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Abstract

We prove global well-posedness and scattering for the defocusing cubic nonlin-

ear wave equation on R1C3 with radial initial data lying in the critical Sobolev space
PH 1=2.R3/� PH�1=2.R3/. This result is sharp for radial initial data.
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1. Introduction

In this paper we study the defocusing cubic nonlinear wave equation

ut t ��uC u3 D 0; u.0; x/D u0; ut .0; x/D u1: (1.1)

This problem is PH 1=2-critical, since the equation (1.1) is invariant under the scaling
symmetry

u.t; x/ 7! �u.�t;�x/: (1.2)

This scaling symmetry completely determines the local well-posedness theory for
(1.1). Positively, [15] proved the following.
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THEOREM 1.1
The equation (1.1) is locally well-posed for initial data in u0 2 PH 1=2.R3/ and u1 2
PH�1=2.R3/ on some interval Œ�T .u0; u1/; T .u0; u1/�. The time of well-posedness

T .u0; u1/ depends on the profile of the initial data .u0; u1/, not just its size.

Additional regularity is enough to give a lower bound on the time of well-

posedness. Therefore, there exists some T .ku0k PH s ;ku1k PH s�1/ > 0 for any 1
2
< s <

3
2

.

Negatively, [15] proved the following.

THEOREM 1.2
The equation (1.1) is ill-posed for u0 2 PH s.R3/ and u1 2 PH s�1.R3/ when s < 1

2
.

Local well-posedness is defined in the usual way.

Definition 1.1 (Locally well-posed)

The initial value problem (1.1) is said to be locally well-posed if there exists an open
interval I � R containing 0 such that
(1) a unique solution u 2 L1

t
PH 1=2.I � R3/ \ L4

t;locL
4
x.I � R3/, ut 2 L1

t �
PH�1=2.I � R3/ exists;

(2) the solution u is continuous in time, u 2 C.I I PH 1=2.R3//, ut 2 C.I I
PH�1=2.R3//;

(3) the solution u depends continuously on the initial data in the topology of item
(1).

Given this fact, it is natural to inquire as to the long-time behavior of solutions
to (1.1) with initial data at the PH 1=2-critical regularity. Do they continue for all time,
and if they do, what is their behavior at large times?

Global well-posedness for initial data in PH 1=2 \ PH 1.R3/ � PH�1=2 \ L2.R3/

follows from conservation of the energy

E
�

u.t/
�

D 1

2

Z

ut .t; x/
2 dxC 1

2

Z

ˇ

ˇru.t; x/
ˇ

ˇ

2
dxC 1

4

Z

u.t; x/4 dx: (1.3)

By the Sobolev embedding theorem and Hölder’s inequality,

�

�u.0/
�

�

4

L4
x.R3/

�
�

�u.0/
�

�

2

L3
x.R3/

�

�u.0/
�

�

2

L6
x.R3/

�
�

�u.0/
�

�

2
PH 1=2.R3/

�

�u.0/
�

�

2
PH 1.R3/

; (1.4)

and therefore,
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E
�

u.0/
�

�ku0k PH1=2
ku0k2

PH 1.R3/
C ku1k2

L2.R3/
: (1.5)

By (1.3), E.u.t//D E.u.0// controls the size of ku.t/k PH 1 C kut .t/kL2 , which by
Theorem 1.1 gives global well-posedness.

Comparing (1.1) to the quintic wave equation in three dimensions,

ut t ��uC u5 D 0; u.0; x/D u0; ut .0; x/D u1; (1.6)

a solution to (1.6) is invariant under the scaling symmetry u.t; x/ 7! �1=2u.�t;�x/, a
symmetry that preserves the . PH 1 �L2/-norm of .u0; u1/. Observe that the conserved
energy for (1.6)

E
�

u.t/
�

D 1

2

Z

ut .t; x/
2 dxC 1

2

Z

ˇ

ˇru.t; x/
ˇ

ˇ

2
dxC 1

6

Z

u.t; x/6 dx (1.7)

is also invariant under the scaling symmetry. For this reason, (1.6) is called energy-

critical, and it is possible to prove a result in the same vein as Theorems 1.1 and 1.2
at the critical regularity PH 1 �L2.

This fact combined with conservation of the energy (1.7) is insufficient to
prove global well-posedness for (1.6). The reason is because the time of local well-
posedness depends on the profile of the initial data .u0; u1/ 2 PH 1 �L2, and not just
its size. Instead, the proof of global well-posedness for the quintic problem uses a
nonconcentration of energy argument. This result has been completely worked out,
proving both global well-posedness and scattering, for both the radial (see [9], [26])
and the nonradial case (see [2], [11], [19], [20]).

Definition 1.2 (Scattering)

A solution to (1.6) is said to be scattering in some PH s.R3/� PH s�1.R3/ if there exist
.uC

0 ; u
C
1 /; .u

�
0 ; u

�
1 / 2 PH s � PH s�1 such that

lim
t!C1

�

�

�

u.t/; ut .t/
�

� S.t/.uC
0 ; u

C
1 /

�

�

PH s� PH s�1 D 0 (1.8)

and

lim
t!�1

�

�

�

u.t/; ut .t/
�

� S.t/.u�
0 ; u

�
1 /

�

�

PH s� PH s�1 D 0; (1.9)

where S.t/.f;g/ is the solution operator to the linear wave equation. That is, if
.u.t/; ut .t//D S.t/.f;g/, then

ut t ��uD 0; u.0; x/D f; ut .0; x/D g: (1.10)

Similar results for (1.1) may also be obtained if one assumes a uniform bound
over kuk PH 1=2.R3/ C kutk PH �1=2.R3/ for the entire time of existence of the solution.
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THEOREM 1.3
Suppose that u0 2 PH 1=2.R3/ and u1 2 PH�1=2.R3/ are radial functions and that u

solves (1.1) on a maximal interval 0 2 I � R, with

sup
t2I

�

�u.t/
�

�

PH 1=2.R3/
C

�

�ut .t/
�

�

PH �1=2.R3/
<1: (1.11)

Then I D R and the solution u scatters both forward and backward in time.

Proof

See [7].

However, unlike the energy-critical problem, there is no a priori reason to believe
that the critical Sobolev norm will remain bounded for the entire time of its existence.
We remove this assumption on uniform boundedness of the critical norm in (1.11),
proving the following result.

THEOREM 1.4
The initial value problem (1.1) is globally well-posed and scattering for radial ini-

tial data u0 2 PH 1=2.R3/ and u1 2 PH�1=2.R3/. Moreover, there exists a function f W
Œ0;1/! Œ0;1/ such that if u solves (1.1) with initial data .u0; u1/ 2 PH 1=2 � PH�1=2,

then

kukL4
t;x.R�R3/ � f

�

ku0k PH 1=2.R3/ C ku1k PH �1=2.R3/

�

: (1.12)

The proof of Theorem 1.4 combines the Fourier truncation method and hyper-
bolic coordinates. Previously, [13] applied the Fourier truncation method to the cubic
wave equation (1.1), proving global well-posedness of (1.1) with initial data lying in
the inhomogeneous Sobolev spaces H s

x.R
3/ �H s�1

x .R3/ for s > 3
4

. This argument
was improved and modified in many subsequent papers, for both radial and nonradial
data. In particular, see [6] for a proof of global well-posedness for (1.1) with radial
initial data lying in

� PH s.R3/\ PH 1=2.R3/
�

�
� PH s�1.R3/\ PH�1=2.R3/

�

; (1.13)

for any s > 1
2

, as well as for a description of other results along this line.

Remark

The method used in [6] was the I-method, a modification of the Fourier truncation
method.

In this paper, using the Fourier truncation method, global well-posedness is
proved for (1.1) with radial initial data lying in PH 1=2.R3/ � PH�1=2.R3/. The idea
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behind the proof is that at low frequencies, the initial data has finite energy, and a
solution to (1.1) with finite energy is global. Meanwhile, at high frequencies, the
. PH 1=2 � PH�1=2/-norm is small, and for such initial data, (1.1) may be treated using
perturbative arguments (see, e.g., [24]). The mixed terms in the nonlinearity are then
shown to have finite energy, proving global well-posedness.

Proof of scattering utilizes hyperbolic coordinates. Scattering for smooth data
with sufficiently rapid decay was proved in [23] using conservation of a conformal
energy. Hyperbolic coordinates were used in [27] to prove weighted Strichartz esti-
mates that were proved in [8] for compactly supported data. More recently, Shen [21],
working in hyperbolic coordinates, was able to prove a scattering result for data lying
in a weighted energy space. Later, [4] combined the result of [21] with the I-method
argument in [6] to prove scattering data lying in the subspace of PH 1=2 � PH�1=2,

ku0k PH 1=2C�.R3/ C
�

�jxj2�u0

�

�

PH 1=2C�.R3/
C ku1k PH �1=2C�.R3/

C
�

�jxj2�u1

�

�

PH �1=2C�.R3/
: (1.14)

Here the Fourier truncation global well-posedness argument in hyperbolic coordi-
nates shows that (1.1) is globally well-posed and scattering for any .u0; u1/ 2 PH 1=2 �
PH�1=2.

This fact still falls short of (1.12), since the proof does not give any uniform
control over the kukL4

t;x.R�R3/-norm. To remedy this deficiency, and complete the
proof of Theorem 1.4, a profile decomposition is used (see [1], [18]). The profile
decomposition shows that for any bounded sequence of initial data

kun
0k PH 1=2.R3/ C kun

1k PH �1=2.R3/ �A; (1.15)

and if un.t/ is the global solution to (1.1) with initial data .un
0; u

n
1/, then

kunkL4
t;x.R�R3/ <1 (1.16)

is uniformly bounded. Then by Zorn’s lemma, the proof of Theorem 1.4 is complete.
The author believes this to be the first unconditional global well-posedness and

scattering result for a nonlinear wave equation with initial data lying in the critical
Sobolev space, with no conserved quantity that controls the critical norm. Previously,
[5] proved global well-posedness and scattering for (1.1) with radial initial data lying
in the Besov spaceB2

1;1 �B1
1;1. These spaces are also invariant under the scaling (1.2).

Later, [16] proved a similar result in five dimensions.
There are two main improvements for this result over the results of [5] and [16].

The first is that, while scale-invariant, the Besov spaces are only subsets of the critical
Sobolev spaces. The second improvement is that the . PH 1=2 � PH�1=2/-norm is invari-
ant under the free evolution of the linear wave equation. Whereas, for initial data lying
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in a Besov space, the proof of scattering simply meant that the solution scattered in
the . PH 1=2 � PH�1=2/-norm.

The main obstacle to extending the Besov space result to scattering in the critical
Sobolev space lies in that the dispersive estimates cannot be easily applied in this
setting. For data in B2

1;1 � B1
1;1, if Qu solves the linear wave equation with the same

initial data .u0; u1/, then the dispersive estimate implies that

k QukL1 �
1

t

�

�.u0; u1/
�

�

B2
1;1

�B1
1;1

: (1.17)

This gives some time integrability for Qu that proves quite useful in [5].
Additionally, for radial initial data, the space B2

1;1 � B1
1;1 is contained in the

energy space if the initial data is supported away from the origin. Thus, [5] was able to
split the initial data into a finite energy piece, and a piece whose linear solution must
travel along the light cone. However, for generic u0 2 PH 1=2 with radial symmetry,
there is no reason to think that u0 has a derivative that lies in any Lp space. There is
no reason to think that u1 lies in any Lebesgue space either.

2. Local well-posedness

The local well-posedness result of [15] may be proved via the Strichartz estimates of
[25].

THEOREM 2.1
Let I � R, t0 2 I , be an interval, and let u W I � R3 ! R be a solution to the linear

wave equation

ut t ��uD F; u.t0/D u0; ut .t0/D u1: (2.1)

Then u satisfies the estimates

kukL
p
t L

q
x.I�R3/ C kukL1

t
PH s.I�R3/ C kutkL1

t
PH s�1.I�R3/

�p;q;s; Qp; Qq ku0k PH s.R3/ C ku1k PH s�1.R3/ C kF k
L

Qp0

t L
Qq0

x .I�R3/
; (2.2)

whenever s � 0, 2� p, Qp � 1, 2� q, Qq <1,

1

p
C 3

q
D 3

2
� s D 1

Qp0
C 3

Qq0
� 2; (2.3)

and

1

p
C 1

q
� 1

2
;

1

Qp C 1

Qq � 1

2
: (2.4)
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Proof

Theorem 2.1 was proved for p D q D 4 and Qp D Qq D 4 in [25] and then in [10] for a
general choice of .p; q/.

