SCATTERING FOR THE RADIAL DEFOCUSING
CUBIC NONLINEAR WAVE EQUATION WITH
INITIAL DATA IN THE CRITICAL SOBOLEV SPACE

BENJAMIN DODSON

Abstract
We prove global well-posedness and scattering for the defocusing cubic nonlin-

ear wave equation on R'3 with radial initial data lying in the critical Sobolev space
HY2(R3) x H™Y2(R3). This result is sharp for radial initial data.
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1. Introduction
In this paper we study the defocusing cubic nonlinear wave equation

Uy — Au+ud=0, u(0, x) = uy, u; (0, x) = uy. (1.1)

This problem is H '/2-critical, since the equation (1.1) is invariant under the scaling
symmetry

u(t,x) = Au(At, Ax). (1.2)

This scaling symmetry completely determines the local well-posedness theory for
(1.1). Positively, [15] proved the following.
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THEOREM 1.1

The equation (1.1) is locally well-posed for initial data in ug € HI/Z(R3) and uy €

H~Y2(R3) on some interval [T (ug,u1), T (uo,u1)]. The time of well-posedness

T (uo,u1) depends on the profile of the initial data (ug,u1), not just its size.
Additional regularity is enough to give a lower bound on the time of well-

posedness. Therefore, there exists some T (|[uol| gs. U1l gs—1) > 0 for any % <s<
3

5
Negatively, [15] proved the following.

THEOREM 1.2
The equation (1.1) is ill-posed for ug € HS(R?) and u; € H~Y(R?) when s < %

Local well-posedness is defined in the usual way.

Definition 1.1 (Locally well-posed)

The initial value problem (1.1) is said to be locally well-posed if there exists an open

interval / C R containing 0 such that

(1) a unique solution u € LHY2(I x R®) N L} LI x R®), u, € L x
H~Y2(] x R3) exists;

(2)  the solution u is continuous in time, u € C(I; HY2(R3)), u; € C(I;
H™'2(R3));

3) the solution u# depends continuously on the initial data in the topology of item

(1).

Given this fact, it is natural to inquire as to the long-time behavior of solutions
to (1.1) with initial data at the H'/2-critical regularity. Do they continue for all time,
and if they do, what is their behavior at large times?

Global well-posedness for initial data in H/2 N H'(R?) x H~1/2 N L2(R?)
follows from conservation of the energy

E(u@t)) = %/ut(t,x)z dx + %/|Vu(t,x)|2dx + %/u(l,x)4 dx. (1.3
By the Sobolev embedding theorem and Holder’s inequality,
“”(0) ||2§(R3) S H”(O) ”i;(RB) ””(0) Hig(m)
S 14O 2 [ O 1y (a4

and therefore,
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E(M(O)) S‘”“O”Hl/z ||u0||§:11(R3) + ”ul ||i2(R3) (15)

By (1.3), E(u(t)) = E(u(0)) controls the size of [|u(t)|| z1 + ||u;(t)| L2, which by
Theorem 1.1 gives global well-posedness.
Comparing (1.1) to the quintic wave equation in three dimensions,

up —Au+u’ =0,  u0.x)=uo,  u(0,x)=uy, (1.6)

a solution to (1.6) is invariant under the scaling symmetry u (¢, x) — A'/2u(Az, Ax), a
symmetry that preserves the (H ! x L2)-norm of (1o, u1). Observe that the conserved
energy for (1.6)

E(u(t)) = %/u,(t,x)zdx—i- %/|Vu(t,x)|2dx+ é/u(l,x)‘sdx (1.7)

is also invariant under the scaling symmetry. For this reason, (1.6) is called energy-
critical, and it is possible to prove a result in the same vein as Theorems 1.1 and 1.2
at the critical regularity H! x L2.

This fact combined with conservation of the energy (1.7) is insufficient to
prove global well-posedness for (1.6). The reason is because the time of local well-
posedness depends on the profile of the initial data (1o, 1) € H' x L2, and not just
its size. Instead, the proof of global well-posedness for the quintic problem uses a
nonconcentration of energy argument. This result has been completely worked out,
proving both global well-posedness and scattering, for both the radial (see [9], [26])
and the nonradial case (see [2], [11], [19], [20]).

Definition 1.2 (Scattering)
A solution to (1.6) is said to be scattering in some H*(R3) x HS~1(R3) if there exist
(ug uf), (ug,uy) € H® x H*~! such that

t_lg?oo“ (u(t)7ul(t)) - S(t)(“(—)}_’uf)”stgs—l =0 (18)
and
t_liglooH (). u, (1)) = S@) (g u) | sy grs—1 =0 (1.9)

where S(¢)(f, g) is the solution operator to the linear wave equation. That is, if

(u(r), u (1)) = S(1)(f. g). then

Uy — Au =0, u0,x)=f, u;(0,x) =g. (1.10)

Similar results for (1.1) may also be obtained if one assumes a uniform bound
over [lull g1/2(g3y + Ut ll —1/2(g3) for the entire time of existence of the solution.
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THEOREM 1.3
Suppose that ug € HY2(R?) and uy € H=Y/2(R3) are radial functions and that u
solves (1.1) on a maximal interval 0 € I C R, with

Su?”“(’:) ||Hl/2(R3) + ||ut(l)||H—l/2(R3) < Q. (1.11)
te
Then I = R and the solution u scatters both forward and backward in time.

Proof
See [7]. O

However, unlike the energy-critical problem, there is no a priori reason to believe
that the critical Sobolev norm will remain bounded for the entire time of its existence.
We remove this assumption on uniform boundedness of the critical norm in (1.11),
proving the following result.

THEOREM 1.4

The initial value problem (1.1) is globally well-posed and scattering for radial ini-
tial data ug € H'2(R?) and uy € H='/2(R3). Moreover, there exists a function f
[0, 00) — [0, 00) such that if u solves (1.1) with initial data (ug,u1) € HY?x H=1/2,
then

el ey < (ol 2y + Il 12 (1.12)

The proof of Theorem 1.4 combines the Fourier truncation method and hyper-
bolic coordinates. Previously, [13] applied the Fourier truncation method to the cubic
wave equation (1.1), proving global well-posedness of (1.1) with initial data lying in
the inhomogeneous Sobolev spaces HS(R?) x HS™!(R?) for s > 2. This argument
was improved and modified in many subsequent papers, for both radial and nonradial
data. In particular, see [6] for a proof of global well-posedness for (1.1) with radial
initial data lying in

(H*(R®) N H'2(R?) x (HT' (R n H™'/2(RY)), (1.13)
for any s > 1, as well as for a description of other results along this line.
Remark

The method used in [6] was the I-method, a modification of the Fourier truncation
method.

In this paper, using the Fourier truncation method, global well-posedness is
proved for (1.1) with radial initial data lying in H'/2(R3) x H~'/2(R?). The idea
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behind the proof is that at low frequencies, the initial data has finite energy, and a
solution to (1.1) with finite energy is global. Meanwhile, at high frequencies, the
(HY? x H='/2)-norm is small, and for such initial data, (1.1) may be treated using
perturbative arguments (see, e.g., [24]). The mixed terms in the nonlinearity are then
shown to have finite energy, proving global well-posedness.

Proof of scattering utilizes hyperbolic coordinates. Scattering for smooth data
with sufficiently rapid decay was proved in [23] using conservation of a conformal
energy. Hyperbolic coordinates were used in [27] to prove weighted Strichartz esti-
mates that were proved in [8] for compactly supported data. More recently, Shen [21],
working in hyperbolic coordinates, was able to prove a scattering result for data lying
in a weighted energy space. Later, [4] combined the result of [21] with the I-method

argument in [6] to prove scattering data lying in the subspace of H/2 x H~1/2,

||”0||H1/2+6(R3) + || |x|2€u0||Hl/2+e(R3) + [lus ”H—1/2+€(R3)
+ ” |x|25“1 ||H—l/2+€(R3)' (1.14)

Here the Fourier truncation global well-posedness argument in hyperbolic coordi-
nates shows that (1.1) is globally well-posed and scattering for any (ug,u1) € H/? x
H™Y2,

This fact still falls short of (1.12), since the proof does not give any uniform
control over the ||u|| L#  (Rxr3)-hOTM. To remedy this deficiency, and complete the
proof of Theorem 1.4, a profile decomposition is used (see [1], [18]). The profile
decomposition shows that for any bounded sequence of initial data

””8”1'11/2(113) + ||M'1'||g—1/2(R3) <A4, (1.15)
and if u” (¢) is the global solution to (1.1) with initial data (ug,u7), then
™Ml s mxry < 0© (1.16)

is uniformly bounded. Then by Zorn’s lemma, the proof of Theorem 1.4 is complete.

The author believes this to be the first unconditional global well-posedness and
scattering result for a nonlinear wave equation with initial data lying in the critical
Sobolev space, with no conserved quantity that controls the critical norm. Previously,
[5] proved global well-posedness and scattering for (1.1) with radial initial data lying
in the Besov space 312,1 x B 11,1 . These spaces are also invariant under the scaling (1.2).
Later, [16] proved a similar result in five dimensions.

There are two main improvements for this result over the results of [5] and [16].
The first is that, while scale-invariant, the Besov spaces are only subsets of the critical
Sobolev spaces. The second improvement is that the (H /2 x H~/2)-norm is invari-
ant under the free evolution of the linear wave equation. Whereas, for initial data lying
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in a Besov space, the proof of scattering simply meant that the solution scattered in
the (HY/? x H~1/2)-norm.

The main obstacle to extending the Besov space result to scattering in the critical
Sobolev space lies in that the dispersive estimates cannot be easily applied in this
setting. For data in 312,1 X Bllyl, if u solves the linear wave equation with the same
initial data (u¢,u1), then the dispersive estimate implies that

i 1
||u||Loo§;||(uo,u1)||BlzJX311_l. (1.17)

This gives some time integrability for # that proves quite useful in [5].

Additionally, for radial initial data, the space B 12’1 x B 11’1 is contained in the
energy space if the initial data is supported away from the origin. Thus, [5] was able to
split the initial data into a finite energy piece, and a piece whose linear solution must
travel along the light cone. However, for generic ug € H'/2 with radial symmetry,
there is no reason to think that u¢ has a derivative that lies in any L? space. There is
no reason to think that u; lies in any Lebesgue space either.

