
First, note that

E(Q) =
1

2

∫
Q2
x −

1

6

∫
Q6 = 0. (205)

Next, integrating by parts, by (195),∫
Qxεx −

∫
Q5ε = −

∫
ε(Qxx +Q5) = −

∫
εQ = M +

1

2

∫
ε2. (206)
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Therefore, by Hölder’s inequality and the Sobolev embedding theorem,

E(Q+ε) = M+
1

2

∫
ε2x+

1

2

∫
ε2− 5

2

∫
Q4ε2+O(‖ε‖5/2L2 ‖ε‖1/2H1 +‖ε‖4L2‖ε‖2H1). (207)

Also, scaling symmetry implies

E(Q+ ε) = λ(s)2E0. (208)

Recalling (186) and (187),

1

2

∫
ε2x +

1

2

∫
ε2 − 5

2

∫
Q4ε2 ≥ δ1‖ε1‖2H1 −

1

δ1
(ε,Q)2 ≥ δ1‖ε‖2H1 −

2

δ1
(ε,Q)2

≥ δ1‖ε‖2H1 −
2

δ1
M2 − 2

δ1
‖ε‖4L2 ≥

δ1
2
‖ε‖2H1 −O(

M2

δ1
).

(209)
Since M . δ and ‖ε‖L2 . δ, for δ > 0 sufficiently small,

λ(s)2E0 ≥
δ1
4
‖ε‖2H1 +

M

2
. (210)

Since E0 and both of the terms on the right hand side are positive, (210) implies

M . λ(s)2E0, (211)

and therefore,

M

E0
. λ(s)2, which implies λ(s)−1/2 . (

E0

M
)1/4. (212)

Plugging this into (201),

δ1
8

∫ T

0

λ(s)‖ε‖2H1ds .
M3/4E

1/4
0 K

R

∫ T

0

λ(s)‖ε‖2L2ds+
MK

Rδ1
C(u) + C(u). (213)

Since λ(s) ≤ 1, K ≤ R, so

δ1
8

∫ T

0

λ(s)‖ε‖2H1ds .M3/4E
1/4
0

∫ T

0

λ(s)‖ε‖2L2ds+ C(u). (214)

Assuming for a moment that E0 . 1, M . δ and (202) imply that (203) must hold
in this case as well, obtaining a contradiction.

The fact that E0 . 1 is a straightforward consequence of Lemmas 6.1 and 6.2.
Suppose without loss of generality that

λ(0) ≥ 1

2
=

1

2
sup
s∈R

λ(s). (215)

Lemmas 6.1 and 6.2 imply that

λ(s)

∫
yε(s, y)2dy . 1, (216)

with implicit constant independent of u, so long as u satisfies (116). Then by (193),∫ 1

0

λ(s)‖ε‖2H1ds . 1 +
1

δ1

∫ 1

0

λ(s)‖ε‖2L2ds. (217)

Since (110) guarantees that λ(s) ∼ 1 on [0, 1],∫ 1

0

‖ε‖2H1ds . 1 +
1

δ1

∫ 1

0

‖ε‖2L2ds . 1. (218)
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The last inequality follows from (116). Therefore, the proof that E0 . 1 is complete.
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