To prove local well-posedness of (1.1), it will suffice to use (2.2) when p D q D
4. Indeed, (2.2) implies that for any I ,

kukL4
t;x.I�R3/ �

�

�S.t/.u0; u1/
�

�

L4
t;x.I�R3/

C kuk3

L4
t;x.I�R3/

: (2.5)

If kS.t/.u0; u1/kL4
t;x.I�R3/ � �, then small data arguments imply that (1.1) is locally

well-posed on the interval I .
Therefore, for ku0k PH 1=2 C ku1k PH �1=2 sufficiently small, (2.2) and (2.5) imply

that (1.1) is well-posed on I D R. For generic .u0; u1/ 2 PH 1=2 � PH�1=2, the dom-
inated convergence theorem and (2.2) imply that for any fixed .u0; u1/ 2 PH 1=2 �
PH�1=2,

lim
T &0

�

�S.t/.u0; u1/
�

�

L4
t;x.Œ�T;T ��R3/

D 0; (2.6)

which implies local well-posedness on some open interval I , where 0 2 I .
Equation (2.5) also implies that (1.1) is locally well-posed on an interval I on

which an a priori bound kukL4
t;x.I�R3/ < 1 is obtained. This may be seen by par-

titioning I into finitely many pieces Ij on which kukL4
t;x.Ij �R3/ is small, and then

iterating local well-posedness arguments on each interval. This argument also shows
that scattering is equivalent to kukL4

t;x.R�R3/ <1.
Strichartz estimates also yield perturbative results.

LEMMA 2.2 (Perturbation lemma)
Let I � R be a time interval. Let t0 2 I , .u0; u1/ 2 PH 1=2 � PH�1=2 and some constants

M , A, A0 > 0. Let Qu solve the equation

.@t t ��/ QuC Qu3 D e (2.7)

on I � R3, and also suppose that supt2I k. Qu.t/; @t Qu.t//k PH 1=2� PH �1=2 � A,

k QukL4
t;x.I�R3/ �M ,

�

�

�

u0 � Qu.t0/; u1 � @t Qu.t0/
��

�

PH 1=2� PH �1=2 �A0; (2.8)

and

kek
L

4=3
t;x .I�R3/

C
�

�S.t � t0/
�

u0 � Qu.t0/; u1 � @t Qu.t0/
��

�

L4
t;x.I�R3/

� �: (2.9)
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Then there exists �0.M;A;A
0/ such that if 0 < � < �0, then there exists a solution to

(1.1) on I with .u.t0/; @tu.t0//D .u0; u1/, kukL4
t;x.I�R3/ � C.M;A;A0/, and for all

t 2 I ,

�

�

�

u.t/; @tu.t/
�

�
�

Qu.t/; @t Qu.t/
��

�

PH 1=2� PH �1=2 � C.A;A0;M/.A0 C �/: (2.10)

Proof

The method of proof is by now fairly well-known (see, e.g., Theorem 2.20 of [12]).

Remark

The constant A0 will typically be small. In fact, in Section 6, A0 D 0. Since A0 is
small, we could probably replace C.A;A0;M/ with C.A;M/; however, we will keep
the same notation as [12] here to avoid any unnecessary confusion.

In Theorem 2.20 of [12], � in (2.10) is replaced by �ˇ for some ˇ > 0. This is a
consequence of having a nonlinearity of the form juj 4

N �2u, whereN can be arbitrarily
large. Since we are only concerned with the cubic nonlinear wave equation, we can
get ˇ D 1 here.

The proof of Theorem 1.4 also utilizes some additional Strichartz estimates for
radially symmetric data. First, [14] proved that the endpoint case of Theorem 2.1 also
holds. This estimate fails for nonradial initial data by [17].

THEOREM 2.3
For .u0; u1/ radially symmetric, and u solves (2.1) with F D 0,

kukL2
t L1

x .R�R3/ � ku0k PH 1.R3/ C ku1kL2.R3/: (2.11)

The results of [22] subsequently extended the range of .p; q/.

THEOREM 2.4
Let .u0; u1/ be spherically symmetric, and suppose that u solves (2.1) with F D 0.

Then, if q > 4 and

1

2
C 3

q
D 3

2
� s; (2.12)

we obtain

kukL2
t L

q
x.R�R3/ � ku0k PH s.R3/ C ku1k PH s�1.R3/: (2.13)
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3. Virial identities for the wave equation

The proof of Theorem 1.4 will also use some weighted Strichartz-type estimates.
These estimates could actually be proved using Proposition 3.5 of [22] after making a
Bessel function-type reduction from three dimensions to two dimensions using radial
symmetry.

Here, these estimates will be proved using virial identities. There are at least
two reasons for doing this. The first is that, in the author’s opinion, the exposition
is cleaner and more readable using virial identities. The second reason is that many
of the computations may be applied equally well to defocusing problems as to linear
problems.

Suppose that u solves the equation

ut t ��uC�u3 D 0; u.0; x/D u0; ut .0; x/D u1; (3.1)

where �D 0; 1. The case when �D 0 is a solution to the linear wave equation, and
�D 1 is the defocusing nonlinear wave equation (1.1).

THEOREM 3.1
If u solves (1.1) on an interval Œ0; T �, then

Z T

0

Z

�

jxju
4 dx dt � kukL1

t
PH 1.Œ0;T ��R3/kutkL1

t L2
x.Œ0;T ��R3/; (3.2)

sup
R>0

1

R3

Z T

0

Z

jxj�R

u2 dx dt � kukL1
t

PH 1.Œ0;T ��R3/kutkL1
t L2

x.Œ0;T ��R3/; (3.3)

and

sup
R>0

1

R

Z T

0

Z

jxj�R

�

jruj2 C u2
t

�

dx dt

� kukL1
t

PH 1.Œ0;T ��R3/kutkL1
t L2

x.Œ0;T ��R3/: (3.4)

Remark

The implicit constants in (3.2)–(3.4) are independent of T .

Proof

Define the generic Morawetz potential, where a.x/D a.jxj/ is radially symmetric,

M.t/D
Z

uta
�

jxj
�

x � ruC
Z

uta
�

jxj
�

u: (3.5)

Computing the time derivative, by (3.1),
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d

dt
M.t/D

Z

uta
�

jxj
�

x � rut C
Z

u2
t a

�

jxj
�

C
Z

�ua
�

jxj
�

x � ruC
Z

�ua
�

jxj
�

u

��
Z

u3a
�

jxj
�

x � ru��
Z

u3a
�

jxj
�

u: (3.6)

Integrating by parts,

d

dt
M.t/D �1

2

Z

�

a
�

jxj
�

C a0
�

jxj
�

jxj
�

u2
t � 1

2

Z

�

a
�

jxj
�

C a0
�

jxj
�

jxj
�

jruj2

C
Z

a0
�

jxj
�

jxj
�

jruj2 � j@ruj2
�

C 1

2

Z

u2�a
�

jxj
�

� �

4

Z

a
�

jxj
�

u4 C �

4

Z

a0
�

jxj
�

jxju4: (3.7)

Choosing a.jxj/D 1
jxj

,

a
�

jxj
�

C a0
�

jxj
�

jxj D 0: (3.8)

When u is radial, jruj2 � j@ruj2 D 0. For a general u,

jruj2 � j@ruj2 � 0; (3.9)

so since a0.jxj/� 0,

a0
�

jxj
�

jxj
�

jruj2 � j@ruj2
�

� 0: (3.10)

Also, by direct calculation, � 1
jxj

D �2�ı.x/, so when a.jxj/D 1
jxj

,

d

dt
M.t/� ��u.t; 0/2 � �

2

Z

1

jxju
4 dx: (3.11)

Now by Hardy’s inequality, when a.x/D 1
jxj

,

ˇ

ˇM.t/
ˇ

ˇ � kutkL2krukL2 : (3.12)

Therefore,

Z T

0

u.t; 0/2 dt C
Z T

0

Z

�

jxju
4 dx dt � kutkL1

t L2
x
krukL1

t L2
x
: (3.13)

This takes care of (3.2).
Replacing a.jxj/ by a.jx � yj/ and x with x � y, (3.13) implies that
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1

R3

Z T

0

Z

jyj�R

u.t; y/2 dy dt C 1

R3

Z

jyj�R

Z

�

jx � yju.t; x/
4 dx dy

� kutkL1
t L2

x
krukL1

t L2
x
; (3.14)

which takes care of (3.3).
To prove (3.4), choose a smooth function � W Œ0;1/! Œ0;1/ satisfying �.jxj/D

1 for jxj � 1, �.jxj/D 3
2jxj

for jxj � 2, �.jxj/ is decreasing as a function of jxj, and
such that

�
�

jxj
�

C �0
�

jxj
�

jxj D 	
�

jxj
�

(3.15)

is a smooth function, 	.jxj/ � 0, 	.jxj/D 1 for jxj � 1, and 	.jxj/ is supported on
jxj � 2. Take a.jxj/D 1

R
�. jxj

R
/. Then,

a
�

jxj
�

C a0
�

jxj
�

jxj D 1

R
�

� jxj
R

�

C 1

R
�0

� jxj
R

� jxj
R

D 1

R
	

� jxj
R

�

: (3.16)

Therefore,

d

dt
M.t/D � 1

2R

Z

	
� jxj
R

�

�

u2
t C jruj2

�

dx

C
Z

a0
�

jxj
�

jxj
�

jruj2 � .@ru/
2
�

dx

� �

4

Z

a
�

jxj
�

u4 dxC �

4

Z

a0
�

jxj
�

jxju4 dx

C 1

2

Z

u2�a
�

jxj
�

dx: (3.17)

Now, since a.jxj/D 3
2jxj

when jxj � 2R, �a.jxj/ is supported on jxj � 2R. There-
fore,

1

2

Z

u2�a
�

jxj
�

� sup
R>0

1

R3

Z

jxj�R

u2: (3.18)

Also, a.jxj/� 1
jxj

for any x, so again by Hardy’s inequality,

ˇ

ˇM.t/
ˇ

ˇ � kvtkL2krvkL2 : (3.19)

Plugging (3.9), (3.14), and (3.18) into (3.17) proves (3.4).

COROLLARY 3.2
If u is an approximate solution to the cubic wave equation

ut t ��uC u3 D F; (3.20)
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then

d

dt

h

Z

ut

x

jxj � ruC
Z

ut

1

jxju
i

� ��u.t; 0/2 � 1

2

Z

1

jxju
4

C
Z

F
x

jxj � ruC
Z

F
1

jxju; (3.21)

and

d

dt

1

R3

h

Z

jyj�R

Z

ut .t; x/
x � y

jx � yj � ru.t; x/dx dy

C
Z

jyj�R

Z

ut .t; x/
1

jx � yju.t; x/dx dy
i

� �� 1

R3

Z

jyj�R

u.t; y/2 dy � 1

2

1

R3

Z

jyj�R

Z

1

jx � yju.t; x/
4 dx dy

C 1

R3

Z

jyj�R

Z

F.t; x/
x � y

jx � yj � ru.t; x/dx dy

C 1

R3

Z

jyj�R

Z

F.t; x/
1

jx � yju.t; x/dx dy; (3.22)

and

d

dt

h 1

R

Z

ut�
� jxj
R

�

x � ruC 1

R

Z

ut�
� jxj
R

�

u
i

� � 1

2R

Z

	
� jxj
R

�

�

u2
t C jruj2

�

� 1

4R

Z

�
� jxj
R

�

u4

C 1

4R

Z

�0
� jxj
R

� jxj
R
u4 C 1

2R3

Z

u2.��/
� jxj
R

�

C 1

R

Z

F�
� jxj
R

�

x � ruC 1

R

Z

F�
� jxj
R

�

u: (3.23)

Theorem 3.1 also gives some nice estimates for the linear wave equation .�D 0/.
Let Pj denote the usual Littlewood–Paley partition of unity operators. That is,

Pjf D F
�1

�

	.2�j 
/F f .
/
�

; (3.24)

where F denotes the usual Fourier transform, F
�1 denotes the inverse Fourier trans-

form, and 	.
/ is a smooth, radially symmetric, compactly supported function satis-
fying

X

j 2Z

	.2�j 
/D 1; for all 
 ¤ 0: (3.25)
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COROLLARY 3.3
For any j 2 Z, let w be the solution to the linear wave equation

@t tw ��w D 0; w.0; x/D Pju0; wt .0; x/D Pju1: (3.26)

Then for any 2 < p <1,

�

�jxj1=2w
�

�

L
p
t L1

x .R�R3/
� kPju0k PH 1=p0

.R3/ C kPju1k PH 1=p0�1.R3/; (3.27)

where 1
p0 D 1� 1

p
is the Lebesgue dual of p. Also, for p D 2, for any 0 < R < 1 and

1 < R1 <1,

�

�jxj1=2w
�

�

2

L2
t;x.R�¹xWR�jxj�R1º/

�
�

ln.R1/� ln.R/C 1
��

kPju0k2
PH 1=2.R3/

C kPju1k2
PH �1=2.R3/

�

: (3.28)

Proof

Let  be a smooth radial function supported on an annulus,  .r/D 1 for 1� r � 2,
and  .r/ is supported on 1

2
� r � 4. By Bernstein’s inequality and the product rule,

�

�

�
Pk

�

 
� r

R

�

w
��

�

�

L2
� 2�k

�

�

�
 

� r

R

�

wr

�

�

�

L2
C 2�kR�1

�

�

�
 0

� r

R

�

w
�

�

�

L2
: (3.29)

Therefore, by (3.3), (3.4), and the radial Sobolev embedding theorem,
X

k�j �3

�

�

�
Pk

�

 
� r

R

�

w
�
�

�

�

L2
t L1

x

� 2�j=2R�1=2
�

kPju0k PH 1 C kPju1kL2

�

: (3.30)

Next, by the Fourier support properties of w,
�

�

�
P�j �3

�

 
� r

R

�

w
��

�

�

L1
� 2�jR�1kwkL1 : (3.31)

Combining (3.31) with (2.11),
�

�

�
P�j �3

�

 
� r

R

�

w
��

�

�

L2
t L1

x

� 2�jR�1
�

kPju0k PH 1 C kPju1kL2

�

: (3.32)

Then when R � 2�j ,
�

�

�
P�j �3

�

 
� r

R

�

w
��

�

�

L2
t L1

x

� 2�j=2R�1=2
�

kPju0k PH 1 C kPju1kL2

�

; (3.33)

and when R � 2�j , a straightforward application of the endpoint Strichartz estimate
yields

�

�

�
 

� r

R

�

w
�

�

�

L2
t L1

x

�
�

kPju0k PH 1 C kPju1kL2

�

�R�1=22�j=2
�

kPju0k PH 1 C kPju1kL2

�

: (3.34)



3280 BENJAMIN DODSON

Since there are � ln.R1/ � ln.R/ C 1 dyadic annuli overlapping R � jxj � R1,
(3.30)–(3.34) directly yields (3.28).