2. Local well-posedness
The local well-posedness result of [15] may be proved via the Strichartz estimates of
[25].

THEOREM 2.1
Let I CR, tg€l, be an interval, and let u : I x R® — R be a solution to the linear
wave equation

Uy — Au=F, u(fo) = uo, ur(fo) = us. 2.1)
Then u satisfies the estimates
||”||L,"Lf£(1xR3) + ||”||L;>°HS(1xR3) + Nl ||L§’°HS*1(I><R3)
Sp,q,s,ﬁ,t} ||u0||f'1x(R3) + ||u1”HS—1(R3) + ”F”Ltﬁ/Lz/(1><R3)’ (2.2)

whenevers >0,2<p, p<o00,2<gq, § <00,

1 3 3 1 3
P q 2 P q
and
1 1 1 1 1 1
—+-=_ —+t=-== 2.4)
P q 2 P q 2



RADIAL CUBIC WAVE EQUATION SCATTERING 3273

Proof
Theorem 2.1 was proved for p = ¢ =4 and p = ¢ = 4 in [25] and then in [10] for a
general choice of (p, ¢q). O

To prove local well-posedness of (1.1), it will suffice to use (2.2) when p =g =
4. Indeed, (2.2) implies that for any 7,

||“||L;{x(1xR3) S “S([)(MO’MI)HL;{X(MR% + ||“||i;tx(1st)- (2.5)

If || S () (uo, “1)||L;‘_x(1><R3) < ¢, then small data arguments imply that (1.1) is locally
well-posed on the interval 7.

Therefore, for [[uol g1/2 + l[u1ll g—1/2 sufficiently small, (2.2) and (2.5) imply
that (1.1) is well-posed on I = R. For generic (ug,u;) € H'/2 x H~/2, the dom-
inated convergence theorem and (2.2) imply that for any fixed (ug,u1) € H'Y2 x
012,

}i{AnO“ S(0) (o, ur) ||L;{x([—T,T]xR3) =0, (2.6)

which implies local well-posedness on some open interval I, where 0 € /.

Equation (2.5) also implies that (1.1) is locally well-posed on an interval I on
which an a priori bound ||u||L;1'X(IxR3) < o0 is obtained. This may be seen by par-
titioning / into finitely many pieces /; on which [Ju|| L3 (1;xR3) is small, and then
iterating local well-posedness arguments on each interval. This argument also shows
that scattering is equivalent to ||u|| L#  (RxR3) < O©-

Strichartz estimates also yield perturbative results.

LEMMA 2.2 (Perturbation lemma)
Let I C Rbe atime interval. Let ty € I, (g, u1) € H'Y?x H='/2 and some constants
M, A, A’ > 0. Let 1i solve the equation

Oy — ANt +0° =e (2.7

on I x R3 and also suppose that sup,.; @), 00l g1/25-172 < A,
”ﬁ”L;‘.x(leﬁ) <M,

|| (o — it (to), uy — di(to)) ”Hl/zxg—l/z <A, (2.8)
and

lell 3737 xray + 1St — 10) (uo — i (t0). uy — 31i(to)) |}L?vx(,xk3) <e. (29
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Then there exists €g(M, A, A') such that if 0 < € < €, then there exists a solution to
(1.1) on I with (u(ty), dru(to)) = (uo, u1), | u”L?X(IxR3) <C(M, A, A", and for all
tel, '

| (@), 9:u(2)) — (i(2), 8:4(1)) || gy1/2 jy—1/2 < C(A, A M)(A" +¢).  (2.10)

Proof

The method of proof is by now fairly well-known (see, e.g., Theorem 2.20 of [12]).
O

Remark

The constant A" will typically be small. In fact, in Section 6, A’ = 0. Since A’ is
small, we could probably replace C (A4, A’, M) with C(A, M); however, we will keep
the same notation as [12] here to avoid any unnecessary confusion.

In Theorem 2.20 of [12], € in (2.10) is replaced by P for some B > 0. This is a

. . . A o

consequence of having a nonlinearity of the form |u|¥=2u, where N can be arbitrarily
large. Since we are only concerned with the cubic nonlinear wave equation, we can
get B =1 here.

The proof of Theorem 1.4 also utilizes some additional Strichartz estimates for
radially symmetric data. First, [14] proved that the endpoint case of Theorem 2.1 also
holds. This estimate fails for nonradial initial data by [17].

THEOREM 2.3
For (ug,uy) radially symmetric, and u solves (2.1) with F =0,

lull 22 9o mur3) S ltoll g1 w3y + N1l L2w3)- 2.1D)
The results of [22] subsequently extended the range of (p, q).

THEOREM 2.4

Let (ug,uy) be spherically symmetric, and suppose that u solves (2.1) with F = 0.
Then, if g > 4 and

-, (2.12)

we obtain

el 22 29 sy 10 sy + 261 g . 2.13)
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3. Virial identities for the wave equation

The proof of Theorem 1.4 will also use some weighted Strichartz-type estimates.
These estimates could actually be proved using Proposition 3.5 of [22] after making a
Bessel function-type reduction from three dimensions to two dimensions using radial
symmetry.

Here, these estimates will be proved using virial identities. There are at least
two reasons for doing this. The first is that, in the author’s opinion, the exposition
is cleaner and more readable using virial identities. The second reason is that many
of the computations may be applied equally well to defocusing problems as to linear
problems.

Suppose that u solves the equation

utt_Au+/’Lu3=O7 M(O,X)ZMO, ut(o’x)zulv (31)

where u = 0, 1. The case when p = 0 is a solution to the linear wave equation, and
i =1 is the defocusing nonlinear wave equation (1.1).

THEOREM 3.1
If u solves (1.1) on an interval [0, T], then

T
7!
/0 /m”4dx"'f5||”||L;>°H1([0,T]xR3)||“t||L;>°L§([0,T]xR3)v (3.2

1 (T )
sup — ucdxdt <|ull; oo p || ugll 70072 3y, (3.3)
R>IZ) R3/0 /st llll oo 1 1o, 71cr3) 142 | Loo 12 (0. 71 xR3)
and
1 (T
sup—/ / [|Vu|2+ut2]dxdt
rR>0 R Jo Jix|<r
Sz ||u||L?°I{V1([0,T]><R3)||ut||L,°°L%([O,T]xR3)' (34)
Remark

The implicit constants in (3.2)—(3.4) are independent of 7.

Proof
Define the generic Morawetz potential, where a(x) = a(|x|) is radially symmetric,

M(t) =[u,a(|x|)x-Vu+/u,a(|x|)u. (3.5)

Computing the time derivative, by (3.1),
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d
EM(Z)Z fu,a(|x|)x-Vut +/ut2a(|x|)

+/Aua(|x|)x-Vu+/Aua(|x|)u
—/L/u3a(|x|)x-Vu—u/u3a(|x|)u. (3.6)

Integrating by parts,

SoM@ = =3 [[alx) + ()11 = 5 [ alll) + @' (xDll]i VP

+ [ @ ()19 = 3] + 5 [ 02 8ax)

—%/a(|x|)u4 + %/a/(|x|)|x|u4. (3.7)

Choosing a(|x|) = |71|,

a(lx]) +d'(|x])|x| = 0. (3.8)

When u is radial, |[Vu|? — |9,u|?> = 0. For a general u,

|Vu|> —0,ul*> >0, (3.9)
so since a’(|x]) <0,
d'(Ix])|x|[|Vu|* — [0,ul*] <o0. (3.10)
Also, by direct calculation, Aﬁ = —2m8(x), so when a(|x|) = ﬁ,
d n 1
—M(t) < —mu(t,0? - = | —u*dx. 3.11
MO =0 = 5 [ Fatdn (3.11)

Now by Hardy’s inequality, when a(x) = FiL

|M@)| < el L2 Vull 2. (3.12)

Therefore,

T T
/ u(t,O)zdz+/ fiu“dxdzgnu,up%z [Vull fooy2. (3.13)
0 o J Ix| o o

This takes care of (3.2).
Replacing a(|x]) by a(J]x — y|) and x with x — y, (3.13) implies that
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I/T/ (t,y)?dydi + 1/ / R, x)dxd
— u(t, — u(t,x)*dx
R o Sy R Jiyi<rJ 1x =l g

S el oo p2 VUl ooy 2. (3.14)

which takes care of (3.3).

To prove (3.4), choose a smooth function y : [0, 00) — [0, 00) satisfying x(|x]) =
1 for |x| <1, x(|x]) = ﬁ for |x| > 2, y(|x]) is decreasing as a function of |x|, and
such that

x(1x]) + X' (Ix[) x| = ¢ (1x1) (3.15)

is a smooth function, ¢(|x|) > 0, ¢(|x]) =1 for |x| <1, and ¢ (|x]|) is supported on
|x| <2.Take a(|x|) = %X(%)- Then,

1 1 1
s = () (S - o) o
Therefore,

d 1 Ix|
M) = [ (5[ + V] dx

+ [ @ () I19P = @) d

—%/a(|x|)u4dx+ %/a’(|x|)|x|u4dx

1
+ E/uzAaﬂxl) dx. (3.17)
Now, since a(|x|) = ﬁ when |x| > 2R, Aa(]x|) is supported on |x| < 2R. There-
fore,
l[uzAa(bcl) < sup 1 u?. (3.18)
2 ~ k>0 R? Jix|<R

Also, a(|x|) < ﬁ for any x, so again by Hardy’s inequality,

(M@)| < llvell 2 1 Voll 2. (3.19)

Plugging (3.9), (3.14), and (3.18) into (3.17) proves (3.4). O

COROLLARY 3.2
If u is an approximate solution to the cubic wave equation

Uy —Au+u’=F, (3.20)
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then
d 1 >
[/u,ﬂ Vu+/utﬂu]< nu(t()) _—/||
-I—/ Vu—i—/ —u, (3.21)
[x] |x]
and
/ /u,(t X) -Vu(t,x)dxdy
[yI=R |
/ /ut(t x)—u(t,x)dx dy]
lyI<R |
— 2 _—— —
< R3 \ylsRu([ , ) dy 2R3 /y<R/ |x—y|u(t x) dxdy
+%/ fF(t,x) Al -Vu(t,x)dxdy
ly|<R |x—y
/ / F(, x) u(t x)dxdy, (3.22)
lyI<R
and