To prove (3.27), interpolating (3.34) with the radial Sobolev embedding theorem,
for any 2 < p <1,

�

�

�
 

� r

R

�

w
�

�

�

L
p
t L1

x

�
�

�

�
 

� r

R

�

w
�

�

�

2=p

L2
t L1

x

�

�

�
 

� r

R

�

w
�

�

�

1�2=p

L1
t;x

�R�1=2R� 1
2 .1� 2

p /
�

kPju0k PH 1=2 C kPju1k PH �1=2

�

; (3.35)

which directly implies that

�

�jxj1=2w
�

�

L
p
t L1

x .R�¹xWjxj�2�j º/
�

�

kPju0k PH 1=p0 C kPju1k PH 1=p0�1

�

: (3.36)

Meanwhile, by (2.11) and the Sobolev embedding theorem,

�

�jxj1=2w
�

�

L
p
t L1

x .R�¹jxj�2�j º/
� 2�j=2kwk2=p

L2
t L1

x

kwk1�2=p

L1
t;x

�
�

kPju0k PH 1=p C kPju1k PH 1=p�1

�

: (3.37)

This finally proves the theorem.

Remark

Also observe that by the radial Sobolev embedding theorem, Corollary 3.3 implies
that

kwk2

L2
t L1

x .Œ0;T ��¹jxj�Rº/

�
�

1C ln.T /� ln.R/
��

kPju0k PH 1=2 C kPju1k PH �1=2

�

: (3.38)

The virial identities in Theorem 3.1 commute very well with Littlewood–Paley
projections.

LEMMA 3.4
For any j ,

Z

1

jxj jP�j vj4 dxC
Z

1

jxj jP�j vj4 dx �

Z

1

jxj jvj4 dx: (3.39)

Proof

Let  be the Littlewood–Paley kernel. That is,

1

jxj1=4
P�j v.x/D 1

jxj1=4

Z

23j 
�

2j .x � y/
�

v.y/dy: (3.40)
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When jyj � jxj,

1

jxj1=4
23j 

�

2j .x � y/
�

� 23j 
�

2j .x � y/
� 1

jyj1=4
: (3.41)

When jyj � jxj and jxj � 2�j , since  is rapidly decreasing, for any N ,

1

jxj1=4
23j 

�

2j .x � y/
�

�N

1

jxj1=4

23j

.1C 2j jx � yj/N

�
1

jxj1=42j jyj
23j

.1C 2j jx � yj/N �1

�
1

jyj1=4

23j

.1C 2j jx � yj/N �1
: (3.42)

Combining (3.41) and (3.42),

�

�

�

1

jxj1=4
jP�j vj

�

�

�

L4.jxj�2�j /
�

�

�

�

1

jxj1=4
v
�

�

�

L4.R3/
: (3.43)

When jyj � jxj and jxj � 2�j , since  is rapidly decreasing, for any N ,

1

jxj1=4
23j 

�

2j .x � y/
�

�N

1

jxj1=4

23j

.1C 2j jx � yj/N

�
1

jxj1=4

23j

.1C 2j jx � yj/N �1=4

1

2j=4jyj1=4
; (3.44)

�

�

�

211j=4

.1C 2j jx � yj/N
�

�

�

L4=3.R3/
� 2j=2; (3.45)

so by (3.41), (3.45), Young’s inequality, and Hölder’s inequality,

�

�

�

1

jxj1=4
jP�j vj

�

�

�

L4.jxj�2�j /
�

�

�

�

1

jxj1=4
v
�

�

�

L4.R3/
: (3.46)

This proves (3.39).

LEMMA 3.5
We have

kP�j vk2

L4.jxj� R
2 /

� kP�j vkL3

h

krvkL2.jxj�R/ C 1

R
kvkL2.jxj�R/

i

C 2�j=2
�

Z

1

jxjv
4
�1=2

: (3.47)
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Proof

Let 	 2 C1
0 .R3/ be supported on jxj � 1 and 	.x/ D 1 for jxj � 1

2
. By Hölder’s

inequality,

kP�j vk2

L4.jxj� R
2 /

�
�

�

�
	

� x

R

�

.P�j v/
�

�

�

2

L4.R3/
: (3.48)

Then, by the triangle inequality, Hölder’s inequality, and the Cauchy–Schwarz
inequality,

�

�

�
	

� x

R

�

.P�j v/
�

�

�

2

L4.R3/
�

�

�

�
	

� x

R

�

.P�j v/ �P�j

�

	
� x

R

�

v
��

�

�

L2.R3/

C
�

�

�
	

� x

R

�

.P�j v/ �
h

	
� x

R

�

;P�j

i

v
�

�

�

L2.R3/

�
�

�

�
P�j

�

	
� x

R

�

v
��

�

�

L6.R3/
kP�j vkL3.R3/

C 1

2

�

�

�
	

� x

R

�

.P�j v/
�

�

�

2

L4.R3/

C 1

2

�

�

�

h

	
� x

R

�

;P�j

i

v
�

�

�

2

L4.R3/
; (3.49)

where
h

	
� x

R

�

;P�j

i

v D 	
� x

R

�

.P�j v/�P�j

�

	
� x

R

�

v
�

: (3.50)

Then by the Littlewood–Paley theorem,

�

�

�
	

� x

R

�

.P�j v/
�

�

�

2

L4.R3/
�

�

�

�
	

� x

R

�

v
�

�

�

L6.R3/
kP�j vkL3.R3/

C
�

�

�

h

	
� x

R

�

;P�j

i

v
�

�

�

2

L4.R3/
; (3.51)

and by the Sobolev embedding theorem,
�

�

�
	

� x

R

�

v
�

�

�

L6.R3/
�

�

�

�
r

�

	
� x

R

�

v
��

�

�

L2.R3/

�
1

R
kvkL2.jxj�R/ C krvkL2.jxj�R/: (3.52)

This is bounded by the right-hand side of (3.47).
To handle the commutator, observe that

h

	
� x

R

�

;P�j

i

D �
h

P�j ; 	
� x

R

�i

: (3.53)
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Then compute

h

P�j ; 	
� x

R

�i

v D 23j

Z

 
�

2j .x � y/
�

h

	
� y

R

�

� 	
� x

R

�i

v.y/dy: (3.54)

When jyj � jxj, we have the kernel estimate

23j 
�

2j .x � y/
�

h

	
� y

R

�

� 	
� x

R

�i

�N

23j

.1C 2j jx � yj/N

� 2�j=4 23j

.1C 2j jx � yj/N �1=4

1

jyj1=4
: (3.55)

When jyj � jxj and jxj �R, by the fundamental theorem of calculus,

23j 
�

2j .x � y/
�

h

	
� y

R

�

� 	
� x

R

�i

�N

23j

.1C 2j jx � yj/N
jx � yj1=4

R1=4

� 2�j=4 23j

.1C 2j jx � yj/N �1=4
� 1

jyj1=4
: (3.56)

When jyj � jxj and jxj>R, interpolating

23j 
�

2j .x � y/
�

h

	
� y

R

�

� 	
� x

R

�i

D 23j 
�

2j .x � y/
�

	
� y

R

�

�N

23j

.1C 2j jx � yj/N
R1=2

jyj1=2
(3.57)

with the fact that

23j 
�

2j .x � y/
�

h

	
� y

R

�

� 	
� x

R

�i

�N

23j

.1C 2j jx � yj/N
jx � yj1=2

R1=2

� 2�j=4 23j

.1C 2j jx � yj/N �1=2
� 1

2j=2R1=2
(3.58)

implies that

23j 
�

2j .x � y/
�

h

	
� y

R

�

� 	
� x

R

�i

�N 2�j=4 23j

.1C 2j jx � yj/N
1

jyj1=4
: (3.59)
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The kernel estimates (3.55), (3.56), and (3.59) imply that

�

�

�

h

	
� x

R

�

;P�j

i

v
�

�

�

L4.R3/
� 2�j=4

�

�

�

1

jxj1=4
v
�

�

�

L4.R3/
; (3.60)

proving Lemma 3.5.

4. Global well-posedness

The global well-posedness of (1.1) is proved using the Fourier truncation method, a
method introduced in [3] for the nonlinear Schrödinger equation and used in [13] for
the cubic wave equation.

Decompose the initial data into a finite energy piece and a small data piece, that
is, u0 D v0 Cw0 and u1 D v1 Cw1, where

E.v0; v1/D 1

2

Z

jrv0j2 dxC 1

2

Z

jv1j2 dxC 1

4

Z

jv0j4 dx <1 (4.1)

and

kw0k PH 1=2 C kw1k PH �1=2 	 1: (4.2)

A local solution u to (1.1) may then be decomposed into uDwC v, where w solves

wt t ��wCw3 D 0; w.0; x/Dw0; wt .0; x/Dw1; (4.3)

and v solves

vt t ��vC v3 C 3v2wC 3vw2 D 0; v.0; x/D v0; vt .0; x/D v1: (4.4)

If kw0k PH 1=2 Ckw1k PH �1=2 < � for some � > 0 sufficiently small, then (4.3) is globally
well-posed by small data arguments. Moreover, by Theorems 2.1 and 2.4, the Sobolev
embedding L3=2 � PH�1=2, and the principle of superposition,

kwkL2
t L6

x.R�R3/ C
�

�jrj1=10w
�

�

L2
t L5

x.R�R3/
C

�

�jrj1=6w
�

�

L6
t L3

x.R�R3/

C kwkL4
t;x.R�R3/ �

�

�.w0;w1/
�

�

PH 1=2� PH �1=2 C kw3k
L1

t L
3=2
x
; (4.5)

and therefore, by small data arguments,

kwkL2
t L6

x.R�R3/ C
�

�jrj1=10w
�

�

L2
t L5

x.R�R3/

C
�

�jrj1=6w
�

�

L6
t L3

x.R�R3/
C kwkL4

t;x.R�R3/ � �;

kw3k
L1

t L
3=2
x .R�R3/

� �3:

(4.6)
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Remark

The precise � > 0 will be chosen later.

Remark

Plugging q D 5 into (2.12),

kwkL2
t L5

x
�

�

�.w0;w1/
�

�

PH 2=5� PH �3=5 C kw3kL1
t

PH �3=5 ; (4.7)

and therefore,

�

�jrj1=10w
�

�

L2
t L5

x
�

�

�.w0;w1/
�

�

PH 1=2� PH �1=2 C kw3kL1
t

PH �1=2 : (4.8)

For the solution to (4.4), following (1.3), let E.t/ denote the energy of v:

E.t/D 1

2

Z

vt .t; x/
2 dxC 1

2

Z

ˇ

ˇrv.t; x/
ˇ

ˇ

2
dxC 1

4

Z

v.t; x/4 dx: (4.9)

To prove global well-posedness it suffices to prove that E.t/ <1 for all t 2 R.
Indeed, we have the following result.

THEOREM 4.1
Suppose that .u0; u1/ 2 PH 1=2 � PH�1=2 has the decomposition u0 D v0 C w0 and

u1 D v1 C w1, where .v0; v1/ has the finite energy E.0/ < 1, where E is given

by (4.9), and kw0k PH 1=2 C kw1k PH �1=2 	 1. Then for some c > 0 sufficiently small

and independent of E.0/, the initial value problem (1.1) with initial data .u0; u1/ is

locally well-posed in L1
t

PH 1=2 \L4
t;x on the time interval Œ� c

E.0/
; c

E.0/
�.

Proof

To simplify notation, let I D Œ� c
E.0/

; c
E.0/

�. By Theorem 1.1, (1.1) has a solution for
initial data .v0; v1/, and, moreover, by conservation of energy,

kvk4

L4
t;x.I�R3/

� jI jE.0/� c: (4.10)

Therefore, for c > 0 sufficiently small, independent of E.0/, the perturbation lemma
(Lemma 2.2) and (4.5) proves Theorem 4.1.

THEOREM 4.2
Equation (1.1) is globally well-posed for radial .u0; u1/ 2 PH 1=2.R3/� PH�1=2.R3/.

Proof

Computing the time derivative of E.t/, by Hölder’s inequality,
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d

dt
E.t/D �3

Z

vtv
2w � 3

Z

vtvw
2

� kvtkL2kvk2
L6kwkL6 C kvtkL2kvkL6kwk2

L6 : (4.11)

Therefore, by the Cauchy–Schwarz inequality,

ˇ

ˇ

ˇ

d

dt
E.t/

ˇ

ˇ

ˇ
�E.t/2 C kwk2

L6E.t/: (4.12)

If only the second term on the right-hand side of (4.12) were present, then global
boundedness of E.t/ would be an easy consequence of (4.5) and Gronwall’s inequal-
ity.

However, the bound j d
dt
E.t/j �E.t/2 is not enough to exclude blowup in finite

time. Instead, we will use a modification of E.t/, E.t/, which has much better global
derivative bounds and satisfies E.t/
E.t/.

To simplify notation, rescale by (1.2) so that

kP�1u0k PH 1=2.R3/ C kP�1u1k PH �1=2.R3/ < �; (4.13)

and then let v0 D P�1u0 and v1 D P�1u1.

Remark

The � > 0 in (1.2) depends on the profile of the initial data, not just its size.

Following (3.21), (3.22), and (3.23), let

M1.t/D c1

Z

vt

x

jxj � rvC c1

Z

vt

1

jxjv;

M2.t/D c2

8R3

Z

jyj�2R

Z

vt

.x � y/
jx � yj � rv dx dy

C c2

8R3

Z

jyj�2R

Z

vt

1

jx � yjv dx dy;

M3.t/D c3

R

Z

vt�
� jxj
R

�

x � rvC c3

R

Z

vt�
� jxj
R

�

v;

(4.14)

where c1; c2; c3 > 0 are small constants, and let

E.t/DE.t/CM1.t/CM2.t/CM3.t/C
Z

v3wdx: (4.15)

The Sobolev embedding theorem implies that
Z

v3wdx � kvkL6kwkL3kvk2
L4 � �E.t/: (4.16)
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Next, by (3.12), (3.14), and (3.19),

ˇ

ˇM1.t/
ˇ

ˇ C
ˇ

ˇM2.t/
ˇ

ˇ C
ˇ

ˇM3.t/
ˇ

ˇ � c1E.t/C c2E.t/C c3E.t/: (4.17)

Therefore, choosing c1, c2, and c3 > 0 to be sufficiently small, determined only by the
constant in Hardy’s inequality in three dimensions and the volume of the unit sphere
in R3,

E.t/
E.t/: (4.18)

We will also require that c3 	 c2; c3 � 1
100
c2 will do.

By (3.21), (3.22), (3.23), and (4.11),

d

dt
E.t/ � �2c1�v.t; 0/

2 � c2�

8R3

Z

jyj�2R

v.t; y/2

� c1

2

Z

1

jxjv
4 � c2

16R3

Z

jyj�2R

Z

1

jx � yjv
4

� c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

2R3

Z

v2��
� jxj
R

�

� c3

4R

Z

�
� jxj
R

�

v4 C c3

4R

Z

�0
� jxj
R

� jxj
R
v4

C d

dt

Z

v3wdxC
Z

Fvt C c1

Z

F
x

jxj � rvC c1

Z

F
1

jxjv

C c2

8R3

Z

jyj�2R

Z

F
.x � y/
jx � yj � rvC c2

8R3

Z

jyj�2R

Z

F
1

jx � yjv

C c3

R

Z

F�
� jxj
R

�

x � rvC c3

R

Z

F�
� jxj
R

�

v; (4.19)

where F D �3v2w � 3vw2.
By the support properties of ��. jxj

R
/, for c2 � 100c3,

� c2�

8R3

Z

jyj�2R

v.t; y/2 C c3

2R3

Z

v2��
� jxj
R

�

� � c2

16R3

Z

jyj�2R

v.t; y/2: (4.20)

Also, since �0. jxj
R
/� 0,

c3

4R

Z

�0
� jxj
R

� jxj
R
v4 � 0: (4.21)

Therefore,
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d

dt
E.t/C 2c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

16R3

Z

jyj�2R

Z

1

jx � yjv
4

C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4

� d

dt

Z

v3wC
Z

Fvt C c1

Z

F
x

jxj � rvC c1

Z

F
1

jxjv

C c2

8R3

Z

jyj�2R

Z

F
.x � y/
jx � yj � rvC c2

8R3

Z

jyj�2R

Z

F
1

jx � yjv

C c3

R

Z

F�
� jxj
R

�

x � rvC c3

R

Z

F�
� jxj
R

�

v: (4.22)

Each of the terms on the right-hand side may be controlled using a combination
of Strichartz estimates and terms on the left-hand side. The terms on the right-hand
side may be grouped into three main categories: category-1 terms,

c1

Z

F
1

jxjv dxC c2

8R3

Z

jyj�2R

Z

F.t; x/
1

jx � yjv.t; x/dx dy

C c3

R

Z

F.t; x/�
� jxj
R

�

v.t; x/dx; (4.23)

category-2 terms,

�3
Z

vw2vt dx � 3c1

Z

vw2 x

jxj � rv dx

� 3c2

8R3

Z

jyj�2R

Z

vw2 .x � y/
jx � yj � rv dx

� 3c3

R

Z

vw2�
� jxj
R

�

x � rv dx; (4.24)

and category-3 terms,
Z

v3wt dx � 3c1

Z

v2w
x

jxj � rv dx

� 3c2

8R3

Z

jyj�2R

Z

v2w
.x � y/
jx � yj � rv dx

� 3c3

R

Z

v2w�
� jxj
R

�

x � rv dx: (4.25)

Estimating each group of terms separately,
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Z T

0

(4.23)dt � ı
�

Z T

0

Z

1

jxjv
4 dx dt

�

C 1

ı

Z T

0

E.t/
�

�w.t/
�

�

2

L6 dt; (4.26)

Z T

0

(4.24)dt �
Z T

0

E.t/
�

�w.t/
�

�

2

L6 dt (4.27)

and
Z T

0

(4.25)dt � ı
�

Z T

0

Z

1

jxjv
4 dx dt

�

C ıR

Z T

0

E.t/
� 1

R

Z

jxj�R

jrvj2 dxC 1

R3

Z

jxj�R

v2 dx
�

dt

C 1

ı

Z T

0

E.t/
�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�

dt

C 1

ı

Z T

0

E.t/
�

X

j

2�2j k@twj k2
L6

�

dt

C 1

ı

Z T

0

E.t/
�

X

j

2j=5
�

�wj .t/
�

�

2

L5

�

dt: (4.28)

Theorem 4.2 then proves to be a direct consequence of (4.26)–(4.28).

Category-1 terms

By Hardy’s inequality, the Sobolev embedding theorem, and the Cauchy–Schwarz
inequality, for ı > 0 small,

Z

v2w
1

jxjv dx �
�

Z

1

jxjv
4 dx

�1=2�

�

�

1

jxj1=2
v
�

�

�

L3

�

�w.t/
�

�

L6

� ı
�

Z

1

jxjv
4 dx

�

C 1

ı
E.t/

�

�w.t/
�

�

2

L6 : (4.29)

Also, by Hölder’s inequality and Hardy’s inequality,
Z

vw2 1

jxjv � kwk2
L6krvkL2kvkL6 �E.t/kwk2

L6 : (4.30)

Therefore,
Z

F
1

jxjv dx � ı
�

Z

1

jxjv
4 dx

�

C 1

ı
E.t/

�

�w.t/
�

�

2

L6 : (4.31)

Because �.jxj/� 1
jxj

, the same argument also implies that
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1

R

Z

F.t; x/�
� jxj
R

�

v.t; x/dx � ı
�

Z

1

jxjv
4 dx

�

C 1

ı
E.t/

�

�w.t/
�

�

2

L6 : (4.32)

Finally, since 1
R3

R

jyj�2R
1

jx�yj
dy � 1

jxj
, with bound independent of R,

1

8R3

Z

jyj�2R

Z

F.t; x/
1

jx � yjv.t; x/dx dy

�

Z

1

jxjF.t; x/v.t; x/dx

� ı
�

Z

1

jxjv
4 dx

�

C 1

ı
E.t/

�

�w.t/
�

�

2

L6 : (4.33)

Therefore,

d

dt
E.t/C c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

16R3

Z

jyj�2R

Z

1

jx � yjv
4

C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4

� d

dt

Z

v3w �
Z

Fvt � c1

Z

F
x

jxj � rv

� c2

8R3

Z

jyj�2R

Z

F
.x � y/
jx � yj � rv � c3

R

Z

F�
� jxj
R

�

x � rv

� ı
�

Z

1

jxjv
4
�

C 1

ı
E.t/kwk2

L6 : (4.34)

Category-2 terms

The Sobolev embedding theorem implies that

� 3
Z

vtvw
2 dx � kwk2

L6
x.R3/

kvkL6
x.R3/kvtkL2

x.R3/ �E.t/
�

�w.t/
�

�

2

L6
x.R3/

: (4.35)

Therefore,

d

dt
E.t/C c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

16R3

Z

jyj�2R

Z

1

jx � yjv
4

C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4



RADIAL CUBIC WAVE EQUATION SCATTERING 3291

� d

dt

Z

v3wC 3

Z

v2wvt � c1

Z

F
x

jxj � rv

� c2

8R3

Z

jyj�2R

Z

F
.x � y/
jx � yj � rv � c3

R

Z

F�
� jxj
R

�

x � rv

� ı
�

Z

1

jxjv
4
�

C 1

ı
E.t/kwk2

L6 : (4.36)

Analysis of the other terms involving �3vw2 is similar:
Z

vw2 x

jxj � rv � kwk2
L6krvkL2kvkL6 �E.t/kwk2

L6 (4.37)

and

1

8R3

Z

jyj�2R

Z

vw2 .x � y/
jx � yj � rv �E.t/kwk2

L6 : (4.38)

Since �. jxj
R
/ x

R
is also uniformly bounded,

1

R

Z

vw2�
� jxj
R

�

x � rv �E.t/kwk2
L6 : (4.39)

Therefore,

d

dt
E.t/C c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

8R3

Z

jyj�2R

Z

1

jx � yjv
4

C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4

�
Z

v3wt C 3c1

Z

v2w
x

jxj � rv

C 3c2

8R3

Z

jyj�2R

Z

v2w
.x � y/
jx � yj � rvC 3c3

R

Z

v2w�
� jxj
R

�

x � rv

� ı
�

Z

1

jxjv
4
�

C 1

ı
E.t/kwk2

L6 : (4.40)

Category-3 terms

Making a Littlewood–Paley decomposition,
Z

v3wt dx D
X

j

Z

v3@twj dx: (4.41)
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By Fourier support properties,
Z

v3@twj dx D
Z

�

v3 � .P�j �3v/
3
�

.@twj / dx

D
Z

.P�j �3v/
3.@twj / dx

C 3

Z

.P�j �3v/.P�j �3v/v � @twj dx: (4.42)

Using Lemma 3.4,
X

j

Z

jxj� R
2

�

v3 � .P�j �3v/
3
�

.@twj / dx

�
X

j

��

�

�

1

jxj1=4
jP�j vj

�

�

�

2

L4
C

�

�

�

1

jxj1=4
jP�j vj

�

�

�

2

L4

�

� kP�j �3vkL2
x

�

�jxj1=2@twj

�

�

L1
x .jxj� R

2
/

�
�

Z

1

jxjv
4
�1=2 X

j

kP�j �3vkL2
x

�

�jxj1=2@twj

�

�

L1
x .jxj� R

2 /
: (4.43)

By the Cauchy–Schwarz inequality,

(4.43) � ı
�

Z

1

jxjv
4
�

C 1

ı

�

X

j

kP�j �3vkL2

�

�jxj1=2@twj

�

�

L1.jxj� R
2 /

�2

: (4.44)

By Bernstein’s inequality and Young’s inequality,
�

X

j

kP�j �3vkL2

�

�jxj1=2@twj

�

�

L1.jxj� R
2 /

�2

�
�

X

j

�

X

k�j �3

2k2j �kkPkvkL2

�

� 2�j
�

�jxj1=2@twj

�

�

L1.jxj� R
2 /

�2

�
�

X

k

22kkPkvk2
L2

��

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�

�E.t/
�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�

: (4.45)

Therefore,

d

dt
E.t/C c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

16R3

Z

jyj�2R

Z

1

jx � yjv
4
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C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4

�
X

j

Z

jxj� R
2

�

v3 � .P�j �3v/
3
�

� @twj C 3c1

Z

v2w
x

jxj � rv

C 3c2

8R3

Z

jyj�2R

Z

v2w
.x � y/
jx � yj � rvC 3c3

R

Z

v2w�
� jxj
R

�

x � rv

� ı
�

Z

1

jxjv
4
�

C 1

ı
E.t/kwk2

L6

C 1

ı
E.t/

�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�

: (4.46)

By the Sobolev embedding theorem, Hölder’s inequality, and the Cauchy–Schwarz
inequality,

X

j

Z

jxj� R
2

v.P�j �3v/.P�j �3v/ � @twj dx

�
X

j

k@twj kL6kvkL6.jxj� R
2 /kP�j �3vkL2kP�j �3vkL6

� ıRE.t/
� 1

R

Z

jxj�R

jrvj2 C 1

R3

Z

jxj�R

v2
�

C 1

ı

�

X

j

kP�j �3vkL2k@twj kL6

�2

: (4.47)