)x-Vu—i—%[u,)(('%l)u]

(Tl 19) =g [ ()

v »«(%)';;' tgm [ oo ()
_/ X Vu—i——/F)( |x|) (3.23)

Theorem 3.1 also gives some nice estimates for the linear wave equation (u = 0).
Let P; denote the usual Littlewood—Paley partition of unity operators. That is,

Pif=F"pQTEF f(§)). (3.24)

where & denotes the usual Fourier transform, & ~! denotes the inverse Fourier trans-
form, and ¢ (&) is a smooth, radially symmetric, compactly supported function satis-

fying
D @ 77E)=1, forall§#0. (3.25)

jez
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COROLLARY 3.3
For any j € Z, let w be the solution to the linear wave equation

0prw — Aw =0, w(0,x) = Pjuy, w;(0,x) = Pju;. (3.26)

Then for any 2 < p < 0o,

112w Lo oo oy S 1Pl g1/ sy + I P 11 sy (3:27)
where % =1- % is the Lebesgue dual of p. Also, for p =2, forany 0 < R < 1 and
1 <Ry <00,

1/2,.1|2

|||x| w“L%x(Rx{x:RglxlsRl})

S (ln(Rl) —In(R) + 1)[||Pj“0||i)1/2(R3) + | Pjuy ||i"1—1/2(R3)]' (3.28)
Proof

Let ¥ be a smooth radial function supported on an annulus, {(r) =1 for 1 <r <2,
and v (r) is supported on % <r < 4. By Bernstein’s inequality and the product rule,

r r r

D)5 (3 HR v (F)vl
HPk<1//(R)w) .52 w(R)w, L+ 2RR (R)w
Therefore, by (3.3), (3.4), and the radial Sobolev embedding theorem,

o))

Next, by the Fourier support properties of w,

(3.29)

L2

<2_j/2R_1/2(”Pju0”Hl +1Pjurllz2).  (3.30)

L2LyP ™

r

(el 5w e,

Combining (3.31) with (2.11),
|P<i-a(v(F)e)

Then when R > 277/,
|P<ia(v()w)]

and when R <27/, a straightforward application of the endpoint Strichartz estimate

v (%)|

S277 RTN(I1Pjuoll g + [ Pjunll2). (3.32)

L2Ly ™

SRV Pjuol g + 1 Pjunllz2).  (3.33)

L2Ly ™

S (IPjuoll g1 + 1 Pjusllz2)

L~

SRTPIIR(|Pjuol g + I Pnllp2). (334)
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Since there are < In(R;) — In(R) + 1 dyadic annuli overlapping R < |x| < Ry,
(3.30)=(3.34) directly yields (3.28).
To prove (3.27), interpolating (3.34) with the radial Sobolev embedding theorem,

forany 2 < p < oo,
o(Z)
—)w
R

() = 1o (R)

12
SRTVERT2ZOTD (| Pjugll s + | Pjurll g-12).  (3.35)

1-2/p

oo
Lt,x

2/p

L7LS

which directly implies that

“|x|1/2wHLfL;*O(Rx{x:|x|zz—j}) S (IPjuoll g/ + 1Pjurll gisor—1).  (3.36)
Meanwhile, by (2.11) and the Sobolev embedding theorem,

K& 272 w2 w227

| 1x r2re Wl

w“L;"ngO(Rx{|x|52—f}) S
S (1Pjuoll s + I1Pjusll gi/p—r).  (3.37)

This finally proves the theorem. O

Remark
Also observe that by the radial Sobolev embedding theorem, Corollary 3.3 implies
that

2
W22 100 o, 71112 kY

< (L+In(T) —n(R)[I| Pjuoll g1z + 1 Pjurll g-1/2]. (3.38)

The virial identities in Theorem 3.1 commute very well with Littlewood—Paley
projections.

LEMMA 3.4

For any j,
1 4 1 4 1o
—|P<jv|*dx + | —|Psjv|"dx S | —|v|"dx. (3.39)
|x| |x| |x|

Proof

Let ¢ be the Littlewood—Paley kernel. That is,

1
|X|WP51‘U(X)=

[P a-pma. G

|x|1/4
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When |y[ < [x],

1 . . . . 1
|x|1/423jl'//(2j (x—y) S2Yy (2 (x —J’))W‘

When |y| > |x| and |x| > 27/, since ¥ is rapidly decreasing, for any N,

! 23jw(2j (x— y)) <y 1 2%
|x|1/4 ST VA (427 x = y N
< 1 237
~lx|V427 |y (1427 |x — y N !
1 237

<
Ty VA +27 | x =y
Combining (3.41) and (3.42),

P51U|’

1 1
”_| < H—v‘ .
|x|1/4 L4(x1=2=7) ~ Il x| V4 L4 ®3)

When |y| > |x| and |x| <27/, since ¥ is rapidly decreasing, for any N,

1 : . 23J
2y (2 (x = y)) S .
VO AN G ey
1 2% 1

e [1/4 (1 + 27 [x — y YN =1/4 2774y [1/4°
211j/4

M1+2ﬂx—yDN

2J/2

A

’

L4/3(R3)

so by (3.41), (3.45), Young’s inequality, and Holder’s inequality,

|P<vl|

In <]
— — UV .
|X|1/4 L4(|x|<2=7) ™ |X|1/4 L4(R3)

This proves (3.39).

LEMMA 3.5
We have

1
||szv||i4(|x|5§) < ||szv||L3[||VU||L2(\x\5R) + E||U||L2(|x|5R)]

. 1 1/2
+2_1/2(/mv4) .

3281

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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Proof
Let ¢ € C{°(R?) be supported on |x| <1 and ¢(x) =1 for |x| <1 By Holder’s
inequality,

X
1200y = [0(5) P (3.48)

L4(R3)

Then, by the triangle inequality, Holder’s inequality, and the Cauchy-Schwarz

inequality,
H¢<x)( zJ )‘L4(R3) ”QS( )(P>,v) P>,(¢(;)v) L2(R3)
(@)= [#(Z)- P2 ]| oo
HP>J( ( ) )‘LG(R3)||PZ'iU||L3(R3)
+§H¢(x)( zJ )‘L4(R3)
+ %H [q&(%) PZ/]U‘ 14(113)’ (3.49)
where
() 2o (o) s
Then by the Littlewood—Paley theorem,
H(p(x)( z/Y ) L4®R3) ™ S H¢(%>v‘LG(R3)||PZjU||L3(R3)
+H[ ( ) P>]] ‘24(113)’ (35D
and by the Sobolev embedding theorem,
[#(2) s < 17 ()7) o
< elliagien + 190l g G52)

This is bounded by the right-hand side of (3.47).
To handle the commutator, observe that

(3] =[]
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Then compute

[rae(R)]e =2 [y m[o(3) () omes

When |y| > |x|, we have the kernel estimate

25 y(2/ (x - y)) [¢<%) - ¢(%)]
< 2¥
~N A 27—y

< p—il4 : 2% ! )
~ (1427 |x — y[)N-1/4 |y|1/4

When |y| < |x| and |x| < R, by the fundamental theorem of calculus,

25y (27 (x — y))[¢(%) - ‘f’(%)]
< 2% |x — J’|1/4
Y2 —yDN T RIA

<=4 .231 . 1 .
S T DV

When |y| < |x| and |x| > R, interpolating

)= verme(3)

23]' R1/2

2y - n)[o(5) (5

<N .
~U A+ 2 x = yDN [y
with the fact that
2y (2 - »)|e(%) - 9(5)]

3j _ y|1/2
<y 2 |x — |
(42 —yD¥  RYV2

. 23J 1
< pi/4 .
~ (1+2j|x—y|)N_1/2 2J/2 R1/2

implies that

2y - »)[8(%) -9 ()] sw 2 2 1

U+ 27 = yDN [y

3283

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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The kernel estimates (3.55), (3.56), and (3.59) imply that

Il ()-P=1]0

proving Lemma 3.5. U

<27i/4 H L v
L4R3) ™ |x|1/4

, 3.60
Li®) (3.60)

4. Global well-posedness
The global well-posedness of (1.1) is proved using the Fourier truncation method, a
method introduced in [3] for the nonlinear Schrédinger equation and used in [13] for
the cubic wave equation.

Decompose the initial data into a finite energy piece and a small data piece, that
1S, ug = vg + wo and u; = v; + wy, where

E(vo,v1) = %/|Vvo|2dx + %[ lv1|?dx + %[ lvo|* dx < o0 4.1
and
lwoll g1z + llwill g—1/2 K 1. (4.2)
A local solution u to (1.1) may then be decomposed into ¥ = w + v, where w solves
Wy — Aw + w3 =0, w(0, x) = wy, w (0, x) = wy, 4.3)
and v solves
Ve — Av + 03 + 302w + 3vw? =0, v(0, x) = vy, v:(0,x) =v;. (4.4)

If [lwoll g1/2 + [wi |l g—1/2 < € for some € > O sufficiently small, then (4.3) is globally
well-posed by small data arguments. Moreover, by Theorems 2.1 and 2.4, the Sobolev
embedding L3/ ¢ H~'/2, and the principle of superposition,

|1/1o |1/6

||w||L,2L§(RxR3) +1v w”L%Li(RxR% +1v w”Lg’Lz(Rxm)

+ ”w”L?.x(RXR3) S “ (wo, wl)“guzxg—uz + ”w3||L,1L§c/2’ 4.5)

and therefore, by small data arguments,

1/10
7w ” L2L5 (RxR3)

||w||L,2L§(RxR3) + H |V
+ H |V|1/6w||Lt6L)3€(RXR3) + ”w”L;‘QX(RXR3) 5 €, (46)

3 3
[|w ||L}L§C/2(R><R3)§€ .
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Remark
The precise € > 0 will be chosen later.

Remark
Plugging ¢ = 5 into (2.12),

3
”w”LtzL?} S ” (w0»w1)||1.‘12/5xg—3/5 + [w ||L}H_3/5’ 4.7

and therefore,
VI0w] 25 < [ oo wd [ gijeegmrz + 103y ggmree 48

For the solution to (4.4), following (1.3), let E(¢) denote the energy of v:

E(t)=%/v,(l,x)zdx—l—%/Wv(t,x)}zdx—i-%/v(l,x)“dx. (4.9)

To prove global well-posedness it suffices to prove that E(¢) < oo for all ¢ € R.
Indeed, we have the following result.