Following (4.45),
�

X

j

kP�j �3vkL2k@twj kL6

�2

�E.t/
�

X

j

2�2j k@twj k2
L6

�

: (4.48)

Next, following (4.45), by the Cauchy–Schwarz inequality and Lemma 3.5,

X

j

Z

jxj� R
2

.P�j �3v/
3 � @twj dx

�
X

j

kP�j �3vk2

L4.jxj� R
2 /

kP�j �3vkL3.R3/k@twj kL6.R3/

� ıR
�

�rv.t/
�

�

2

L2

h 1

R
krvk2

L2.jxj�R/
C 1

R3
kvk2

L2.jxj�R/

i

C ı
�

Z

1

jxjv
4
�

C 1

ı

�

X

j

2�j=2kP�j �3vkL3k@twj kL6

�2
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� ıRE.t/
h 1

R
krvk2

L2.jxj�R/
C 1

R3
kvk2

L2.jxj�R/

i

C ı
�

Z

1

jxjv
4
�

C 1

ı
E.t/

h

X

j

2�2j k@twj k2
L6

i

: (4.49)

Therefore,

d

dt
E.t/C c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

8R3

Z

jyj�2R

Z

1

jx � yjv
4

C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4

C 3c1

Z

v2w
x

jxj � rv

C 3c2

8R3

Z

jyj�2R

Z

v2w
.x � y/
jx � yj � rvC 3c3

R

Z

v2w�
� jxj
R

�

x � rv

� ı
�

Z

1

jxjv
4
�

C ıRE.t/
h 1

R
krvk2

L2.jxj�R/
C 1

R3
kvk2

L2.jxj�R/

i

C 1

ı
E.t/kwk2

L6 C 1

ı
E.t/

�

X

j

2�2j k@twj k2
L6

�

C 1

ı
E.t/

�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�

: (4.50)

Integrating by parts,

3c1

Z

v2w
x

jxj � rv dx D �2c1

Z

1

jxjv
3w � c1

Z

v3.rw/ � xjxj : (4.51)

Following (4.31),

� 2c1

Z

1

jxjv
3wdx �

1

ı
E.t/

�

�w.t/
�

�

2

L6
x

C ı
�

Z

1

jxjv
4 dx

�

: (4.52)

The term

� c1

Z

�

v3 � .P�j �3v/
3
�

.rwj / � xjxj dx (4.53)

may be estimated using exactly the same arguments as in the estimates for (4.43).
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Now, the Fourier support of .rwj /.P�j �3v/
3 is j
j 
 2j , so integrating by parts,

c

Z

.P�j �3v/
3.rwj / � xjxj dx

D
Z

xlxk

jxj3
@k

�
.P�j �3v/

3.@lwj /

� 2�j
�

�

�

1

jxj1=4
P�j �3v

�

�

�

2

L4

�

�

�

1

jxj1=2
P�j �3v

�

�

�

L10=3
k@kwj kL5 : (4.54)

Then by the Cauchy–Schwarz inequality,
X

j

c

Z

.P�j �3v/
3.rwj / � xjxj dx

� ı
�

Z

1

jxjv
4
�

C 1

ı

�

X

j

2�j
�

�

�

1

jxj1=2
P�j �3v

�

�

�

L10=3
krwj kL5

�2

; (4.55)

and then by Bernstein’s inequality,

� ı
�

Z

1

jxjv
4
�

C 1

ı
E.t/

�

X

j

2j=5kwj k2
L5

�

: (4.56)

Therefore,

d

dt
E.t/C c1�v.t; 0/

2 C c2�

16R3

Z

jyj�2R

v.t; y/2

C c1

2

Z

1

jxjv
4 C c2

8R3

Z

jyj�2R

Z

1

jx � yjv
4

C c3

2R

Z

	
� jxj
R

�

�

v2
t C jrvj2

�

C c3

4R

Z

�
� jxj
R

�

v4

C 3c2

8R3

Z

jyj�2R

Z

v2w
.x � y/
jx � yj � rvC 3c3

R

Z

v2w�
� jxj
R

�

x � rv

� ı
�

Z

1

jxjv
4
�

C ıRE.t/
h 1

R
krvk2

L2.jxj�R/
C 1

R3
kvk2

L2.jxj�R/

i

C 1

ı
E.t/kwk2

L6 C 1

ı
E.t/

�

X

j

2j=5kwj k2
L5

�

C 1

ı
E.t/

�

X

j

2�2j k@twj k2
L6

�

C 1

ı
E.t/

�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�1

ı
E.t/

�

X

j

2�2j krwj k2
L6

�

C 1

ı
E.t/

�

X

j

2�2j
�

�jxj1=2rwj

�

�

2

L1.jxj� R
2

/

�

: (4.57)
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Like x
jxj

, the potentials

a.x/D �
�2jxj
R

� x

R
and a.x/D

Z

jyj�2R

.x � y/
jx � yj dy (4.58)

are also bounded radial functions satisfying

r � a.x/� 1

jxj ; (4.59)

and therefore the analysis of

C 3c2

8R3

Z

jyj�2R

Z

v2w
.x � y/
jx � yj � rvC 3c3

R

Z

v2w�
� jxj
R

�

x � rv (4.60)

may be carried out in much the same manner as
Z

v2w
x

jxj � rv: (4.61)

Choosing

1

R
D sup

0�t�T

E.t/ (4.62)

and absorbing

ı
�

Z

1

jxjv
4
�

C ıRE.t/
h 1

R
krvk2

L2.jxj�R/
C 1

R3
kvk2

L2.jxj�R/

i

(4.63)

into the left-hand side,

d

dt
E.t/ �

1

ı
E.t/kwk2

L6 C 1

ı
E.t/

�

X

j

2j=5kwj k2
L5

�

C 1

ı
E.t/

�

X

j

2�2j k@twj k2
L6

�

C 1

ı
E.t/

�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� R
2 /

�

C 1

ı
E.t/

�

X

j

2�2j krwj k2
L6

�

C 1

ı
E.t/

�

X

j

2�2j
�

�jxj1=2rwj

�

�

2

L1.jxj� R
2 /

�

: (4.64)

Since E.t/
 E.t/, (4.64) implies that
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d

dt
ln

�

E.t/
�

�
1

ı
kwk2

L6 C 1

ı

�

X

j

2j=5kwj k2
L5

�

C 1

ı

�

X

j

2�2j k@twj k2
L6

�

C 1

ı

�

X

j

2�2j
�

�jxj1=2@twj

�

�

2

L1.jxj� 1
2E.T /

/

�1

ı

�

X

j

2�2j krwj k2
L6

�

C 1

ı

�

X

j

2�2j
�

�jxj1=2rwj

�

�

2

L1.jxj� 1
2E.T /

/

�

: (4.65)

Now suppose without loss of generality that

E.T /D sup
0�t�T

E.t/: (4.66)

Integrating in time and combining (3.38), Corollary 3.3, and (4.5),

ln
�

E.T /
�

� ln
�

E.0/
�

�
�2

ı
ln.T /C �2

ı
ln

�

E.T /
�

C �: (4.67)

Remark

Corollary 3.3 is only stated for a solution to the linear wave equation. However, since
kw3k

L1
t L

3=2
x

� �3, one may estimate the contribution of the nonlinear term using
Duhamel’s principle, the principle of superposition, and estimates for the linear wave
equation.

Doing some algebra and choosing ı.c1; c2; c3/ > 0 small, and then �.ı/ > 0 suf-
ficiently small,

ln
�

E.T /
�

�
� 1

1� C�2

ı

�

ln
�

E.0/
�

C C�2

ı.1� C�2

ı
/

ln.T /C C�

.1� C�2

ı
/
: (4.68)

This proves that for any t , there exists a constant C such that E.t/ 
 E.t/ � .1C
t /C� .

5. Proof of scattering

Having proved that (1.1) is globally well-posed for every radially symmetric
.u0; u1/ 2 PH 1=2 � PH�1=2, the next step is to prove that every such global solu-
tion scatters. By Theorem 2.1, proving that a global solution to (1.1) scatters is
equivalent to showing that kukL4

t;x.R�R3/ <1.
By time reversal symmetry, it suffices to show the following.

THEOREM 5.1
For any radial initial data .u0; u1/ 2 PH 1=2 � PH�1=2, the solution to (1.1) scatters

forward in time, with
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kukL4
t;x.Œ0;1/�R3/ <1: (5.1)

By the dominated convergence theorem, there exists R.u0; u1; �/ <1 such that
�

�S.t/.u0; u1/
�

�

L4
t;x.jxj�RCjt j/

< �: (5.2)

Then by finite propagation speed, Theorem 2.1, and small data arguments, if u is a
global solution to (1.1), then

kukL4
t;x.Œ0;1/�¹xWjxj�RCjt jº/ � �: (5.3)

Rescaling using (1.2) with � D 2R, .u0.x/;u1.x// 7! .2Ru0.2Rx/; .2R/
2 �

u1.2Rx//, and

kukL4
t;x.jxj� 1

2 Cjt j/ � �: (5.4)

To prove

kukL4
t;x.Œ0;1/�¹jxj� 1

2 Ctº/ <1; (5.5)

it is convenient to translate in time so that the space-time integral of (5.5) is over a
cone with vertex at the origin. Make a time translation so that

u.1;x/D 2Ru0.2Rx/; ut .1; x/D .2R/2u1.2Rx/: (5.6)

After time translation, (5.4) implies that

kukL4
t;x.Œ1;1/�¹jxj�t� 1

2 º/ � �; (5.7)

and (5.5) is equivalent to kukL4
t;x.Œ1;1/�¹xWjxj�jt j� 1

2 º/ <1.

Switching to hyperbolic coordinates for the region inside the cone jxj � t , let

Qu.�; s/D e� sinh s

s
u.e� cosh s; e� sinh s/: (5.8)

Making a change of variables,
Z 1

0

Z 1

0

Qu.�; s/4
� s

sinh s

�2

s2 ds d�

D
Z 1

0

Z 1

0

u.e� cosh s; e� sinh s/4e2� .sinh s/2e2� ds d�

D
Z 1

1

Z

t2�r2�1

u.t; r/4r2 dr dt �
Z 1

2

Z

t�rC 1
2

u.t; r/4r2 dr dt: (5.9)

Therefore,
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Z 1

0

Z 1

0

Qu.�; s/4
� s

sinh s

�2

s2 ds d� <1 (5.10)

combined with (5.7) implies that

kukL4
t;x.Œ2;1/�R3/ <1: (5.11)

The global well-posedness result of Theorem 4.2 implies that

kukL4
t;x.Œ1;2��R3/ <1; (5.12)

which combined with (5.11), after undoing time translation, implies (5.5).
By direct computation,

�

@�� � @ss � 2

s
@s

�

Qu.�; s/C
� s

sinh s

�2

Qu3 D 0; (5.13)

with

Quj�D0 D e� sinh s

s
u.e� cosh s; e� sinh s/j�D0 (5.14)

and

Qu� j�D0 D @�

�e� sinh s

s
u.e� cosh s; e� sinh s/

�

j�D0: (5.15)

A solution to (5.13) has the conserved energy

E.�/D 1

2
k Qu�k2

L2 C 1

2
k Qusk2

L2 C 1

4

Z

Qu.�; s/4
� s

sinh s

�2

s2 ds: (5.16)

As in the proof of global well-posedness, to use (5.16) we will truncate in frequency.
The properties of the initial data (5.14) and (5.15) will be analyzed in more detail
later, but for now, assume that (5.14) and (5.15) may be decomposed into an PH 1 �L2

piece and an PH 1=2 � PH�1=2 piece.

LEMMA 5.2
There exists a decomposition

Quj�D0 D e� sinh s

s
u.e� cosh s; e� sinh s/j�D0 D Qv0 C Qw0 (5.17)

and

Qu� j�D0 D @�

�e� sinh s

s
u.e� cosh s; e� sinh s/

�

j�D0 D Qv1 C Qw1; (5.18)

with
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1

2

Z

j@s Qv0j2s2 C 1

2

Z

j Qv1j2s2 C 1

4

Z

Qv4
0

� s

sinh s

�2

s2 <1 (5.19)

and

k Qw0k PH 1=2 C kw1k PH �1=2 � �: (5.20)

Remark

Following (4.13), it is enough to prove Qu0 2 PH 1 C PH 1=2 and Qu1 2 L2 C PH�1=2 and
then truncate in frequency. The proof of Lemma 5.2 will be postponed.

Proof of Theorem 5.1

Make a Fourier truncation argument. Let Qv and Qw solve

.@�� ��/ QwC
� s

sinh s

�2

Qw3 D 0; Qw.0;y/D Qw0; Qw� .0; y/D Qw1; (5.21)

and

.@�� ��/ QvC
� s

sinh s

�2

Œ Qv3 C 3 Qv2 QwC 3 Qv Qw2�D 0; Qv.0;y/D Qv0;

Qv� .0; y/D Qv1:

(5.22)

Define the energy

E.�/D 1

2

Z

j@s Qvj2s2 C 1

2

Z

j@� Qvj2s2 C 1

4

Z

Qv4
� s

sinh s

�2

s2: (5.23)

As in the proof of global well-posedness, define the quantity

E.�/DE.�/CM.�/C
Z

Qv3 Qw
� s

sinh s

�2

s2 ds; (5.24)

where

M.�/D c

Z

Qv� Qvss
2 dsC c

Z

Qv� Qvs ds; (5.25)

and c > 0 is a small constant.
By direct computation, making a slight modification of (4.11) and (3.21),

d

d�
M.�/D �1

2
Qv.�; 0/2 � 1

2

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds

� 3
Z

Qv2 Qvs Qw
� s

sinh s

�2

s2 ds � 3
Z

Qv Qvs Qw2
� s

sinh s

�2

s2 ds

� 3
Z

Qv3 Qw
� s

sinh s

�2

s ds � 3
Z

Qv2 Qw2
� s

sinh s

�2

s ds: (5.26)
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Therefore,

d

d�
E.�/D �c

2
Qv.�; 0/2 � c

2

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds

� 3c
Z

Qv2 Qvs Qw
� s

sinh s

�2

s2 ds � 3c
Z

Qv Qvs Qw2
� s

sinh s

�2

s2 ds

� 3c
Z

Qv3 Qw
� s

sinh s

�2

s ds � 3c
Z

Qv2 Qw2
� s

sinh s

�2

s ds

� 3
Z

� s

sinh s

�2

Qv3 Qw�s ds � 3
Z

� s

sinh s

�2

Qv Qv� Qw2s ds: (5.27)

By Hardy’s inequality and Hölder’s inequality,

�3c
Z

Qv Qvs Qw2
� s

sinh s

�2

s2 ds � 3c
Z

Qv2 Qw2
� s

sinh s

�2

s ds

� 3
Z

� s

sinh s

�2

Qv Qv� Qw2s2 ds �E.�/k Qwk2
L6 : (5.28)

Also, by Hardy’s inequality and the Cauchy–Schwarz inequality,
Z

Qv3 Qw
� s

sinh s

�2

s ds � ı
�

Z

Qv4
�cosh s

sinh s

�� s

sinh s

�2

s2 ds
�

C 1

ı
k Qwk2

L6

�

�

�

1

jxj1=2
Qv
�

�

�

2

L3

� ı
�

Z

� s

sinh s

�2�cosh s

sinh s

�

Qv4s2 ds
�

C 1

ı
k Qwk2

L6E.�/: (5.29)

Therefore,

d

d�
E.�/C c

2
Qv.�; 0/2 C c

2

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds

C 3c

Z

Qv2 Qw
� s

sinh s

�2

Qvss
2 dsC 3

Z

� s

sinh s

�2

Qv3 Qw�s
2 ds

�
1

ı
E.�/kwk2

L6 C ı
�

Z

Qv4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds
�

: (5.30)

Next, integrating by parts,

3c

Z

Qv2 Qvs Qw
� s

sinh s

�2

s2 ds D �c
Z

Qv3 Qws

� s

sinh s

�2

s2 ds

� c
Z

Qv3 Qw � @s

� s4

.sinh s/2

�

ds: (5.31)

Since

@s

� s4

.sinh s/2

�

� s; (5.32)
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by (5.29),

c

Z

Qv3 Qw � @s

� s4

.sinh s/2

�

� ı
�

Z

Qv4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds
�

C 1

ı
k Qwk2

L6E.�/: (5.33)

Following (4.42)–(4.44) and using Lemma 3.4,

�c
X

j

Z

s� R
2

�

Qv3 � .P�j �3 Qv/3
�

.@s Qwj / �
� s

sinh s

�2

s2 ds

C 3
X

j

Z

s� R
2

�

Qv3 � .P�j �3 Qv/3
�

.@� Qwj /
� s

sinh s

�2

s2 ds

� ı
�

Z

�cosh s

sinh s

�� s

sinh s

�2

Qv4s2 ds
�

C 1

ı
E.�/

�

X

j

2�2j
�

�

�
.r�;x Qwj /

� sinh s

cosh s

�1=2� s

sinh s

��

�

�

2

L1.jxj� R
2 /

�

: (5.34)

Next, by Hölder’s inequality,

X

j

�

�

�

Qv3 � .P�j �3 Qv/3
�

.r�;x Qwj /
�

�

L1.jxj� R
2 /

�
X

j

k QvkL1kP�j �3 QvkL2kr�;x Qwj kL6k QvkL3.jxj� R
2 /

�E.�/
�

X

j

2�2j kr�;x Qwj k2
L6

�

CRE.�/kvk2
L1 : (5.35)

Following (4.54) and (4.55),
Z

.P�j �3 Qv/3.@s Qwj / �
� s

sinh s

�2

s2 dsC
Z

.P�j �3 Qv/3.@� Qwj / �
� s

sinh s

�2

s2 ds

� ı
�

Z

1

jxj Qv4
�

C 1

ı
E.�/

�

X

j

2�8j=5kr�;x Qwj k2
L5

�

: (5.36)

Therefore,

d

d�
E.�/C c

2
Qv.�; 0/2 C c

2

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds

�E.�/
�

X

j

2�2j kr�;xwj k2
L6

�



RADIAL CUBIC WAVE EQUATION SCATTERING 3303

C 1

ı
E.�/

�

X

j

2�8j=5kr�;x Qwj k2
L5

�

CRE.�/kvk2
L1

C 1

ı
E.�/kwk2

L6 C ı
�

Z

Qv4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds
�

: (5.37)

Absorbing

ı
�

Z

Qv4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds
�

(5.38)

into the left-hand side,

d

d�
E.�/C c

4

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds

�E.�/
�

X

j

2�2j kr�;xwj k2
L6

�

C 1

ı
E.�/

�

X

j

2�8j=5kr�;x Qwj k2
L5

�

CRE.�/kvk2
L1 C 1

ı
E.�/kwk2

L6 : (5.39)

Since E.�/
 E.�/,

d

d�
ln

�

E.�/
�

C c

4E.�/

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds

�
�

X

j

2�2j kr�;xwj k2
L6

�

C 1

ı

�

X

j

2�8j=5kr�;x Qwj k2
L5

�

CRkvk2
L1 C 1

ı
kwk2

L6

C 1

ı

�

X

j

2�2j
�

�

�
.r�;x Qwj /

� sinh s

cosh s

�1=2� s

sinh s

��

�

�

2

L1.s� R
2 /

�

: (5.40)

Suppose that T is such that E.T /D sup0<�<T E.�/. Integrating in � ,

ln
�

E.T /
�

� ln
�

E.0/
�

C c

4

Z T

0

1

E.�/

Z

Qv.�; s/4
� s

sinh s

�2�cosh s

sinh s

�

s2 ds d�

�
�2

ı

�

1� ln.R/
�

C �2 C
Z T

0

Rk Qvk2
L1 d�: (5.41)

Now by direct computation,
�

�

�

� s

sinh s

�1=2

Qu
�

�

�

L4
�

�

�

�

� s

sinh s

�1=2�cosh s

sinh s

�1=4

Qv
�

�

�

L4
C k QwkL4 : (5.42)

If I is an interval on which k. s
sinh s

/1=2 QukL4
�;x.I / 	 1, then by (2.11) and (5.22),
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k QvkL2
� L1

x .I�R3/ � kr QvkL1
� L2

x
C kQv�kL1

� L2
x

C kQvkL2
� L1

x

�

Z

I

Z

Qu4
� s

sinh s

�2

s2 ds d�
�1=2

; (5.43)

which implies that

k QvkL2
� L1

x .I�R3/ � kr QvkL1
� L2

x
C kQv�kL1

� L2
x
; (5.44)

and therefore,

Z T

0

Rk Qvk2
L1 d� �RE.T /

�

Z T

0

Z

Qv4
� s

sinh s

�2

s2 ds d�
�

: (5.45)

Choosing RD ı 1
E.T /2 , (5.45) can be absorbed into the left-hand side of (5.41), prov-

ing

ln
�

E.T /
�

� ln
�

E.0/
�

�
�2

ı

�

ln
�1

ı

�

C ln
�

E.T /
�

�

C �2: (5.46)

This implies a uniform bound on E.T /. Plugging the uniform bound on E.�/ for all
� into (5.40) implies a uniform bound on

Z T

0

Z

� s

sinh s

�2�cosh s

sinh s

�

Qv.�; s/4s2 ds d� <1: (5.47)

This proves scattering, assuming Lemma 5.2 is true.

Proof of Lemma 5.2

By Duhamel’s formula, for t > 1,

u.t/D S.t/.u0; u1/C
Z t

0

S.t � t 0/.0;u3/ dt 0 D ul C unl : (5.48)

The contributions of ul and unl to (5.17) and (5.18) will be analyzed separately.
First take the term unl . When f and g are radial and r > t ,

rS.t/.f;g/D 1

2
f .r � t /C 1

2
f .r C t /C 1

2

Z rCt

r�t

sg.s/ds: (5.49)

Because the curve t2 � r2 D 1 has slope dr
dt
> 1 everywhere, (5.48) implies that

s Qunl.�; s/j�D0 D
Z e� cosh s

1

Z e� sinh sCe� cosh s�t

e� sinh s�e� cosh sCt

ru3.t; r/ dr dt j�D0: (5.50)

By direct computation,
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Z 1

0

�

@� .s Qunl/j�D0

�2
ds

�

Z 1

0

e2s
�

Z cosh s

1

.es � t /u3.t; es � t / dt
�2

ds

C
Z 1

0

e�2s
�

Z cosh s

1

.t � e�s/u3.t; t � e�s/ dt
�2

ds: (5.51)

By Hölder’s inequality and a change of variables,
Z 1

0

e2s
�

Z cosh s

1

.es � t /u3.t; es � t / dt
�2

ds

�

Z 1

0

Z cosh s

1

e3s.es � t /2u6.t; es � t / dt ds

�

Z 1

0

Z

t2�r2�1

u6.t; r/r4 dt dr <1: (5.52)

The last inequality follows from global well-posedness of u, which implies
kukL4

t;x.Œ1;3��R3/ < 1, (5.7), Strichartz estimates, and the radial Sobolev embed-
ding theorem, which implies that

�

�jxj1=3u
�

�

L6
t;x.R�R3/

�
�

�jrj1=6u
�

�

L6
t L3

x.R�R3/
: (5.53)

Also, by a change of variables and Hölder’s inequality, since .t � e�s/� 1 for s � 1

and t � 1,
Z 1

1

e�2s
�

Z cosh s

1

.t � e�s/u3.t; t � e�s/ dt
�2

ds

�

Z 1

1

Z cosh s

1

e�s.t � e�s/2u6.t; es � t / dt ds

�

Z 1

0

Z

t2�r2�1

u6.t; r/r4 dt dr <1: (5.54)

Finally, by the radial Sobolev embedding theorem, Young’s inequality, and a change
of variables,

Z 1

0

e�2s
�

Z cosh s

1

.t � e�s/u3.t; t � e�s/ dt
�2

ds

�

Z 3

1

�

Z

t2�r2�1

u.t; r/6r2 dr
�1=2

dt

�

Z 3

1

1

.t � 1/3=4
dt <1: (5.55)
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Therefore,
Z

�

@� .s Qunl/j�D0

�2
ds D

Z

Qu2
� s

2 dsj�D0 <1: (5.56)

Integrating by parts,
Z 1

s0

u2
s s

2 ds D
Z 1

s0

�

@s.su/
�2
dsC s0u.s0/

2; (5.57)

so taking s0 D 0,
Z

Qu2
s s

2 ds <1: (5.58)

This shows that the contribution of the nonlinear term to (5.17) and (5.18) lies in
PH 1 �L2.