THEOREM 4.1

Suppose that (ug,u1) € HY2 x H=Y2 has the decomposition ug = vy + wo and
u; = vy + wy, where (vo,v1) has the finite energy E(0) < oo, where E is given
by (4.9), and ||woll g1/2 + llwi |l g—1/2 K 1. Then for some ¢ > 0 sufficiently small
and independent of E(0), the initial value problem (1.1) with initial data (ug,uy) is
locally well-posed in L& H/? N L}, on the time interval [—z0 z0

Proof
To simplify notation, let I = [—ﬁ, ﬁ]. By Theorem 1.1, (1.1) has a solution for
initial data (vg, v1), and, moreover, by conservation of energy,

10174 rxray S HIEO) <ec. (4.10)

Therefore, for ¢ > 0 sufficiently small, independent of E(0), the perturbation lemma
(Lemma 2.2) and (4.5) proves Theorem 4.1. O

THEOREM 4.2
Equation (1.1) is globally well-posed for radial (ug,u1) € HY2(R?) x H~1/2(R3).

Proof
Computing the time derivative of E(¢), by Holder’s inequality,
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d
EE([)——3/U,U w— 3/v,vw2

S el 2 lvliZsllwllze + lvell 2 vl Lo lwll 76 (4.11)

Therefore, by the Cauchy—Schwarz inequality,
d
| E@| S EQ* + w36 E@). @.12)

If only the second term on the right-hand side of (4.12) were present, then global
boundedness of E () would be an easy consequence of (4.5) and Gronwall’s inequal-
ity.

However, the bound |%E (1)| < E(t)? is not enough to exclude blowup in finite
time. Instead, we will use a modification of E(¢), &(¢), which has much better global
derivative bounds and satisfies & () ~ E(¢).

To simplify notation, rescale by (1.2) so that

I Pz1u0ll 123y + 1 P=1uill g-1/2g3) <€ (4.13)

and then let vo = P<jug and v; = P<ju;.

Remark
The A > 0 in (1.2) depends on the profile of the initial data, not just its size.

Following (3.21), (3.22), and (3.23), let

1
Ml([)—clf | | VU+C1/ | |v

y)
My (t) = /|<2R/ |x— -Vvdxdy

(4.14)
C2
— v —vdxd ,
R3/y|<2R/ tx— Y
c X
0= ()5 5 ()
where ¢y, ¢;, c3 > 0 are small constants, and let
8(t)=E(t)+M1(t)+M2(t)+M3(t)+fv3wdx. (4.15)

The Sobolev embedding theorem implies that

/v wdx S vligsllwlslvizs S €E@). (4.16)
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Next, by (3.12), (3.14), and (3.19),
|My ()| + |Ma(t)| + |M3(t)| S c1 E(t) + 2 E(1) + c3E(1). 4.17)

Therefore, choosing cy, ¢3, and c3 > 0 to be sufficiently small, determined only by the
constant in Hardy’s inequality in three dimensions and the volume of the unit sphere
in R3,

&(t) ~ E(t). (4.18)

We will also require that c3 < ¢3; ¢3 < 100 ——¢, will do.
By (3.21), (3.22), (3.23), and (4.11),

CoTT

i&(z) < —2cymv(t,0)% — v(t, y)?

dt 8R3 ly|<2R

E ArTr=d O =
|x| 16R [y|<2R |x—y|
c3 |x] c3 5 |x|)
2R ¢(R)[”f Vo] + 2R3/ AX(R
3 x|\ 4 63[ XN Ix] 4
iR X(R)v TR X<R)RU
d 1
+—/v3wdx+/Fv,+cl/F— Vv+61/F—v
dt | x| |x]
— 1
6—23/ /F(x y)-Vv+C—23/ /F v
R3 Jiy1<2r |x — y] 8R3 Jiyj<2r [x =yl

FX(%)X-VU-{-%/F){(%)U, (4.19)

where F = —3v2w — 3vw?.
By the support properties of A )((ILR‘), for ¢; > 100c3,

o 2 2 | | Ca / )
8R3 A £y)%. (4.20
8R? Jiy<2r v 2R3/ X(R)— 16R3 \y|52Rv( Y. (4:20)

Also, since )(’(liRl) <0,

& X’(M)Mv“go. 421)

Therefore,
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o ]
v(r,
I6R? /y|<2R )

U
|x| 16R

dig(z) +2cyv(t,0) +

01

yl
c3 | x| 3 X[\ 4
TR ¢(R)[”’ + Vo] + 4RfX(F)”

1
< /v w+[Fv,+cl/ Vv—l—clfF—v
=a Jx] |x]
() 1
Vv+—/ /F v
8R3/<2R/ |X— 8R3 Jy|<2r |x =y

+E (IRI)X Vo +—/Fx ) ' (4.22)

Each of the terms on the right-hand side may be controlled using a combination
of Strichartz estimates and terms on the left-hand side. The terms on the right-hand
side may be grouped into three main categories: category-l terms,

— F
/ x lvd +8R3 /y|<2R/ (¢, x) |v(t,x)dxdy

+ %/F(z,x)x(%')v(z,x)dx, (4.23)

|y|<2R

category-2 terms,
—3/vw2vtdx—3c1/ vw? ﬁ Vvdx
X
3
c2/ / -Vvdx
|ly|<2R |x -

3
—%/vw%&%)x-Vvdx, 4.24)

and category-3 terms,
X
/v3w,dx—3c1/vzwﬁ -Vvdx

3
Cz / / -Vvdx
ly|<2R |x -

3c3 2 | |
—T/U (R )x Vvdx. (4.25)

Estimating each group of terms separately,
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T T 1 1 T
4 2
/ (4.23)dt < 5(/ / —vtdx dt) + —/ E@0)|w@)|;edt. (4.26)
0 0 |x]| 8 Jo

T T
f “24)d1 5 / E@)|w)|36dt 4.27)
0 0

f (425>dt<5/ /—v dxd)
+8R/ E(t)(l/ Vo] dx + — vzdx)dt
0 R Jixi<r R3 Ix|<R

1 [T iy 2

+5/0 E(t)(g:2 27 1[0, ||Lo<>(\x|z§)) dt
1 T —2j 2

+§/0 E(t)(;z ’IIB;w,‘HLG)d’

+1/T EO(X 25wy 0)]25) s (428)
8 Jo ; / L ' '

Theorem 4.2 then proves to be a direct consequence of (4.26)—(4.28).

Category-1 terms
By Hardy’s inequality, the Sobolev embedding theorem, and the Cauchy—Schwarz
inequality, for § > 0 small,

1 1 1/2
2, L A4 1
/v w|x|vdx ( |x|v dx H |x|1/2 )L*” (t)”Ls
1 2
,55( Pk dx)+gE(t)||w(t)||L6. (4.29)
Also, by Holder’s inequality and Hardy’s inequality,
5 1
/ P |v<||w||L6||Vv||L2||v||L6<E(I)IIWI|L6- (4.30)
Therefore,
/Fivdx 5 Ly dx)+lE(t)Hw(t)Hi(,. 4.31)
|x] |x] §

Because y(|x|) < the same argument also implies that

le’
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—/F(t x))((l |)v(t x)dx<8( ﬁv dx)+éE(l‘)||w(t)||iG.

ly|<2R Tx— y| dy < |x|, with bound independent of R,

8R? /|<2R/F(

ﬁF(I ,X)v(t,x)dx

(4.32)
Finally, since 45

v(t x)dxdy

1 1
So( [ ) + FEO[wo . @)

Therefore,

d 2T
—8t+cnvt02 / u(t. y)?
(1) + c1mv(,0)" + 16R3 <ok (t,y)

Cl

—*
|X| 16R ly|<2R

y |

+2R/¢('R')[v, +VuP]+ 2 [X<M)v4

4R R

d
—E/USW_/FW—CI/F— Vo

_C_23/ /F(x—y) vy F)((m)x-vv
8R> Jiy|<2R lx — y| R R

<

1
S6() 1 v) + S E@ 0l 43

Category-2 terms

The Sobolev embedding theorem implies that

_3/U’vw dx S I012 6 e 1 g 1 L2y S EO w06 gy 4:39)

Therefore,

d CoTT
—&(t t,0)? . v)2
€0 +am(,0) +16R3/y|<2Rv(,y)

+9

le 16R
x|

+2R ¢(R)[v,+|v v?]+ 3/X(|x—|)v4

4R

|y|<2R
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d
v w+3/v wv,—cl/F— Vv
S dr |x|
3/ (x—y) Vy- 2 F)((m)x-Vv
S8R lyl<2R |x_y| R R

1 2
<5( H >+3E(t)||w||L6. (4.36)

Analysis of the other terms involving —3vw? is similar:
f o L Ve S Vel alvlie S EOlwl 4.37)

and

i ) o e VS B0l (438)
|¥y|<2R

Since X(%) & is also uniformly bounded,

1 2 (1%l 2
E/vw X(?)XchrSE(t)HwHL& 4.39)

Therefore,

dt 16R3

C1
Sl
|x | lyl<2rJ X — Y|
|x| 3[ X[\ 4
v (%)
+2R ¢(R)[”’+| FI+ag ) (R
—/v3wt+301/v2wi-Vv
|x]
3 — 3
CZ/ / (x y)~Vv+ﬁ/v2w)( |x|)x Vv
|y|<2R |X_Y| R R

1
So(f o) + S E@ 0l (4.40)

d
—&(t) + cymv(t,0)? + con f v(t, y)?
|¥y|<2R

Category-3 terms
Making a Littlewood—Paley decomposition,

/v3w, dx=Z/v38tw,~ dx. (4.41)
J



3292

BENJAMIN DODSON
By Fourier support properties,

/v38twj dx = /(v3—(P§j_3v)3)(8twj)dx
= [(Peja0r @) dx

+3/(P2j_3v)(P5j_3v)v-8,wj dx. (4.42)
Using Lemma 3.4,

Z/H 07 = (P<j30)*]@w;) dx
jUxEZ

1
2| et P
J

2
)