Now consider the contribution ul . First suppose that u1 D 0 and

ul D S.t � 1/.u0; 0/: (5.59)

Then by (5.49),

s Qul .�; s/D e� sinh s � ul.e
� cosh s; e� sinh s/

D 1

2

�

u0.e
�Cs � 1/.e�Cs � 1/C u0.1� e��s/.1� e��s/

�

: (5.60)

Let � 2 C1
0 .R/ be a partition of unity function satisfying

1D
X

k�0

�.s � k/; (5.61)

for any s 2 Œ0;1/, and where �.s � k/ is supported on .k � 1/ � ln.2/� s � .kC 1/ �
ln.2/. Split

Qul .�; s/D Qu.1/

l
.�; s/C Qu.2/

l
.�; s/C Qu.3/

l
.�; s/C Qu.4/

l
.�; s/

C Qu.5/

l
.�; s/C Qu.6/

l
.�; s/; (5.62)

where

s Qu.1/

l
.�; s/D

X

k�0

�.s � k/.P��ku0/.e
�Cs � 1/ � .e�Cs � 1/;

s Qu.2/

l
.�; s/D P�0

X

k�0

�.s � k/.P>�ku0/.e
�Cs � 1/ � .e�Cs � 1/;
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s Qu.3/

l
.�; s/D P�0

X

k�0

�.s � k/.P>�ku0/.e
�Cs � 1/ � .e�Cs � 1/;

s Qu.4/

l
.�; s/D

X

k�0

�.s � k/.P�ku0/.1� e��s/ � .1� e��s/;
(5.63)

s Qu.5/

l
.�; s/D P�0

X

k�0

�.s � k/.P>ku0/.1� e��s/ � .1� e��s/;

s Qu.6/

l
.�; s/D P�0

X

k�0

�.s � k/.P>ku0/.1� e��s/ � .1� e��s/:

Remark

If g is a radial function in R3, then

g 2 PH 1.R3/,
Z 1

0

.grr/
2 dr <1 (5.64)

and

g 2L2.R3/,
Z 1

0

�

g.r/r
�2
dr <1: (5.65)

Taking the derivative,

s@� . Qu.1/

l
/j�D0 D @� .s Qu.1/

l
/.�; s/j�D0

D
X

k�0

�.s � k/.P��ku
0
0/.e

s � 1/ � .es � 1/es

C
X

k�0

�.s � k/.P��ku0/.e
s � 1/ � es: (5.66)

Then by a change of variables, Hardy’s inequality, and Young’s inequality,

k(5.66)kL2Œ0;1/ �
�

X

k�0

2k
�

X

j ��k

�

��.s � k/.Pj ru0/.e
s � 1/

�

�

L2

�2�1=2

C
�

X

k�0

2k
��

�

�
�.s � k/ 1jxj .Pju0/.e

s � 1/
�

�

�

L2

�2�1=2

� ku0k PH 1=2 : (5.67)

The computation of @s.s Qu.1/

l
.�; s//j�D0 is similar, except that, in addition, it is neces-

sary to compute
X

k

�

��0.s � k/.P��ku0/.e
s � 1/ � .es � 1/

�

�

2

L2 : (5.68)
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By a change of variables and Hardy’s inequality,

(5.68) �
X

k�0

2k
�

X

j ��k

�

�

�
�0.s � k/ 1jxj .Pju0/.e

s � 1/
�

�

�

L2

�2

� ku0k2
PH 1=2

: (5.69)

By the product rule,

s@s Qul .�; s/D @s

�

s Qul.�; s/
�

� Qul.�; s/: (5.70)

By the support properties of �.s � k/ and the Sobolev embedding theorem,
�

�

�

X

k�0

�.s � k/.P��ku0/.e
s � 1/ � .es � 1/

�

�

�

L1
� ku0k PH 1=2 ; (5.71)

and therefore,
�

� Qul .�; s/j�D0

�

�

L2.Œ0;1/
D

�

�

�

1

s

X

k�2

�.s � k/.P��ku0/.e
s � 1/ � .es � 1/

�

�

�

L2.Œ0;1/

�
�

Z 1

1

1

s2
ds

�1=2

ku0k PH 1=2 � ku0k PH 1=2 : (5.72)

Also, by the support properties of �.s � k/ and (5.71),
�

�

�

X

kD0;1

�.s � k/P��ku0.e
s � 1/ � .e

s � 1/
s

�

�

�

L2.Œ0;1/
� ku0k PH 1=2 : (5.73)

Therefore, Qu.1/

l
.�; s/j�D0 has finite energy.

Next, for any k � 0, j >�k, by the product rule and change of variables,
�

�@�

�

�.s � k/.Pju0/.e
sC� � 1/ � .esC� � 1/

�

j�D0

�

�

L2.Œ0;1/

�
�

��.s � k/.Pj ru0/.e
s � 1/ � .es � 1/es

�

�

L2.Œ0;1/

C
�

��.s � k/.Pju0/.e
s � 1/ � es

�

�

L2.Œ0;1/

� 2k=2kPj ru0kL2.2k�1�1�r�2kC1/

C 2k=2
�

�

�

1

jxjPju0

�

�

�

L2.2k�1�1�r�2kC1/
: (5.74)

Therefore, if f 2 PH 1=2.R3/ is a radial function, then by Bernstein’s inequality,
Z 1

0

�

Plf .s/
�

s � @�

�

�.s � k/.Pju0/.e
sC� � 1/ � .esC� � 1/

�

j�D0 ds

� kPlf kL2.2k�1�1�r�2kC1/

h

2k=2kPj ru0kL2.2k�1�1�r�2kC1/

C 2k=2
�

�

�

1

jxjPju0

�

�

�

L2.2k�1�1�r�2kC1/

i

: (5.75)
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Summing up, by Young’s inequality and Bernstein’s inequality,
X

l�j Ck>0

kPlf kL2.2k�1�1�r�2kC1/

h

2k=2kPj ru0kL2.2k�1�1�r�2kC1/

C 2k=2
�

�

�

1

jxjPju0

�

�

�

L2.2k�1�1�r�2kC1/

i

� kf k PH 1=2ku0k PH 1=2 : (5.76)

Next, by a change of variables,
�

��.s � k/.Pju0/.e
s � 1/ � .es � 1/

�

�

L2.Œ0;1/

� 2�k=2kPju0kL2.2k�1�1�r�2kC1/: (5.77)

By the product rule,

@�

�

�.s � k/.Pju0/.e
sC� � 1/ � .esC� � 1/

�

j�D0

D @s

�

�.s � k/.Pju0/.e
s � 1/ � .es � 1/

�

� �0.s � k/.Pju0/.e
s � 1/ � .es � 1/: (5.78)

Integrating by parts,
Z 1

0

�

Plf .s/
�

s � @s

�

�.s � k/.Pju0/.e
s � 1/ � .es � 1/

�

ds

D �
Z 1

0

��

Plrf .s/
�

sC
�

Plf .s/
��

�.s � k/.Pju0/.e
s � 1/ � .es � 1/ds

� 2�k=2
h

kPlrf kL2.2k�1�1�r�2kC1/

C
�

�

�

1

jxjPlf
�

�

�

L2.2k�1�1�r�2kC1/

i

kPju0kL2.2k�1�1�r�2kC1/: (5.79)

Summing up, by Bernstein’s inequality,
X

0�l<j Ck

2�k=2
h

kPlrf kL2.2k�1�1�r�2kC1/

C
�

�

�

1

jxjPlf
�

�

�

L2.2k�1�1�r�2kC1/

i

kPju0kL2.2k�1�1�r�2kC1/

� kf k PH 1=2ku0k PH 1=2 : (5.80)

Also,
Z 1

0

�

Plf .s/
�

s � �0.s � k/.Pju0/.e
s � 1/ � .es � 1/ds

� kPlf kL2.2k�1�1�s�2kC1/2
�k=2kPju0kL2.2k�1�1�s�2kC1/: (5.81)
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Then by Bernstein’s inequality,
X

0�l<j Ck

2�k=2kPlf kL2.2k�1�1�r�2kC1kPju0kL2.2k�1�1�r�2kC1/

� kf k PH 1=2ku0k PH 1=2 :

(5.82)

Therefore,
�

�@�

�

Qu.2/

l
.�; s/

�

j�D0

�

�

PH �1=2.R3/
� ku0k PH 1=2 : (5.83)

The proof that k Qu.2/

l
.�; s/j�D0k PH 1=2 is bounded is quite similar. By the product

rule and change of variables, compute
�

�@s

�

�.s � k/.Pju0/.e
s � 1/ � .es � 1/

��

�

L2

� 2�k=2kPju0kL2.2k�1�1�r�2kC1/

C 2k=2
�

�.Pj ru0/
�

�

L2.2k�1�1�r�2kC1/

C 2k=2
�

�

�

1

jxj .Pju0/
�

�

�

L2.2k�1�1�r�2kC1/
(5.84)

and
�

�

�

1

s
�.s � k/.Pju0/.e

s � 1/ � .es � 1/
�

�

�

L2

� 2�k=2kPju0kL2.2k�1�1�r�2kC1/: (5.85)

By Bernstein’s inequality, Young’s inequality, and the support properties of �.s � k/,
X

l

2l
�

�

�
Pl

�

X

l�kCj;kCj >0

�.s � k/.Pju0/.e
s � 1/ � .es � 1/

��

�

�

2

L2

�
X

l

2l
X

k

�

X

l�kCj;kCj >0

�

��.s � k/.Pju0/.e
s � 1/ � .es � 1/

�

�

L2

�2

� ku0k2
PH 1=2

: (5.86)

Also, by Bernstein’s inequality and (5.84),

X

l

2l
�

�

�
Pl

�

X

0<kCj <l

�.s � k/.Pju0/.e
s � 1/ � .es � 1/

��

�

�

2

L2

�
X

l

2l
X

k

�

X

0<kCj <l

�

��.s � k/.Pju0/.e
s � 1/ � .es � 1/

�

�

L2

�2

� ku0k2
PH 1=2

: (5.87)
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Therefore, we have proved that

�

�@�

�

Qu.2/

l
.�; s/

�

j�D0

�

�

PH �1=2 C
�

� Qu.2/

l
.�; s/j�D0

�

�

PH 1=2 � ku0k PH 1=2 : (5.88)

Next, following (5.80)–(5.83) with Pl , l � 0 replaced by P�0 and f 2L2.R3/,

�

�@�

�

Qu.3/

l
.�; s/

�

j�D0

�

�

L2 C
�

� Qu.3/

l
.�; s/j�D0

�

�

PH 1 � ku0k PH 1=2 : (5.89)

Next consider Qu.4/

l
.�; s/. By the product rule,

@�

�

s Qu.4/

l
.�; s/

�

j�D0 D �
X

k�0

�.s � k/.P�kru0/.1� e�s/ � .1� e�s/e�s

�
X

k�0

�.s � k/.P�ku0/.1� e�s/e�s: (5.90)

Then, by Young’s inequality,

�

�@�

�

s Qu.4/

l
.�; s/

�

j�D0

�

�

L2.Œ0;1//

�
X

k�0

2�k
�

X

j �k

krPju0kL2.1�2�k�1�r�1�2�kC1/

�2

C
X

k�0

2�k
�

X

j �k

�

�

�

1

jxjPju0

�

�

�

L2.1�2�k�1�r�1�2�kC1/

�2

� ku0k2
PH 1=2

: (5.91)

Also, by the product rule,

@s

�

s Qu.4/

l
.�; s/

�

D �@�

�

s Qu.4/

l
.�; s/

�

C
X

k�0

�0.s � k/.Pku0/.1� e�s/ � .1� e�s/: (5.92)

Then by the finite overlapping property of �.s�k/ and the radial Sobolev embedding
theorem,

�

�

�

X

k�0

�0.s � k/.Pku0/.1� e�s/ � .1� e�s/
�

�

�

2

L2.Œ0;1/

�
X

k�0

kPku0k2
PH 1=2

� ku0k2
PH 1=2

: (5.93)

Therefore,
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�

�@s

�

s Qu.4/

l
.�; s/

�

j�D0

�

�

L2.Œ0;1/
C

�

�@�

�

s Qu.4/

l
.�; s/

�

j�D0

�

�

L2.Œ0;1/

� ku0k PH 1=2 : (5.94)

Next, by a change of variables,
�

��.s � k/.Pju0/.1� e�s/ � .1� e�s/
�

�

L2

� 2k=2kPju0kL2.1�2�k�1�r�1�2�kC1/: (5.95)

Therefore, by Young’s inequality,

�

�s Qu5
l .�; s/j�D0

�

�

2

L2.Œ0;1/
�

X

k�0

2k
�

X

j >k

kPju0kL2.1�2�k�1�r�1�2�kC1/

�2

� ku0k2
PH 1=2

: (5.96)

Therefore, by the Fourier support of Qu.5/

l
,

�

� Qu.5/

l
.�; s/j�D0

�

�

PH 1.R3/
� ku0k PH 1=2.R3/: (5.97)

Also, if f 2L2 and f is supported on j
j � 1, then
Z 1

0

f .s/s � @�

�

s Qu.5/

l
.�; s/

�

j�D0 ds

D �
Z 1

0

f .s/s � @s

�

s Qul.�; s/
�

j�D0 ds

�
Z 1

0

f .s/s �
X

k�0

�0.s � k/.P�ku0/.1� e�s/ � .1� e�s/ ds: (5.98)

Integrating by parts, by (5.96),

�
Z 1

0

f .s/s � @s

�

s Qu.5/

l
.�; s/

�

j�D0 ds D
Z 1

0

@s

�

f .s/s
�

� s Qu.5/

l
.�; s/j�D0 ds

� kf kL2ku0k PH 1=2 : (5.99)

Also, by (5.96),
Z 1

0

f .s/s �
X

k�0

�0.s � k/.P�ku0/.1� e�s/ � .1� e�s/ ds

� kf kL2ku0k PH 1=2 : (5.100)

Therefore,
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�

�@�

�

s Qu.5/

l
.�; s/

�

j�D0

�

�

L2.Œ0;1/
C

�

�@s

�

s Qu.5/

l
.�; s/

�

j�D0

�

�

L2.Œ0;1/

� ku0k PH 1=2 :
(5.101)

Finally, take Qu.6/

l
.�; s/. Take f 2 PH 1=2 supported in Fourier space on j
j � 1.