2 1
et wazﬂﬂ

X ||sz—3v||L§ H|x|1/231w1‘ ||L§°(|x\3§)

1 1/2
5( mv4) D Pmavll 2 1200w oo 12 ) (443)
J
By the Cauchy—Schwarz inequality,

1 1 2
(4'43)58( mv4) +§<; Pz j=svlle 1% 20,w; ||L°°(\x\z§)) © (444

By Bernstein’s inequality and Young’s inequality,

2
(D 1P j-av 1120w | oo s 1)
J

. . 2
< (Z( 3 2sz—k||ka||Lz) 27 [x] 2 0,w, ||Loo(m2§))

Jo k=j-3

S (2 1Pl ) (27 el 200w, )
o J

S EO(X 27 1612000, | e s 5)- (4.45)
J

Therefore,

d CoTr
—8(t t,0)? t,y)?
GEO+ameor s 2o [ )

C1 1 4 Ca / / 1 4
+ =] —v + v
2 ) Ix| 16R3 Jiyj<or ] |x =yl
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+ 5 ¢>(|;|)[vt +Vo?] + 4;/)((%)114

(v} = (P<j=3v)?)- ath+3C1/ wﬁ Vo

3 3
cz3/ / -V ~l—ﬁ vZw (' |)x Vv
8R? /) <ar |x— R

([ vt) + 5EOIl

Ix|<&

+ gE(z)(Z 2727 x| 29w, ||iw(|x|2§)). (4.46)
J

By the Sobolev embedding theorem, Holder’s inequality, and the Cauchy—Schwarz
inequality,

Z[ V(P<j—30)(Ps,_3v) - d;w; dx
lx|<

R
2
|

|al‘wj ||L6||v||L6(|x|<R)”P>] 3v||L2||P<1 3v||L6
J

1
gSRE(t)(E[ Vo2 4+ — R3 : Rv2>
x|<

x|<R
1 2
+ g(; P2 j—svll 2wy 2 ) (4.47)
Following (4.45),
2 —-2j 2
(Do IPzjsvlalidwlie)” S EO(D 27 low,36).  @48)
J J

Next, following (4.45), by the Cauchy—Schwarz inequality and Lemma 3.5,
Z/ (Ps;—3v)*-d;w; dx
j [x|< §

Z ||P>] 3v||L4(|x|< R)||P>] 3v||L3(R3)”alw] ||L6(R3)
J

2 11 1
SOR[VVO | 32| 21V 2 <r) + 751013 20120

1 1 . 2
+5([ v )‘1‘5(122 12 P jsv all w1 )
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§8RE(z>[ 199032 01y + 75 ||v||iz(,x‘5R)]
+5( = )+5E(z)[22—2/||a,wj||is]. (4.49)
J

Therefore,

CoTT 2
v(t,y)
16R3 /y <2R

+3 |x| /.<2R[|x i
tox ¢('Z')[ +1voP]+ o2 ()

+3c1/v wﬁ Vv

3 3
cz / / v—i—ﬁ/vzw)((m)x-Vv
|y|<2R |X_ R R

1 1
< _ 2 2
NS( | | ) + SRE([)[R IIVv”Lz(lesR) T R3 ”v”Lz(lxlsR)]

ié’(t) +cymv(t,0)2 +

1 Iy
BTl + 5 EO (27 10w,
J

1 Iy
+ EE(t)(Zz 2 x93 o 1o 5 )- (4.50)
J

Integrating by parts,

3c1fv wﬁ Vvdx = —2¢; |—|v w—c1/v (Vw) - |—| 4.51)
X
Following (4.31),
2
—2¢ ﬁv Swdx < + E(;)Hw(t)HL6 +6( ﬂv Ydx). @5

The term

—c1/(v3—(P5j_3v) )(Vw;) - ﬁdx (4.53)

may be estimated using exactly the same arguments as in the estimates for (4.43).
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Now, the Fourier support of (Vw;)(P<;_3v)? is |€| ~ 2/, so integrating by parts,
c /(Pfj_3u)3(Vw,-) —dx

| x|
X)X O 3
= D (P<J 30)°( 1w;)

2

<27/ 0w, Il s (4.54)

H |x|1/4P5f—3v‘ L4l |x|172 Pff_?’v‘ £10/3

Then by the Cauchy—Schwarz inequality,

e /(PS,-_3U)3(Vw,) ™ dx
J

1

1 1
o(f ) + 5(227 | perar]
() )+ 5 (22 | e
J
and then by Bernstein’s inequality,

o[ 70+ 5 B2l (456

2
IVwills) @455

L10/3

Therefore,

CrTT

t.y)2
16R3 /y|<2R”( Y)
+5 s ) e
|x| <R e
||) 03/ [x[\ 4
Vo =)
+2R ¢( [o7 +1V0P°] + 7% X(R v
362/ / (x = y) +3ﬁ v2w <| l)x Vv
R Jy<ar) UV x—y R
1 4 2 1 2
ss(/ ) + SRE@)[ﬁnwan(‘xlfR) + gl aguizn

1 1 . 1 .
+SEOwl}e+ 3 EO(X 2 lws13s) + sEO (327 w17
J J

d
E&Z(Z)—i—clnv(t,O)z—l—

1 . 1 .
+gE(t>(122 27 x| 29w, Hioo(|x|2§))gE(l)<;2 |V, 12)

1 Y
+ gE(t)(Zz 2152 V0, e ) (4.57)
J
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Like %;, the potentials
Ix]

a(x) = <2|x|> R and a(x) = [ ¥ —y) dy (4.58)
y

R |<2R |x =Y

are also bounded radial functions satisfying

1
V-ax) < m (4.59)

and therefore the analysis of

L3 3
62[ / v+ﬁ/ 2 (l |)x Vv (4.60)
|y|<2R |X—y| R R

may be carried out in much the same manner as

/vzwi V. 4.61)
|x]
Choosing
1
—= sup &() (4.62)
R 0<t<T
and absorbing
s(f 2 SRE®)|~||Vv]2 Lo 4.63
| | + (t) ” v||L2(\x\§R)+R3 ”v”Lz(\x\gR) ( )

into the left-hand side,
d 1 1 .
8O S SEOIwlFe+ 5 EO(Y 2wy 135)
J
1 .
+EO (327 10w, 1)
J
1 .
+ gE(t)(Zz—zj 11728, Hioouxeg))
J
1 s
+ 5E<z>(;2 Y |Vwjl)
LEO(S 2% |1k V2w, |2 4.64
+5 () Z |||X| w ||L°°(|X\Z§) . ( . )
J

Since E(t) ~ &(t), (4.64) implies that
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d 1 2 1 Jjl5 2 1 —2j 2
TInE®) < slwlfe + 5 (32 Iwilgs) + 5 (327 19wj 1)

j j

1 —2j 2 1 i
+ E(Xj:z 2j |||x|1/28tU)j HLOO(|x|22€%T))>g(X]:2 2j ||VU)]||26)

1 i 2
Z J 1/2 .
+ 5(22 1290, 7 ez st ) (4.65)
J
Now suppose without loss of generality that
E(T)= sup &(1). (4.66)

0<t<T

Integrating in time and combining (3.38), Corollary 3.3, and (4.5),

2 2
In(€(1)) = In(E(0) $ 5 In(T) + = In(E(T)) +e. (4.67)
Remark

Corollary 3.3 is only stated for a solution to the linear wave equation. However, since
lw]| L1y < €3, one may estimate the contribution of the nonlinear term using
Duhamel’s principle, the principle of superposition, and estimates for the linear wave
equation.

Doing some algebra and choosing 8(c1, ¢z, ¢3) > 0 small, and then €(8) > 0 suf-
ficiently small,

1 2 Ce
In(&6(T)) < ( )ln(E;(O)) +—— In(T)+ ——. (4.68)
-5 5(1-5) (-5
This proves that for any ¢, there exists a constant C such that E(¢) ~ &(t) < (1 +
1)Ce. O

5. Proof of scattering
Having proved that (1.1) is globally well-posed for every radially symmetric
(uo,u1) € HY2 x H=1/2 the next step is to prove that every such global solu-
tion scatters. By Theorem 2.1, proving that a global solution to (1.1) scatters is
equivalent to showing that ||u|| L#  (RxR3) < O

By time reversal symmetry, it suffices to show the following.

THEOREM 5.1
For any radial initial data (ug,u1) € HY? x H=Y2, the solution to (1.1) scatters
forward in time, with
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”u”L;‘ ([0,00)xR3) < 00. 5.1

WX

By the dominated convergence theorem, there exists R(uq,u1,€) < oo such that
[S@O@o.un| 13 xizrerey <€ (5.2)

Then by finite propagation speed, Theorem 2.1, and small data arguments, if u is a
global solution to (1.1), then

il L4 | r0.00)x(x:lxl= R+ 121y S € (5.3)

Rescaling using (1.2) with A = 2R, (uo(x),u;(x)) = (2Ruo(2Rx),(2R)? x
u1(2Rx)), and

ell s xiz+1ep S € (5.4

To prove

ell 2 o.000xtiei=L +ep) < O (5.5)

it is convenient to translate in time so that the space-time integral of (5.5) is over a
cone with vertex at the origin. Make a time translation so that

u(1,x) = 2Ruo(2Rx), u(1,x) = 2R)*u; 2Rx). (5.6)
After time translation, (5.4) implies that

lell s .coyctixizi—4n S € (5.7)

and (5.5) is equivalent to ”””Lf"x([l,oo)X{x:Ix\sltl—%}) < 00.

Switching to hyperbolic coordinates for the region inside the cone |x| <t, let

e’ sinhs

i(z,s) = u(e® coshs, e’ sinhs). (5.8)

Making a change of variables,

00 poo 2
- af S 2
/0 /(; u(z,s) (sinhs) s“dsdrt

o0 o0
= / / u(e® coshs, e® sinhs)*e?* (sinhs)2e*>* ds dt
o Jo

o0 o0
:/ / u(t,r)4r2drdtz/ / u(t,r)r?drdt.  (5.9)
1 Ji2—r2>1 2 Jizr+d

Therefore,
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o0 o0
- s \2
/ / u(r,s)4(,—) s2dsdt < oo
o Jo sinh s
combined with (5.7) implies that

||“||L;{x([z,oo)xn3) < 0.

The global well-posedness result of Theorem 4.2 implies that

||u||Lf"x([l,2]xR3) <0,

which combined with (5.11), after undoing time translation, implies (5.5).

By direct computation,

(8” ~ s = %(%)ﬁ(r, )+ (sirfhs)za3 =0,

with
Ulr=g = ¢ Sisnhsu(et coshs, e? sinhs)|;—¢
and
Uy|r=0 = 0¢ (er sinh s u(e® coshs, e’ sinhs)) |z=0.
A solution to (5.13) has the conserved energy
B = 5 liel3 + 51l + 5 [ o) (o) s ds

3299

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

As in the proof of global well-posedness, to use (5.16) we will truncate in frequency.

The properties of the initial data (5.14) and (5.15) will be analyzed in more detail

later, but for now, assume that (5.14) and (5.15) may be decomposed into an H!'x L2

piece and an H'/2 x H~1/2 piece.

LEMMA 5.2
There exists a decomposition

e’ sinhs

U|r=0 = u(e® coshs, e’ sinhs)|,—9 = Up + Wo

and

e’ sinhs

ﬁr|,=0=81( u(e’coshs,ersinhs))h:o=171 + 01,

with

(5.17)

(5.18)



3300 BENJAMIN DODSON

1 N 1 - 1 (. s \2
§/|8svo|252+5/|v1|2s2+Z/vé(sinhs) 52 < o0 (5.19)

and

0ol gr1/2 + llwill g—1/2 < €. (5:20)

Remark
Following (4.13), it is enough to prove iig € H' + HY? and iy € L? + H~/2 and
then truncate in frequency. The proof of Lemma 5.2 will be postponed.

Proof of Theorem 5.1
Make a Fourier truncation argument. Let v and w solve

2
o= DD+ (=) @ =0, BOY) =0,  Be(0.y) =1, (52D)

sinh s
and
AV 5 \?rs3 ~2 - ~ =2 ~ _ =
(0 =AU+ ( = [0° + 30°W + 30w”] =0, (0, y) = o,
sinh s (522)
U(0,y) = V1.
Define the energy
_1 —22 1 co2 L foaf S 2o
o=y [+ [ape ) [o ()2 62
As in the proof of global well-posedness, define the quantity
Ky 2
80 =E@+ M@ + [ o) s as, (524
sinh s
where
M(x)=c / 0552 ds + ¢ / . 0s ds, (5.25)

and ¢ > 0 is a small constant.
By direct computation, making a slight modification of (4.11) and (3.21),

J R , 1. 4f S \2/coshs\y ,
EM(T)__EU(T’O) _E/U(r’s) (sinhs) (SinhS>s s

2 2
—3/5217s11)( 2 ) szds—?a/ﬁf;sw2< ? ) 52 ds
sinh s sinh s

2 2
—3/531;3( S ) sds—3/17211)2( ,s ) s ds. (5.26)
sinh s sinh s
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Therefore,

7260 ==5307 =5 oo (o) (s s
—3c/v vsw(sirfhs)zszds—3c/ﬁﬁszb2<si;hs)2s2ds
—3(:/11 w(si:hs) sds—3c/6 wz(sinshs)zsds

S Va3 5 N2 _,
_3/(sinhs) v wrSds—?)/(Sinhs) VU, WS ds. (5.27)

By Hardy’s inequality and Ho6lder’s inequality,

2 2
_30/55S1I;2( _S ) szds—3c/l~)2u~)2( _S ) sds
sinh s sinh s

s 2
_3/(sinhs) 00:0%5% ds S E(0)]| |76 (5.28)
Also, by Hardy’s inequality and the Cauchy—Schwarz inequality,
~3 ~ S coshs s 2, 1, 1 2
sd <5( / ( ( d) 1 1 }
/” w(sinhs) ’ Slnhs) sinhs) §as +5”w“1‘6 |X|l/zv L3

S 8(/(sirfhs)2(2?j}l:j)ﬁ4szds) + éllﬁ)llisE(r). (5.29)

Therefore,
L0+ Srcor+ () (S
+30/v w(silfhs>zﬁss2ds+3/(Shjhs)2v3w s2ds
éE(r)||w||L6 n 5(/ (snfhs>2(2?§£j)sz ds). (5.30)

Next, integrating by parts,

2 2
3c/v vsw< 's ) szds=—c/ﬁ3u~)s( _S ) s2ds
sinh s sinh s

5 54
—c/v w~8s(m)d . (53D

58

Since
4

Bs((sirfT)z) <s, (5.32)
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by (5.29),

4
e [ra o) <5 () (s )b 49)
+ 2Bl E). (5.33)

Following (4.42)—(4.44) and using Lemma 3.4,
ch [52 = (P<;—39)*](0s1) ( S )2s2ds
—Jsz% =3 *777 \sinhs
~3 3 -~ 5 \? 2
+3%j/sz§[v (P59 )0ei) (55 ) 57 ds

<5 () Gas) 7799)

(D e () ()
J

coshs sinhs/ llLoo(|x|= &)

Next, by Holder’s inequality,

~3 ~ 3 ~
Z“(U — (P<j-30) )(Vr,ij)HLl(|x|5§)
J
S 0lzoe I P30l 2 N Veeth 6 19 31 2)
J

SE@(Y 27 Vewitj I26) + RE@ 3. (5.35)
J

Following (4.54) and (4.55),

e ()2 0 ()52
[y () s+ [(Pemai® 6oy (o) 52 as
1 1 ;

< T - —8j/5 7112

So(f ot )+5E(f)(;2 Ve 35 30
Therefore,

d c_ , ¢ [. 4f S \2/coshsy ,

-6+ 59(z.0) +§/v(r,s) (Sinhs) (Smhs)s ds

S E@(Y 27 Vewjl2)
J
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1 _g; -
+SE@ (X2 Vel [35) + RE@)vl 7
J

+SE@lwlZs +5( / () ()2 as), 597
Absorbing
8(/ 54(sirfhs)2(%)sz ds) (5.38)

into the left-hand side,

7260+ [ e () (s e

< E@ (X2 Vewws ) + 5 B (Y2751 Ve 13
J J

1
+ RE(®)||v)|7 00 + EE(r)uwniﬁ. (5.39)

Since E(t) ~ &(7),
c ~ 4f S \2/coshsy ,
_m(g(f))_l_ﬁ(r)/v(r’s) (sinhs) (Sinhs)s @

. 1 g 3
< (Zz 2 ||v,,xw,-||ié) + 5(22 8”SIIVr,ijllis)
j J

1
+ R|v]|Zeo + -IIuJIIie

#3200

Suppose that T is such that §(T") = supy, .7 & (7). Integrating in 7,

In(8()) ~In(E(0)) + 4/(; E(r )/v( smhs)zcz)r?}l:j)szd”h

2
%(1—ln(R))+e +/ R||?]3 o dt. (5.41)

Now by direct computation,

K 1/2 s 1/2 scoshs\ 1/4 _
IGs) s G Gans) 0
sinh s L4 sinh s sinh s L4

If I is an interval on which ||(2 )1/212||L4r; L < 1, then by (2.11) and (5.22),

1] e (5.42)

sinhs
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||5||L%L§°(1><R3) 5 ”Vﬁ”LgOL% + ||5r||L$OL)2€

+”ﬁ||L%L§O(/I/ﬁ4(shfhs)252dsd‘[)l/2, (5.43)

which implies that
||1~)||L%L)°c°(1><R3) S ”Vﬁ”LgOL}C + ||6r||Lg°L}C’ (5.44)

and therefore,

T T >
~112 < ~4f S 2
/0 R3] o0 drNREZ(T)</O /v (Sinhs) 5 dsdr). (5.45)

Choosing R = § ﬁ, (5.45) can be absorbed into the left-hand side of (5.41), prov-
ing

2

In(€(7) ~In(60) £ S (in(3) +In(6(7)) + . (5.46)

This implies a uniform bound on & (7). Plugging the uniform bound on & (7) for all
T into (5.40) implies a uniform bound on

/T/‘( S )Z(COShS)ﬁ(f,s)4S2deT<OO~ (5.47)
0

sinh s sinh s

This proves scattering, assuming Lemma 5.2 is true. U

Proof of Lemma 5.2
By Duhamel’s formula, for 7 > 1,

t
u(t) = S)(uo,u1) + / St —1)0,u)dt’ =u; + uy;. (5.48)
0

The contributions of u; and u,; to (5.17) and (5.18) will be analyzed separately.
First take the term u,;. When f and g are radial and r > ¢,
1 1 1 [t
rS(t)(f,g):Ef(r—t)—i-Ef(r—i-t)—}-zf sg(s)ds. (5.49)

r—t

Because the curve 2> — r? = 1 has slope % > 1 everywhere, (5.48) implies that

e® coshs pe® sinhs+e® coshs—t
sineolo=[ [ ) drdilze. (550
1 e

T sinhs—e? coshs+¢

By direct computation,
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/0 (ar(Sﬁnl)|r=0)2dS

o] coshs 2
5/ e2s ([ (€ — (1, e’ — t)dt) ds
0 1
o] coshs 2
+/ e (/ (t —e )t 1 — e*S)dz) ds. (5.51)
0 1
By Holder’s inequality and a change of variables,
o0 coshs 2
/ ezs(/ (e —tud(t,ef —1t) dl) ds
0 1
o0 pcoshs
§/ [ e¥(e* —1)%ub(t,e* —t)dt ds
o J1

o0
< / / ub(@t,r)yr*dtdr < oo. (5.52)
0 t2—r2<1

The last inequality follows from global well-posedness of u, which implies
Ilue]| L4 ([1,3]xR3) < 0% (5.7), Strichartz estimates, and the radial Sobolev embed-
ding theorem, which implies that

|1/3 |1/6

|1x (5.53)

”HLgx(RxR»%) N ” IV ”H LSL3 (RxR3)"