Then by the product rule and (5.96),
�

�@s

�

�.s � k/.Pju0/.1� e�s/ � .1� e�s/
��

�

L2.Œ0;1/

� 2k=2kPju0kL2.1�2�k�1�r�1�2�kC1/

C 2�k=2kPj ru0kL2.1�2�k�1�r�1�2�kC1/

C 2�k=2
�

�

�

1

jxjPju0

�

�

�

L2.1�2�k�1�r�1�2�kC1/
: (5.102)

Also, by (5.96) and (5.95),

�

�

�

1

s
�.s � k/.Pju0/.1� e�s/ � .1� e�s/

�

�

�

L2.Œ0;1/

� 2k=2kPju0kL2.1�2�k�1�r�1�2�kC1/: (5.103)

Therefore, by Young’s inequality,

X

l<j Ck

2l
X

k

�

X

j >k

�

��.s � k/.Pju0/.1� e�s/ � .1� e�s/
�

�

L2

�2

� ku0k2
PH 1=2

: (5.104)

Also, by Bernstein’s inequality,

X

l�j Ck

2�l
X

k

�

X

j >k

�

�@s

�

�.s � k/.Pju0/.1� e�s/ � .1� e�s/
��

�

L2

�2

� ku0k2
PH 1=2

: (5.105)

Therefore, we have finally proved that if u1 D 0, then

Qul .�; s/j�D0 2 PH 1=2.R3/C PH 1.R3/ (5.106)

and

@�

�

Qul.�; s/
�

j�D0 2 PH�1=2.R3/CL2.R3/: (5.107)

To compute the contribution to Qul.�; s/ of

S.t/.0;u1/; (5.108)
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observe that

sin.t
p

��/p
��

f D @t

�cos.t
p

��/
�

f
�

: (5.109)

Plugging the formula for a solution into to the wave equation when r > t , letw.t; r/D
cos.t

p
��/f . Then,

@t

�

w.t; r/
�

D 1

2r
@t

�

f .t C r/.t C r/C f .r � t /.r � t /
�

D 1

2r

�

f .t C r/C f 0.t C r/.t C r/

� f .r � t /� f 0.r � t /.r � t /
�

: (5.110)

Then decompose Qul.�; s/D Qu.1/

l
.�; s/C Qu.2/

l
.�; s/C Qu.3/

l
.�; s/, where

s Qu.1/

l
.�; s/D 1

2

�

f 0.e�Cs � 1/ � .e�Cs � 1/� f 0.1� e��s/ � .1� e��s/
�

;

s Qu.2/

l
.�; s/D 1

2

�

1� �.s/
��

f .e�Cs � 1/� f .1� e��s/
�

;

s Qu.3/

l
.�; s/D 1

2
�.s/

�

f .e�Cs � 1/� f .1� e��s/
�

:

(5.111)

Since

f D u1

�
2 PH 3=2.R3/; (5.112)

the contribution of

f 0.e�Cs � 1/ � .e�Cs � 1/� f 0.1� e��s/ � .1� e��s/ (5.113)

to

�

Qul .�; s/j�D0; @� Qul .�; s/j�D0

�

(5.114)

may be analyzed in exactly the same manner as the contribution of S.t/.u1; 0/. There-
fore,

Qu.1/

l
.�; s/j�D0 2 PH 1=2 C PH 1 (5.115)

and

@�

�

Qu.1/

l
.�; s/

�

j�D0 2 PH�1=2 CL2: (5.116)

Next take Qu.2/

l
.�; s/. By a change of variables,
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Z 1

1

�

@sf .e
s � 1/

�2
ds D

Z 1

1

�

f 0.es � 1/ � es
�2
ds

�

Z

ˇ

ˇf 0.r/
ˇ

ˇ

2
r dr � kf k2

PH 3=2.R3/
(5.117)

and
Z 1

1

�

@sf .1� e�s/
�2
ds D

Z 1

1

�

f 0.1� e�s/ � e�s
�2
ds

�
ˇ

ˇf 0.r/
ˇ

ˇ

2
r dr � kf k2

PH 3=2.R3/
: (5.118)

By an identical calculation,
Z 1

1

�

@�f .e
sC� � 1/j�D0

�2
ds D

Z 1

1

�

f 0.es � 1/ � es
�2
ds

�

Z

ˇ

ˇf 0.r/
ˇ

ˇ

2
r dr � kf k2

PH 3=2.R3/
(5.119)

and
Z 1

1

�

@sf .1� e��s/j�D0

�2
ds D

Z 1

1

�

f 0.1� e�s/ � e�s
�2
ds

�

Z

ˇ

ˇf 0.r/
ˇ

ˇ

2
r dr � kf k2

PH 3=2.R3/
: (5.120)

Next, by the fundamental theorem of calculus, for s0 
 1,

s0
�

f .es0 � 1/� f .1� e�s0/
�2 D s0

h

Z es0 �1

1�e�s0

f 0.r/ dr
i2

�

Z

ˇ

ˇf 0.r/
ˇ

ˇ

2
r dr � kf k2

PH 3=2
: (5.121)

Therefore, by (5.118) and (5.119),
�

�@�

�

Qu.2/

l
.�; s/

�

j�D0

�

�

L2 � kf k PH 3=2 (5.122)

and
�

� Qu.2/

l
.0; s/

�

�

PH 1 � kf k PH 3=2 : (5.123)

Finally, consider

f .e�Cs � 1/� f .1� e��s/ (5.124)

when s < 1. By direct computation,
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@�

�

f .e�Cs � 1/� f .1� e��s/
�

j�D0

D f 0.es � 1/ � es C f 0.1� e�s/ � e�s: (5.125)

Then for g 2 PH 1=2, by Hardy’s inequality,
Z

f 0.es � 1/ � es � g.s/s dsC
Z

f 0.1� e�s/ � e�s � g.s/s ds

� kf k PH 3=2kgk PH 1=2 : (5.126)

Also, by the fundamental theorem of calculus,

f .es � 1/� f .1� e�s/

D
Z sC s2

2 C s3

3Š C���

s� s2

2 C s3

3Š ����

f 0.r/ dr

D
Z 1

0

f 0
�

sC �
�s2

2
C s3

3Š
C � � �

��

�
�s2

2
C s3

3Š
C � � �

�

d�

C
Z 0

�1

f 0.sC �
�s2

2
� s3

3Š
C � � �

�

�
�s2

2
C s3

3Š
C � � �

�

d�: (5.127)

Therefore, since �.s/ is supported on s � 1,

�

�f .es � 1/� f .1� e�s/
�

�

PH 1=2 � kf k PH 3=2 : (5.128)

This proves that

�

� Qu.3/

l
.�; s/j�D0

�

�

PH 1=2 C
�

�@� Qu.3/

l
.�; s/j�D0

�

�

PH �1=2 � kf k PH 3=2 : (5.129)

This finally completes the proof of Lemma 5.2.

6. Proof of Theorem 1.4

To complete the proof of Theorem 1.4, it remains to prove a bound on the scattering
size of a solution to (1.1) that depends only on the size of the initial data. Previous
work has only shown that for any .u0; u1/ 2 PH 1=2 � PH�1=2, (1.1) has a global solution
that scatters both forward and backward in time. However, this fact does not preclude
the existence of some A < 1 for which kukL4

t;x.R�R3/ may be arbitrarily large for

ku0k PH 1=2 C ku1k PH �1=2 �A.
To preclude this possibility and prove (1.12), it suffices to prove that if .u0

n; u
1
n/

is a sequence of initial data

kun
0k PH 1=2 C kun

1k PH �1=2 �A<1; (6.1)



RADIAL CUBIC WAVE EQUATION SCATTERING 3317

then

kunkL4
t;x.R�R3/ (6.2)

is uniformly bounded, where un is the solution to (1.1) with initial data .un
0; u

n
1/.

Remark

Observe that this gives no quantitative bound on (1.12).

To prove this, make a profile decomposition.

THEOREM 6.1 (Profile decomposition)
Suppose that there is a uniformly bounded, radially symmetric sequence

kun
0k PH 1=2.R3/ C kun

1k PH �1=2.R3/ �A<1: (6.3)

Then there exists a subsequence, also denoted .un
0; u

n
1/ � PH 1=2 � PH�1=2, such that

for any N <1,

S.t/.un
0; u

n
1/D

N
X

j D1


j
nS.t/.	

j
0 ; 	

j
1 /C S.t/.RN

0;n;R
N
1;n/; (6.4)

with

lim
N !1

lim sup
n!1

�

�S.t/.RN
0;n;R

N
1;n/

�

�

L4
t;x.R�R3/

D 0: (6.5)



j
n D .�

j
n; t

j
n / belongs to the group .0;1/� R, which acts by


j
nF.t; x/D �j

nF
�

�j
n.t � tjn /; �j

nx
�

: (6.6)

The 

j
n ’s are pairwise orthogonal; that is, for every j ¤ k,

lim
n!1

�
j
n

�k
n

C �k
n

�
j
n

C .�j
n/

1=2.�k
n/

1=2jtjn � tkn j D 1: (6.7)

Furthermore, for every N � 1,

�

�.u0;n; u1;n/
�

�

2
PH 1=2� PH �1=2 D

N
X

j D1

�

�.	
j
0 ; 	

k
0 /

�

�

2
PH 1=2� PH �1=2

C
�

�.RN
0;n;R

N
1;n/

�

�

2
PH 1=2� PH �1=2 C on.1/: (6.8)
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In the course of proving Theorem 6.1, [18] proved that

S.�j
nt

j
n /

� 1

�
j
n

un
0

� x

�
j
n

�

;
1

.�
j
n/2

un
1

� x

�
j
n

��

*	
j
0 .x/ (6.9)

weakly in PH 1=2.R3/ and that

@tS.t C �j
nt

j
n /

� 1

�
j
n

un
0

� x

�
j
n

�

;
1

.�
j
n/2

un
1

� x

�
j
n

��

jtD0 *	
j
1 .x/ (6.10)

weakly in PH�1=2.R3/.
First suppose that �j

nt
j
n is uniformly bounded. Then after passing to a sub-

sequence, �j
nt

j
n converges to some tj . Changing .	j

0 ; 	
j
1 / to S.�tj /.	j

0 ; 	
j
1 / and

absorbing the error into .RN
0;n;R

N
1;n/,

� 1

�
j
n

un
0

� x

�
j
n

�

;
1

.�
j
n/2

un
1

� x

�
j
n

��

*	
j
0 .x/ (6.11)

and

@tS.t/
� 1

�
j
n

un
0

� x

�
j
n

�

;
1

.�
j
n/2

un
1

� x

�
j
n

��

jtD0 *	
j
1 .x/: (6.12)

Then, if uj is the solution to (1.1) with initial data .	j
0 ; 	

j
1 /,

kuj kL4
t;x.R�R3/ �Mj : (6.13)

Next, suppose that after passing to a subsequence, �j
nt

j
n % C1. In this case,

Theorem 5.1 also implies that for any .	0; 	1/ 2 PH 1=2 � PH�1=2, there exists a solution
u to (1.1) that is globally well-posed and scattering, and furthermore, that u scatters
to S.t/.	0; 	1/ as t & �1:

lim
t!�1

�

�u� S.t/.	0; 	1/
�

�

PH 1=2� PH �1=2 D 0: (6.14)

Indeed, by Strichartz estimates, the dominated convergence theorem, and small data
arguments, for some T <1 sufficiently large, (1.1) has a solution u on .�1;�T �
such that

kukL4
t;x..�1;�T ��R3/ � �;

�

u.�T;x/;ut .�T;x/
�

D S.�T /.	0; 	1/: (6.15)

and by Strichartz estimates,

lim
t!C1

�

�S.t/
�

u.�t /; ut .�t /
�

� .	0; 	1/
�

�

PH 1=2� PH �1=2 � �
3: (6.16)
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Then by the inverse function theorem, there exists some .u0.�T /;u1.�T // such that
(1.1) has a solution that scatters backward in time to S.t/.	0; 	1/, and by Theo-
rem 5.1, this solution must also scatter forward in time. Therefore,

S.�tjn /
�

�j
n	

j
0 .�

j
nx/; .�

j
n/

2	
j
1 .�

j
nx/

�

(6.17)

converges strongly to
�

�j
nu

j .��j
nt

j
n ; �

j
nx/; .�

j
n/

2u
j
t .��j

nt
j
n ; �

j
nx/

�

(6.18)

in PH 1=2 � PH�1=2, where uj is the solution to (1.1) that scatters backward in time to
S.t/.	

j
0 ; 	

j
1 /, and the remainder may be absorbed into .RN

0;n;R
N
1;n/. In this case as

well, for some Mj ,

kuj kL4
t;x.R�R3/ �Mj <1: (6.19)

The proof for �j
nt

j
n & �1 is similar.

By (6.8), there are only finitely many j ’s, say, J , such that k	j
0 k PH 1=2 C

k	j
1 k PH �1=2 > �. For all other j ’s, small data arguments imply that

kuj kL4
t;x.R�R3/ � k	j

0 k PH 1=2 C k	j
1 k PH �1=2 : (6.20)

Then by the decoupling property (6.7), (6.8), (6.13), (6.20), and Lemma 2.2,

lim sup
n%1

kunk2

L4
t;x.R�R3/

�
X

j

kuj k2

L4
t;x.R�R3/

�

J
X

j D1

M 2
j CA2 <1: (6.21)

This completes the proof of Theorem 1.4.
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