Also, by a change of variables and Holder’s inequality, since (f —e™5) = 1 for s > 1

andr > 1,
00 coshs 2
/ e—ZS( / (t—e_s)u3(t,t—e_s)dt) ds
1 1
o] coshs
5[ / e (t—e )2 ub(t,e* —t)dt ds
1 1

o0
5/ [ ub(t,ryr*dtdr < co. (5.54)
0 Ji2-r2<1

Finally, by the radial Sobolev embedding theorem, Young’s inequality, and a change

of variables,
1 coshs 2
/6_2S<[ (t—e_s)u3(t,t—e_s)dt) ds
0 1

3 1/2
S/ (/ u(t,r)ﬁrzdr) di
1 t2—r2<1

3
1
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Therefore,
- 2 -
/(8t(sunl)|,=0) ds = /ufsz ds|c—o < 0. (5.56)
Integrating by parts,
o0 o 2
/ u?s?ds =/ (35 (su))” ds + sou(so)?, (5.57)
ko) K)
so taking so = 0,
/ﬁ?sz ds < oo. (5.58)

This shows that the contribution of the nonlinear term to (5.17) and (5.18) lies in
H!x L2
Now consider the contribution u;. First suppose that 7 = 0 and
u; =S —1)(up,0). (5.59)
Then by (5.49),

st(t,s) = e"sinhs - u;(e? coshs,e® sinhs)

= %[uo(erﬂ — D)™ —1) +up(l — ") (1 —e")]. (5.60)

Let x € C§°(R) be a partition of unity function satisfying

1= x(s—k), (5.61)

k>0

for any s € [0, 00), and where y(s — k) is supported on (k —1)-In(2) <s < (k+1)-
In(2). Split

ity (z,8) = iy (z,9) + 17 (x,5) + i1 (1,9) + i1z, 5)
+ii (z.5) + iV (x.5), (5.62)

where

Sﬁgl)(f, s) = Z x(s _k)(PS_kuO)(er-i-s —1)- (er+s —1),
k>0

Sﬁgz)(f, S) = Pz() Z X(S —k)(P>_ku0)(eT+s o 1) . (et-i-s _ 1)’
k>0
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Sﬁ§3)(1', s) = P<o Z x(s — k)(P>_ku0)(er+s —1)- (er-i-s —1),

k>0
- (5.63)
st (x.5) = Y 15 — k) (P=guo) (1 — ™) - (1 = e™),
k>0
st (t.5) = P Y 1(s — k) (Pagrto) (1 = €7°) - (1 —¢¥7%),
k>0
sii(2,5) = Pxo ¥ 1(s — k) (Psguo) (1 — ™) - (1 — ™).
k>0
Remark
If g is a radial function in R3, then
o0
ge H'R?) & f (grr)?dr < oo (5.64)
0
and
o 2
geLl’R% & / (g(r)r)”dr < oco. (5.65)
0
Taking the derivative,
59 (@15 le=0 = D (s{ ") (z,5) | r=o0
= D 16— k) (P<—gup)(e” = 1) (¢* = D)e*
k>0
+ ) x(s = k) (P<—iuo)(e* — 1) - €. (5.66)
k>0
Then by a change of variables, Hardy’s inequality, and Young’s inequality,
2\ 1/2
165.66) 210,00 S (D25 (D [1ts = )P Vuo) (€ = 1) 1))
k>0 j<—k
1 2 1/2
k _ - ) s _
< (2 (fe—phrore =],
S lluoll g/ (5.67)

The computation of d; (sﬁl(l) (7,5))|z=0 is similar, except that, in addition, it is neces-
sary to compute

3 [ x (s = k) (Pe—ruo) (e — 1) - (€ = D 712 (5.68)
k
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By a change of variables and Hardy’s inequality,

(568)<22k(z ‘

k>0 j<—

2
2
) Sl (5:69)

By the product rule,
55ty (T, 8) = 05 (s (1, 5)) — (7, 5). (5.70)
By the support properties of y(s — k) and the Sobolev embedding theorem,
|2 s =R (Pegug)(e =D+ (e =D S ol (571

k>0

and therefore,

1
[z )e=o] 20,000 = | 5 22 25 =) (Pecrrmo)(e® = 1) - (e = )|

k=2 L2([0,00)
> 1
S zds) " ol s ol (572
1
Also, by the support properties of y(s — k) and (5.71),
(e -1
| 2 xs =0 Pesnes =1 paon S W0l (G573)

k=0,1

Therefore, ﬁ;l) (7,5)|r=0 has finite energy.
Next, for any k > 0, j > —k, by the product rule and change of variables,

|9< (x(s = k) (P10} (€™ = 1) - (¢ = 1)) le=0 1210.00)
St —k)(P;Vuo)(e® —1)- (¢ = 1D’ | 12 10.00)
+ [ x(s =) (Pjuo)(e* = 1) - e* | 121000

S 2k/2||Pj Vol L2 or—1-1<r<ok+1)

1
+ 2K/ H FlA (5.74)
X

Ol L22k—1—1<r<akt1)’

Therefore, if / € H'/2(R3) is a radial function, then by Bernstein’s inequality,
o0
/ (P1f(9))s - 0 (x(s = k) (Pjuo)(e* ™™ = 1) (¢*TF = 1)) [r=0 ds
0

k/2
SIPF 21y zr oty 2721 Py Vit | 2okt 2y i

1
+ 2"/2Hmpjuo‘ (5.75)

L2(2k—1 —15r52k+1)]‘
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Summing up, by Young’s inequality and Bernstein’s inequality,

k
Z ”Plf||L2(2k*1—1§r52k+1)|:2 /2”PjV“0||L2(2k*1—15r52k+1)
I1>j+k>0

1
+2k/2Hiju°’

< ) .
vt rarayeiny) S lmalol e (576)

Next, by a change of variables,
[x(s =R)(Pjuo) (e = 1) (€ = D] 1210.00)
S22 Pjugll p2ar—1 1 <p<ak+1y. (5.77)
By the product rule,
3 (x(s = k) (Pjuo) (e * = 1) - (€77 = 1)) |e=o
=35 (x(s —k)(Pjug)(e® — 1) - (" — 1))
— 1 (s —k)(Pjug)(e® —1)- (e — 1). (5.78)

Integrating by parts,
/O T (PLE®)s - 05 (x(s — ) (Pruo)(e® = 1)- (&° — 1)) ds
= [TURTF©)s + (PO s Py ~ - €~ s
2[RV S aitazrzare

1
+ HmPlf‘ :I”Pj“0||L2(2k*1—15r52k+1)' (.79

L2(2k—1-1<r<2k+1)

Summing up, by Bernstein’s inequality,

> 2PV itz ain)
o<l<j+k

+l]

L2(2k*1—1§r52k+1)] Ijuollz2@imt—1<r <oty

SN gz llvoll gz (5.80)
Also,

/O (Pf(s))s X' (s —k)(Pjuo)(e” — 1) - (e* — 1) ds

S ”Plf”L2(2k*1—15s§2k+1)2_k/2”Pju0||L2(2k*1—1§s52k+1)' (5.81)
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Then by Bernstein’s inequality,

> 2P fll 2 a1 o1 <r <ok | Pitoll L2 or-1 <y <oty
o<i<j+k (5.82)

S grzlluoll gz
Therefore,

10 (5 (2.9)) le=o | jy-1/2r3) < 0]l 172 (5.83)

The proof that ||ﬁ§2) (7.5)|c=0ll 1,2 is bounded is quite similar. By the product
rule and change of variables, compute

105 (x (s — k) (Pjuo)(e® —1)- (e = D) ;-
N 27k/2 | Pjuo ||L2(2k*1—15r52k+1)

+ 2k/2 ” (Pj Vuy) ”L2(2k—1_1§r§2k+1)

k/2
+2 H (Pjo)| Lt et (5.84)
and
1
” —x(s—
S
S22 Piug |l 2okt 1 <p <ok 41y, (5.85)

By Bernstein’s inequality, Young’s inequality, and the support properties of x(s — k),

;”Hm( > xs—REuE -n-@ )|

I<k+j,k+j>0

<ZZZZ( 2 HX(S—k)(Pjuo)(es—1)'(es_1)”L2)2

I<k+j.k+j>0
2
< ol - (5.86)

Also, by Bernstein’s inequality and (5.84),

Zzl 1P 26 =RPuo e =1 =) L
0<k+j<I
SSAY(Y ||x<s—k><Pjuo>(eS—1)-(eS—1)||Lz)2
] k  O<k+j<l

S luoll?yy - (5.87)
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Therefore, we have proved that
2 ~(2
[0 @ ) le=ol| 12 + [ .m0l g1/ S ol g2 (5:88)

Next, following (5.80)—(5.83) with P;, [ > 0 replaced by P<g and f € L?(R3),
102 (i1 (2.9)) le=0 | 12 + [ (.9 e=o | g1 S ol graa- (5:89)

Next consider i, @ (7, ). By the product rule,
3: (s Y (1.5))le=0 = — Y x(s = k) (Pt Vug)(1 —e™*) - (1 —e™*)e™*
k>0

=D (s = k) (Pguo)(1 —e")e ™. (5.90)

k<0

Then, by Young’s inequality,

|92 (s (z. ) Me=0ll 120,009y

2
S Y2 (X IV Pl 2—gkm <r1ain)

k>0 j<k

+22_k(jZH| L 0)

k>0

2
L2(1 2—k—l<p<1—2— k+l))

S ||u0||§_'11/2- (5.91)

Also, by the product rule,

(su§4)(r 5)) = (su§4)(r, 5))
+Y X =k (Pruo)(1—e™) - (1—e™ ). (5.92)
k>0

Then by the finite overlapping property of y (s — k) and the radial Sobolev embedding
theorem,

HZX (s — ) (Pruo)(1 —e) - (1 =)
k>0

S 1 PeuolZy s S ol o (5.93)
k>0

L2([0,00)

Therefore,
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95 (s (2.$) =0l L2 0,009 + 32 (577" (@) le=01] 12 g0 00)
S ||“O||H1/2- (5.94)
Next, by a change of variables,

| x(s =k)(Pjuo)(1 —e™*) - (1 —e™)| 12

52k/2||PjUO||L2(1—2—’<—15r51—2—"+‘)' (5.95)

Therefore, by Young’s inequality,

2
“sﬁf(t,s)|,:0 ||2Lz([0,oo) S sz (Z ”Pju0||L2(1—2*k*15r51—2*k+1))

k>0 j>k
S luol%y - (5.96)
Therefore, by the Fourier support of 1155),
152 @m0 g1 sy S ol 17200, (597)

Also, if £ € L? and f is supported on |£| < 1, then
[ s 0612 ) le=o s
—— [ 65 ulsu () lo-ads
[ s D x - — ) - s (598

k>0

Integrating by parts, by (5.96),

oo

[T 1 i @lemods = [ aF68) 57O oo ds
0

0
Sz lvoll gz (5.99)

Also, by (5.96),

|10 X H 6=k Parto)(1 =) (1 =) ds

k>0

S ez llwoll gisz- (5.100)

Therefore,
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92 (527 .50 le=o | 2o, + 105 (57,7 (2:9))le=o | 2 10,00 (5.101)

S ||”0||1L‘11/2-

Finally, take ﬁgﬁ)(r,s). Take f € H'/2 supported in Fourier space on |§| > 1.
Then by the product rule and (5.96),

|05 (x(s = ) (Pruo)(1 = ™) - (1= ™)) | 12 10,009
< 2k/2||Pjuo||L2(1_2—k—15r§1—2—k+1)

+27k2 1Pj Vo ||L2(1—2—k—l <r<1-—2-k+l)

+27k/2 H |)1c_|P-’”° 21kt <y 12k 1)’ (5.102)
Also, by (5.96) and (5.95),
|srs =0 —eya-en|
S22\ Pjuoll 2kt <r 12kt (5.103)
Therefore, by Young’s inequality,
¥ 2 (Tt — P —e™)-(1 )] )
I<j+k k j>k
S ol - (5.104)
Also, by Bernstein’s inequality,
¥ 2 Y (S 1ol — b Pruo) ey (=) )
I>j+k k j>k
S luoll%y - (5.105)
Therefore, we have finally proved that if u; = 0, then
i1 (t,5)|r=0 € H'?(R®) + H'(R) (5.106)
and
3 (111 (t,)) le=o € H™V2(R®) + L*(R®). (5.107)

To compute the contribution to #;(z,s) of

S(#)(0,u1), (5.108)
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observe that
sin(tv/—A)
V=A

Plugging the formula for a solution into to the wave equation when r > ¢, let w(¢,r) =

cos(t+/—A) f. Then,

cos(tv/—A) f)

f= a,( N (5.109)

i (w(t.0) = 300 (f@ + G+ + Fir =00 1)

= S+ r)+ e+
—fr=0)=f'(r=0)(r—1)]. (5.110)

Then decompose 1;(z,s) = ﬁ;l)(r, s) + 1252) (r,s) + ﬂ§3) (t,s), where
~ 1 !/ TS TS !/ T—s TS
iy (r.s) = S [S@F =D @ = 1) = f1(1 =) - (1 =),
52 (5) = 3 (1= xO) /™ == f(1 =], (5.111)

Sﬁ§3)(f, s) = %X(S)[f(er-i-s - f(1- €r_s)],

Since
f= % € H*(RY), (5.112)
the contribution of
FlE@e™—1)- (™ —1)— f/(1—e" %) - (1 —e"%) (5.113)
to
(i1 (2. 8)z=0. 3111 (T, 5)|r=0) (5.114)

may be analyzed in exactly the same manner as the contribution of S(¢)(u1,0). There-
fore,

i (t,8)cm0 € H'? + H' (5.115)
and

3 (13" (,9)) om0 € HV2 4 12, (5.116)

Next take ﬁ;z) (z,5). By a change of variables,
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foo(asf(es —1)’ds = /oo(f’(es —1)-¢*)*ds
1 1

S [IFOPrdr SIS g, G117
and
/ TS —e ) ds = / T ey ey ds
SIFOPrdr S1f Ppsngs,  G118)

By an identical calculation,

/oo(arf(es+r —1)|em0)’ds = /w(f’(es —1)-¢*)*ds
1 1

2
< 15 OPrar 1 By, G119
and

/Oo(asf(l —e’fs)|,=0)2ds = /Oo(f’(l —e™) 'efs)zds
1 1

§/|f/(r)|2r dr SIS s ngay (5:120)

Next, by the fundamental theorem of calculus, for sg ~ 1,

eS0—1

so[ fe0 =)= f(1 =) = 5o /1 ot @ ar]

S/lf’(r)frdrs 1 Wgso- (5:121)

Therefore, by (5.118) and (5.119),

10 (52 (2. 9) le=o | 12 S 1/ /2 (5.122)
and
[ 0.9 g1 S 1S 1o (5.123)
Finally, consider
S == f1—e") (5.124)

when s < 1. By direct computation,
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[ [ =) — f(1—e"*)]le=0
— fle = 1)+ fl(1—e ) e, (5.125)

Then for g € H'/2, by Hardy’s inequality,
/f/(es —1)-eS-g(s)sds + / f'A—e™)-e ™ -g(s)sds

S U N gazllglge- (5.126)

Also, by the fundamental theorem of calculus,

f@=1)—f-e>)

T
2 37 ,
:/ L o
s

1 2 §3 2 3
s s
_/ fi(s+o(5 +§+ ) (G5 )
52 g3
/ f(s—|—9 ———+ ) (5+§+~~)d9. (5.127)
Therefore, since y(s) is supported on s <1,
| £ =1 = fA—=e™)| g2 SN f llggare- (5.128)
This proves that
[ @ $)le=ol /2 + 192 @ )e=ol 12 SN f Ngaee (5.129)
This finally completes the proof of Lemma 5.2. O

6. Proof of Theorem 1.4
To complete the proof of Theorem 1.4, it remains to prove a bound on the scattering
size of a solution to (1.1) that depends only on the size of the initial data. Previous
work has only shown that for any (¢, 1) € H'/2x H=1/2 (1.1) has a global solution
that scatters both forward and backward in time. However, this fact does not preclude
the existence of some A < oo for which ||u]| L#  (Rxr3) MaY be arbitrarily large for
ol g1z + llurll g—1/2 < A.

To preclude this possibility and prove (1.12), it suffices to prove that if (u°
is a sequence of initial data

n’n

lugll gr2 + il g—1/2 < A < o0, (6.1
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then

f[u” ||L?.X(RXR3)
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(6.2)

is uniformly bounded, where u" is the solution to (1.1) with initial data (ug, u?}).

Remark
Observe that this gives no quantitative bound on (1.12).

To prove this, make a profile decomposition.

THEOREM 6.1 (Profile decomposition)
Suppose that there is a uniformly bounded, radially symmetric sequence

||”g||H1/2(R3) + ||”'11”H—1/2(R3) <A <oo.

(6.3)

Then there exists a subsequence, also denoted (ug,u) C HY2 x g~V 2 such that

forany N < oo,

N
SO g ut) =Y TISO)(@.¢1) + SO(RY,. RY,),

j=1

with
. . N N —
i tim sup SO Roin: Ria) |1 sy =

F;{ = (A{, t,{) belongs to the group (0, 00) x R, which acts by
TJF(t,x)=MFAL@ —t]),A)x).

The F,{ ’s are pairwise orthogonal; that is, for every j # k,

lim A + A + ADHV2ARN2)0 — 1R = o
n—00 Aﬁ Xj n n n nl— o

n

Furthermore, for every N > 1,

N
| Qo urm) -2 = D @3- 66| 51257172
=1

+ H (Ré\f,,, R{Yn)”f"{lﬂxfl—l/z + 0”(1)'

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)
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In the course of proving Theorem 6.1, [18] proved that

SOt (Aljuo(;) ﬁu';(;)) ol (x) (6.9)
weakly in H/2(R?) and that
St +Alt] (xlf ug(x) (;)2 ,1,( ))h 0= ¢! (x) (6.10)

weakly in H~1/2(R3).

First suppose that )t,’;t,{ is uniformly bounded. Then after passing to a sub-
sequence, )Lﬁt,{ converges to some ¢/. Changing (¢({,¢{) to S(—tj)(¢({,¢{) and
absorbing the error into (R(I)Vn, RN )

(i“g(;{l) (;)z '1’( )) by (x) 6.11)
and
&S(ﬁ(%u (x) (/\i)z ( ))lt 0= ] (x). (6.12)

Then, if u/ is the solution to (1.1) with initial data (¢, $7),

e/l s ey < M- (6.13)

Next, suppose that after passing to a subsequence, )t{;t,{ " +00. In this case,
Theorem 5.1 also implies that for any (¢, ¢1) € H'/? x H~1/2 there exists a solution
u to (1.1) that is globally well-posed and scattering, and furthermore, that u scatters

to S(2)(¢ho, 1) as t \ —o0:
Jim [ — SO (0. $0)| 1725 r-1/2 =0 (6.14)

Indeed, by Strichartz estimates, the dominated convergence theorem, and small data
arguments, for some 7 < oo sufficiently large, (1.1) has a solution u on (—oo, —T]
such that

el s (oorpary S€ (MTo2). (=T x)) = S(=T)(@o. $1).  (6.15)

and by Strichartz estimates,

Jim [S@) (=0, u:(=0) = (@0, 0| 125712 S € (6.16)
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Then by the inverse function theorem, there exists some (4o(—7"),u1(—7")) such that
(1.1) has a solution that scatters backward in time to S(¢)(¢o,¢1), and by Theo-
rem 5.1, this solution must also scatter forward in time. Therefore,

S(—t) (ML (A x), 0d)2e] (Aix)) (6.17)
converges strongly to
(Mu? (=Ale] A x), AD)2ul (=Aft] Al x)) (6.18)

in HY/ 2 x H —1/2 where u/ is the solution to (1.1) that scatters backward in time to
S (t)(¢é ,¢7), and the remainder may be absorbed into (Rg{ > R{\,’ ,.)- In this case as
well, for some M,

/1|3 iy < M < 00 (6.19)

The proof for )L,J,. t,{ N\ —00 is similar. _
By (6.8), there are only finitely many j’s, say, J, such that ||¢é l g2 +
¢ Il 1,2 > €. For all other s, small data arguments imply that

[ 23 rxr3) S oo 12 4 167 | gr—1/2- (6.20)

Then by the decoupling property (6.7), (6.8), (6.13), (6.20), and Lemma 2.2,

n,/ 00

J
limsup [[u” ”i;‘,x ReRE) S > ||2L?!x RXRD) S Y M7+ A%<oc0.  (621)
J Jj=1
This completes the proof of Theorem 1.4. O
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